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Abstract

Stochastic control problems in which there are no bounds on the rate
of control reduce to so-called free-boundary problems in partial differ-
ential equations (PDEs). In a free-boundary problem the solution of
the PDE and the domain over which the PDE must be solved need
to be determined simultaneously. Examples of such stochastic control
problems are singular control, optimal stopping, and impulse control
problems. Application areas of these problems are diverse and include
finance, economics, queuing, healthcare, and public policy. In most
cases, the free-boundary problem needs to be solved numerically.

In this survey, we present a recent computational method that solves
these free-boundary problems. The method finds the free-boundary by
solving a sequence of fixed-boundary problems. These fixed-boundary
problems are relatively easy to solve numerically. We summarize and
unify recent results on this moving boundary method, illustrating its
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application on a set of classical problems, of increasing difficulty, in
finance. This survey is intended for those are primarily interested in
computing numerical solutions to these problems. To this end, we
include actual Matlab code for one of the problems studied, namely,
American option pricing.

Full text available at: http://dx.doi.org/10.1561/0900000006



Contents

1 Introduction 1

1.1 Motivation: Controlled Brownian Motion 2
1.2 The General Method 10
1.3 Structure and Intended Audience 12

2 Portfolio Optimization with One Stock
and Transaction Costs 15

2.1 Problem Formulation 17
2.2 The Value Function and the Free-boundary Problem 19
2.3 The Moving-boundary Method 23
2.4 Illustrative Results 28

3 American Option Pricing 31

3.1 Problem Formulation 32
3.2 The Moving-Boundaries Approach 35
3.3 Alternative Numerical Approaches, Runtimes,

and Accuracy 43
3.4 Matlab Code for the Finite Difference Implementation 49

4 Portfolio Optimization with Two Stocks
and Transaction Costs 51

4.1 Problem Formulation 52
4.2 Regions of Inaction for the Two-Stock Case 59

ix

Full text available at: http://dx.doi.org/10.1561/0900000006



5 Computing the Solution of the Fixed-boundary
PDE 63

6 Portfolio Optimization with Many Stocks 69

6.1 Problem Formulation and the Free-boundary Problem 70
6.2 A Policy Space Approximation 72
6.3 Simulation Based Boundary Update 74
6.4 Dimensionality and Scaling 78

References 79

Full text available at: http://dx.doi.org/10.1561/0900000006



1

Introduction

Singular stochastic control problems are those problems in which con-
trol effort can effect instantaneous displacement in state. A wide variety
of problems can be modeled as singular stochastic control problems.
A representative list of applications include economics [16], portfolio
optimization in finance [15], dynamic control of queueing networks [22],
revenue management [11], and environmental clean-up issues in public
policy [28].

Despite their wide applicability, singular control problems are not
analytically tractable except in very special cases. Therefore, one is
forced to solve these problems numerically. Based on the applica-
tion, various numerical methods have been proposed for solving such
problems.

Our goal in this survey is to describe a general yet efficient numer-
ical method for solving such problems. As a consequence we rely quite
heavily on our own past work in this area, and borrow heavily from
our papers. Our goal is to provide a unified treatment of this method
emphasizing application in Finance.

Our method makes use of the special structure of these problems,
namely, that optimal policies are characterized by so-called regions of

1
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2 Introduction

inaction. So we reduce the problem of finding the optimal policies to
searching for the right region of inaction. This is still a difficult prob-
lem because there is no explicit characterization of the optimal region.
Rather it is implicitly specified by the solution of a partial differen-
tial equation, whose domain it is. Thus, we are faced with a so-called
free-boundary problem where the solution of a PDE and the domain
of which it must be solved need to be simultaneously determined. Our
method solves these free-boundary problems by reducing them into a
sequence of fixed-boundary problems which are relatively easy to solve
numerically. The key to our method is a boundary update procedure
that allows us to construct the next fixed-boundary problem from the
solution of the previous one.

A valuable by-product of our method is that it is capable of solving
other stochastic control problems that can be cast as free-boundary
problems but are not singular control problems per se. An important
class of problems that fall in this category are optimal stopping prob-
lems. A very important example of an optimal stopping problem is
the American option pricing problem, and our method is applicable to
these problems as well, as we will discuss in a later section. In the same
vein, our method is also applicable to impulse control problems [18],
but we do not discuss these problems in this survey.

Rather than describe the method in vague words, we provide a
simple, concrete illustration using a one-dimensional singular control
problem. Restricting attention initially to one-dimensional problems
allows us to achieve two objectives. We can provide a description of
the procedure that is easier to comprehend, and we illustrate the kind
of theoretical guarantees on the behavior of the procedure that can be
obtained.

1.1 Motivation: Controlled Brownian Motion

Consider the problem of using two non-negative, nondecreasing, RCLL
processes to control a given continuous path w(·) as

x(t) = x + µt + σw(t) + L(t) − U(t), t ≥ 0, (1.1)

where µ and σ > 0 are constants, and the initial state x ∈ [0,1].
Suppose that we needed x(t) ∈ [0,1] for all t, and furthermore, we were
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1.1 Motivation: Controlled Brownian Motion 3

interested in maintaining x(t) as close to x̄ in the sense of minimizing∫∞
0 e−λth(x(t))dt, where λ > 0 is a discount rate, and h(y) = (y − x̄)2,

where x̄ ∈ (0,1). For now, we impose no probabilistic structure on the
problem. This problem is trivially solved. If x 6= x̄ we simply make an
initial jump using either L or R to move x(0+) to x̄ and maintain
x(t) = x̄ for all t > 0 using L and U . Note that we may have jumps in
L or U even though w is continuous. In particular, there are no rate
constraints on L and U . Hence the name singular control.

Now consider costs of control as well. Suppose, we have cost rates
c > 0 and r > 0 such that the overall cost of using controls L and U

is
∫∞
0 e−λth(x(t))dt +

∫∞
0 e−λtcdL(t) +

∫∞
0 e−λtrdU(t), where the last

two terms are interpreted as Reimann–Steiljes integrals. Now the choice
of controls is no longer obvious. Attempting to make h(x(t)) small
comes at the price of incurring control costs. If the path w is not of
bounded variation, then costs of control incurred by attempting to
maintain x(t) ≡ x̄ is prohibitive. So in order to trade-off the holding
cost h against control costs, one pick controls that do nothing as long
as x(t) is close to x̄ but intervene only when it has deviated sufficiently,
i.e., it has hit the boundary of an interval around x̄. It is not hard to
see that the same interval cannot be appropriate for all paths. So we
can no longer hope for path-wise solutions. To solve this problem we
need to impose additional probabilistic structure on it.

Let (Ω,F ,P ) be a probability space and {Ft, t ∈R+} be a right
continuous filtration on this space and let w be a standard (R-valued)
Brownian motion with respect to this filtration. Let L and U be RCLL,
non-negative, nondecreasing and adapted to Ft. Now suppose that we
are again interested in the controlled process x(·) specified by (1.1),
and in minimizing the expected infinite horizon discounted cost (also
called a value function) among all admissible policies L and U .

J(x,L,U) = Ex

[∫ ∞

0
e−λth(x(t))dt

+
∫ ∞

0
e−λtcdL(t) +

∫ ∞

0
e−λtrdU(t)

]
, (1.2)

For this problem to make sense we restrict attention to only those con-
trols for which Ex

[∫∞
0 e−λtdL(t)

]
<∞ and Ex

[∫∞
0 e−λtdU(t)

]
<∞.
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4 Introduction

As before we restrict attention to those policies that maintain x(t) ∈
B0 ≡ [0,1] for all t > 0 and to initial states x ∈ B0.

The first thing we do is to reduce this singular, stochastic control
problem into a problem in differential equations. The following result
is fairly standard, and follows from an application of Itô’s formula. See,
for example, [30].

Lemma 1.1. If we can find a twice continuously differentiable func-
tion f∗: B0 →R such that f∗(x) = J(x,L,U) for all x ∈ B0 for some
admissible (L,U), and satisfies

min
(
σ2

2
f∗xx(x) + bf∗x(x) − λf∗(x) + h(x),f∗x(x) + c,−f∗x(x) + r

)
= 0

(1.3)
in B0, then the (L,U) must be optimal. (Here and elsewhere in this
volume fx denotes the derivative of f and fxx the second derivative.)

Although this theorem has allowed us to translate the problem to
one in ODE’s it has not yet given us a clue as to its solution. Now sup-
pose we can find a function f in the following class F . Each function
f ∈ F is specified by an interval B = [bl, bu] ⊂ B0, is continuously dif-
ferentiable in B0, twice continuously differentiable in the interior of B,
and satisfies the following ordinary differential equation (ODE) in B.

1
2
σ2fxx(x) + bfx(x) − λf(x) + h(x) = 0, (1.4)

fx(bl) = −c, and (1.5)

fx(bu) = r. (1.6)

Furthermore, the function is defined in B0 − B by the linear extension

f(x) = f(bl) + c(bl − x) for b0l ≤ x < bl and (1.7)

f(x) = f(bu) + r(x − bu) for b0u ≥ x > bu. (1.8)

Note that every f ∈ F is almost a candidate for f∗. The differentiator
among these functions f ∈ F , that is, among the intervals B is the
need for f∗ to be twice continuously differentiable over B0 and not
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1.1 Motivation: Controlled Brownian Motion 5

just B. This means that the optimal choice of interval B∗ will have to
be made so as to ensure smooth pasting [4] of the solution of the ODE
inside B∗ and the linear extension outside B∗. Thus we are faced with
the problem of finding the solution of an ODE and the domain over
which it must be solved simultaneously, resulting in the so-called free-
boundary problem. The second issue that we need to tackle is whether
f∗ is a value function under some admissible controls.

Before we go into a procedure for finding B∗, we first note the
following connection between functions in F and the so-called regulated
Brownian motions, which provides us with an interpretation of f ∈ F .
Consider policies that maintain x in B with the minimum amount of
pushing required to do so. That is, for any interval B ⊂ B0, let LB

and UB be the (unique) non-negative, nondecreasing, RCLL processes
adapted to Ft such that

x(t) ∈ B for all t > 0∫ t

0
(bl − x(s))+dLB(s) =

∫ t

0
(x(s) − bu)+dUB(s) = 0 for each t > 0

UB(0+) = (x(0) − bu)+ and LB(0+) = (bl − x(0))+.
(1.9)

The x that results from the use of such LB and UB is called a reg-
ulated Brownian motion or two-sided regulator applied to Brownian
motion. The following result, which is also standard, gives the connec-
tion between regulated Brownian motions and f ∈ F .

Lemma 1.2. Consider a B ⊆ B0 and the f ∈ F corresponding to B

that satisfies (1.4–1.6). Then

f = Ex

[∫ ∞

0
e−λth(x(t))dt+

∫ ∞

0
e−λtc · dLB(t)+

∫ ∞

0
e−λtr · dUB(t)

]
,

where LB and UB are the unique admissible controls that satisfy (1.9).

So we can search for an f∗ by searching for a B∗. Once we find a B∗

such that the solution to (1.4–1.6) is twice continuously differentiable
on B0, we are done because the optimal policy is specified by the reg-
ulator (LB∗ ,UB∗). An interpretation that follows from the definition of
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6 Introduction

regulated Brownian motion is that B∗ can be though of as the region
of inaction. As long as x is inside B∗ no controls are applied. Controls
are only applied on the boundary of B∗. Thus our search reduces to the
search for a region of inaction. We now describe an iterative procedure
for finding B∗.

We begin the iterative procedure with B0 as the initial choice for
the region of inaction. We solve the set of Equations (1.4)–(1.6) to
find the value function corresponding to a regulated Brownian motion
whose region of inaction is B0. Then we iterate as follows to obtain
successive regions of inaction B1,B2, . . . and the corresponding value
functions f1,f2, . . . . The key to getting this procedure to work to find
an update rule that allows to efficiently determine Bk+1 given Bk and
will converge to B∗. With that in mind, we impose two desiderata on
the update procedure.

D1 (The Superset Condition). We want the regions of inac-
tion to be monotone decreasing; we need Bk+1 ⊆ Bk. As is
evident from (1.4)–(1.8), we only obtain “real” informa-
tion about fk inside Bk. So we have no way of telling how
far to back-out if we did not have a monotone sequence of
regions and needed to back out. So the superset condition
is a requirement for efficient search.

D2 (Policy Improvement). We would like that fk+1(x) ≤
fk(x) for all x ∈ B0. That is, the policy obtained in the
next iteration is an improvement on the current policy. This
ensures that the fk will converge.

Upfront, it is not clear that a procedure that meets both D1 and D2
exists. In what follows we construct such a procedure.

The crucial step to constructing the procedure is deciding on
the update rule. Given Bk and fk, define the right and left second
derivatives as fk+

xx (x) := limδ↓0(fk
x (x + δ) − fk

x (x))/δ and fk−
xx (x) :=

limδ↓0(fk
x (x) − fk

x (x − δ))/δ. At x = bl
k, fk+

xixi
(x) need not equal

fk−
xixi

(x). (Note that fk−
xixi

(x) = 0 because of our construction.) Consider
the case when fk+

xx (blk) < 0. The situation is as shown in Figure 1.1.
In this case updating the boundary inwards, i.e., setting bl

k+1 >

bl
k helps us achieve D1 of course. But it also helps us achieve D2.
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1.1 Motivation: Controlled Brownian Motion 7

Fig. 1.1 Illustrating the smooth paste update procedure.

To see this, consider a modification `Bk of the control LBk . Under the
control `Bk , if the initial state x is such that x < bl

k, it is translated
instantaneously, not to blk as by LBk , but to a point x′ in the immediate
vicinity of blk in the interior of Bk. Thereafter, LBk is mimicked by `Bk .
Then

J(`Bk) − J(LBk) =
∫ x′

bl
k
(fk

x + c)dx < 0.

So `Bk is an improved policy, and by repeating this argument, we sus-
pect that a policy that maintains x(t) in a smaller interval than Bk

will be an improvement. (All of this will be formalized shortly.)
Although the heuristic argument above tells us that we should move

inwards, it does not tell us by how much. Since we are striving to find
a function in C2(B0), a natural candidate to update the boundary
inwards is the point where fk

xx(x) = 0. That is, we move the boundary
to a point where, if the resulting region of inaction was indeed the fixed
point of the iterations, then the function inside the region (obtained
by solving (1.4–1.6)) and its linear extension outside the region would
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8 Introduction

be smoothly pasted, a requirement for converging to B∗ as discussed
earlier. Therefore, we choose the local minimizer of fk

x nearest blk as
the updated blk+1. That is,

bl
k+1 = min{x∗ ≥ bkl |x∗ is a local minimizer of fk

x}, or equivalently

bl
k+1 = min

{
x∗ ≥ bkl |∃ ε > 0 s.t. fk

x (x∗) = min
−ε≤δ≤ε

fk
x (x∗ + δ)

}
.

(1.10)

Arguing similarly at bku, if fk−
xx < 0 the natural candidate for the

update is

bu
k+1 = max{x∗ ≤ bku|x∗ is a local maximizer of fk

x}, or equivalently

bu
k+1 = max

{
x∗ ≤ bku|∃ ε > 0 s.t. fk

x (x∗) = max
−ε≤δ≤ε

fk
x (x∗ + δ)

}
.

(1.11)

For completeness we need to consider the case when fk+
xx (blk) > 0.

If f0+
xx (0) > 0 then we suspect that the interval B0 = [0,1] is not big

enough. But our requirement that x(t) ∈ [0,1] implies that we must
simply retain b1l = 0. The same holds when f0−

xx (1) > 0, we must retain
b1u = 1. Now if these two conditions are ruled out by assumption (by
assuming that c + r is sufficiently small, for example) then our update
procedure guarantees that fk+

xx (blk) < 0 implies f (k+1)+
xx (blk) < 0. That

is, if the procedure works at the first step, it will work at every
subsequent step. We illustrate this first via a numerical example
taken from [30]. We then quote a result from [30] that the pro-
cedure is well-defined and that it converges. The numerical exam-
ple uses the parameter choices λ = 0.01,σ2 = 2, b = 1, x̄ = 0.6, c = 0.02,
r = 0.01. Figure 1.2 plots fk(x),fk

x (x),fk
xx(x) for k = 0,1,2.

We start with the initial region of inaction B0 = [0,1]. We then
solve the resulting ODE (1.4) in [0,1] with the boundary conditions
f0

x(0) = −c,f0
x(1) = r. Although the resulting expressions are messy,

this ODE can be solved analytically. The top set of plots in Figure 1.2
show the resulting f0 and its first and second derivatives, f0

x and f0
xx.

As can be seen from the plots, f0
x(x) < −c for all x < 0.52. Thus, (1.3)

is violated and therefore we need to move the lower barrier from 0.
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1.1 Motivation: Controlled Brownian Motion 9

Fig. 1.2 One-dimensional example.

We move the lower boundary to b1l such that f0
x(b1l ) is the minimum

of f0
x . Of course, f0

xx(b1l ) = 0. Similarly, we move the right boundary to
b1u such that f0

x(b1u) is the maximum of f0
x . Once again we analytically

solve ODE (1.4) for f1 in [b1l , b
1
u] with the boundary conditions f1

x(b1l ) =
−c,f0

x(b1u) = r. The linear extension gives f1(x) = f1(b1l ) + c(b1l − x)
for x ∈ [b0l , b

1
l ] and f1(x) = f1(b1u) + r(x − b1u) for x ∈ [b1u, b

0
u]. The sec-

ond row of plots in Figure 1.2 show the resulting f1, f1
x , and f1

xx. We
still have regions where f1

x(x) < −c and f1
x(x) > r. So we repeat the

procedure, arriving at the plots shown in the third row in Figure 1.2.
Now we note that f2

x(x) ≥ −c and f2
x(x) ≤ r for all x ∈ [0,1] and that

f2
xx(b2l ) = f2

xx(b2u) = 0 upto the resolution of our code, and we terminate
the process.

We now provide theoretical justification for the procedure in
Proposition 1.3 below, taken from [30].
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10 Introduction

Proposition 1.3. If Bk ≡ [bkl , b
k
u] is such that fk+

xx (bkl ) < 0 and
fk−

xx (bku) < 0 for a given k, then

(1) bk+1
l < bk+1

u ,
(2) Bk+1 ⊂ Bk, i.e., bk+1

l > bkl and bk+1
u < bku,

(3) fk+1(x) < fk(x), for all x ∈ B0, and
(4) f (k+1)+

xx (bk+1
l ) < 0 and f (k+1)−

xx (bk+1
u ) < 0.

Therefore, if B0 ≡ [b0l , b
0
u] is such that f0+

xx (b0l ) < 0 and f0−
xx (b0u) < 0,

(5) bkl → b∗l and bku → b∗u, as k→∞, where b∗l > bkl and b∗u < bku
for any k ≥ 0,

(6) fk → f∗ uniformly on B0 as k→∞,
(7) f∗ ∈ C2(B0) satisfies Γf∗ − λf∗ + h = 0 in [b∗l , b

∗
u], with

f∗xx(b∗l ) = 0 and f∗xx(b∗u) = 0,
(8) f∗ solves (1.3).

Proposition 1.3 establishes several properties of the algorithm.
First, it establishes that the update procedure is well-defined, and
the region of inactions obtained in each iteration is non-empty. Sec-
ond, it establishes that update improves the value function D2, and
that the superset condition D1 is satisfied. Further, it establishes
convergence of the regions of inaction as well as the value func-
tion. Finally, it proves that the value function to which the proce-
dure converges is indeed the optimal value function. Moreover, the
converged value function can be interpreted as the value function
under the policy that instantaneously translates the initial state to
[b∗l , b

∗
u] and maintains it thereafter in this interval using the two-sided

regulator.

1.2 The General Method

The example in the previous section is quite restrictive. The problem
is one dimensional and the stochastic process being controlled is Brow-
nian motion. As a consequence, both identifying the update rule and
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1.2 The General Method 11

verifying its properties is quite easy. Yet, it suffices to provide us with
the outline of the general procedure, enumerated below.

(1) Write out the stochastic control problem, as in (1.1), (1.2). In
the sections that follow, the control problems we study will
be different from the one studied here, but they either will
involve singular controls or will be closely related problems
such as optimal stopping problems.

(2) Translate the stochastic control problem into a problem in
PDEs as in Lemma 1.1. This PDE is commonly called the
Hamilton–Jacobi–Bellman (HJB) equation.

(3) Look for solutions to the HJB equation that are specified
by free-boundary problems as in (1.4)–(1.8). These corre-
spond to policies that are specified by regions of inaction as
in Lemma 1.2. A key issue that arises in higher dimensions
is whether classical (smooth) solutions exist for these free-
boundary problems. That is, can we find an f∗ ∈ F which is
smooth across the boundary of B∗? In some cases, we will
quote results that establish existence of smooth solutions. In
other cases, we will simply assume existence and proceed.
A related issue here is the existence of solutions to the so-
called Skorohod problem as in (1.9), which we also simply
assume.

(4) We will use an iterative procedure that solves the free-
boundary problem by solving a sequence of fixed-boundary
problems over domains B0,B1, . . .. The key to constructing
this procedure is the way to update the boundaries ∂Bk. In
every case that we consider, we will insist on D1 and D2 for
the reasons mentioned.

(5) At each step in the procedure we will need to solve a PDE
over Bk analogous to (1.4) with boundary conditions analo-
gous to (1.5)–(1.6). We need to take into account the direc-
tion in which control is exercised in higher dimensions and
so the boundary conditions can be nonstandard. The way
we set up our method this PDE is a linear elliptic PDE and
thus amenable to numerical solution. Although the user is
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free to choose the numerical method used to solve this PDE,
the ability to handle nonstandard boundary conditions and
arbitrary domains Bk suggests the use of Finite Element
Methods, which we describe.

(6) In all the cases, we will use the idea of smooth pasting to
come up with our update procedure, updating each point on
∂Bk by moving along the direction of control to the point
where smooth pasting would hold if the value function did
not change, just as in (1.10)–(1.11).

(7) Finally, we need to provide a justification of the method as
in Proposition 1.3. In two of the problems we study, namely
portfolio optimization with one stock in Section 2 and Amer-
ican option pricing in Section 3, we quote results that provide
such guarantees. For the higher dimensional portfolio opti-
mization problems, we offer no guarantees beyond extensive
numerical studies.

1.3 Structure and Intended Audience

The intended reader of this survey is one who is conversant with the
basic formulations in Mathematical Finance. We provide no modeling
justification for the control problems that we study. We assume that
the reader knows why these problems are worth solving numerically.
We also assume that the reader has at least a passing familiarity with
PDE approach to solving these control problems. While we do cite work
that carries out the translation from the stochastic control problem to
the free-boundary problem in each of our settings, we do not provide
any details of this translation. To summarize, this volume is intended
for the reader who knows how to set up a stochastic control problem
as a free-boundary problem, and wants to find an efficient numerical
procedure for its solution. Although the applications we study are in
Finance, the actual domain of applicability of our method is much
larger. Finally, this survey is intended for those who will actually com-
pute solutions, rather than prove theorems about the control problems
or computational schemes. So the level of rigor is not as high as one
would find in [20, 27].
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One of the shortcomings of this volume is that no general procedure
is outlined. The primary reason for this is that it is nearly impossible to
justify the method, let alone guarantee its performance, in a sufficiently
general set-up that encompasses all the applications we cover. So we
choose a case-by-case approach. The procedure is carefully constructed
and justified in each of the settings we consider. And in two of these
settings performance guarantees are provided. It is the authors’ belief
that it is easier for the reader to tailor the procedure for an application
of interest, and to justify it using the special structure of the problem
at hand, by understanding how the moving-boundary method works in
a variety of settings.

Finally, we do provide actual MATLAB code for one of the settings
we consider, the pricing of American options. This is intended to help
the potential user get oriented with implementation of our method.
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