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ABSTRACT
This work presents a comprehensive exploration of Reverse
Engineering of Deceptions (RED) in the field of adversarial
machine learning. It delves into the intricacies of machine-
and human-centric attacks, providing a holistic understand-
ing of how adversarial strategies can be reverse-engineered to
safeguard AI systems. For machine-centric attacks, we cover
reverse engineering methods for pixel-level perturbations,
adversarial saliency maps, and victim model information
in adversarial examples. In the realm of human-centric at-
tacks, the focus shifts to generative model information infer-
ence and manipulation localization from generated images.
Through this work, we offer a forward-looking perspective
on the challenges and opportunities associated with RED. In
addition, we provide foundational and practical insights in
the realms of AI security and trustworthy computer vision.

Yuguang Yao, Guo Xiao, Vishal Asnani, Yifan Gong, Jiancheng Liu, Xue Lin,
Xiaoming Liu and Sijia Liu (2024), “Reverse Engineering of Deceptions on Machine-
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Vol. 6, No. 2, pp 53–152. DOI: 10.1561/3300000039.
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1
Introduction

In the domain of trustworthy computer vision (CV) and adversarial
machine learning (ML), the emergence of Reverse Engineering of Decep-
tions (RED) marks a pivotal evolution. This monograph is poised to
grant readers a profound understanding of RED, a novel and dynamic
field at the intersection of AI security and CV (DARPA, 2021). The
existing body of research in the field has exhaustively explored machine-
centric deceptions, such as adversarial attacks aimed at misleading ML
models (Goodfellow et al., 2014b; Madry et al., 2017), and human-
centric deceptions, particularly the utilization of generative models to
fool human decision-making (Creswell et al., 2018; Dhariwal and Nichol,
2021). In the above context, RED introduces an innovative adversarial
learning paradigm with the ambitious goal of deciphering and cataloging
the intricacies of attacks targeted at both machines and humans.

The concept of RED is not merely an academic exercise; it is a
crucial response to the increasing sophistication of adversarial tactics in
CV. This burgeoning field seeks to automate the process of recovering
and indexing attack ‘fingerprints’ embedded in adversarial instances.
The core question that RED endeavors to answer is: Given an attack,
whether machine-centric or human-centric, can we reverse-engineer

2
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the adversary’s underlying knowledge and the specifics of their attack
toolchains? This question extends beyond the realm of traditional
adversarial detection and defense techniques, delving into the deeper
layers of adversary intentions, methodologies, and the nuances of model
generation.

RED for ‘machine-centric’ attacks. Recent years have witnessed a
rapid expansion in RED research. As for adversarial attacks designed
to fool discriminative models, i.e., machine-centric attacks, RED aims
not only to defend against these attacks but also to infer the adver-
sary’s knowledge, including their identity, objectives, and the details
of the attack perturbations. Recent works in this area, such as those
by Nicholson and Emanuele (2023), Wang et al. (2023), Maini et al.
(2021), Zhou and Patel (2022), Guo et al. (2023c), and Moayeri and
Feizi (2021), have focused on reverse-engineering the type of attack gen-
eration methods and the associated hyperparameters, like perturbation
radius and step number. There is also a growing interest in estimating
or attributing adversarial perturbations used in constructing adversarial
images (Gong et al., 2022; Goebel et al., 2021; Souri et al., 2021; Thaker
et al., 2022), an endeavor closely related to adversarial purification tech-
niques (Srinivasan et al., 2021; Shi et al., 2021; Yoon et al., 2021; Nie
et al., 2022) which aim to mitigate the impact of such attacks on model
predictions. We note that RED is distinct from research focused on
reverse engineering model hyperparameters in a black-box setting (Oh
et al., 2019; Wang and Gong, 2018), which typically involves estimating
model attributes from the model’s prediction logits. By contrast, in the
realm of RED against adversarial attacks, the victim model attribute is
unknown, and the only available information is the dataset of attack
instances.

RED for ‘human-centric’ attacks. Generative Models (GMs) nowa-
days generate visually compelling images. However, they also introduce
the risk of human-centric attacks, leading to the inadvertent spread of
misinformation and threats to the trustworthiness of social media. To
counteract these negative impacts, two recent research directions aim to
reverse engineering deception — model parsing of generative models and

Full text available at: http://dx.doi.org/10.1561/3300000039



4 Introduction

manipulation localization. Firstly, model parsing (Asnani et al., 2023b;
Guo et al., 2023a) involves extracting GM hyperparameters used in
creating falsified images. Unlike previous model parsing works (Tramèr
et al., 2016; Oh et al., 2019; Hua et al., 2018; Batina et al., 2019),
which often required additional prior knowledge to predict training
information or model hyperparameters, Asnani et al. (2023b) employs
a clustering-based approach to estimate mean and standard deviation
across different GMs. In contrast, Guo et al. (2023a) introduces a novel
framework based on Graph Convolution Networks to learn dependencies
among these 37 hyperparameters. Secondly, manipulation localization
is a well-established computer vision research topic that identifies tam-
pered regions to deduce crucial information about deception. Existing
work has predominantly focused on manipulation in either the image
editing (Wu et al., 2019; Hu et al., 2020; Zhou et al., 2018; Mayer
and Stamm, 2018; Chen et al., 2021; Wang et al., 2022; Zhou et al.,
2020) or digital domain (Dang et al., 2020; Zhao et al., 2021; Huang
et al., 2022). In contrast, we introduce two manipulation localization
algorithms (Asnani et al., 2023a; Guo et al., 2023b) in this work, which
are capable of handling both domains simultaneously.

Objective and impact of this tutorial. We aim to present an all-
encompassing exploration of RED, from its algorithmic underpinnings
to its burgeoning applications, complemented by practical implementa-
tions. Delving into various formulations of RED, this monograph will
unravel both the challenges and opportunities inherent in this field.
The significance of RED becomes particularly salient in high-stakes
applications, such as biometrics, autonomous driving, and healthcare,
where the defense against and diagnosis of attacks are paramount. The
implications of RED could extend beyond the boundaries of academic
research, impacting the real-world deployment of machine intelligence.

Furthermore, the pressing need for security and trustworthiness
in future CV models underscores the importance of our work. As the
popularity of adversarial ML surges, it becomes increasingly crucial
to ensure that research progress aligns with the demand for robust
and reliable AI systems. By investigating how one can reverse-engineer
threat models from adversarial instances, such as adversarial examples
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and images synthesized by generative models, our monograph offers
new perspectives and insights.

Organization. The remainder of this monograph is structured as fol-
lows: Sections 2 and 3 will offer insights into the RED in machine-centric
adversarial images and their potential implications for model parsing
of adversarial attacks (i.e., inferring details of a victim model used for
attack generation). Sections 4 and 5 will delve into the RED in the
human-centric attack, focusing on two research topics: model parsing
of generative models and manipulation localization. Model parsing of
generative models involves predicting hyperparameters used in the gen-
erative model, given the generated image. In parallel, manipulation
localization predicts a segmented mask to identify the manipulated
region, and this segmented mask serves to reverse engineer crucial infor-
mation about the malicious manipulation method. Finally, in Section 6,
we will explore the broader impact of RED on other pertinent domains
and offer our concluding remarks.
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