
Cybersecurity in Robotics:
Challenges, Quantitative
Modeling, and Practice

Full text available at: http://dx.doi.org/10.1561/2300000061



Other titles in Foundations and Trends® in Robotics

A Roadmap for US Robotics – From Internet to Robotics 2020 Edition
Henrik Christensen, Nancy Amato, Holly Yanco, Maja Mataric, Howie
Choset, Ann Drobnis, Ken Goldberg, Jessy Grizzle, Gregory Hager,
John Hollerbach, Seth Hutchinson, Venkat Krovi, Daniel Lee, Bill
Smart, Jeff Trinkle and Gaurav Sukhatme
ISBN: 978-1-68083-858-9

The State of Industrial Robotics: Emerging Technologies, Chal-
lenges, and Key Research Directions
Lindsay Sanneman, Christopher Fourie and Julie A. Shah
ISBN: 978-1-68083-800-8

Semantics for Robotic Mapping, Perception and Interaction: A
Survey
Sourav Garg, Niko Sünderhauf, Feras Dayoub, Douglas Morrison,
Akansel Cosgun, Gustavo Carneiro, Qi Wu, Tat-Jun Chin, Ian Reid,
Stephen Gould, Peter Corke and Michael Milford
ISBN: 978-1-68083-768-1

Full text available at: http://dx.doi.org/10.1561/2300000061



Cybersecurity in Robotics:
Challenges, Quantitative Modeling,

and Practice

Quanyan Zhu
New York University

qz494@nyu.edu

Stefan Rass
Universität Klagenfurt

stefan.rass@aau.at

Bernhard Dieber
Joanneum Research

bernhard.dieber@joanneum.at

Víctor Mayoral Vilches
Alias Robotics

& Universität Klagenfurt
victor@aliasrobotics.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2300000061



Foundations and Trends® in Robotics

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

Quanyan Zhu, Stefan Rass, Bernhard Dieber, Víctor Mayoral Vilches. Cybersecurity in
Robotics: Challenges, Quantitative Modeling, and Practice. Foundations and Trends®

in Robotics, vol. 9, no. 1, pp. 1–129, 2021.

ISBN: 978-1-68083-861-9
© 2021 Quanyan Zhu, Stefan Rass, Bernhard Dieber, Víctor Mayoral Vilches

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2300000061



Foundations and Trends® in Robotics
Volume 9, Issue 1, 2021

Editorial Board

Editors-in-Chief
Julie Shah
Massachusetts Institute of Technology

Honorary Editors

Henrik Christensen
University of California, San Diego

Roland Siegwart
ETH Zurich

Editors

Minoru Asada
Osaka University
Antonio Bicchi
University of Pisa
Aude Billard
EPFL
Cynthia Breazeal
Massachusetts Institute of
Technology
Oliver Brock
TU Berlin
Wolfram Burgard
University of Freiburg
Udo Frese
University of Bremen
Ken Goldberg
University of California,
Berkeley
Hiroshi Ishiguro
Osaka University
Makoto Kaneko
Osaka University

Danica Kragic
KTH Stockholm
Vijay Kumar
University of Pennsylvania
Simon Lacroix
LAAS
Christian Laugier
INRIA
Steve LaValle
University of Illinois at
Urbana-Champaign
Yoshihiko Nakamura
The University of Tokyo
Brad Nelson
ETH Zurich
Paul Newman
University of Oxford
Daniela Rus
Massachusetts Institute of
Technology
Giulio Sandini
University of Genova

Sebastian Thrun
Stanford University

Manuela Veloso
Carnegie Mellon
University

Markus Vincze
Vienna University

Alex Zelinsky
DSTG

Full text available at: http://dx.doi.org/10.1561/2300000061



Editorial Scope
Topics

Foundations and Trends® in Robotics publishes survey and tutorial articles in
the following topics:

• Mathematical modelling

• Kinematics

• Dynamics

• Estimation Methods

• Robot Control

• Planning

• Artificial Intelligence in
Robotics

• Software Systems and
Architectures

• Mechanisms and Actuators

• Sensors and Estimation

• Planning and Control

• Human-Robot Interaction

• Industrial Robotics

• Service Robotics

Information for Librarians

Foundations and Trends® in Robotics, 2021, Volume 9, 4 issues. ISSN
paper version 1935-8253. ISSN online version 1935-8261. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2300000061



Contents

1 Introduction to Robot Security 3
1.1 The Need for Cybersecurity in Robotics . . . . . . . . . . 4
1.2 Overview of Security Challenges and Solutions . . . . . . . 6
1.3 Need for Quantitative Methods . . . . . . . . . . . . . . . 9

2 Cyber Issues, Security Architectures and Robot Operating
System (ROS) Vulnerabilities 13
2.1 The Robot Operating System . . . . . . . . . . . . . . . . 13
2.2 Vulnerabilities of the Robot Operating System . . . . . . . 15
2.3 Securing the Application Programmers Interface (API) . . 18
2.4 Vulnerabilities of AI-Enabled Robotic Systems . . . . . . . 29

3 Security of Networked Robotic Systems 35
3.1 Security in ROS Networked Systems . . . . . . . . . . . . 35
3.2 Security for Industrial Multi-Agent Robotic Systems . . . . 43

4 Security Practice and Design 53
4.1 Penetration Testing . . . . . . . . . . . . . . . . . . . . . 54
4.2 Vulnerability Scanning . . . . . . . . . . . . . . . . . . . . 54
4.3 DevSecOps . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Relevant International Standards . . . . . . . . . . . . . . 64

Full text available at: http://dx.doi.org/10.1561/2300000061



5 Game Theory for Security 68
5.1 Introduction by Example: Chasing the Adversary on Attack

Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Introduction to Security Games and Strategic Defenses . . 76
5.3 Multi-Stage and Multi-Phase Games . . . . . . . . . . . . 84
5.4 Examples of Game-Theoretic Analysis . . . . . . . . . . . 94

6 Discussions and Conclusions 99

Acknowledgements 106

References 110

Full text available at: http://dx.doi.org/10.1561/2300000061



Cybersecurity in Robotics:
Challenges, Quantitative Modeling,
and Practice
Quanyan Zhu1, Stefan Rass2, Bernhard Dieber3 and Víctor Mayoral

Vilches4

1New York University, USA; qz494@nyu.edu
2Universität Klagenfurt, Austria; stefan.rass@aau.at
3Joanneum Research, Austria; bernhard.dieber@joanneum.at
4Alias Robotics, Spain and Universität Klagenfurt, Austria;
victor@aliasrobotics.com; v1mayoralv@edu.aau.at

ABSTRACT
Robotics is becoming more and more ubiquitous, but the
pressure to bring systems to market occasionally goes at
the cost of neglecting security mechanisms during the de-
velopment, deployment or while in production. As a result,
contemporary robotic systems are vulnerable to diverse at-
tack patterns, and an a posteriori hardening is at least
challenging, if not impossible at all. This book aims to stip-
ulate the inclusion of security in robotics from the earliest
design phases onward and with a special focus on the cost-
benefit tradeoff that can otherwise be an inhibitor for the
fast development of affordable systems. We advocate quanti-
tative methods of security management and design, covering
vulnerability scoring systems tailored to robotic systems,
and accounting for the highly distributed nature of robots as
an interplay of potentially very many components. A power-
ful quantitative approach to model-based security is offered

Quanyan Zhu, Stefan Rass, Bernhard Dieber and Víctor Mayoral Vilches
(2021), “Cybersecurity in Robotics: Challenges, Quantitative Modeling, and Prac-
tice”, Foundations and Trends® in Robotics: Vol. 9, No. 1, pp 1–129. DOI:
10.1561/10.1561/2300000061.
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by game theory, providing a rich spectrum of techniques to
optimize security against various kinds of attacks. Such a
multi-perspective view on security is necessary to address
the heterogeneity and complexity of robotic systems. This
book is intended as an accessible starter for the theoretician
and practitioner working in the field.
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1
Introduction to Robot Security

Robotic technology has been around for many years now with its main
application being in automation where millions of robots have been
deployed over the past decades. In recent years, inflexible automation
is starting to shift out of focus of the robotics research and we move
towards using robots in flexible manufacturing (marching towards lot
size 1) and intralogistics. Service robots are set out to pervade also
non-industrial areas like healthcare as well as public and private spaces.
The gain in flexibility and capabilities of modern robots has been largely
fuelled by the convergence of classical computing and networking tech-
nology with robotics. The new generation of robots cannot perform their
tasks without being connected to the outside world. Flexible manufac-
turing and intralogistics robots need to be connected to manufacturing
execution systems and fleet management services. Service robots are
supposed to provide more value by being connected to the cloud to
retrieve commands and updates. While the new capabilities make the
areas of application for robots broader, they also become susceptible to
external manipulation. This new threat from the cyber world has not
yet been sufficiently addressed up to now.

3
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4 Introduction to Robot Security

In this book, we review the causes of robot insecurity also reflecting
the underlying causes like complexity and market pressure. We present
the vulnerabilities and potential fixes of the most important software
framework in robotics. Then, we describe modern approaches to se-
curing robots including processes and standards but most importantly
also present the potential benefits promised by the introduction of
quantitative security methods.

1.1 The Need for Cybersecurity in Robotics

A robot is in general a complex machine which is by itself difficult
to design, build and program. The main focus when building a robot
is in making it reliable and safe. Security is often of a lower priority
since it adds even more complexity to building the robot. In addition,
cybersecurity has traditionally not been a concern when designing
or using robots since classical industrial applications of robots did
not require any connectivity to the outside. With the current trend
towards connected robots, however, a technology that is not fit for
this trend meets all the threats that come with connecting robots.
Generally speaking, today’s robots are easy prey even for less skilled
attackers since security achievements that have been successfully used
in the Information Technology (IT) area in the past three decades like
firewalls, hardened endpoints, or encrypted communication are typically
not part of a robotic system. In addition, a security-oriented mindset is
also hardly taught in the education of roboticists.

1.1.1 What are special requirements for cybersecurity in robotics?

In general, cybersecurity for robotics draws from the methods of IT-
security. However, there are specialties in robotics, that need additional
consideration (Mayoral-Vilches et al., 2019). First and most obviously,
robots are cyber-physical systems and as such, they have a represen-
tation in the physical world. This yields two security-relevant aspects.
First, robots can be physically manipulated. Too often, we find exposed
network- or USB-ports in robots that can easily be exploited by an
attacker. This is especially problematic with mobile robots that move

Full text available at: http://dx.doi.org/10.1561/2300000061



1.1. The Need for Cybersecurity in Robotics 5

autonomously in little-controlled areas. Second, robots can have signifi-
cant impacts on the physical safety of persons around them. In general,
the regulations for robot safety are very strict to prevent any human
harm by a robot. However, much of the required safety functions can be
attacked remotely thus, effectively rendering the safety methods useless.
Despite this, safety regulations do not (yet) require security measures to
be put into place. Section 1.1.1 shows a Proof of Concept (PoC) attack
that demonstrates the seriousness of this issue.

Robots that are used in automation are also aimed at high availabil-
ity. This means that they should preferably operate non-stop. Thus, as
it is common in Operational Technology (OT), industrial robots are not
commonly supplied with regular updates that could fix vulnerabilities.

A PoC to remotely disable a robot’s safety subsystem

A practical attack on a robot’s safety subsystem has been presented
in Taurer et al. (2019). The target of the PoC was a mobile robot
for transport tasks in the industry. The safety system of the robot is
responsible to stop the platform before it hits an obstacle. This is realized
using safety-rated laser scanners connected to a safety Programmable
Logic Controller (PLC) which cuts the power to the motors in case an
object is too close to the robot. Figure 1.1 shows a logical overview of
the aforementioned components and their interconnections.

Due to several misconfigurations and negligence of standard security
procedures (like changing default passwords), it is possible to retrieve,
manipulate and re-upload the safety program logic running on the
dedicated safety PLC in the robot. The robot itself hosts a WiFi hotspot
that uses a default password. Access to the WiFi also provides access
to all connected devices since no network separation policy is in place.
Thus, an attacker could easily gain access to the robot’s internal network.
The safety PLC is connected to the robot’s internal network. During its
integration, the default password required to upload a program to the
PLC was not changed. The attacker can access the PLC via WiFi and
download the program stored on it. After a simple change that renders
the laser scanners’ inputs useless, the program can be re-uploaded. From
this point on, the robot will still detect obstacles but it will not stop for
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6 Introduction to Robot Security

Figure 1.1: A logical overview of the internals of an MiR-100 robot (from Taurer
et al. (2019)

them. Since those robots can carry up to 250kg, they pose significant
health risks when they collide with a person. Note, that in course of the
modifications, not only the safety laser scanners but also the emergency
stop can be rendered useless.

The vulnerability described has been acknowledged by the robot
manufacturer and was fixed in the meantime. Still, it shows how eas-
ily robots can be attacked and that establishing security practices in
robotics is highly necessary.

1.2 Overview of Security Challenges and Solutions

Robotic security adds a dimension of physical interaction to the require-
ments of general information security. Contrary to classical protection
of data from theft, manipulation, etc., a physical consequence of a data
breach is usually not in the center of attention there, but not so for
robotics. The intended close contact, up to collaboration, with humans,
adds its own set of security requirements beyond the classical CIA+
(confidentiality, integrity, availability, and authenticity), and also in-
duces ethical challenges. Those get more involved by the fact that robot
systems are often heterogeneous, making the assignment and taking of
responsibilities difficult in light of many actors being involved.
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1.2. Overview of Security Challenges and Solutions 7

This book is focused on the technical possibilities of implementing
security, reaching up to industrial standards, and best practices to follow
when building a secure robot. Chapter 2 sets the ground by reviewing
the ROS as a popular (de facto standard) platform to run robot sys-
tems, thereby pointing out some threats and countermeasures that can
be addressed “classically” (i.e., using standard security mechanisms).
The distributed nature of robotics, however, calls for a broader view
extended to cover the interaction of possibly many components, which
has its challenges. Among them are the necessary division of views
(dividing data layers vs. computational graphs, etc.) and the treatment
of multi-agent systems as groups in which possibly many players can
become hostile or otherwise deviate from the intended orchestration.
We discuss security along these lines in Chapter 3. Experience with
vulnerabilities and successful attack reports have led to the development
of various tools and methods to help designers of a robot system with
testing and general security management, and Chapter 4 is devoted to an
introduction and overview of these practices. Conditional on an under-
standing of the overall diversity and interdependency in robot systems,
partially gained with help of tools, but also proper design processes
(e.g., DevSecOps), one can proceed further by defining mathematical
models to quantify and thereby optimize security systematically, as an
account for the tradeoff between investment, time to market pressure,
and the security achievable under budget and time limitations. This
model-based economic approach to security, see Figure 1.2, including the
technical and organizational practices relative to security cost-benefits,
is what game-theoretic techniques can help with.

Chapter 5 provides a primer of game theory, starting with an intro-
duction by the example of a game describing a penetrating adversary
versus a defending security officer, to illustrate the overall idea of how
mathematical games are applicable to security. From this, we take a
deeper dive into the variety of game-theoretic models designed for se-
curity, and how to combine them into bigger models of robot systems.
The diversity and heterogeneity of a robot system are thereby matched
with the (equal) diversity of game-theoretic security models tailored to
many different scenarios of attack and defense. Chapter 5 is meant as a
starting point here.

Full text available at: http://dx.doi.org/10.1561/2300000061



8 Introduction to Robot Security

Challenges

Practice

Security

Modeling

Robotics

Figure 1.2: This book investigates challenges, quantitative modeling and the practice
of cybersecurity issues in robotic systems.

We remark that this book does not intend to cover non-technical
matters like ethics or the generalities of development processes, staff
recruiting and human resources security, or legal issues like liabilities
or insurance. Without doubting their relevance for robot security, their
discussion and treatment are out of our scope here. A survey of all
known threats is not the focus of this book. We refer the reader to the lot
of existing work in this direction, partly coming from other domains (as
provided by Heartfield et al., 2018, Simmons et al., 2009 and others) but
also related explicitly to robotics, such as the work of Lera et al. (2017)
and the Open Source Robotics Foundation, Inc. (2021). Since robots
are special cases of general distributed cyber-physical systems, threat
taxonomies from this larger area apply well for robotics too. Furthermore,
risk management standards like ISO31000 or IEC-62443, discussed in
Section 4.4, provide threat categorizations and ways to systematically
identify, classify, and address cyber-security along all virtual and physical
aspects. We thus refrain from deep dives into taxonomies here, for the
sake of discussing a useful practical tool being the classification of threats
along with a common set of attributes to rank threats and vulnerabilities
in terms of severity, efforts to fix, and other security management related
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1.3. Need for Quantitative Methods 9

aspects. We pay explicit attention to such methods, specifically the
Robot Vulnerability Scoring System (RVSS) (Mayoral-Vilches et al.,
2018) as an extension to the popular Common Vulnerability Scoring
System (CVSS), later in Section 4.2.

1.3 Need for Quantitative Methods

A robot is a system of systems. One that comprises sensors to perceive
its environment, actuators to act on it and computation to process it
all and respond coherently to its application (Vilches, 2020). We can
divide robotic systems into two layers, as illustrated in Figure 1.3. One
is the OT layer which consists of devices and components that directly
monitor and control the mechatronic processes and events, such as
autonomous vehicles, robotic arms, and humanoids. The other one is
the IT layer which consists of information and communication devices
that collect, communicate, and process data, such as computer networks,
cloud computing, and servers. Many robotic system designs often view
safety as one of the major OT-level system criteria. The design for
safety is an integral part of the systematic methodologies in the design
process. On the contrary, cybersecurity at the IT-level is not yet a key
factor considered in the design of robotic systems. When security issues
arise, add-on solutions such as patching and firewalls are introduced
to harden the system security. However, these solutions can be easily
evaded by a sophisticated attacker as we have seen in recent Advanced
Persistent Threats (APTs). An attacker can leverage social engineering,
stay stealthy in the system for a prolonged period of time, and learn
the system configurations to acquire credentials and escalate privilege
to reach the asset. The defective IT-security is a potential cyber hazard
for OT-safety.

It is essential to see that OT-level safety and IT-level security are
intertwined. The ignorance of IT-security will enable an attacker to
take over the control of OT and create human-induced devastating
incidents. Reversely, the goal of IT-security is to provide the necessary
support to OT to provide performance assurance and dependability.
It is insufficient to focus merely on OT-level safety issues and adopt
perfunctory solutions to protect the IT from advanced attacks.

Full text available at: http://dx.doi.org/10.1561/2300000061



10 Introduction to Robot Security

Figure 1.3: The integration and interaction between IT and OT in robotics

Quantitative metrics and frameworks play an essential role in a
formal understanding of the IT/OT interdependencies and the develop-
ment of risk assessment tools and security solutions. Game theory is a
promising scientific method to address this need. Game theory has a
long history since the 1950s and a rich set of analytical and computa-
tional tools that can be used to capture the competitive and strategic
behaviors between an attacker and a defender. The solid mathematical
foundation of game theory provides a rigorous framework to analyze
and predict the outcome of the interactions between an attacker and a
defender.

Game theory provides a theoretical underpinning for the analysis of
this tradeoff between security and performance under a prescribed set
of attack models. A standard normal-form game is composed of three
elements: players, action sets, and utility functions or preferences over
action sets. The action sets can encode the system constraints, while
the utility function can capture the IT and OT performances and their
interplay. The interdependencies between the IT and the OT can be
formally described by specifying the preferences over the set of joint
IT/OT configurations and designs.

Not only does the game framework encode the key design features,
the equilibrium concept of games but also provides a predictive outcome
of the interactions, where no parties have the incentive to deviate
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1.3. Need for Quantitative Methods 11

from their actions unilaterally. The analysis of the equilibrium solution
enables the quantitative risk assessment in a strategically adversarial
environment. In addition, the analysis of equilibrium strategies of the
game leads to a new paradigm of security solutions. Instead of aiming for
a perfect security solution, which is either cost-prohibitive or practically
impossible, game theory enables the design of best-effort IT-and-OT-
security by taking into account the security objectives of the systems,
the system resource constraints, and the attacker’s capabilities.

Modern extensions of the game-theoretic framework by including
uncertainties, epistemic modeling, and learning dynamics enable the
creation of sophisticated defense mechanisms such as autonomous and
adaptive strategies, moving target defense, and cyber deception. The
defense mechanisms can go beyond the traditional manual and static
configurations to dynamic, data-driven, and automated operations of
defense. In addition, the game models can be sequentially composed
to capture the multi-stage and multi-phase nature of APTs. Each
game model represents a modularized interaction in a subsystem. The
composition of multiple games pieces together a holistic view of the
multi-dimensional dynamic interactions in the entire system, which
include the ones between the defender and the attacker, as well as the
ones between subsystems. The holistic game is also called games-in-
games, where one game is nested in the other games. This structure
enables the defense to localize the attack behaviors by zooming into a
local subsystem and optimize the system-wide performance by zooming
out to view the system holistically.

Chapter 5 will first provide an introduction to game-theoretic meth-
ods by an example of an attack-graph game. The second part of the
chapter will present an overview of security games and their applications.
One important class of games that are useful to address sophisticated
attacks is the multi-stage and multi-phase security game. Game models
for multiple subsystems at different phases can be composed together to
address the complex security problems holistically. The chapter presents
several case studies to elaborate on game-theoretic methodologies. One
case study presents a cyber-physical signaling game to develop an
impact-aware trust mechanism that can reject high-risk inputs and
mitigate the physical damages. The second case study introduces a jam-
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12 Introduction to Robot Security

ming game between a jammer and a team of robots that aim to reach
consensus through mutual pursuits and communications. A multi-stage
game is formulated to analyze the equilibrium and develop anti-jamming
strategies.
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