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ABSTRACT
The electrical grid has undergone significant transforma-
tions, which have had a profound impact on its distribution
system development and expansion. These changes have
been primarily driven by changing load profiles, distributed
generation sources, and increasingly extreme weather events.
Advancements in sensor and communication technologies
have played a pivotal role in addressing and adapting to
these changes. These changes have also led to an increased
focus on reliability and resilience in planning, with priority
placed on ensuring robust grid connectivity and flexibility.
Three decades ago, power distribution systems were primar-
ily radial with unidirectional power flow. Today’s electrical
distribution systems have distributed energy resources, lead-
ing to bidirectional power flow. The utility’s geographic
information system network, advanced metering infrastruc-
ture, and other technologies are leveraged to allow feeders
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and distributed energy resources to be interconnected. This
has facilitated the integration of the electric grid with net-
worked microgrids, which has improved the overall resilience
and efficiency of the distribution system.

While there have been notable improvements in grid plan-
ning, the power grid remains vulnerable to high-impact,
low-frequency events caused by climate change, such as hur-
ricanes and tornadoes. This monograph outlines potential
solutions for addressing future electric grid issues, including
transformer overloading due to electric vehicles, optimization
challenges, advanced feeder reconfiguration, and contingency
planning for extreme events. The proposed approaches focus
on the implementation and operation of new technologies,
such as renewable energy sources, batteries, flexible loads,
and advanced sensors, that have the potential to transform
distribution network planning and operation. From tradi-
tional methods to innovative networked microgrids within
existing infrastructure and non-wire alternative strategies,
this monograph provides a comprehensive overview of state-
of-the-art strategies for future problems.
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1
Introduction

The electrical distribution grid has a long history dating back to the
late 19th century, consisting of overhead lines, transformers, and other
equipment that deliver electricity to individual consumers. Over time,
the grid has undergone significant changes driven by technological
advancements, evolving energy demands, and environmental considera-
tions. The original distribution system operated in a unidirectional and
radial fashion, where distribution lines linked distribution substations
to individual customers. This is illustrated as a one-line diagram in
Figure 1.1, where the arrows indicate the direction of power flow and
the red squares denote metered points. This system was connected to a
simple network of high-voltage transmission lines carrying electricity
over long distances. Today’s energy system is more decentralized, fea-
turing numerous smaller, distributed energy resources generating power
closer to the point of consumption. Regulatory changes helped facilitate
this transition, with market competition gradually introduced since the
1970s. While this has led to more complex distribution systems capable
of accommodating a wider range of energy sources and dynamic loads,
there are new challenges associated with these planning and operational
changes.

3
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4 Introduction

Figure 1.1: One-line diagram of a conventional feeder configuration from a past era.

Advances in technology have played a crucial role in the evolution
of the distribution grid, enabling utilities to better monitor and control
the flow of electricity. The rise of digital technologies such as smart
meters and advanced sensors have enabled greater efficiency, reliability,
and flexibility as well as improved customer service. Energy storage
has also emerged as a major trend in recent years, with advances in
battery technology making it possible to store large amounts of energy
at increasingly lower costs, making energy storage an increasingly viable
solution for grid operators. However, the integration of new technolo-
gies and energy sources into existing grid infrastructure has posed a
challenge, requiring significant investments in grid modernization and
the development of new standards and regulations to ensure the safety
and reliability of the grid. Climate change has also presented challenges,
with extreme weather events causing widespread power outages and
damage to the grid.

Full text available at: http://dx.doi.org/10.1561/3100000033



1.1. Evolution of Distribution System Planning 5

Several key trends are expected to shape the future of the distri-
bution grid, including the growth of distributed energy resources, the
importance of data and analytics in grid management, and the de-
velopment of energy storage technology. Utilities have been investing
in smart grid technologies—such as advanced metering infrastructure,
distributed control systems, and grid infrastructure upgrades to support
bi-directional power flow—to keep up with these trends. Additionally,
the development and improvement of protective relaying systems are
becoming increasingly important to ensure grid stability and reliability.
Investing in advanced protective relaying systems and incorporating
them into operational planning is crucial to minimize downtime and
equipment damage as well as enhance customer satisfaction.

1.1 Evolution of Distribution System Planning

Over the years, there have been changes in distribution utility planning.
Initially, the focus was on meeting growing demand by building more
transmission lines and expanding the service area. The distribution
system was generally over-designed and largely ignored. Traditional
planning methods, such as load forecasting, analyzed data collected
from the grid, but their effectiveness was constrained by the limited
availability of real-time data. However, with the increase in complexity
of the grid and the evolution of customer needs, the planning process
became more sophisticated.

In the 1980s and 1990s, the focus shifted to improving the effi-
ciency and reliability of the grid. Distribution utilities invested in new
technologies such as computerized monitoring systems and advanced
metering infrastructure, which made it possible to collect and analyze
data from the grid in real time. Feeder remote terminal units (FRTUs)
were employed to automate the distribution system’s computerized
management system, depicted in Figure 1.2 as solid red squares. FR-
TUs are often pole-mounted boxes with sophisticated logic devices and
small battery packs that constantly send measurements to distribution
dispatching center. This centralized framework allows operators in the
control room to perform informed decision making based on conclusions
from the computer applications. Demand-side management became a

Full text available at: http://dx.doi.org/10.1561/3100000033



6 Introduction

Figure 1.2: One-line diagram showcasing AMI placement and unidirectional flow of
power from the feeder head to all connected customers.

focus, and customers were encouraged to reduce energy consumption
during periods of high demand. This helped to reduce the need for new
infrastructure investments and improve the overall efficiency of the grid.

The 2000s marked a critical era for the utility industry, characterized
by a wave of new challenges driven by the increasing prevalence of
renewable energy sources (RESs), notably solar photovoltaic panels and
wind turbines. This shift in the energy landscape compelled utilities
to adopt innovative tools and techniques for modeling and analyzing
the profound impact of RESs on the grid. The key transformation lay
in the need to effectively manage the two-way flow of power, which
departed from the traditional one-way energy distribution model. To
address this, utilities invested significantly in emerging technologies,
with distribution automation standing out as a prime example. This
technology enabled remote monitoring and control of power flow on the
grid, ushering in a new level of grid management efficiency.
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1.1. Evolution of Distribution System Planning 7

Consequently, the planning process underwent a remarkable evolu-
tion, characterized by a transition to a more data-driven and complex
approach. Utilities found themselves adapting to changing customer
needs and the rapid pace of technological advances. They had to inte-
grate the fluctuating and often unpredictable energy generation from
RESs into their grid infrastructure while ensuring grid stability and
reliability. This required a holistic reevaluation of grid design, oper-
ational procedures, and investment strategies, ultimately reshaping
the utility landscape into one that embraced sustainability, advanced
technology, and a greater degree of adaptability in the face of ongoing
energy transformations.

Another trend in distribution system planning is the increasing
use of underground cables in various parts of the world, especially
in densely populated areas and locations with challenging terrain or
extreme weather conditions. While generally more expensive due to
the installation process involving digging trenches, laying cables, and
backfilling them, underground cables may be more cost-effective in
certain situations, such as in densely populated areas where they reduce
the risk of outages and have lower maintenance costs and a longer
lifespan than overhead lines. Undergrounding cables is also a strategy
of utilities to reduce the risk of wildfire ignition by power lines in high
wildfire risk areas. In general, the use of underground cables can impact
the planning of the grid by requiring additional considerations around
cost, infrastructure, and overall grid capacity and flexibility.

In conclusion, the planning process for distribution utilities has
recently undergone a significant evolution. The focus has shifted from
meeting growing demand to improving the efficiency and reliability of
the grid, and then to adapting to the challenges posed by distributed
energy resources. Today, utilities are using a wide range of tools and
techniques to optimize grid performance, reduce costs, and improve
the customer experience. The planning process has become much more
complex and data driven, reflecting the changing needs of customers
and the pace of technological change.

Full text available at: http://dx.doi.org/10.1561/3100000033



8 Introduction

1.2 Energy Consumption of Customers and Billing Workflow

During the 1970s, Automatic Meter Reading (AMR) technology relied
on electromechanical meters. Electromechanical meters were incapable
of real-time monitoring and detailed consumption data, resulting in
unreliable and insufficient data for effective demand forecasting or load
management purposes. It was not until the 1980s and subsequent years
that AMR witnessed improved reliability and wider adoption, thanks
to the emergence of more advanced technologies like solid-state meters
and advanced communication protocols. Although AMR technology has
been available since the 1970s, its widespread popularity did not occur
until the 1990s. Advanced Metering Infrastructure (AMI) is a more
recent, sophisticated innovation that commenced its initial deployments
in the early 2000s. However, it was not until the mid-to-late 2000s that
AMI started to gain significant acceptance within the utility sector, and
it continues to undergo ongoing development and expansion even now.

While both AMI and AMR involve the collection of data from utility
meters, they possess distinct capabilities. AMR is a technology that
facilitates remote data collection from utility meters using wireless
or power line carrier communication. AMR systems primarily gather
fundamental information, such as the total energy consumption of a
customer within a billing period. In contrast, AMI systems facilitate
bi-directional communication between the utility and the meter. This
enhanced system enables real-time monitoring and remote control of
the meter. AMI systems gather data more frequently, usually every 15
minutes, offering utilities detailed insights into customer usage patterns.
This data enables estimation of electricity consumption, assessment of
the overall distribution system’s health, and facilitates load manage-
ment optimization, fault detection, and energy efficiency enhancements
through data analytics.

Figure 1.2 depicts the placement of AMIs in the distribution feeder
with hollow green diamonds which are replacing AMRs. Household
consumption is sent via IP-based infrastructure, where homes can be
grouped into home area networks (HANs) and neighborhood area net-
works (NANs). The metering data is generally transmitted to the utility’s
consumer billing center via wifi, wireless communication (e.g., LTE or
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1.2. Energy Consumption of Customers and Billing Workflow 9

5G), or power line carriers. These metering systems incorporate ad-
vanced analytics tools to assist utilities in comprehending the enormous
volumes of data collected. This data can be utilized for purposes such as
demand response, outage management, and load forecasting. However,
as demonstrated in [30], there is a potential risk of malware affecting
distribution grid operations, which can make meter data unavailable
or inaccurate. The study in [31] aims to utilize metered datasets from
primary and secondary distribution networks to correlate metering in-
consistencies, potentially identifying any foul play. Additionally, the
granular details of metering profiles from existing meters implemented
in [54] could significantly aid in grid expansion planning.

Figure 1.3 displays a large customer load profile observed over a year,
with the data obtained from a meter every 10 minutes. The deployment
of new smart meters can have several implications on utility planning.
Here are a few ways in which smart meters can impact the planning
process:

1. Demand forecasting: Utilities have access to more granular
data on energy consumption, which can be used to better forecast
demand. This information can help utilities make more informed
decisions about how to allocate resources, such as building new
power plants or investing in energy storage systems. The provided
load profile underscores the significance of demand forecasting
within emerging distribution systems, especially with the adoption
of AMI. Demand forecasting involves predicting future electricity
consumption patterns, crucial for ensuring a reliable power sup-
ply and efficient resource allocation. AMI systems offer utilities
access to highly detailed energy consumption data, collected at
short intervals, which greatly enhances the precision of forecast-
ing. Through the understanding of usage patterns, load profiling,
and predictions of future demand, utilities can make more in-
formed decisions on infrastructure planning, the deployment of
energy storage solutions, and overall resource management. This
data-driven approach minimizes waste and optimizes electricity
generation and distribution to meet actual demand effectively.

Full text available at: http://dx.doi.org/10.1561/3100000033



10 Introduction

Figure 1.3: An example load profile captured by an AMI meter. The blue line
represents the instantaneous power consumption collected every 10 minutes. The
solid green, red, and black lines represent different power consumption averages over
the time horizon.

2. Load balancing: Load balancing is a vital component in effi-
ciently managing an electricity grid and ensuring the consistent
delivery of power to consumers. Smart meters, particularly those
within AMI systems, play a pivotal role in enhancing load balanc-
ing. They achieve this by collecting intricate data on electricity
consumption, not only quantifying the energy used but also pre-
cisely when it is used. This granular data empowers utilities to
gain profound insights into consumer behavior and usage patterns.
With this information, utilities can pinpoint peak demand periods,
often occurring during specific times of the day, and effectively
manage heightened electricity consumption. By monitoring real-
time demand and making necessary adjustments, smart meters
help prevent grid overloads, which can lead to power outages or
blackouts. Furthermore, they facilitate load-shifting strategies,
encouraging consumers to use electricity during off-peak hours to
optimize resource utilization and reduce the risk of grid overloads
during peak periods. Consequently, this approach significantly
mitigates blackout risks, ensuring grid stability and the reliable
availability of power, even during high-demand periods. The im-
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1.2. Energy Consumption of Customers and Billing Workflow 11

plementation of incentive-based control policies by utilities has
effectively mitigated operational risks, ensuring a more efficient
load balancing and reducing stress on the transmission system,
especially during hot summer periods.

3. Asset management: Asset management within utility infras-
tructure is of paramount importance, and smart meters assume a
pivotal role in this domain. By continuously collecting and trans-
mitting real-time data on the performance of critical equipment
like transformers and switches, smart meters offer a dynamic
perspective that transcends conventional scheduled inspections.
Their true value lies in the early detection of potential issues,
allowing utilities to proactively address anomalies, irregularities,
and signs of wear and tear before they escalate into major prob-
lems. This preventive approach not only averts costly equipment
failures but also guarantees a more dependable power supply for
consumers, resulting in significant cost savings and reduced down-
time. By optimizing operational efficiency through data-informed
decisions, smart meters contribute to more efficient and reliable
power distribution systems.

4. Customer engagement: Within today’s utility sector, active cus-
tomer engagement stands as a critical priority, with smart meters
assuming a central role in driving this engagement. Smart me-
ters furnish customers with comprehensive, real-time insights into
their energy consumption behaviors, transcending the traditional
monthly billing approach. This empowerment enables consumers
to gain a deeper understanding of their electricity usage, facili-
tating informed decisions to curtail consumption and opt for rate
plans tailored to their habits. The outcomes extend beyond mere
cost savings; they encompass heightened customer satisfaction
through the bestowal of transparency and personal control over en-
ergy consumption. Ultimately, smart meters actively contribute to
diminished energy consumption, thus nurturing a more sustainable
and eco-friendly energy landscape, while concurrently fortifying
the relationship between utility providers and their customers.

Full text available at: http://dx.doi.org/10.1561/3100000033



12 Introduction

The deployment of new smart meters offers utilities a plethora
of data that can be utilized to enhance planning and operation. By
leveraging this data, utilities can more effectively manage their assets,
balance energy supply and demand, and offer improved services to
their customers. The implementation of smart meters can significantly
influence utility planning as they are electronic devices capable of
measuring and recording electricity usage in real time, enabling more
precise billing and enhanced visibility into energy consumption patterns.

1.3 New Additions and Challenges Ahead

The modernization of the distribution grid has resulted in substantial
changes in the planning, design, and operation of utilities. In the past,
grid planning focused on ensuring there was enough power to meet de-
mand and maintaining system reliability and safety. Today, the planning
process is much more complex, taking into account several factors, such
as changes in energy demand, advancements in technology, integration
of renewable energy sources, and the need to lower greenhouse gas
emissions.

One of the essential changes in grid planning is the move toward a
more flexible and decentralized grid architecture. This shift is driven by
the growing use of distributed energy resources (DERs), such as rooftop
solar panels, energy storage systems, and electric vehicles. The integra-
tion of these resources necessitates a more adaptable grid structure that
can accommodate two-way power flow and provide real-time energy flow
control. To facilitate this shift, utilities invest in advanced technologies
like AMI and distribution management systems (DMS) that provide
real-time grid condition data. The use of data analytics and modeling
tools has also been increasingly incorporated in grid planning to make
informed decisions. These tools enable utilities to analyze a massive
amount of data from diverse sources to identify patterns and trends that
can guide planning and operations. Predictive analytics, for instance,
can be used to predict energy demand and optimize resource allocation
for cost-effectiveness and efficiency.

Moreover, utilities are concentrating on reducing greenhouse gas
emissions and tackling the impacts of climate change by deploying
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1.4. Organization of This Monograph 13

strategies such as adding renewable energy sources, improving energy
efficiency, minimizing the carbon intensity of electricity generation, de-
mand response participation, and hardening the grid to natural hazards.
To achieve these objectives, utilities are developing long-term plans,
taking into account a range of scenarios, and involving stakeholders
like customers, regulators, and environmental groups. There is also
an increasing focus of considering the power grid’s interactions and
interdependence with other critical infrastructure systems to improve
overall reliability and resiliency.

Overall, the modernization of the distribution grid is steering signif-
icant changes in grid planning, design, and operation, aimed at creating
a more flexible, resilient, and sustainable grid that can address the
evolving needs of customers and society. To achieve this, utilities are in-
vesting in new technologies, systems, and strategies while collaborating
closely with stakeholders to align their actions with their communities’
requirements. This will ensure that the grid can overcome emerging
reliability and resilience challenges and prepare future grids.

1.4 Organization of This Monograph

This monograph presents an interconnected discussion of new devel-
opments in distribution systems, encompassing networked microgrids,
prosumers, net metering, and non-wire alternatives (NWAs). To make
the content more accessible to a wider audience, this section offers a
high-level overview of the content flow between the sections. A flowchart
in Figure 1.4 illustrates the connections between the various sections,
articulating the relationship of loads and distributed generation.

The introduction serves as the starting point of the monograph,
providing a broad overview of its contents, which are subsequently
explored in greater detail in Section 2. Sections 1 and 2 offer essential
information that lays the foundation for the subtopics that follow.
Section 3 focuses on the management and control of Distributed Energy
Resources (DERs). The next three sections examine different types of
DERs more specifically: Section 4 covers Renewable Energy Sources
(RESs), Section 5 covers Battery Energy Storage Systems (BESSs) and
Section 6 covers flexible loads (FLs). Section 7 represents the extension
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14 Introduction

Figure 1.4: Interdependencies between sections and organization of the monograph.

of approximate models with lumped loads along the future feeders,
considering the gradual lumping of loads leading to net-negative load
effects.

Finally, in Section 8, the paper concludes by summarizing the entirety
of the subject matter covered, particularly focusing on the topics of
security and the complexity of cyber asset management within an
organization.
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