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ABSTRACT
We consider the well-studied problem of predicting the time-
varying covariance matrix of a vector of financial returns.
Popular methods range from simple predictors like rolling
window or exponentially weighted moving average (EWMA)
to more sophisticated predictors such as generalized autore-
gressive conditional heteroscedastic (GARCH) type methods.
Building on a specific covariance estimator suggested by En-
gle in 2002, we propose a relatively simple extension that
requires little or no tuning or fitting, is interpretable, and
produces results at least as good as MGARCH, a popular
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2

extension of GARCH that handles multiple assets. To eval-
uate predictors we introduce a novel approach, evaluating
the regret of the log-likelihood over a time period such as
a quarter. This metric allows us to see not only how well
a covariance predictor does overall, but also how quickly it
reacts to changes in market conditions. Our simple predic-
tor outperforms MGARCH in terms of regret. We also test
covariance predictors on downstream applications such as
portfolio optimization methods that depend on the covari-
ance matrix. For these applications our simple covariance
predictor and MGARCH perform similarly.
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1
Introduction

1.1 Covariance Prediction

We consider cross-sections, e.g., a vector time series of n financial returns,
denoted rt ∈ Rn, t = 1, 2, . . ., where (rt)i is the return of asset i from
t − 1 to t. We focus on the case where the mean E rt is small enough
that the second moment E rtr

T
t ∈ Rn×n is a good approximation of the

covariance matrix cov(rt) = E rtr
T
t − (E rt)(E rt)T , where E denotes

expectation. This is the case for most daily, weekly, or monthly stock,
bond, and futures returns, factor returns, and index returns. We start
by focussing on the case where the number of assets n is modest, say,
on the order 10–100 or so; in Section 8 we explain how to extend the
method to much larger universes using ideas such as factor models.

We model the returns rt as independent random variables with zero
mean and covariance Σt ∈ Sn

++ (the set of symmetric positive definite
matrices). We focus on the problem of predicting or estimating Σt, based
on knowledge of r1, . . . , rt−1. The prediction is denoted as Σ̂t ∈ Sn

++.
The predicted volatilities of assets are given by

σ̂t = diag(Σ̂t)1/2 ∈ Rn,

3
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4 Introduction

where diag with a matrix argument is the vector of diagonal entries of
the matrix, and the squareroot of a vector above is elementwise. We
denote the predicted correlations as

R̂t = diag(σ̂t)−1Σ̂t diag(σ̂t)−1,

where diag with a vector argument is the diagonal matrix with entries
from the vector argument.

Covariance estimation comes up in several areas of finance, including
Markowitz portfolio construction (Markowitz, 1952; Grinold and Kahn,
2000), risk management (McNeil et al., 2015), and asset pricing (Sharpe,
1964). Much attention has been devoted to this problem, and a Nobel
Memorial Prize in Economic Sciences was awarded for work directly
related to volatility estimation (Engle, 1982).

While it is well known that the tails of financial returns are poorly
modeled by a Gaussian distribution, our focus here is on the bulk of the
distribution, where the Gaussian assumption is reasonable. For future
use, we note that the log-likelihood of an observed return rt, under the
Gaussian distribution rt ∼ N (0, Σ̂t), is

lt(Σ̂t) = 1
2
(
−n log(2π) − log det Σ̂t − rT

t Σ̂−1
t rt

)
. (1.1)

The Gaussian log-likelihood is closely related to a popular metric for
evaluating covariance predictors in econometrics, called the (Gaussian)
quasi-likelihood (QLIKE) (Patton, 2011; Patton and Sheppard, 2009;
Laurent et al., 2013). QLIKE is the negative log-likelihood, under the
Gaussian assumption, up to an additive constant and a positive scale
factor. Roughly speaking, we seek covariance predictors that achieve
large values of log-likelihood, or small values of QLIKE, on realized
returns. We will describe the evaluation of covariance predictors in
detail in Section 4.

1.2 Contributions

This monograph makes three contributions. First, we propose a new
method for predicting the time-varying covariance matrix of a vector of
financial returns, building on a specific covariance estimator suggested by

Full text available at: http://dx.doi.org/10.1561/0800000047



1.3. Outline 5

Engle in 2002. Our method is a relatively simple extension that requires
very little tuning and is readily interpretable. It relies on solving a small
convex optimization problem, which can be carried out very quickly
and reliably (Boyd and Vandenberghe, 2004). Our method performs as
well as much more complex methods, as measured by several metrics.

Our second contribution is to propose a new method for evaluating
a covariance predictor, by considering the regret of the log-likelihood
over some time period such as a quarter. This approach allows us to
evaluate how quickly a covariance estimator reacts to changes in market
conditions.

Our third contribution is an extensive empirical study of covari-
ance predictors. We compare our new method to other popular predic-
tors, including rolling window, exponentially weighted moving average
(EWMA), and generalized autoregressive conditional heteroscedastic
(GARCH) type methods. We find that our method performs slightly
better than other predictors. However, even the simplest predictors
perform well for practical problems like portfolio optimization.

Everything needed to reproduce our results, together with an open
source implementation of our proposed covariance predictor, is available
online at:

https://github.com/cvxgrp/cov_pred_finance.

1.3 Outline

In Section 2 we describe some common predictors, including the one that
our method builds on. We introduce our proposed covariance predictor
in Section 3. In Section 4 we discuss methods for validating covariance
predictors that measure both overall performance and reactivity to
market changes. We describe the data we use in our first empirical
studies in Section 5, and give the results in Section 6.

In the next sections we discuss some extensions of and variations
on our method, including realized covariance prediction (Section 7),
handling large universes via factor models (Section 8), obtaining smooth
covariance estimates (Section 9), and using our covariance model to
generate simulated returns (Section 10).
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https://github.com/cvxgrp/cov_pred_finance


References

Ait-Sahalia, Y. and D. Xiu. (2017). “Using principal component analysis
to estimate a high dimensional factor model with high-frequency
data”. Journal of Econometrics. 201(2): 384–399.

Alexander, C. and A. Chibumba. (1997). “Multivariate orthogonal factor
GARCH”. University of Sussex, Mimeo.

Andersen, T., T. Bollerslev, P. Christoffersen, and F. Diebold. (2006).
“Volatility and Correlation Forecasting”. In: ed. by G. Elliott, C.
Granger, and A. Timmermann. Vol. 1. Handbook of Economic Fore-
casting. Elsevier. 777–878.

Bai, J. (2003). “Inferential theory for factor models of large dimensions”.
Econometrica. 71(1): 135–171.

Bai, J. and S. Ng. (2008). “Large dimensional factor analysis”. Founda-
tions and Trends® in Econometrics. 3(2): 89–163.

Barratt, S. and S. Boyd. (2022). “Covariance prediction via convex
optimization”. Optimization and Engineering.

Bauwens, L., S. Laurent, and J. Rombouts. (2006). “Multivariate
GARCH models: a survey”. Journal of Applied Econometrics. 21(1):
79–109.

Bauwens, L. and E. Otranto. (2023). “Modeling realized covariance
matrices: a class of Hadamard exponential models”. Journal of
Financial Econometrics. 21(4): 1376–1401.

79

Full text available at: http://dx.doi.org/10.1561/0800000047



80 References

Bauwens, L., G. Storti, and F. Violante. (2012). “Dynamic conditional
correlation models for realized covariance matrices”. CORE DP. 60:
104–108.

Bishop, C. (2006). Pattern recognition and machine learning. Vol. 4.
No. 4. Springer.

Bollerslev, T. (1986). “Generalized autoregressive conditional hetero-
skedasticity”. Journal of Econometrics. 31(3): 307–327.

Bollerslev, T. (1990). “Modelling the Coherence in Short-Run Nominal
Exchange Rates: A Multivariate Generalized ARCH Model”. The
Review of Economics and Statistics. 72(3): 498–505.

Bollerslev, T., R. Engle, and J. Wooldridge. (1988). “A Capital Asset
Pricing Model with Time-Varying Covariances”. Journal of Political
Economy. 96(1): 116–131.

Bollerslev, T., A. Patton, and R. Quaedvlieg. (2020). “Multivariate lever-
age effects and realized semicovariance GARCH models”. Journal
of Econometrics. 217(2): 411–430.

Boyd, S. and L. Vandenberghe. (2004). Convex optimization. Cambridge
University Press.

Boyd, S. and L. Vandenberghe. (2023). “Convex Optimization Addi-
tional Exercises”. url: https ://github.com/cvxgrp/cvxbook_
additional_exercises.

Braga, M. (2015). Risk-based approaches to asset allocation: concepts
and practical applications. Springer.

Brooks, C., S. Burke, and G. Persand. (2003). “Multivariate GARCH
models: software choice and estimation issues”. Journal of Applied
Econometrics. 18(6): 725–734.

Choueifaty, Y. and Y. Coignard. (2008). “Toward maximum diversifica-
tion”. The Journal of Portfolio Management. 35(1): 40–51.

Cochrane, J. (2009). Asset pricing: Revised edition. Princeton university
press.

De Nard, G., O. Engle R.and Ledoit, and M. Wolf. (2022). “Large dy-
namic covariance matrices: Enhancements based on intraday data”.
Journal of Banking & Finance. 138: 106426.

De Nard, G., O. Ledoit, and M. Wolf. (2021). “Factor models for
portfolio selection in large dimensions: The good, the better and the
ugly”. Journal of Financial Econometrics. 19(2): 236–257.

Full text available at: http://dx.doi.org/10.1561/0800000047

https://github.com/cvxgrp/cvxbook_additional_exercises
https://github.com/cvxgrp/cvxbook_additional_exercises


References 81

deBrito, D., M. Medeiros, and R. Ribeiro. (2018). “Forecasting Large
Realized Covariance Matrices: The Benefits of Factor Models and
Shrinkage”. Available at SSRN 3163668.

Dempster, A., N. Laird, and D. Rubin. (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. Journal of the royal
statistical society: series B (methodological). 39(1): 1–22.

Engle, R. (1982). “Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of United Kingdom Inflation”. Economet-
rica. 50(4): 987–1007. (Accessed on 03/05/2023).

Engle, R. (2002). “Dynamic Conditional Correlation”. Journal of Busi-
ness & Economic Statistics. 20(3): 339–350.

Engle, R. and K. Kroner. (1995). “Multivariate Simultaneous General-
ized ARCH”. Econometric Theory. 11(1): 122–150.

Engle, R., O. Ledoit, and M. Wolf. (2019). “Large dynamic covariance
matrices”. Journal of Business & Economic Statistics. 37(2): 363–
375.

Engle, R. and K. Sheppard. (2001). “Theoretical and empirical proper-
ties of dynamic conditional correlation multivariate GARCH”.

Fama, E. and K. French. (1992). “The cross-section of expected stock
returns”. the Journal of Finance. 47(2): 427–465.

Fama, E. and K. French. (1993). “Common risk factors in the returns
on stocks and bonds”. Journal of financial economics. 33(1): 3–56.

Fan, J., A. Furger, and D. Xiu. (2016). “Incorporating global industrial
classification standard into portfolio allocation: A simple factor-
based large covariance matrix estimator with high-frequency data”.
Journal of Business & Economic Statistics. 34(4): 489–503.

French, K. (2023). “Kenneth French Data Library”. url: https : //
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html%5C#Research.

Ghalanos, A. (2019). “rmgarch: Multivariate GARCH models”. R pack-
age version: 1–3.

Golub, G. and C. Van Loan. (2013). Matrix computations. JHU press.
Grinold, R. and R. Kahn. (2000). “Active portfolio management”.
Hansen, P., Z. Huang, and H. Shek. (2012). “Realized GARCH: a joint

model for returns and realized measures of volatility”. Journal of
Applied Econometrics. 27(6): 877–906.

Full text available at: http://dx.doi.org/10.1561/0800000047

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html%5C#Research
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html%5C#Research
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html%5C#Research


82 References

Hansen, P., A. Lunde, and J. Nason. (2011). “The model confidence
set”. Econometrica. 79(2): 453–497.

Hastie, T., R. Tibshirani, and J. Friedman. (2009). The elements of
statistical learning: data mining, inference, and prediction. Vol. 2.
Springer.

Hautsch, N., L. Kyj, and P. Malec. (2015). “Do high-frequency data
improve high-dimensional portfolio allocations?” Journal of Applied
Econometrics. 30(2): 263–290.

Hazan, E. (2016). “Introduction to online convex optimization”. Foun-
dations and Trends® in Optimization. 2(3-4): 157–325.

Hazan, E., A. Agarwal, and S. Kale. (2007). “Logarithmic regret algo-
rithms for online convex optimization”. Machine Learning. 69(2-3):
169–192.

Jordan, M. and R. Jacobs. (1994). “Hierarchical mixtures of experts
and the EM algorithm”. Neural computation. 6(2): 181–214.

Laurent, S., J. Rombouts, and F. Violante. (2013). “On loss functions
and ranking forecasting performances of multivariate volatility mod-
els”. Journal of Econometrics. 173(1): 1–10.

Ledoit, O. and M. Wolf. (2003). “Improved estimation of the covariance
matrix of stock returns with an application to portfolio selection”.
Journal of empirical finance. 10(5): 603–621.

Ledoit, O. and M. Wolf. (2004). “Honey, I Shrunk the Sample Covariance
Matrix”. The Journal of Portfolio Management. 30(4): 110–119.

Ledoit, O. and M. Wolf. (2008). “Robust performance hypothesis testing
with the Sharpe ratio”. Journal of Empirical Finance. 15(5): 850–
859.

Lettau, M. and M. Pelger. (2020a). “Estimating latent asset-pricing
factors”. Journal of Econometrics. 218(1): 1–31.

Lettau, M. and M. Pelger. (2020b). “Factors that fit the time series
and cross-section of stock returns”. The Review of Financial Studies.
33(5): 2274–2325.

Longerstaey, J. and M. Spencer. (1996). Riskmetrics: Technical Docu-
ment. JP Morgan and Reuters.

Markowitz, H. (1952). “Portfolio Selection”. The Journal of Finance.
7(1): 77–91.

Full text available at: http://dx.doi.org/10.1561/0800000047



References 83

McNeil, A., R. Frey, and P. Embrechts. (2015). Quantitative risk man-
agement: concepts, techniques and tools-revised edition. Princeton
university press.

Menchero, J., D. Orr, and J. Wang. (2011). The Barra US equity model
(USE4), methodology notes. MSCI Barra.

Mincer, J. and V. Zarnowitz. (1969). “The evaluation of economic
forecasts”. In: Economic forecasts and expectations: Analysis of
forecasting behavior and performance. NBER. 3–46.

Mokhtari, A., S. Shahrampour, A. Jadbabaie, and A. Ribeiro. (2016).
“Online optimization in dynamic environments: Improved regret
rates for strongly convex problems”. In: 2016 IEEE 55th Conference
on Decision and Control (CDC). 7195–7201.

Oh, D. and A. Patton. (2016). “High-dimensional copula-based distribu-
tions with mixed frequency data”. Journal of Econometrics. 193(2):
349–366.

Patton, A. (2011). “Volatility forecast comparison using imperfect
volatility proxies”. Journal of Econometrics. 160(1): 246–256.

Patton, A. and K. Sheppard. (2009). “Evaluating volatility and cor-
relation forecasts”. In: Handbook of financial time series. Springer.
801–838.

Pelger, M. (2020). “Understanding systematic risk: A high-frequency
approach”. The Journal of Finance. 75(4): 2179–2220.

Pelger, M. (2023). Markus Pelger’s Data and Code. url: https : //
mpelger.people.stanford.edu/data-and-code.

Pelger, M. and R. Xiong. (2022a). “Interpretable sparse proximate
factors for large dimensions”. Journal of Business & Economic
Statistics. 40(4): 1642–1664.

Pelger, M. and R. Xiong. (2022b). “State-Varying Factor Models of
Large Dimensions”. Journal of Business & Economic Statistics.
40(3): 1315–1333.

Qian, E. (2011). “Risk Parity and Diversification”. The Journal of
Investing. 20(1): 119–127. doi: 10.3905/joi.2011.20.1.119.

Rubin, D. and D. Thayer. (1982). “EM algorithms for ML factor analy-
sis”. Psychometrika. 47: 69–76.

Sharpe, W. (1964). “Capital asset prices: A theory of market equillibrium
under conditions of risk”. The Journal of Finance. 19(3): 425–442.

Full text available at: http://dx.doi.org/10.1561/0800000047

https://mpelger.people.stanford.edu/data-and-code
https://mpelger.people.stanford.edu/data-and-code
https://doi.org/10.3905/joi.2011.20.1.119


84 References

Silvennoinen, A. and T. Teräsvirta. (2009). “Multivariate GARCH
models”. In: Handbook of financial time series. Springer. 201–229.

Theil, H. (1961). Economic forecasts and policy. North-Holland Rotter-
dam.

Vassallo, D., G. Buccheri, and F. Corsi. (2021). “A DCC-type approach
for realized covariance modeling with score-driven dynamics”. Inter-
national Journal of Forecasting. 37(2): 569–586.

Vrontos, I., P. Dellaportas, and D. Politis. (2003). “A full-factor mul-
tivariate GARCH model”. The Econometrics Journal. 6(2): 312–
334.

Weide, R. van der. (2002). “GO-GARCH: A Multivariate General-
ized Orthogonal GARCH Model”. Journal of Applied Econometrics.
17(5): 549–564.

“Wharton Research Data Services”. (2023). url: https://wrds-web.
wharton.upenn.edu/wrds/.

Zinkevich, M. (2003). “Online Convex Programming and Generalized
Infinitesimal Gradient Ascent”.

Full text available at: http://dx.doi.org/10.1561/0800000047

https://wrds-web.wharton.upenn.edu/wrds/
https://wrds-web.wharton.upenn.edu/wrds/



