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Abstract

This monograph describes principles of information theoretic secrecy
generation by legitimate parties with public discussion in the presence
of an eavesdropper. The parties are guaranteed secrecy in the form of
independence from the eavesdropper’s observation of the communica-
tion.

Part I develops basic technical tools for secrecy generation, many of
which are potentially of independent interest beyond secrecy settings.
Various information theoretic and cryptographic notions of secrecy are
compared. Emphasis is placed on central themes of interactive com-
munication and common randomness as well as on core methods of
balanced coloring and leftover hash for extracting secret uniform ran-
domness. Achievability and converse results are shown to emerge from
“single shot” incarnations that serve to explain essential structure.

Part II applies the methods of Part I to secrecy generation in two
settings: a multiterminal source model and a multiterminal channel
model, in both of which the legitimate parties are a�orded privileged
access to correlated observations of which the eavesdropper has only
partial knowledge. Characterizations of secret key capacity bring out
inherent connections to the data compression concept of omniscience
and, for a specialized source model, to a combinatorial problem of max-
imal spanning tree packing in a multigraph. Interactive common infor-
mation is seen to govern the minimum rate of communication needed to
achieve secret key capacity in the two-terminal source model. Further-
more, necessary and su�cient conditions are analyzed for the secure
computation of a given function in the multiterminal source model.

Based largely on known recent results, this self-contained mono-
graph also includes new formulations with associated new proofs. Sup-
plementing each chapter in Part II are descriptions of several open
problems.

P. Narayan and H. Tyagi. Multiterminal Secrecy by Public Discussion. Foundations
and Trends R• in Communications and Information Theory, vol. 13, no. 2-3,
pp. 129–275, 2016.
DOI: 10.1561/0100000072.
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1
Introduction

Information theoretic cryptography is founded on the principle of guar-
anteeing legitimate users provable data security from an adversary with
unlimited computational power. Such an unconditional guarantee of se-
curity assures secrecy in the form of statistical independence (or near-
independence) from the adversary’s observations. This is accomplished,
however, by giving the legitimate users a hearty leg up. By comparison,
most existing cryptosystems for data security are based on the concept
of computational complexity. The latter form of security rests on the
infeasibility of existing mathematical and computational techniques in
solving “hard” underlying computational problems, for instance, in-
verting specific functions.

Information theoretic perfect secrecy, introduced by Claude Shan-
non [72], constitutes the strongest definition of data security. It requires
independence of a secret from the adversary’s observations. A prac-
tically acceptable relaxation to near-independence ensures negligible
information leakage to the adversary. Taken together with resources
for the legitimate parties that lend them a decided advantage over the
adversary, it leads to a rich theory raring for application.

2
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3

In this monograph, we consider secrecy generation with public com-
munication by multiple legitimate parties in two settings: a multitermi-
nal source model and a multiterminal channel model. In both models,
the legitimate parties are given privileged access to correlated observa-
tions that are only partially available to the eavesdropper. Our primary
focus is on the former model.

The multiterminal source model consists of m • 2 terminals with
prior access to correlated observations, and the means to communicate
interactively among themselves over a public and noiseless broadcast
medium of unlimited capacity. In the multiterminal channel model, a
subset of k terminals, 1 § k § m ´ 1, govern the inputs of a noisy
but secure transmission channel with the remaining m ´ k terminals
receiving the channel outputs. In between transmissions over the se-
cure channel, all the terminals additionally can communicate among
themselves publicly as in the source model. In both models, a passive
adversary can eavesdrop on the communication among the terminals
but cannot tamper with it, i.e., the communication is authenticated. In
the setting of each model, the primary goal is to generate a secret key
of optimal length for all the m terminals under the requirement of in-
formation theoretic secrecy from the eavesdropped communication. We
also consider secure function computation by trusted computing parties
for a multiterminal source model under a similar secrecy constraint.

We do not address “wiretap channel” secrecy, launched in seminal
works [98, 17], that entails secure transmission of messages over insecure
channels which are wiretapped by an adversary; this is chronicled in
[49, 19, 65]. Also, the classical multiterminal (information theoretically)
secure function computation problem where the parties themselves are
not trusted is not considered here; it has a substantial literature (cf. [46,
15, 95, 25, 58, 40, 96, 93, 94, 3, 87]).

This self-contained monograph is written in the language of infor-
mation theory and aims to appeal as well to the cryptographer. To
this end, we have strived to emphasize its following distinctive fea-
tures: Comparison of various information theoretic and cryptographic
notions of secrecy; bringing out of the significance – in distributed co-
operative secrecy generation – of central themes of interactive commu-
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4 Introduction

nication and the common randomness or shared bits thereby created;
and a presentation of “single-shot” results with a minimum of statisti-
cal assumptions (beyond knowledge of a joint distribution of pertinent
random variables). Such a single-shot analysis, redolent of standard
practice in cryptography, lies at the heart of information theoretic cod-
ing theorems. Also, by virtue of their lean and not mean but essential
form, these results are of potential significance for models beyond those
considered here.

Although this monograph largely treats known recent results, ad-
herence to a consistency of themes has engendered also new formu-
lations with associated new proofs. Our e�ort is to be viewed as a
complement to the rich chapter on information theoretic security in
[19] as well as jaunts in new directions.

Organization
Part I consists of Chapters 2 - 5 that deal with basic technical tools

for secrecy generation. Many of these tools are potentially of indepen-
dent interest beyond secrecy applications. Part II contains Chapters 6
- 9 that apply the methods of Part I to secrecy generation for the mul-
titerminal source and channel models. In order to maintain a smooth
flow of presentation, credits are provided only at the end of each chap-
ter in a story of results a la [19]. The list of references is representative
but not exhaustive. Supplementing the credits in Chapters 6 - 9 are
descriptions of open problems.

Beginning with rudiments, Chapter 2 describes secrecy indices for
a key with their operational meanings, as well as secrecy indices for a
message and relationships among the latter. Turning to basic methods,
Chapter 3 deals with the central concepts of interactive communica-
tion among multiple terminals and the common randomness generated
thereby; a fundamental structural property of interactive communica-
tion and single-shot converse upper bounds for the ensuing common
randomness are derived. The concept of a secret key is introduced
formally in Chapter 4, and suitable upper bounds on its length are
obtained by means of two di�erent converse techniques: bounding the
entropy of common randomness and through the error exponent of
conditional independence hypothesis testing. The notion of shared in-
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5

formation is introduced as an upper bound for the length of a secret
key; shared information has a potential role as a measure of mutual
dependence among m • 2 random variables. Chapter 5 describes two
achievability approaches – balanced coloring and leftover hash – for ex-
tracting uniform randomness from a given random variable with near
independence from another random variable. These methods pave the
way for extracting a secret key from common randomness by means of
public communication.

Chapter 6 addresses secret key generation for the multiterminal
source model in which each terminal observes one component of a dis-
crete memoryless multiple source. A single-letter characterization of
secret key capacity is obtained on the strength of an inherent link
to a data compression problem of “omniscience” without secrecy con-
straints. This capacity is seen as being equal to shared information,
thereby imbuing the latter with an operational meaning. Secret key
generation for a special “pairwise independent network” model reveals
connections to a combinatorial problem of maximal packing of span-
ning trees in a multigraph. For the two-terminal source model, the
minimum rate of interactive communication needed to generate an op-
timal rate secret key is addressed in Chapter 7, and is shown to be
related to a new interactive variant of Wyner’s common information.
Chapter 8 examines conditions that enable a special form of secrecy
generation for the multiterminal source model: secure function com-
putation in which multiple terminals compute a given function of the
collective data at the terminals using public communication that does
not reveal the function value. The closing Chapter 9 studies secret key
generation for the multiterminal channel model in which one subset
of the terminals are connected to the remaining terminals by a secure
discrete memoryless multiaccess channel. While a general single-letter
characterization of secret key capacity remains open, in the special case
of a channel with a single output terminal, interesting connections are
shown between secrecy capacity and the transmission capacity region
of the multiple access channel with and without feedback.
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6 Introduction

A note: All the random variables (rvs) throughout this monograph
take values in finite sets, with known joint probability mass functions
(pmfs). Probabilities of events involving rvs X, Y will be denoted by
PXY , PX|Y , etc., and by a general P when appropriate.
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