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Abstract

While fabrication technologies have been in use in industry for sev-
eral decades, expiring patents have recently allowed the technology to
spill over to technology-enthusiastic “makers”. The big question now is
whether the technology will further progress towards consumers, which
would allow the technology to scale from hundreds of thousands of users
to hundreds of millions of users.

Such a transition would enable consumers to use computing not
just to process data, but for physical matter. This holds the promise of
democratizing a whole range of fields preoccupied with physical objects,
from product design to interior design, to carpentry, and to some areas
of mechanical and structural engineering. It would bring massive, dis-
ruptive change to these industries and their users.

We analyze similar trends in the history of computing that made the
transition from industry to consumers, such as desktop publishing and
home video editing, and come to the conclusion that such a transition
is likely.

Our analysis, however, also reveals that any transition to consumers
first requires a hardware + software system that embodies the skills
and expert knowledge that consumers lack: (1) hardware and materials
that allow fabricating the intended objects, (2) software that embodies
domain knowledge, (3) software that embodies the know-how required
to operate the machinery, and (4) software that provides immediate
feedback and supports interactive exploration. At the same time, sus-
tained success will only be possible if we also consider future implica-
tions, in particular (5) sustainability and (6) intellectual property. We
argue that researchers in HCI and computer graphics are well equipped
for tackling these six challenges. We survey the already existing work
and derive an actionable research agenda.

P. Baudisch and S. Mueller. Personal Fabrication. Foundations and TrendsR© in
Human-Computer Interaction, vol. 10, no. 3–4, pp. 165–293, 2016.
DOI: 10.1561/1100000055.
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1
Introduction

In HCI and computer graphics, research on fabrication technology
tends to be perceived as a recent trend. The truth, however, is that
the technology itself has been in use for decades.

The reason that we as researchers may have missed the beginning of
the field is that the field initially took place behind closed doors — as a
small, high-margin market in industry that was protected by patents.
Starting in the 1960s with computer-controlled laser cutters and milling
machines and later on in the 1980s with 3D printing, the relevant tech-
nologies were initially conceived as a fast way for creating prototypes
for product development. At the time, it was called “rapid prototyping
technology.”

The first industrial 3D printer, the SLA-1 from 3D Systems, was
introduced in 1987 (Figure 1.1). Many other industrial systems fol-
lowed with the invention of additional 3D printing techniques. With all
patents being filed in the 1980s and 1990s by the future CEOs of large
companies, such as 3D Systems and Stratasys, the market was locked
down for several decades.

In 2009, however, the first major patent expired, thereby initi-
ating the transition of the technology from industry to the world

2
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3

Figure 1.1: The first 3D printer: The SLA-1 from 3D Systems.

outside. Technology enthusiasts who grew out of hacker spaces and the
crafting-oriented DIY culture had already created their own fabrication
hardware (e.g., see the RepRap project, 2005) and now started commer-
cializing their low-cost devices with products such as the MakerBot
Cupcake CNC [2009]. These companies entered the market with the
declared goal of targeting a market segment that industrial 3D print-
ing companies had overlooked: low-cost 3D printers.

With more and more patents expiring, we currently see an increas-
ing number of the 1980s and 1990s fabrication technologies becoming
available outside of industry. While the last decade was marked by low-
cost 3D printers that extruded plastic filament, we now see a diverse
spectrum, including low-cost printers based on curing resins [e.g., the
Form1. Formlabs, 2012] and sintering powder [e.g., Sintratec, 2014]. As
a result, newly founded companies picked up the technologies and are
now competing in the market, resulting in fast progress and price drops
by several orders of magnitude.

Makers are playing a key role in this transition, as they make their
own fabrication machines. This has resulted in hundreds of freely avail-
able 3D printer designs, as of today [Price Comparison 3D Printers].
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4 Introduction

These new fabrication machines are no longer closed-source indus-
trial 3D printers that companies encapsulated to protect their IP, but
instead open-source 3D printers that can easily be “hacked”, which has
given even further momentum to the evolution of these devices.

In the wake of this evolution, the maker movement continues to
pick up additional fabrication technologies, including laser cutters [e.g.,
Glowforge, 2016], milling machines [e.g., Shapeoko, 2013], and water jet
cutters [e.g., Wazer, 2016].

1.1 The promise of fabrication in the hands of consumers

The fact that fabrication technologies are already looking back at a
30+ year history seems to suggest that personal fabrication cannot be
novel. This is not the case. What is novel about “personal fabrication”
is not the “fabrication” thought, but the “personal”.

There is no universally agreed upon definition for personal fabri-
cation yet. In 2005, Neil Gershenfeld described personal fabrication as
“the ability to design and produce your own products, in your own
home, with a machine that combines consumer electronics with indus-
trial tools.” However, as of today, these are the homes of a selected
few — the homes of technology enthusiasts.

The big question today is whether this evolution will continue, i.e.,
will fabrication transition not only from industry to technology enthu-
siasts, but will it continue to consumers1? The latter would promise to
empower hundreds of millions of new users and could give the field of
personal fabrication enormous impact.

So what would that impact be — what would consumers do with
personal fabrication technology?

Our immediate reaction might be to look at today’s makers, seeing
the somewhat ad-hoc projects they create and to discard the potential

1There is no agreed upon name for this group of people. We use the term con-
sumers here because all we know about them is that their intent is to “consume”
the outcome of what they make, unlike makers who are interested in the technical
process [Hudson et al., 2016]. Hudson et al. refer to consumers as “casual makers”
but we argue this is not the best term as these people have little in common with
makers. Also, the fact that they care about the outcome arguably makes them less
casual than makers
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1.1. The promise of fabrication in the hands of consumers 5

of personal fabrication as a whole. This would be a mistake, because
early adopters historically have never been good indicators for the fol-
lowing consumer market (a gap that has been referred to as the chasm
[Moore, 2006]). This gap tends to be even larger for early adopters
that are driven by technology enthusiasm, because their projects tend
to revolve around exploring the technological possibilities rather than
the applications. Makers today might reason “I have a 3D printer... let
me find out what I can do with it . . .”, then look at a database, such
as Thingiverse or Instructables, and download a project. Consequently,
the threshold for the expected utility of the outcome can be arbitrarily
low, as this group of users tends to perceive the technical challenge per
se as rewarding.

This process stands in stark contrast with consumers who are moti-
vated exclusively by the utility of the expected outcome [Hudson et al.,
2016]. Consumers, who are in it for the result, thus share fewer values
with the makers as they might appear to at first glance. So when we
see makers today download and replicate interesting “proof-of-concept”
objects, such as an interlocking gear mechanism, it gives us little indi-
cation of the types of problems consumers may tackle using the tech-
nology.

So what problems can we expect consumers to tackle? We argue
that candidate problems come from several professional fields, in par-
ticular those fields that are primarily concerned with physical output,
such as product design [Kim and Bae, 2016] as well as some areas of
mechanical and structural engineering. If larger fabrication machines
should become mass available as well, applications will also come from
interior design, furniture construction [Lau et al., 2011], and related
fields.

Any of these fields account for multi-billion dollar markets. If per-
sonal fabrication should enter these markets, personal fabrication could
be expected to grow to the size of these markets.

In addition to the fields listed above, new fields may form around
personal fabrication. This is an open-ended question and we may
continue to see new applications over time. In 1968, Doug Engelbart
asked what value could be derived if intellectual workers had access
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6 Introduction

to an instantly responsive computer system 24 hours a day [Engel-
bart, 1962]. With personal fabrication we are facing the same type of
question: what will intellectual workers do with a personal computer
system if that system also allowed creating immediate physical output?

1.2 Personal fabrication and its underlying AD/DA pattern

In order to understand personal fabrication, we may compare personal
fabrication with similar technologies from the history of interactive
computing. In order to determine which technologies to consider, we
will first try to understand what it is that characterizes personal fab-
rication.

We use the simple example of a copy machine for physical keys.
Figure 1.2 shows the traditional workflow before personal fabrication.
A key maker places the original key into the tracer unit of a mechanical
key copy machine, and a blank key into the machine’s milling unit. Both
the tracer and the mill are tightly coupled. As the key maker traces
the cuts of the original key, the milling part follows the same path,
engraving the same pattern into the blank key.

The key copy machine is a highly specialized machine in that it
replicates nothing but keys. It also is an analog machine, as we can
tell from the fact that copies of copies eventually will not open the
door anymore, as inaccuracies accumulate from generation to genera-
tion leading to larger and larger errors.

blank key

milltracer

object copies

Figure 1.2: The traditional analog way of replicating keys.
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1.2. Personal fabrication and its underlying AD/DA pattern 7

digital representation

3D printer (D/A)
3D scanner (A/D)

object copies

Figure 1.3: The digital solution consisting of scanner and printer that forms the
basis for personal fabrication.

As shown in Figure 1.3, the personal fabrication workflow is essen-
tially the same, except that it replaces the specialized key copy machine
with a combination of a general-purpose 3D scanner with a general-
purpose 3D printer.

This is what we think of as the schema underlying personal fabrica-
tion: (1) The scanner is a hardware unit that turns physical objects into
digital objects, an “analog-to-digital converter” (AD). (2) The printer
is a hardware unit that turns virtual objects into physical objects,
a “digital-to-analog converter” (DA). In the shown “AD/DA” setup,
these two units create a copy machine for physical objects, as first
demonstrated in 1991 [Reyes, 1991] and commercially available today
[ZEUS].

While the scanner/printer configuration is more complex than the
specialized analog solution it replaces, the extra complexity pays off
quickly as the setup is more flexible. For example, it applies to a wide
variety of objects, rather than just keys.

More important, however, the two-machine solution and its inter-
mediate digital representation allow creating additional workflows by
merely adding software. For example, by inserting a software filter
capable of re-inserting missing geometry, we can create a machine that
repairs physical objects [Teibrich et al., 2015].
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8 Introduction

This illustrates the general pattern this setup is capable of: convert
whatever problem needs to be solved to the digital domain, solve it
in software, and convert the result back to a physical world. This is
beneficial because developing and deploying new software tends to be
faster and cheaper than creating and deploying new hardware.

The simple workflows that scan and produce in one go may not
be the most interesting ones after all — the truly impactful workflows
tend to involve digital storing and digital sharing. The new workflow,
for example, allows using the same setup to make backups of physical
objects, share designs in online repositories (such as the aforementioned
Thingiverse), or distribute designs using a file sharing network. Any of
these add tremendous impact to the original idea of a “copy machine”
that goes way beyond what its analog counterpart was capable of.

1.3 Personal fabrication, like other AD/DA technologies
before it, will result in disruptive change

If we assume that the transition of personal fabrication to consumers
will actually happen, our next question naturally is to ask “how will it
be?” Will personal fabrication lead to a big disruptive change or will it
just add a small new commodity to people’s lives? Where will personal
fabrication ultimately lead?

In order to predict the future of personal fabrication, we now look
at past innovations that structurally resemble personal fabrication in
that they follow the same AD/DA pattern and see how these turned
out.

Picking relevant past technologies is easy, because we have seen the
AD/DA pattern before. Examples include desktop publishing, digital
video editing, and digital music editing.

Desktop publishing: In 1969, the invention of the laser printer
by Gary Starkweather at Xerox allowed for high-quality print output,
which added the DA component to the already available AD image
scanners. Before the introduction of this AD/DA pattern, users had
to compose print layouts by photographing image and text elements
literally laid out on a table. Layout based on personal computers (e.g.,
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1.3. Personal fabrication, like other AD/DA technologies 9

Type Processor One, 1983) allowed all this process to take place in soft-
ware, which enabled fast iteration. Physical snippets and the camera
disappeared from the process and the only memento of its existence is
that publishers to date still require a “camera-ready version” of papers
accepted for publication. The transition to software allowed a wider
audience to gain access to desktop publishing or simplified word pro-
cessing. As of today, Microsoft Word and Google Docs have brought
the concept to over a billion consumers.

Digital Video Editing: Analog video editing in the early 1950s
required users to locate the edit points by shuttling the physical tape
to the desired location, carefully slicing the tape with a razor blade,
and reconnecting it to the other desired tape parts with splicing tape.
This process was time-consuming and limited in that it did not allow
enhancing the video. Early computerized systems in the 1960s allowed
synchronizing tape from different scenes by marking the scenes on the
physical tape. In 1972, SuperPaint [Hiltzik, 2000] was the first graphics
program that used [Frame grabbing] to convert analog video into digital
images. This allowed rearranging segments and enhancing frames with
digital data (e.g., changing hue, saturation, and value, or using differ-
ent paintbrushes and pencils to draw on the frames), thereby laying
the foundation for an entire new industry on digital editing and post-
processing. As of today, hundreds of millions of mobile devices provide
consumers not only with a built-in camera, but also with preinstalled
digital video software (e.g., iMovie on iOS).

Digital Music Editing: Similarly, analog audio editing required
users to cut tape and to manually reconnect it to the other desired
parts. This made multi-track assemblies difficult, as it was hard to move
one track in time relative to another. With the invention of the digital
sound recording (Pulse-code modulation (PCM)) and new software for
digital audio editing, the entire audio industry was transformed. As of
today, hundreds of millions of mobile devices ship with the ability to
record and play back audio, as well as consumer-friendly audio editing
programs (such as GarageBand on iOS).

If one really wanted to trace back the AD/DA pattern to its begin-
ning, one might even consider text. In the early 1960s, text was repli-
cated by first encoding the data into an analog punch card, which was

Full text available at: http://dx.doi.org/10.1561/1100000055



10 Introduction

then replicated using an analog teleprinter (e.g., Teletype Model 33
ASR, 1963). In the mid-1960s, keyboards (AD) were introduced as a
more flexible means to edit text on a computer, as they made changes
a matter of retyping a small part of the input instead of ripping up and
retyping an entire card. Raster screens (Michael Noll at Bell Labs in
1968 [Ragnet, 2008]) allowed for real-time output (DA), transforming
how people exchanged information using computers.

In summary, in all of these examples from interactive computing,
the AD/DA pattern led to massive, disruptive change to both the field
it affected and to the new user base it empowered. And in all these
cases, there was a transition from industry to technology enthusiasts
to consumers, which allowed the respective fields to assume the massive
scale they have today.

If these previous developments should be any indication, they would
suggest that personal fabrication will be going down the same route,
leading to disruptive change as it reaches new users and ultimately
consumers, at which point it could be expected to grow by several
orders of magnitude.

1.4 How past AD/DA media transitioned to consumers

If we look at these examples of past AD/DA patterns, we see that
the transition to consumers could only take place once conditions had
been created that allowed the respective tasks to be performed by con-
sumers — tasks previously performed only by professionals in industry
or at least by technology enthusiasts. Overall, we argue it always took
at least the following four elements to get the technology ready for
consumers — and we already briefly mentioned them above.

1. Hardware and materials. The transition from specialized ana-
log machines to AD/DA machines helped commoditize the hardware.
In particular, the transition allowed individual technologies to “piggy-
back” onto personal computing. First, the personal computer inherently
offered a wide spectrum of technology that one might not necessarily
have built into the new machines otherwise, such as access to a backup
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1.4. How past AD/DA media transitioned to consumers 11

system and network access. These added benefits added momentum to
the evolution of the new technology.

Second, the connection to the personal computer reduced the
required upfront hardware investment. As more and more users owned
personal computers in the first place, users only needed to buy a periph-
eral device in order to get access to the new technology. These periph-
erals could be simple and cheap, as they could use the resources of the
personal computer. Early PostScript printers, for example, went as far
as to leverage the personal computer for rasterizing the print image
in the personal computer’s RAM — which is exactly what we are see-
ing today with 3D printers that convert their document to a machine
representation (“slicing”) on the personal computer.

2. Domain knowledge. Industry professionals have expertise in the
target domain, i.e., they know how to edit video, how to layout print,
and so on. Consumers, in contrast, lack this expertise. So, in order
to enable consumers to perform these tasks, software systems need
to embody the lacking domain knowledge. For example, when movie
editing transitioned to computers, the early systems were 1:1 repli-
cations of the editing environments common with physical videotape
([Quantel Harry] in 1985, and Avid Technology’s Avid/1 Media Com-
poser [3D Hubs] in 1987). Twenty years later, automatic video editing
software (e.g., Muvee’s autoProducer [Muvee]) automatically creates
entire movies from users’ raw footage based on default settings alone;
more ambitious users can tweak this preliminary result, but they do not
have to. In another example, Adobe Photoshop Elements retouches red
eyes in photographs at the push of a button. Microsoft PowerPoint and
Apple Pages allow users to create presentations and documents simply
by filling in their contents into pre-designed templates. More recently,
users have gained access to even more domain knowledge by download-
ing solutions from shared repositories [Lau et al., 2011].

3. Feedback through interactivity. Systems that embody domain
knowledge can only go so far — there are always factors left that
are not covered by the system, such as the user’s assessment of the
esthetics of a layout. Even with systems that embody various kinds of
domain knowledge this continues to require exploration — trial and
error. To reduce the number of iterations, software systems build on

Full text available at: http://dx.doi.org/10.1561/1100000055



12 Introduction

the what-you-see-is-what-you-get principle (e.g., Bravo, 1974 [Hiltzik,
2000]) provide users with a sense of their final output along the way.
During exploration, users receive immediate feedback, and are also able
to undo steps.

4. Machine knowledge. The DA machines in AD/DA systems gen-
erally make the workflow easier. In particular, they eliminate the need
for physical skill. Manually cutting film is challenging; so is manually
creating a carefully aligned layout with scissors and glue. Digital video
editing software and desktop publishing software eliminate these phys-
ical tasks, allowing everyone to produce a correct cut or a perfectly
aligned layout. However, the new machines also bring their own chal-
lenges, as they require users to express their ideas in appropriate digital
representations that they may not be familiar with. This is historically
where an additional software layer comes in that embodies the required
“machine knowledge.”

Along the same lines, such software may also help users obtain the
best results by providing additional expert know-how about the device.
For example, while everyone may be able to print images, obtaining
best results may require knowledge of the color spectrum (gamut) and
resolution the printer is able to reproduce. Historically, additional soft-
ware layers, such as PostScript would abstract these issues away by
allowing users to produce machine-independent descriptions of print
documents. Documents would be shared in this abstract format, know-
ing that the PostScript interpreter in the target printer would translate
the abstract description into the best possible representation for the
respective printer.

Combined, we argue that it is these four elements that allowed the
previous AD/DA media to get ready for consumers.2

2Arguably, the same four elements were also necessary to allow personal com-
puting as a whole to transition to consumers. Computing also started in industry
and transitioned to technology enthusiasts (in the 1970s). If we look at personal
computing in the hands of consumers today, we see the same four elements: (1)
Consumer-friendly hardware, more and more in the form of self-contained “appli-
ances”, (2) Application programs that embody domain knowledge, including the
programs we just discussed, (3) Feedback through interactivity, here in the form of
the graphical user interface and its use of direct manipulation. (4) Operating sys-
tems that abstract away the necessity to know about the hardware. The resulting

Full text available at: http://dx.doi.org/10.1561/1100000055



1.5. Transitioning personal fabrication: the six challenges 13

1.5 Transitioning personal fabrication: the six challenges

Given the structural similarities to previous AD/DA media, we argue
that it will take exactly the same four elements to transition from
fabrication in industry to consumers (Figure 1.4): (1) Hardware and
material developments will have to ensure that users will be able to fab-
ricate the objects they want to create. (2) Systems will have to embody
the domain knowledge (e.g., physics simulations) users need in order
to obtain functional results. (3) Alternatively, objects designed with
subjective (e.g., esthetic) considerations in mind are better assessed
by human judgment. Accordingly, systems have to provide users with
feedback along the design process. (4) Finally, systems will encapsulate
the machine-specific knowledge required to fabricate the object on a
specific machine.

domain knowledge
(simulation)

visual feedback

hardware / materials

(driver)

1

2

3
4

Figure 1.4: The four main challenges: (1) hardware/materials, (2) domain knowl-
edge, (3) visual feedback, (4) machine-specific knowledge.

transition to consumers was, by the sheer numbers, clearly the biggest transition in
the history of computing.
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Figure 1.5: The six challenges of personal fabrication.

This means that if we as researchers and engineers want fabrication
to make the transition to consumers and thereby empower hundreds of
millions of new users, these are the conditions we need to create.

In addition to the four challenges discussed above, we see two addi-
tional challenges: (5) sustainability, including factors such as trash,
material, and energy consumption and (6) intellectual property, includ-
ing approaches that tackle the difficulties resulting from the sharing of
protected designs.

While these two challenges may not be necessary for AD/DA fields
to reach consumers in the first place, they tend to emerge as the field
grows in size. It thus seems safe to expect that fabrication will face
these issues as well eventually. We therefore argue that we should con-
sider these challenges now — before they have a chance to grow out of
proportion.

In Figure 1.5, we summarize all six challenges grouped into a hard-
ware layer at the bottom, a software and user layer in the middle, and
a society layer on top.

Naturally, the main challenges for researchers in human computer
interaction can be found in the user level in the middle of our chart,
which is all about establishing a successful connection between users
and the system and more specifically about abstracting away any chal-
lenges that could prevent consumers from performing the work tradi-
tionally performed by experts. Given that the transition of personal
computing to consumers (“discretionary use”) has been one of the core
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concerns of the HCI community for decades, HCI researchers are well
equipped to tackle these challenges.

Our survey of the related work, however, shows that HCI researchers
are making contributions to all three levels. The hardware and materials
level offers plenty of opportunity not only for mechanical engineers and
material scientists, but also for HCI researchers with a hardware angle
(as found, for example at the User Interface Software and Technology
(UIST) conference [Hudson, 2014]). Questions involving the societal
impact of personal fabrication provide a great challenge for researchers
on the empirical and ethnographic side of HCI.

In addition, we see researchers in computer graphics making major
contributions around various challenges, but especially around the chal-
lenge of embodying domain knowledge and machine-specific knowledge
into software. Projects in this space not only involve the simulation of
forces, but also build heavily on processing 3D geometries, which makes
computer graphics researchers particularly well equipped to tackle this
class of problems. However, similar to researchers in HCI, researchers
in computer graphics have tackled challenges in several of the other
categories as well.

In the following chapters, we try to obtain a deeper understanding
of the state of the art with respect to the six challenges by surveying
the related work on personal fabrication. If we look at some of the main
conferences on human–computer interaction, we see that research on
personal fabrication is just starting out, but is growing quickly (e.g.,
CHI 2013 first five papers on fabrication, CHI 2016 seventeen papers,
UIST 2012: first three papers on fabrication, UIST 2016: a quarter of
the program was on fabrication).

We present the work grouped by the challenge it addresses. For
each challenge, we relate it to previous instances of the AD/DA pat-
tern and use this analogy to extrapolate the current trends towards
the questions and opportunities researchers in personal fabrication are
about to encounter. While we focus on human–computer interaction
and computer graphics, we also include selected works from adjacent
fields such as mechanical engineering, material science, and robotics.
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