
Paradigms for Unconditional
Pseudorandom Generators

Full text available at: http://dx.doi.org/10.1561/0400000109

Other titles in Foundations and Trends® in Theoretical Computer
Science

Approximate Degree in Classical and Quantum Computing
Mark Bun and Justin Thaler
ISBN: 978-1-63828-140-5

Multi-Valued Reasoning about Reactive Systems
Orna Kupferman
ISBN: 978-1-63828-138-2

Quantified Derandomization: How to Find Water in the Ocean
Roei Tell
ISBN: 978-1-63828-092-7

Complexity Theory, Game Theory, and Economics: The Barbados Lec-
tures
Tim Roughgarden
ISBN: 978-1-68083-654-7

Semialgebraic Proofs and Efficient Algorithm Design
Noah Fleming, Pravesh Kothari and Toniann Pitassi
ISBN: 978-1-68083-636-3

Full text available at: http://dx.doi.org/10.1561/0400000109

Paradigms for Unconditional
Pseudorandom Generators

Pooya Hatami
The Ohio State University

pooyahat@gmail.com

William Hoza
The University of Chicago
williamhoza@uchicago.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0400000109

Foundations and Trends® in Theoretical Computer
Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

P. Hatami and W. Hoza. Paradigms for Unconditional Pseudorandom Generators.
Foundations and Trends® in Theoretical Computer Science, vol. 16, no. 1-2, pp. 1–210,
2024.

ISBN: 978-1-63828-335-5
© 2024 P. Hatami and W. Hoza

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000109

Foundations and Trends® in Theoretical
Computer Science

Volume 16, Issue 1-2, 2024
Editorial Board

Editor-in-Chief
Salil Vadhan
Harvard University
United States

Editors

Bernard Chazelle
Princeton University

Oded Goldreich
Weizmann Institute

Shafi Goldwasser
Massachusetts Institute of Technology and Weizmann Institute

Sanjeev Khanna
University of Pennsylvania

Jon Kleinberg
Cornell University

László Lovász
Eötvös Loránd University

Christos Papadimitriou
University of California, Berkeley

Peter Shor
Massachusetts Institute of Technology

Eva Tardos
Cornell University

Avi Wigderson
AIS, Princeton University

Full text available at: http://dx.doi.org/10.1561/0400000109

Editorial Scope
Topics

Foundations and Trends® in Theoretical Computer Science publishes survey
and tutorial articles in the following topics:

• Algorithmic game theory
• Computational algebra
• Computational aspects of

combinatorics and graph
theory

• Computational aspects of
communication

• Computational biology
• Computational complexity
• Computational geometry
• Computational learning
• Computational Models and

Complexity
• Computational Number

Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of
algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians

Foundations and Trends® in Theoretical Computer Science, 2024, Vol-
ume 16, 4 issues. ISSN paper version 1551-305X. ISSN online version
1551-3068. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000109

Contents

1 Introduction 3
1.1 Whom Shall We Fool? Three Approaches to PRGs 5
1.2 Overview of this Text . 10
1.3 The Generic Probabilistic Existence Proof 11
1.4 Explicitness . 12
1.5 Applications of PRGs . 15
1.6 Beyond PRGs: Hitting Set Generators and More 22

2 Limited Independence and Small-Bias Generators 25
2.1 Limited Independence . 25
2.2 Small-bias Distributions 32
2.3 Analysis Technique: Fourier L1 Bounds 36
2.4 Viola’s Generator for Low-degree F2-polynomials 43
2.5 Analysis Technique: Sandwiching Approximators 51
2.6 Braverman’s Theorem: Limited Independence Fools AC0 . 58

3 Recycling Random Bits 69
3.1 PRGs for Two-party Communication Protocols 69
3.2 The INW Generator for Standard-order ROBPs 75
3.3 The BRRY Generator for Standard-order Regular ROBPs . 79
3.4 The Nisan-Zuckerman Generator for Short, Wide ROBPs . 88

Full text available at: http://dx.doi.org/10.1561/0400000109

4 PRGs and Hardness 96
4.1 PRGs as High-quality Lower Bounds 97
4.2 The Nisan-Wigderson Framework 101
4.3 Hardness-based PRGs beyond Nisan-Wigderson 108

5 Random Restrictions 112
5.1 PRGs from Polarizing Random Walks 114
5.2 Analysis Technique: Fourier Growth Bounds 128
5.3 Fooling AC0 via the Ajtai-Wigderson Framework 141
5.4 The Forbes-Kelley Generator for ROBPs 147
5.5 PRGs for Read-once CNFs via Early Termination 155
5.6 Fooling General Branching Programs via the IMZ

Framework . 163

Acknowledgements 172

Appendices 173

A Converse of the Sandwiching Lemma 174

B List of PRGs 178

References 184

Full text available at: http://dx.doi.org/10.1561/0400000109

Paradigms for Unconditional
Pseudorandom Generators
Pooya Hatami1 and William Hoza2

1The Ohio State University, USA; pooyahat@gmail.com
2The University of Chicago, USA; williamhoza@uchicago.edu

ABSTRACT

This is a survey of unconditional pseudorandom genera-
tors (PRGs). A PRG uses a short, truly random seed to
generate a long, “pseudorandom” sequence of bits. To be
more specific, for each restricted model of computation (e.g.,
bounded-depth circuits or read-once branching programs),
we would like to design a PRG that “fools” the model, mean-
ing that every function computable in the model behaves
approximately the same when we plug in pseudorandom
bits from the PRG as it does when we plug in truly random
bits. In this survey, we discuss four major paradigms for
designing PRGs:

• We present several PRGs based on k-wise uniform gen-
erators, small-bias generators, and simple combinations
thereof, including proofs of Viola’s theorem on fooling
low-degree polynomials [242] and Braverman’s theorem
on fooling AC0 circuits [36].

• We present several PRGs based on “recycling” random
bits to take advantage of communication bottlenecks,
such as the Impagliazzo-Nisan-Wigderson generator
[131].

Pooya Hatami and William Hoza (2024), “Paradigms for Unconditional Pseudoran-
dom Generators”, Foundations and Trends® in Theoretical Computer Science: Vol.
16, No. 1-2, pp 1–210. DOI: 10.1561/0400000109.
©2024 P. Hatami and W. Hoza

Full text available at: http://dx.doi.org/10.1561/0400000109

2

• We present connections between PRGs and computa-
tional hardness, including the Nisan-Wigderson frame-
work for converting a hard Boolean function into a
PRG [183].

• We present PRG frameworks based on random restric-
tions, including the “polarizing random walks” frame-
work [49].

We explain how to use these paradigms to construct PRGs
that work unconditionally, with no unproven complexity-
theoretic assumptions. The PRG constructions use ingredi-
ents such as finite field arithmetic, expander graphs, and
randomness extractors. The analyses use techniques such as
Fourier analysis, sandwiching approximators, and simplifi-
cation-under-restrictions lemmas.

Full text available at: http://dx.doi.org/10.1561/0400000109

1
Introduction

To make random choices, it would be useful to have an unlimited supply
of “truly random” bits: unbiased and independent coin flips. What
can we do if we only have a few truly random bits? A pseudorandom
generator (PRG) uses a small amount of true randomness, called the
“seed,” to generate a long sequence that appears to be completely random
(even though it isn’t). PRGs are ubiquitous in computing theory and
practice. The basic motivation is that we think of randomness as a
scarce computational resource, akin to time or space, so whenever we
get our hands on some random bits, we want to stretch them as far as
possible.

To model PRGs mathematically, we consider some “observer,” mod-
eled as a function f . Let Un denote the uniform distribution over {0, 1}n.
We would like to “fool” f in the following sense.

Definition 1.1 (Fooling). Suppose f : {0, 1}n → {0, 1} is a function, X
is a probability distribution over {0, 1}n, and ε > 0. We say that X
fools f with error ε, or ε-fools f , if

| Pr[f(X) = 1] − Pr[f(Un) = 1]| ≤ ε.

3

Full text available at: http://dx.doi.org/10.1561/0400000109

4 Introduction

More generally, we can consider a real-valued function f : {0, 1}n → R.
In this case, we say that X fools f with error ε if

|E[f(X)] − E[f(Un)]| ≤ ε.

If ε = 0, we say that X perfectly fools f .
Remark 1.1. As a shorthand, we often identify the function f with the
random variable f(Un). For example, instead of E[f(Un)], we simply
write E[f].

Definition 1.1 says that although X might not be uniform, X and
Un are nevertheless indistinguishable, at least from f ’s perspective.
Conversely, if X does not ε-fool f , we refer to f as a “distinguisher”
for X. A PRG’s job is to use a few truly random bits to sample a
distribution that fools f .
Definition 1.2 (PRGs). Suppose f : {0, 1}n → R and G : {0, 1}s →
{0, 1}n are functions and ε > 0. We say that G is an ε-PRG for f if
G(Us) fools f with error ε. In this case, we also say that G fools f with
error ε (see Figure 1.1.)

f f

G

≈

$ $$$$$$$

$ $ $ $

Figure 1.1: A PRG (G) uses a few truly random bits (depicted here using $ symbols)
to sample a pseudorandom string that is indistinguishable from a truly random
string, from the perspective of the observer (f).

The parameter s is called the seed length of the PRG; we would like
s to be as small as possible. Throughout this text, the parameter “n”
will always denote the number of pseudorandom bits we are generating.

Full text available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 5

1.1 Whom Shall We Fool? Three Approaches to PRGs

An unavoidable fact of life is that for any nontrivial PRG, there exists
a function that is not fooled by the PRG.

Claim 1.1 (Impossibility of fooling all functions). LetG : {0, 1}s → {0, 1}n

where s < n. There exists some f : {0, 1}n → {0, 1} such that G does
not 0.49-fool f .

Proof. Let f be the indicator function for the image of G. Then
E[f(G(Us))] = 1, whereas E[f] ≤ 1/2 because s < n.

In light of Claim 1.1, the best we can hope for is generating bits
that fool some large sets of observers but not all of them. After all, as
Avi Wigderson says, randomness is in the eye of the beholder [248].

Definition 1.3 (PRG for a class of functions). Let n ∈ N, let F be a class
of functions f : {0, 1}n → R, let G : {0, 1}s → {0, 1}n be a function, and
let ε > 0. We say that G is an ε-PRG for F if G fools every f ∈ F with
error ε.

Which observers shall we fool? The study of PRGs can be crudely
divided into three approaches based on three possible answers:

1. Everyday non-adversarial applications.

2. All efficient observers.

3. Restricted models of computation.

We discuss these three approaches in Sections 1.1.1 to 1.1.3.

1.1.1 PRGs for everyday non-adversarial applications

In practice, when programmers want randomness, they invoke some type
of random() method provided by the computing environment. Under
the hood, these random() methods typically involve several components,
each of which might be quite sophisticated. When practitioners speak
of “pseudorandom number generators” or “random number generators,”
they are usually referring to the entire randomness system as a whole,

Full text available at: http://dx.doi.org/10.1561/0400000109

6 Introduction

including whatever techniques are used to produce an initial seed. For
example, the system might derive a seed from the current time of day,
even though such a seed is rather predictable. As another example,
the system might use hardware random number generators based on
thermal noise measurements.

In this text, we sidestep the important issue of producing a seed,
along with many other issues that are important in practice. We fo-
cus on the challenge of stretching a truly random seed out to a long
pseudorandom string. In our terminology, this is the job of a PRG (see
Definition 1.2). A PRG is thus one of multiple components of a prac-
tical randomness system. For example, Java’s Math.random() method
currently uses a type of PRG called a linear congruential generator. For
such a PRG, the seed is a random number X0 ∈ {0, 1, . . . ,M − 1}, and
the output sequence is (X1, X2, X3, . . .), where

Xi+1 = a ·Xi + b mod M

for some parameters M,a, b. Meanwhile, Python’s random.random()
method uses an algorithm called the “Mersenne twister” [169], and
major web browsers currently use a PRG in the “xorshift+ family” [240]
to implement Javascript’s Math.random() function.

Why these PRGs are unsatisfactory

Practitioners use these randomness systems for both casual applications
(e.g., video games) and serious applications (e.g., scientific simulations).
However, for a generic randomized algorithm, there is no firm mathe-
matical guarantee that the outputs will be reliable when the algorithm is
executed using one of these practical randomness systems. The methods
that practitioners typically use to run randomized algorithms must be
considered heuristics.

To be clear, a lot of work goes into designing high-quality practical
randomness systems. Designers strive to ensure that these systems can
be safely used in any application that “comes up naturally” in practice.
The system is only deemed acceptable for everyday use when it passes
a great number of creative statistical tests, such as those in the TestU01
family [147].

Full text available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 7

These statistical tests are valuable, but there is a wide gap between
the statistical tests and a typical randomized algorithm. The designers
behind practical systems such as Java’s Math.random() method wisely
do not claim that they work in adversarial scenarios, so these systems
are considered unsuitable for cryptography. This is true even if we focus
solely on the PRG component of these systems. Furthermore, sometimes
programs “accidentally” distinguish pseudorandom numbers from truly
random numbers. There are quite a few documented cases in which
PRGs have been shown to cause inaccurate scientific simulations [68],
[69], [88], [89], [107], [139], [174], [187]! One must imagine that other
cases have gone unnoticed.

To a theoretician, this state of affairs is deeply unsatisfactory. Yes,
modern practical PRGs seem to almost always work well in practice,
but we don’t have a mathematically rigorous explanation for why these
systems work. It’s not even clear what precisely the goal is. (Mathemat-
ically, how can we make a distinction between “adversarially-designed”
programs and “naturally-occurring” programs?) By theoreticians’ stan-
dards, the success of practical PRGs is largely a mystery.

1.1.2 PRGs for all efficient observers

One of the great ideas in the theory of computing is the concept of a PRG
that fools all computationally efficient observers. Given such a PRG
and a truly random seed, we would be able to execute any randomized
algorithm that is actually worth executing. (After all, there’s no point
running a program if one won’t even survive long enough to see the
output!) Such a PRG could also be used in cryptographic settings,
because we can safely assume that eavesdroppers and hackers only have
so much computational power.1

For example, the Blum-Blum-Shub (BBS) generator [27] uses a
short seed to randomly select a suitable modulus M and a number

1There is a subtle distinction here. In the context of randomized algorithms,
it’s okay if the PRG itself uses a little more time than the algorithms that we
are trying to fool. On the other hand, in the context of cryptography, we want an
efficiently-computable PRG that fools all efficient adversaries, including those that
use polynomially more time than the PRG uses.

Full text available at: http://dx.doi.org/10.1561/0400000109

8 Introduction

X0 ∈ {1, 2, . . . ,M − 1}, and then it outputs the sequence (X1 mod
2, X2 mod 2, X3 mod 2, . . .) where

Xi+1 = X2
i mod M.

This PRG is reminiscent of linear congruential generators, but the
similarity is only superficial. It is believed that the BBS generator fools
polynomial-time algorithms.

Why these PRGs are also (currently) unsatisfactory

Fooling all efficient observers is a well-defined and well-motivated
goal. Unfortunately, nobody knows how to prove that some efficiently-
computable PRG actually has this marvelous property.

To be clear, there is a substantial body of “evidence” indicating
that such PRGs exist. For example, Blum et al. [27] showed that their
generator fools all polynomial-time observers, under the plausible-but-
unproven assumption that there is no good algorithm for the “quadratic
residuosity problem”. There are many other examples of PRGs that
fool all polynomial-time observers under reasonable cryptographic or
complexity-theoretic assumptions [28], [83], [119], [134], [144], [183],
[236], [249].2 For practical cryptography, software developers tend to
use PRGs that are not even supported by rigorous conditional proofs
of correctness, but rather are supported by heuristic and intuitive
arguments.

There is a genuine possibility that these PRGs are not secure. In
one infamous incident, the U.S. National Institute of Standards and
Technology (NIST) recommended using a PRG called “Dual_EC_DRBG.”
The PRG was designed by the U.S. National Security Agency (NSA), and
allegedly, they intentionally designed it to be insecure for surveillance
purposes [189].

Once again, to a theoretician, this state of affairs is not satisfactory.
There is genuine room for doubt about whether known PRGs work, and
perhaps more importantly, even if they do work, we don’t have a good

2Note that some of these PRGs use somewhat more time than the observers
they fool, and hence are suitable for simulating randomized algorithms but not for
cryptography (cf. Footnote 1).

Full text available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 9

explanation for why they work. Conditional proofs can be considered
partial explanations at best. The problem of designing PRGs that
unconditionally fool all efficient observers is very challenging, with
connections to deep topics such as the famous P vs. NP problem (see
Section 4.1).

1.1.3 PRGs for restricted models of computation

The main topic of this text is a third approach to PRGs. In this third
approach, we identify an interesting and well-defined restricted model
of computation. Then we design PRGs that fool the chosen model of
computation (unconditionally – with no unproven assumptions) and try
to optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG

G : {0, 1}2 → {0, 1}3

that fools every observer f that only looks at two of the three output
bits. This problem is not completely trivial, because we don’t know
which two bits f will observe. Nevertheless, the problem can be solved
by defining

G(u1, u2) = (u1, u2, u1 ⊕ u2),
where ⊕ denotes the XOR operation. When u1 and u2 are chosen
uniformly at random, the three output bits are correlated, but any two
of the bits are independent and uniform random.

Unconditional PRGs can be constructed for much richer and more
interesting restricted models of computation. We are especially inter-
ested in fooling models of computation that have a “complexity theory”
flavor, i.e., we want the output of the PRG to appear random to any
observer that is “sufficiently efficient” in some sense. Arguably, the two
most important models in this field are constant-depth circuits (AC0,
see Definition 2.13) and read-once branching programs (ROBPs, see
Definition 1.5).

The value of these PRGs

Could PRGs for restricted models ever be directly used in practical
applications? Potentially. PRGs for restricted models can be used to

Full text available at: http://dx.doi.org/10.1561/0400000109

10 Introduction

simulate randomized algorithms without significantly distorting their
behavior, provided that the algorithms in question are “sufficiently
efficient” in the appropriate sense. (See Section 1.5 for more details.)

Admittedly, it’s a bit unrealistic to imagine the PRGs studied in the
theoretical literature being implemented on actual computers, because
it is hard to compete with the practical PRGs discussed in Section 1.1.1.
Instead, the study of PRGs for restricted models has a much grander
and broader purpose: these PRGs help to uncover the mysteries of
the theory of computing, and hence are invaluable from a scientific
perspective.

We briefly elaborate on some of the applications of PRGs within
the theory of computing in Section 1.5. Apart from any application,
we hope to convince the reader that PRGs for restricted models are
interesting in their own right.

1.2 Overview of this Text

In this work, we survey some of the most important frameworks and
techniques for constructing unconditional PRGs for restricted models
of computation. We focus on four major PRG paradigms:

• In Section 2, we present k-wise uniform generators, small-bias
generators, and simple combinations thereof.

• In Section 3, we present PRGs that “recycle” randomness to take
advantage of communication bottlenecks, such as the Impagliazzo-
Nisan-Wigderson generator [131].

• In Section 4, we present connections between PRGs and compu-
tational hardness, including the Nisan-Wigderson framework for
converting a hard Boolean function into a PRG [183].

• In Section 5, we present methods for constructing PRGs based
on (pseudo)random restrictions, including the relatively recent
“polarizing random walks” framework [49].

Along the way, as needed, we introduce the computational models that
we fool (decision trees, circuits, branching programs, etc.) and tech-

Full text available at: http://dx.doi.org/10.1561/0400000109

1.3. The Generic Probabilistic Existence Proof 11

niques for analyzing PRGs (Fourier analysis, sandwiching approximators,
simplification-under-restriction lemmas, etc.)

The literature on unconditional PRGs is vast, and this survey is far
from exhaustive. (For example, we do not discuss the important line
of work on fooling linear threshold functions [78], [104], [173], [195].)
Instead, we hope that this work serves as a suitable introduction to the
field of unconditional PRGs, preparing the reader to study new and old
papers on PRGs and make their own contributions.

The results that we cover include both classic and recent works.
Besides covering the most important principles of PRG design and
analysis, we also made sure to include expositions of many of the most
important examples of unconditional PRGs, such as Viola’s [242] PRG
for low-degree polynomials, Braverman’s [36] theorem that limited
independence fools AC0, and Forbes and Kelley’s [91] relatively recent
PRG for arbitrary-order ROBPs.

This text is primarily expository. However, we couldn’t help but
include a few novel theorems and proofs. For example, we present a
new proof of Braverman’s theorem (Section 2.6), and we present a
new improvement to the polarizing random walks framework in the
low-error regime (Section 5.1.4). We also highlight plenty of important
open problems regarding PRGs for restricted models of computation.

Many wonderful prior expository works [15], [97], [165], [175], [185],
[238] and lecture notes [45]–[47], [215], [216], [218], [219], [229], [233],
[244], [253] include some coverage of unconditional PRGs. However,
none of them has quite the same focus as our work, so we feel that our
work fills a gap.

In the rest of this section, we discuss some additional basic issues re-
lated to the concept of a PRG, paving the way for the PRG constructions
in subsequent sections.

1.3 The Generic Probabilistic Existence Proof

For many classes F , including classes defined by standard nonuniform
computational models (such as decision trees, circuits, branching pro-
grams, etc.), there is a totally generic argument showing that there
exist PRGs that fool F with a small seed length.

Full text available at: http://dx.doi.org/10.1561/0400000109

12 Introduction

Proposition 1.1 (Nonexplicit PRGs). Let F be a class of functions
f : {0, 1}n → {0, 1}. For every ε > 0, there exists an ε-PRG for F with
seed length log log |F| + 2 log(1/ε) +O(1).

Proof. Pick a function G : {0, 1}s → {0, 1}n uniformly at random. Con-
sider any arbitrary f ∈ F . For each seed y, the value f(G(y)) is a
random bit satisfying

E
G

[f(G(y))] = E
Un

[f(Un)].

Furthermore, as y ranges over all 2s possible seeds, these random
variables f(G(y)) are independent. Therefore, by Hoeffding’s inequality,

Pr
G

∣∣∣∣∣∣E[f] − 2−s
∑

y∈{0,1}s

f(G(y))

∣∣∣∣∣∣ > ε

 ≤ 2e−2ε22s
.

By the union bound, the probability that G fails to ε-fool F is bounded
by 2|F|e−2ε22s . For s = log log |F| + 2 log(1/ε) +O(1), this probability
is less than 1, i.e., there exists a G that does ε-fool F .

In a typical case – e.g., if F is the set of all circuits of size at
most n – each function f ∈ F can be described using poly(n) bits, i.e.,
|F| ≤ 2poly(n). In this case, the PRG guaranteed by Proposition 1.1 has
seed length O(log(n/ε)).

1.4 Explicitness

Proposition 1.1 has a major weakness: it does not guarantee that the
PRG is efficiently computable. The proof of Proposition 1.1 is in some
sense “nonconstructive.” Ideally, we want an algorithm for sampling
from a pseudorandom distribution, and we want the algorithm to be
reasonably efficient with respect to randomness and more conventional
complexity measures simultaneously.

Definition 1.4 (Explicitness). A PRG G : {0, 1}s → {0, 1}n is explicit if
it can be computed in time poly(n).

One could consider alternative standards of explicitness. We could re-
quire that each individual output bit can be computed in time polylogn,

Full text available at: http://dx.doi.org/10.1561/0400000109

1.4. Explicitness 13

or that the PRG runs in space O(logn), or that each bit can be com-
puted in AC0, or any number of other conditions. The truth is, there
is no “one true definition” of explicitness. The appropriate definition
depends on what one hopes to gain from the PRG; see Section 1.5.

In this text, we will stick with Definition 1.4 for concreteness, but
when we present PRG constructions, we will generally not bother
carefully verifying the runtime bound. Instead, we will focus on making
the construction clear to the reader.

1.4.1 Families of PRGs

Definition 1.4 refers to the time complexity of a PRG. To meaningfully
speak of time complexity, we technically ought to be considering a
whole family of PRGs. The convention in this line of work is to keep
the family implicit. For example, a theorem might say something like
the following.

For all n,m ∈ N and all ε > 0, there exists an explicit ε-PRG for
size-m decision trees on n input bits with seed length O(log(m/ε) +
log logn).

(See Section 2.3.3.) Translating into more precise language, the same
theorem can be restated as follows.

There exists a randomized algorithm G satisfying the following.

1. Given input parameters n,m, ε, the algorithm G outputs a
string G(n,m, ε) ∈ {0, 1}n.

2. For all n,m, ε, the output distribution G(n,m, ε) fools size-m
decision trees with error ε.

3. G(n,m, ε) uses at most O(log(m/ε) + log logn) random bits
and runs in time poly(n).

There is something potentially troubling about this “translation”
process. The quantifiers got flipped! In the informal theorem statement,

Full text available at: http://dx.doi.org/10.1561/0400000109

14 Introduction

we say “for all n,m, ε, there exists an explicit PRG,” but strictly speak-
ing, we mean that there exists a single algorithm G that works for all
n,m, ε simultaneously! Is this “flipped quantifiers” convention wise?

Let us make an analogy with big-O notation. Recall, e.g., the famous
planar separator theorem:

For all n ∈ N, for every n-vertex planar graph, there exists a set of
O(

√
n) vertices such that removing those vertices splits the graph

into connected components with at most 2n/3 vertices each.

If we wanted to be more rigorous, we ought to flip the quantifiers
and write something like the following:

There exists a function f : N → N such that f ∈ O(
√
n) and for

all n ∈ N, for every n-vertex planar graph, there exists a set of
f(n) vertices such that removing those vertices splits the graph into
connected components with at most 2n/3 vertices each.

We don’t bother with such careful language because it obscures
more than it clarifies. The important thing is that the expression
“O(

√
n)” tells how the number of removed vertices scales with the

universally quantified parameter n. Analogously, when we say “there
exists an explicit PRG,” the word “explicit” tells how the computational
complexity of the PRG scales with the parameters.

1.4.2 The default conjecture: Explicit PRGs exist

For each “reasonable” class F , the standard conjecture is that there
exists an explicit PRG with essentially the same seed length as the
generic nonexplicit bound (Proposition 1.1). Oftentimes, this conjecture
can be supported with evidence in the form of conditional constructions.
For example, consider the class F of all CNF formulas of size at most
n. The nonexplicit PRG has seed length O(log(n/ε)). Under plausible
complexity-theoretic assumptions, there is indeed an explicit PRG for

Full text available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 15

all size-n Boolean circuits (whether CNF formulas or not) with seed
length O(log(n/ε)) [134].

Even without a compelling conditional construction, the “default”
conjecture would be that for natural families of functions a probabilistic
existence proof can be matched by an explicit construction. The main
challenge is to find the explicit construction. Typically, such a PRG
would be optimal, i.e., one can unconditionally prove a seed length lower
bound matching the nonexplicit bound to within a constant factor.3
For example, every PRG for size-n CNF formulas (explicit or not) must
have seed length at least Ω(log(n/ε)).

1.5 Applications of PRGs

PRGs for restricted models have many applications. We will not attempt
to exhaustively list these applications, nor even to properly survey
them. We will, however, briefly describe some of the most important
applications. Hopefully, this brief discussion of applications will serve
to motivate the main topic of this text, which is the construction and
analysis of PRGs.

1.5.1 Simulating randomized algorithms

One of the most natural applications of PRGs is to simulate a random-
ized algorithm using only a few truly random bits (the seed of the PRG).
Let A be a randomized algorithm that we would like to simulate. In
order to simulate A without significantly distorting its behavior, what
property should our PRG have?

For simplicity, let us assume that A is a decision algorithm, i.e.,
it outputs a bit. Let A(a, x) denote the output value of A when the
input is a and the random bits are x. For each input a, we can define
a function fa : {0, 1}n → {0, 1}, where n is the number of random bits
that A uses,4 by the rule fa(x) = A(a, x). That is, fa describes the
behavior of A on input a as a function of its random bits. Definition 1.2

3For a counterexample, see the work of Hoza et al. [127].
4For simplicity, we assume that n is determined by a rather than varying based

on the random bits. This is a “Monte Carlo” algorithm rather than a “Las Vegas”
algorithm.

Full text available at: http://dx.doi.org/10.1561/0400000109

16 Introduction

implies that if G : {0, 1}s → {0, 1}n is an PRG that fools fa with error
ε, then G can be used to simulate A without changing its acceptance
probability by more than ε:

| Pr[A(a, Un) = 1] − Pr[A(a,G(Us)) = 1]| ≤ ε.

Thus, if we wish to design a PRG to simulate A, we should study the
computational complexity of the functions fa.

Simulating randomized polynomial-time algorithms

One important case is when A is a polynomial-time randomized al-
gorithm, corresponding to the complexity class BPP. In this case,
the following claim says that the functions fa can be computed by
polynomial-size Boolean circuits.5

Claim 1.2 (PRGs for circuits can be used to simulate BPP). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let T be the running
time of A on input a and assume T ≥ |a|. Then fa can be computed by
a Boolean circuit of size poly(T).6

Proof. The function A(a, x) can be computed by a Boolean circuit of
size poly(T) that reads both a and x [190]. When we fix the “a” portion
of the input bits to arbitrary values, what remains is a circuit of size
poly(T) operating on x.

Claim 1.2 implies that if G : {0, 1}s → {0, 1}n fools circuits of size
poly(T), then G can be used to simulate time-T randomized algorithms.
The running time of this simulation is essentially T plus the running time
of G, so for this application, the appropriate “explicitness” condition is
that G can be computed quickly, e.g., in time poly(T). Unfortunately,
as discussed previously, the challenge of designing explicit PRGs for
general Boolean circuits is extremely difficult.

5Recall that a Boolean circuit is a network of AND, OR, and NOT gates.
6Again, we assume for simplicity that n and T are determined by a rather than

varying based on the random bits (cf. Footnote 4).

Full text available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 17

Remark 1.2 (Nonuniformity). The Boolean circuit model is a nonuniform
model, i.e., each individual Boolean circuit operates on inputs of some
fixed length. The reader might find it counterintuitive that we seek
PRGs for circuits in order to simulate uniform randomized polynomial-
time algorithms (i.e., the one randomized algorithm can handle inputs
of any arbitrary length). The concept of advice might be helpful [141].
Recall that a family of polynomial-size circuits (one circuit for each input
length) is equivalent to a polynomial-time algorithm with a polynomial
amount of advice: data that is trustworthy but that depends only on
the input length. In our setting, the input a to the polynomial-time
algorithm A can be viewed as advice that A uses to try to distinguish
between truly random bits and the output of a PRG. We want to
simulate A correctly even on a worst-case input a, and hence we want
a PRG that fools an adversarial polynomial-time observer with advice,
i.e., a Boolean circuit.

Simulating randomized log-space algorithms

Another important case is when A is a log-space randomized algorithm,
corresponding to the complexity class BPL. In this case, for each input
a, the function fa can be computed by a polynomial-width standard-order
read-once branching program (ROBP), defined next.

Definition 1.5 (Standard-order read-once branching programs). A length-
n standard-order read-once branching program (standard-order ROBP)
f consists of a directed layered multigraph with n+ 1 layers, V0, . . . , Vn.
For every i < n, each vertex v ∈ Vi has two outgoing edges leading to
Vi+1, one labeled 0 and the other labeled 1. Vertices in Vn have zero
outgoing edges. There is a designated “start vertex” vstart ∈ V0. An
input x ∈ {0, 1}n selects a path (v0, v1, . . . , vn) through the graph: the
path starts at v0 = vstart, and upon reaching a vertex vi ∈ Vi, the bit
xi+1 specifies which outgoing edge to use. There is a designated set of
“accept vertices” Vaccept ⊆ Vn, and f(x) = 1 if vn ∈ Vaccept and f(x) = 0
otherwise. The width of the program is the maximum number of vertices
in a single layer (see Figure 1.2).

Full text available at: http://dx.doi.org/10.1561/0400000109

18 Introduction

vstart
1

0

x1

1

0

1

0

1

0

0

1

1

0

x3

1

0

1

0

1

0

0

1

1

0

x5

1

0

1

0

1

0

0

1

reject

reject

reject

reject

accept

1

0

x2

0

1

1

0

0

1

1

0

x4

0

1

1

0

0

1

1

0

x6

0

1

1

0

0

1

0

1

0

1

0

1

Figure 1.2: A width-5 length-6 standard-order ROBP computing the function
f(x) = MAJ(x1 ⊕ x2, x3 ⊕ x4, x5 ⊕ x6).

Claim 1.3 (PRGs for ROBPs can be used to simulate BPL). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let S be the number
of bits of space used by A on input a and assume S ≥ log |a|. Then fa

can be computed by a standard-order ROBP of width 2O(S).

Proof. We think of A as a Turing machine with an input tape, a work
tape, and a random tape. Each vertex in the program corresponds to
a configuration of A, consisting of the contents of its work tape, the
location of the input tape and work tape read heads, and the internal
state of A. An edge (u, v) labeled b ∈ {0, 1} indicates that if we run A

on input a starting at configuration u until its next coin toss, and if that
coin toss outcome is b, then the machine’s configuration immediately
following the coin toss is v.

Full text available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 19

Remark 1.3 (The read-once property). In general, a log-space algorithm
with a polynomial amount of advice is equivalent to a polynomial-size
branching program that might read its bits many times (see Defini-
tion 5.16). Nevertheless, we get a read-once branching program in
Claim 1.3. The reason is that we are focusing on the behavior of the
algorithm as a function of its random bits. An algorithm in the standard
BPL model only has read-once access to its random tape: the algorithm
cannot go back and re-read old random bits. (If one is computing using
a single fair coin, then one cannot ask the coin what the outcome of
the first toss was after tossing it a second time.)

Remark 1.4 (ROBP terminology). In the pseudorandomness literature,
standard-order ROBPs are often referred to as simply “ROBPs.” This
practice is a bit misleading, since the definition is not simply “a branch-
ing program that is read-once.” Indeed, in addition to being read-once,
we are assuming that the program is oblivious, meaning that the variable
queried in time step i depends only on i, and more specifically, we are
assuming that the branching program follows the standard variable
ordering, meaning that in time step i, the program queries the variable
xi. (The branching program in the proof of Claim 1.3 indeed reads its
input bits in the standard order, because without loss of generality,
the algorithm A reads its read-once random tape from left to right.)
Unsurprisingly, many papers outside the pseudorandomness literature
use terms like “read-once branching program” to refer to more general
models that are not necessarily even oblivious [17], [21], [22], [201], [247].
In this text, for clarity, we use the more verbose term “standard-order
ROBP” to emphasize the variable ordering assumption.7

Claim 1.3 implies that if G : {0, 1}s → {0, 1}n fools standard-order
ROBPs of width 2O(S), then G can be used to simulate space-S ran-
domized algorithms. For this application, the appropriate “explicitness”
condition is that G can be computed in low space – perhaps space O(S).
More precisely, the space complexity of the deterministic simulation
is essentially S plus the space complexity of computing G(y) given
one-way read-only access to the seed y.

7Hoza used the same verbose terminology in some other recent expository
work [125].

Full text available at: http://dx.doi.org/10.1561/0400000109

20 Introduction

Simulating other types of randomized algorithms

One can consider numerous other classes of randomized algorithms, as
well as specific important randomized algorithms. In each case, if we
wish to replace the truly random bits with pseudorandom bits, then the
question we must answer is, what is the algorithm doing as a function of
its random bits? If, for each fixed input a, the algorithm’s behavior can
be described by a function of “sufficiently low complexity” applied to its
random bits, then we can design a PRG that fools such “low-complexity”
functions and use it to simulate the algorithm. Because of the presence
of the worst-case input a, the appropriate complexity measure will
generally be captured by some nonuniform model of computation.

1.5.2 Derandomizing algorithms

If we use a PRG to simulate a randomized algorithm in the most
natural possible way (as discussed above), we are still using a small
amount of randomness, namely the truly random seed of the PRG.
However, in many cases it is possible to eliminate this small amount
of randomness, leading to a completely deterministic simulation. The
most straightforward way to do this is to exhaustively try all possible
seeds.

Claim 1.4 (Trying all seeds and taking a majority vote). Let A be a
randomized decision algorithm, let a be an input, and let n be the
number of random bits that A uses on input a.8 Let ε > 0 and assume
that A succeeds with probability greater than 1/2 +ε, i.e., there is some
“correct answer” b ∈ {0, 1} such that

Pr[A(a, Un) = b] > 1/2 + ε.

Define fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let G : {0, 1}s

→ {0, 1}n be a PRG that ε-fools fa. Then

MAJy∈{0,1}s(A(a,G(y))) = b.

Proof. First, suppose b = 1. The definition of fooling implies that

E[A(a,G(Us))] = E[f(G(Us))] ≥ E[f] − ε > 1/2 + ε− ε = 1/2.
8Again, we assume for simplicity that n is determined by a.

Full text available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 21

Therefore, A(a,G(y)) = 1 for a majority of seeds y. Now suppose instead
that b = 0. The fact that G fools fa with error ε implies that G also
fools 1 − fa with error ε, because for any distribution X, we have

|E[1−fa(X)]−E[1−fa]| = |1−E[fa(X)]−1+E[fa]| = |E[fa]−E[fa(X)]|.

Therefore, by our previous analysis applied to 1 −A(a, x), we see that
A(a,G(y)) = 0 for a majority of seeds y.

Claim 1.4 implies, for example, that if G : {0, 1}s → {0, 1}n fools
standard-order ROBPs of width 2O(S), then we can use it to determin-
istically simulate randomized space-S decision algorithms. The space
complexity of this deterministic simulation is essentially S, plus s, plus
the space complexity of computing G(y). Thus, for this application, the
appropriate “explicitness” condition is that G can be computed in low
space – perhaps space O(s). In particular, for this application, there
is no significant benefit to constructing a PRG with space complexity
o(s), because in the end we are going to use s bits of space to iterate
through all possible seeds anyway.

The standard nonconstructive argument (Proposition 1.1) implies
that there exists a nonexplicit ε-PRG for width-w length-n standard-
order ROBPs with seed length O(log(wn/ε)). Furthermore, the standard
definition of BPL implies that randomized log-space algorithms have
polynomial running time, and hence they use at most polynomially
many random bits. Consequently, if we can design a PRG for standard-
order ROBPs with seed length O(log(wn/ε)) and space complexity
O(log(wn/ε)), then it will follow that L = BPL. That is, such a PRG
would imply that randomized algorithms have at most a constant-factor
advantage over deterministic algorithms in terms of space complexity.
This would be a profound conclusion about the intrinsic relationship
between randomness and memory as computational resources.

So far, optimal constructions of explicit PRGs for ROBPs are not
known, but we do have “pretty good” constructions (see, e.g., Sec-
tion 3.2). Furthermore, there are many partial derandomization results
known for space-bounded computation, building on the theory of PRGs
for ROBPs (in nontrivial ways). For example, it has been shown that
randomized space-S algorithms can be simulated deterministically in

Full text available at: http://dx.doi.org/10.1561/0400000109

22 Introduction

space slightly less than S3/2 [124], [206]. The challenge of constructing
optimal PRGs for standard-order ROBPs is an exciting and central
open problem in the study of unconditional PRGs.

Other applications

We have briefly discussed the most straightforward applications of PRGs,
namely simulating randomized algorithms using little or no randomness.
We now give a small sample of less straightforward applications.

• Ironically, it turns out that PRGs are sometimes useful for design-
ing randomized algorithms. For example, PRGs for space-bounded
computation are often used in the design of randomized streaming
algorithms using a technique first introduced by Indyk [136].

• Unconditional PRGs for restricted models have applications to
“hardness amplification within NP” [105], [121], [160].

• Unconditional PRGs for restricted models have applications in
the area of “meta-complexity.” It turns out that PRGs can be
used to rule out certain types of “natural proofs” of strong circuit
lower bounds [199] or to show that certain models of computation
cannot solve the “Minimum Circuit Size Problem” [137]. For these
applications, the “correct” definition of explicitness is that for
each fixed seed y ∈ {0, 1}s, there is a small Boolean circuit Cy

such that for every i ∈ [n], we have Cy(i) = G(y)i.

1.6 Beyond PRGs: Hitting Set Generators and More

For the sake of context, in this section we briefly describe some relax-
ations of the PRG definition. The main motivation behind studying
these relaxations is that constructing PRGs is challenging. These “gen-
eralized PRGs” are sometimes easier to construct, and yet they suffice
for some (but not all) of the applications of PRGs. We only give a short
overview of these concepts, since our main focus is true PRGs.

The most well-known “generalized PRG” concept is a hitting set
generator (HSG).

Full text available at: http://dx.doi.org/10.1561/0400000109

1.6. Beyond PRGs: Hitting Set Generators and More 23

Definition 1.6 (HSGs). Suppose F is a class of functions f : {0, 1}n →
{0, 1}. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that for
every f ∈ F , if E[f] ≥ ε, then there exists some x such that f(G(x)) = 1.

An HSG is a “one-sided PRG.” HSGs have been studied since the
1980s [3] if not earlier. HSGs can be used to derandomize algorithms
that have one-sided error, simply by trying all seeds. In some contexts,
HSGs can also be used (in nontrivial ways) to derandomize algorithms
that have two-sided error [11], [12], [40], [61], [100].

A few years ago, [37] introduced a different generalization of PRGs,
called weighted PRGs (WPRGs).9

Definition 1.7 (WPRG). Suppose F is a class of functions f : {0, 1}n →
R. An ε-WPRG for F is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and
ρ : {0, 1}s → R, such that for every f ∈ F , we have∣∣∣∣ E

U∼Us

[f(G(U)) · ρ(U)] − E[f]
∣∣∣∣ ≤ ε.

Thus, WPRGs generalize PRGs because we consider sparse linear
combinations of the outputs of f rather than sparse convex combinations
of the outputs of f . Several recent works have exploited this extra
flexibility to construct WPRGs with better parameters than known
PRGs [37], [52], [70], [124], [193].

Yet another generalization of PRGs is the concept of a deterministic
sampler.

Definition 1.8 (Deterministic sampler). Suppose F is a class of functions
f : {0, 1}n → R. An ε-deterministic sampler for F is a deterministic
oracle algorithm A that makes queries to a function f ∈ F and outputs
a number Af ∈ R such that |Af − E[f]| ≤ ε.

The deterministic sampler model isolates a key feature of PRGs,
which is that they are useful even if we merely have black-box access to
the function f . Deterministic samplers have been discussed (by name)

9In Braverman, Cohen, and Garg’s [37] original paper, they speak of “pseudoran-
dom pseudo-distributions.” The “weighted PRG” terminology was introduced later,
by Cohen et al. [70].

Full text available at: http://dx.doi.org/10.1561/0400000109

24 Introduction

in a few recent works [61], [191], [194]. Several older algorithms can also
be understood as deterministic samplers [11], [12], [40], [100], [132].

One can show that these four concepts form a hierarchy:

PRG =⇒ WPRG =⇒ deterministic sampler =⇒ HSG.

Thus, PRGs (our focus in this text) are the most desirable of the four.

Full text available at: http://dx.doi.org/10.1561/0400000109

Appendices

Full text available at: http://dx.doi.org/10.1561/0400000109

A
Converse of the Sandwiching Lemma

Suppose we wish to show that every distribution that fools one class
Fsimp also fools another class F . We presented two techniques for proving
such a “transfer theorem”:

1. The first technique is to express each f ∈ F as a linear combination
of functions in Fsimp and invoke the Triangle Inequality for PRG
Errors.

2. The second technique is to sandwich each f ∈ F between functions
in Fsimp and invoke the Sandwiching Lemma.

As discussed in Section 2.5.1, we will now prove the following converse
statement: If every distribution that fools Fsimp also fools F , then every
f ∈ F is sandwiched between linear combinations of functions in Fsimp.

Theorem A.1 (Characterization of when fooling one class implies fooling
another). Let n ∈ N, let Fsimp be a finite class of functions f : {0, 1}n →
R, and let g : {0, 1}n → R. Let ε0, ε > 0 and suppose that every
distribution X that fools Fsimp with error ε0 also fools g with error ε.

174

Full text available at: http://dx.doi.org/10.1561/0400000109

175

Then g is (2ε)-sandwiched between two functions fℓ, fu : {0, 1}n → R
of the form

fℓ(x) = λ
(0)
ℓ +

kℓ∑
i=1

λ
(i)
ℓ f

(i)
ℓ (x) (A.1)

fu(x) = λ(0)
u +

ku∑
i=1

λ(i)
u f (i)

u (x), (A.2)

where kℓ, ku ∈ N, λ(i)
ℓ , λ

(i)
u ∈ R, f (i)

ℓ , f
(i)
u ∈ Fsimp, and

ε0 ·
kℓ∑

i=1
|λ(i)

ℓ | ≤ ε (A.3)

ε0 ·
ku∑
i=1

|λ(i)
u | ≤ ε. (A.4)

Conversely, if we start from the assumption that Equations (A.1)
to (A.4) hold, then for any distribution X that fools Fsimp with error
ε0, the Triangle Inequality for PRG Errors implies that X fools fℓ and
fu with error ε, and therefore the Sandwiching Lemma implies that X
fools g with error 3ε. This recovers the assumption of Theorem A.1 up
to a factor of three1 in the error parameter. In this sense, Theorem A.1
shows that the Triangle Inequality for PRG Errors and the Sandwiching
Lemma are “complete.”

Before presenting the proof, let us elaborate on what the theorem
says in two important special cases.

• Let Fsimp be the class of Boolean k-juntas and let ε0 = 0. Then
Theorem A.1 says that a function is fooled by every k-wise uniform
distribution if and only if the function can be sandwiched between
two low-degree real polynomials. This was first shown by Bazzi
[20] and, independently, by Benjamini et al. [26].

• Next, let Fsimp to be the class of parity functions. Then Theo-
rem A.1 essentially says that a function is fooled by every small-
bias distribution if and only if the function can be sandwiched

1A more refined analysis, involving a more cumbersome version of the Sandwiching
Lemma, gives a tight characterization without the extra factor of three.

Full text available at: http://dx.doi.org/10.1561/0400000109

176 Converse of the Sandwiching Lemma

between two functions with low Fourier L1 norm.2 This was first
shown by De et al. [75].3

The general case seems to be folklore.

Proof of Theorem A.1. The proof uses linear programming duality. For
each f ∈ Fsimp, define f : {0, 1}n → R by f(x) = f(x) − E[f]. Consider
the following linear program in the variables {px}x∈{0,1}n :

Maximize
∑

x∈{0,1}n

pxg(x),

subject to px ≥ 0 for all x ∈ {0, 1}n

and
∑

x∈{0,1}n

px = 1

and
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp

and −
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp.

The constraints say that the px variables are the probability mass
function of some distribution that fools Fsimp with error ε0. The program
is feasible, because if nothing else we can set px = 2−n (the uniform
distribution). The objective function is the expectation of g under the
distribution defined by the px variables, so the optimal value must be
at most E[g] + ε.

The dual linear program, in the variables z and {y+
f , y

−
f }f∈Fsimp , is

as follows:

Minimize z + ε0 ·
∑

f∈F0

(y+
f + y−

f),

subject to y+
f , y

−
f ≥ 0 for all f ∈ Fsimp

and z +
∑

f∈F0

f(x) · (y+
f − y−

f) ≥ g(x) for all x ∈ {0, 1}n.

2Actually the quantity that matters is the sum of absolute values of the nonempty
Fourier coefficients, whereas we included the empty Fourier coefficient in our definition
of Fourier L1 norm.

3Note that there is a minor mistake in the formulation by De et al. [75]: in their
Proposition 2.7, the lower and upper sandwichers should be allowed to have different
values of “l” and “δ.”

Full text available at: http://dx.doi.org/10.1561/0400000109

177

By strong LP duality, the optimal value of this dual linear program is
also at most E[g] + ε. Observe that given a feasible solution to the dual
linear program, if we subtract min{y+

f , y
−
f } from y+

f and from y−
f , then

we get another feasible solution and the objective function can only
decrease. Therefore, by setting yf = y+

f − y−
f , we obtain real numbers

z∗ and {y∗
f }f∈Fsimp such that

z∗ + ε0 ·
∑

f∈Fsimp

|y∗
f | ≤ E[g] + ε, and

z∗ +
∑

f∈Fsimp

f(x)y∗
f ≥ g(x) for all x ∈ {0, 1}n.

Define

fu(x) = z∗ +
∑

f∈Fsimp

y∗
f · f(x)

=

z∗ −
∑

f∈Fsimp

y∗
f E[f]

+
∑

f∈Fsimp

y∗
f · f(x).

Then fu has the form given by Equation (A.2), and fu ≥ g. Furthermore,
E[fu] = z∗, so

0 ≤ E[fu − g] = z∗ − E[g] ≤ ε− ε0 ·
∑

f∈Fsimp

|y∗
f |.

This shows that E[fu − g] ≤ ε and that Equation (A.4) holds.
Fooling g is equivalent to fooling −g, so the above also shows that

there is some function fℓ of the form given by Equation (A.1) such that
−fℓ ≥ −g, E[g − fℓ] ≤ ε, and Equation (A.3) holds. Therefore, g is
(2ε)-sandwiched between fℓ and fu.

Full text available at: http://dx.doi.org/10.1561/0400000109

B
List of PRGs

For reference, we conclude this text by listing the best explicit PRG
constructions currently known for various models of computation, ar-
ranged by the model they fool. The list is not meant to be exhaustive;
only a selection of important computational models are included. In
each case, we only record a single state-of-the-art seed length, which in
many cases is superior to the PRG constructions that we presented.

178

Full text available at: http://dx.doi.org/10.1561/0400000109

B.1. Circuit Models 179

B.1 Circuit Models

In the list below, we use d to denote depth and m to denote size. Assume
d = O(1) and m ≥ n.

• Conjunctions/disjunctions of literals

– Seed length: O(log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: Folklore

• AC0 circuits

– Seed length: Õ(logd−1m · log(m/ε))
– Approach: Variant of the Ajtai-Wigderson framework
– Reference: [166]

• Read-once CNFs/DNFs

– Seed length: O(logn) + Õ(log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [81]

• Read-once AC0 formulas

– Seed length: Õ(log(n/ε))
– Approach: Iterated restrictions with early termination
– References: [80], [82]

• De Morgan formulas

– Seed length: m1/3+o(1) · polylog(1/ε)
– Approach: Variant of the IMZ framework
– Reference: [120]

• Read-once De Morgan formulas

– Seed length: O(log2 n · log(n/ε))
– Approach: Iterated restrictions
– Reference: [91]

Full text available at: http://dx.doi.org/10.1561/0400000109

180 List of PRGs

B.2 Branching Program Models

In the list below, we use m to denote size and w to denote width.
Assume m ≥ n.

• Unrestricted branching programs

– Seed length:
√
m · polylog(n/ε)

– Approach: Variant of the IMZ framework
– Reference: [120]

• Width-2 branching programs that read d bits at a time

– Seed length: O(d logn+ d · 2d · log(m/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [29]

• Standard-order ROBPs with w = 3

– Seed length: Õ(logn · log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [171]

• Standard-order ROBPs with 4 ≤ w ≤ n

– Seed length: O(log(n/ε) · logn)
– Approach: Recycling seeds
– References: [131], [181]

• Standard-order ROBPs with w ≫ n

– Seed length: O
(

log(w/ε)·log n
log log w

)
– Approach: Recycling seeds
– References: [13], [140]

Full text available at: http://dx.doi.org/10.1561/0400000109

B.2. Branching Program Models 181

• Standard-order regular ROBPs

– Seed length: Õ(log(w/ε) · logn)
– Approach: INW generator
– Reference: [38]

• Standard-order permutation ROBPs with w = O(1)

– Seed length: O(logn · log(1/ε))
– Approach: INW generator
– References: [74], [145], [224]

• Arbitrary-order ROBPs

– Seed length: O(log(wn/ε) · log2 n)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order ROBPs with w = O(1)

– Seed length: Õ(log(n/ε) · logn)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order permutation ROBPs with w = O(1)

– Seed length: Õ(logn · log(1/ε))
– Approach: Polarizing random walks
– Reference: [49]

• Decision trees, or more generally parity decision trees

– Seed length: O(log(m/ε))
– Approach: δ-bias
– Reference: [146]

Full text available at: http://dx.doi.org/10.1561/0400000109

182 List of PRGs

B.3 Algebraic Models

• Parity functions

– Seed length: O(log(n/ε))
– Approach: Balanced codes
– References: [178], [217]

• Parities of at most k bits

– Seed length: O(log(k/ε)) + log logn
– Approach: ε-biased seed for k-wise uniform generator
– Reference: [178]

• Degree-d polynomials over F2

– Seed length: O(d logn+ d2d log(1/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [242]

B.4 Models Based on Locality

• [−1, 1]-valued k-juntas

– Seed length: O(k + log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: [178]

• Two-dimensional combinatorial rectangles

– Seed length: n
2 +O(log(1/ε))

– Approach: Random edge of expander
– Reference: [131]

• d-dimensional combinatorial rectangles

– Seed length: Õ(n/d+ log(1/ε) + log logn)
– Approach: Iterative alphabet reduction
– Reference: [106]

Full text available at: http://dx.doi.org/10.1561/0400000109

B.4. Models Based on Locality 183

• Two-party communication protocols with cost m

– Seed length: n
2 +O(m+ log(1/ε))

– Approach: Random edge of expander
– Reference: [131]

Full text available at: http://dx.doi.org/10.1561/0400000109

References

[1] S. Aaronson, “BQP and the polynomial hierarchy,” in Proc.
42nd Annual ACM Symposium on Theory of Computing (STOC),
pp. 141–150, 2010. doi: 10.1145/1806689.1806711.

[2] A. Ahmadinejad, J. Kelner, J. Murtagh, J. Peebles, A. Sidford,
and S. Vadhan, “High-precision estimation of random walks
in small space,” in Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 1295–1306, 2020.
doi: 10.1109/FOCS46700.2020.00123.

[3] M. Ajtai, J. Komlós, and E. Szemerédi, “Deterministic simulation
in logspace,” in Proc. 19th Annual ACM Symposium on Theory
of Computing (STOC), pp. 132–140, 1987. doi: 10.1145/28395.
28410.

[4] M. Ajtai and A. Wigderson, “Deterministic simulation of prob-
abilistic constant-depth circuits,” Advances in Computing Re-
search – Randomness and Computation, vol. 5, 1989, pp. 199–
23.

[5] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA and
Rabin functions: Certain parts are as hard as the whole,” SIAM J.
Comput., vol. 17, no. 2, 1988, pp. 194–209. doi: 10.1137/0217013.

[6] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6,
no. 2, 1986, pp. 83–96. doi: 10.1007/BF02579166.

184

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1145/28395.28410
https://doi.org/10.1145/28395.28410
https://doi.org/10.1137/0217013
https://doi.org/10.1007/BF02579166

References 185

[7] N. Alon, “Explicit expanders of every degree and size,” Combi-
natorica, vol. 41, no. 4, 2021, pp. 447–463. doi: 10.1007/s00493-
020-4429-x.

[8] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
parallel algorithm for the maximal independent set problem,” J.
Algorithms, vol. 7, no. 4, 1986, pp. 567–583. doi: 10.1016/0196-
6774(86)90019-2.

[9] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple con-
structions of almost k-wise independent random variables,” Ran-
dom Structures & Algorithms, vol. 3, no. 3, 1992, pp. 289–304.
doi: 10.1002/rsa.3240030308.

[10] E. Anand and C. Umans, “Pseudorandomness of the sticky
random walk,” arXiv preprint arXiv:2307.11104, 2023.

[11] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim, “A new
general derandomization method,” J. ACM, vol. 45, no. 1, 1998,
pp. 179–213. doi: 10.1145/273865.273933.

[12] A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan,
“Weak random sources, hitting sets, and BPP simulations,”
SIAM J. Comput., vol. 28, no. 6, 1999, pp. 2103–2116. doi:
10.1137/S0097539797325636.

[13] R. Armoni, “On the derandomization of space-bounded compu-
tations,” in Proc. 2nd International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RAN-
DOM), pp. 47–59, 1998. doi: 10.1007/3-540-49543-6_5.

[14] R. Armoni, M. Saks, A. Wigderson, and S. Zhou, “Discrep-
ancy sets and pseudorandom generators for combinatorial rect-
angles,” in Proc. 37th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 412–421, 1996. doi:
10.1109/SFCS.1996.548500.

[15] S. Arora and B. Barak, Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. doi: 10 . 1017 /
CBO9780511804090.

[16] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, “BPP has
subexponential time simulations unless EXPTIME has publish-
able proofs,” Comput. Complexity, vol. 3, no. 4, 1993, pp. 307–
318. doi: 10.1007/BF01275486.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1145/273865.273933
https://doi.org/10.1137/S0097539797325636
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1109/SFCS.1996.548500
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1007/BF01275486

186 References

[17] L. Babai, P. Hajnal, E. Szemerédi, and G. Turán, “A lower bound
for read-once-only branching programs,” J. Comput. System
Sci., vol. 35, no. 2, 1987, pp. 153–162. doi: 10 . 1016 / 0022 -
0000(87)90010-9.

[18] L. Babai, N. Nisan, and M. Szegedy, “Multiparty protocols,
pseudorandom generators for logspace, and time-space trade-
offs,” J. Comput. System Sci., vol. 45, no. 2, 1992, pp. 204–232.
doi: 10.1016/0022-0000(92)90047-M.

[19] D. A. Barrington, “Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1,” J. Comput.
System Sci., vol. 38, no. 1, 1989, pp. 150–164. doi: 10.1016/0022-
0000(89)90037-8.

[20] L. M. J. Bazzi, “Polylogarithmic independence can fool DNF
formulas,” SIAM J. Comput., vol. 38, no. 6, 2009, pp. 2220–2272.
doi: 10.1137/070691954.

[21] P. Beame, T. S. Jayram, and M. Saks, “Time-space tradeoffs
for branching programs,” J. Comput. System Sci., vol. 63, no. 4,
2001, pp. 542–572. doi: 10.1006/jcss.2001.1778.

[22] P. Beame, V. Liew, and M. Pǎtraşcu, “Finding the median
(obliviously) with bounded space,” in Proc. 42nd International
Colloquium on Automata, Languages and Programming (ICALP),
pp. 103–115, 2015. doi: 10.1007/978-3-662-47672-7_9.

[23] R. Beigel, N. Reingold, and D. A. Spielman, “The perceptron
strikes back,” in Proc. 6th Annual IEEE Conference on Structure
in Complexity Theory, pp. 286, 287, 288, 289, 290, 291, Jul. 1991.
doi: 10.1109/SCT.1991.160270.

[24] M. Bellare and J. Rompel, “Randomness-efficient oblivious sam-
pling,” in Proc. 35th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 276–287, 1994. doi: 10.1109/
SFCS.1994.365687.

[25] A. Ben-Aroya and A. Ta-Shma, “A combinatorial construction
of almost-Ramanujan graphs using the zig-zag product,” SIAM
J. Comput., vol. 40, no. 2, 2011, pp. 267–290. doi: 10.1137/
080732651.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/0022-0000(87)90010-9
https://doi.org/10.1016/0022-0000(87)90010-9
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1137/070691954
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.1007/978-3-662-47672-7_9
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1137/080732651
https://doi.org/10.1137/080732651

References 187

[26] I. Benjamini, O. Gurel-Gurevich, and R. Peled, “On k-wise inde-
pendent distributions and boolean functions,” arXiv:1201.3261,
2012.

[27] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseu-
dorandom number generator,” SIAM J. Comput., vol. 15, no. 2,
1986, pp. 364–383. doi: 10.1137/0215025.

[28] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudorandom bits,” SIAM J. Comput.,
vol. 13, no. 4, 1984, pp. 850–864. doi: 10.1137/0213053.

[29] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff, “Pseudoran-
domness for width-2 branching programs,” Theory of Computing,
vol. 9, 2013, pp. 283–293. doi: 10.4086/toc.2013.v009a007.

[30] A. Bogdanov, W. M. Hoza, G. Prakriya, and E. Pyne, “Hit-
ting Sets for Regular Branching Programs,” in Proc. 37th Com-
putational Complexity Conference (CCC), 3:1–3:22, 2022. doi:
10.4230/LIPIcs.CCC.2022.3.

[31] A. Bogdanov, P. A. Papakonstantinou, and A. Wan, “Pseudoran-
domness for read-once formulas,” in FOCS, R. Ostrovsky, Ed.,
pp. 240–246, IEEE, 2011.

[32] A. Bogdanov and E. Viola, “Pseudorandom bits for polynomials,”
SIAM J. Comput., vol. 39, no. 6, 2010, pp. 2464–2486. doi:
10.1137/070712109.

[33] R. B. Boppana, “The average sensitivity of bounded-depth cir-
cuits,” Inf. Process. Lett., vol. 63, no. 5, 1997, pp. 257–261. doi:
10.1016/S0020-0190(97)00131-2.

[34] C. Bordenave, “A new proof of Friedman’s second eigenvalue
theorem and its extension to random lifts,” Ann. Sci. Éc. Norm.
Supér. (4), vol. 53, no. 6, 2020, pp. 1393–1439. doi: 10.24033/
asens.245.

[35] A. Borodin, D. Dolev, F. E. Fich, and W. Paul, “Bounds for
width two branching programs,” SIAM J. Comput., vol. 15, no. 2,
1986, pp. 549–560. doi: 10.1137/0215040.

[36] M. Braverman, “Polylogarithmic independence fools AC0 cir-
cuits,” J. ACM, vol. 57, no. 5, 2010, 28:1–28:10. doi: 10.1145/
1754399.1754401.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/0215025
https://doi.org/10.1137/0213053
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4230/LIPIcs.CCC.2022.3
https://doi.org/10.1137/070712109
https://doi.org/10.1016/S0020-0190(97)00131-2
https://doi.org/10.24033/asens.245
https://doi.org/10.24033/asens.245
https://doi.org/10.1137/0215040
https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1145/1754399.1754401

188 References

[37] M. Braverman, G. Cohen, and S. Garg, “Pseudorandom pseudo-
distributions with near-optimal error for read-once branching
programs,” SIAM J. Comput., vol. 49, no. 5, 2020, STOC18-242–
STOC18-299. doi: 10.1137/18M1197734.

[38] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, “Pseudoran-
dom generators for regular branching programs,” SIAM J. Com-
put., vol. 43, no. 3, 2014, pp. 973–986. doi: 10.1137/120875673.

[39] J. Brody and E. Verbin, “The coin problem and pseudorandom-
ness for branching programs,” in Proc. 51st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 30–39,
2010. doi: 10.1109/FOCS.2010.10.

[40] H. Buhrman and L. Fortnow, “One-sided versus two-sided er-
ror in probabilistic computation,” in Proc. 16th Symposium on
Theoretical Aspects of Computer Science (STACS), pp. 100–109,
1999. doi: 10.1007/3-540-49116-3_9.

[41] J.-Y. Cai, A. Nerurkar, and D. Sivakumar, “Hardness and hier-
archy theorems for probabilistic quasi-polynomial time,” in Proc.
31st Annual ACM Symposium on Theory of Computing (STOC),
pp. 726–735, 1999. doi: 10.1145/301250.301444.

[42] M. L. Carmosino, R. Impagliazzo, and M. Sabin, “Fine-Grained
Derandomization: From Problem-Centric to Resource-Centric
Complexity,” in Proc. 45th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 27:1–27:16, 2018.
doi: 10.4230/LIPIcs.ICALP.2018.27.

[43] L. E. Celis, O. Reingold, G. Segev, and U. Wieder, “Balls and
bins: Smaller hash families and faster evaluation,” SIAM J.
Comput., vol. 42, no. 3, 2013, pp. 1030–1050. doi: 10 .1137/
120871626.

[44] S. Chari, P. Rohatgi, and A. Srinivasan, “Improved algorithms via
approximations of probability distributions,” J. Comput. System
Sci., vol. 61, no. 1, 2000, pp. 81–107. doi: 10.1006/jcss.1999.1695.

[45] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2018. URL: https://courses.cs.cornell.edu/cs6815/
2018fa/.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/120875673
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1145/301250.301444
https://doi.org/10.4230/LIPIcs.ICALP.2018.27
https://doi.org/10.1137/120871626
https://doi.org/10.1137/120871626
https://doi.org/10.1006/jcss.1999.1695
https://courses.cs.cornell.edu/cs6815/2018fa/
https://courses.cs.cornell.edu/cs6815/2018fa/

References 189

[46] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2019. URL: https://courses.cs.cornell.edu/cs6815/
2019fa/.

[47] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2022. URL: https://courses.cs.cornell.edu/cs6815/
2022fa/.

[48] E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A.
Shetty, “Fractional Pseudorandom Generators from Any Fourier
Level,” in Proc. 36th Computational Complexity Conference
(CCC), 10:1–10:24, 2021. doi: 10.4230/LIPIcs.CCC.2021.10.

[49] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett, “Pseu-
dorandom generators from polarizing random walks,” Theory
Comput., vol. 15, no. 1, 2019, pp. 1–26. doi: 10.4086/toc.2019.
v015a010.

[50] E. Chattopadhyay, P. Hatami, S. Lovett, and A. Tal, “Pseudoran-
dom Generators from the Second Fourier Level and Applications
to AC0 with Parity Gates,” in Proc. 10th Conference on Innova-
tions in Theoretical Computer Science (ITCS), 22:1–22:15, 2018.
doi: 10.4230/LIPIcs.ITCS.2019.22.

[51] E. Chattopadhyay, P. Hatami, O. Reingold, and A. Tal, “Im-
proved pseudorandomness for unordered branching programs
through local monotonicity,” in Proc. 50th Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 363–375, 2018. doi:
10.1145/3188745.3188800.

[52] E. Chattopadhyay and J.-J. Liao, “Optimal error pseudodistribu-
tions for read-once branching programs,” in Proc. 35th Annual
IEEE Conference on Computational Complexity (CCC), vol. 169,
25:1–25:27, 2020. doi: 10.4230/LIPIcs.CCC.2020.25.

[53] E. Chattopadhyay and J.-J. Liao, Recursive error reduction for
regular branching programs, ECCC preprint TR23-130, 2023.
URL: https://eccc.weizmann.ac.il/report/2023/130/.

[54] L. Chen, W. M. Hoza, X. Lyu, A. Tal, and H. Wu, Weighted
pseudorandom generators via inverse analysis of random walks
and shortcutting, ECCC preprint TR23-114, 2023. URL: https:
//eccc.weizmann.ac.il/report/2023/114/.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://doi.org/10.4230/LIPIcs.CCC.2021.10
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://eccc.weizmann.ac.il/report/2023/130/
https://eccc.weizmann.ac.il/report/2023/114/
https://eccc.weizmann.ac.il/report/2023/114/

190 References

[55] L. Chen, Z. Lu, X. Lyu, and I. C. Oliveira, “Majority vs. Ap-
proximate Linear Sum and Average-Case Complexity Below
NC1,” in Proc. 48th International Colloquium on Automata,
Languages and Programming (ICALP), 51:1–51:20, 2021. doi:
10.4230/LIPIcs.ICALP.2021.51.

[56] L. Chen, X. Lyu, A. Tal, and H. Wu, “New PRGs for Unbounded-
Width/Adaptive-Order Read-Once Branching Programs,” in
Proc. 50th International Colloquium on Automata, Languages
and Programming (ICALP), vol. 261, 39:1–39:20, 2023. doi:
10.4230/LIPIcs.ICALP.2023.39.

[57] L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere circuit
lower bounds from non-trivial derandomization,” in Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 1–12, 2020. doi: 10.1109/FOCS46700.2020.00009.

[58] L. Chen and H. Ren, “Strong average-case circuit lower
bounds from nontrivial derandomization,” SIAM J. Comput.,
vol. 51, no. 3, 2022, STOC20-115–STOC20-173. doi: 10.1137/
20M1364886.

[59] L. Chen, R. D. Rothblum, R. Tell, and E. Yogev, “On exponential-
time hypotheses, derandomization, and circuit lower bounds:
Extended abstract,” in Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 13–23, 2020. doi:
10.1109/FOCS46700.2020.00010.

[60] L. Chen and R. Tell, “Simple and fast derandomization from
very hard functions: Eliminating randomness at almost no cost,”
in Proc. 53rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 283–291, 2021. doi: 10.1145/3406325.3451059.

[61] K. Cheng and W. M. Hoza, “Hitting sets give two-sided deran-
domization of small space,” Theory of Computing, vol. 18, no. 21,
2022, pp. 1–32. doi: 10.4086/toc.2022.v018a021.

[62] K. Cheng and X. Li, “Efficient document exchange and error
correcting codes with asymmetric information,” in Proc. 2021
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2424–2443, 2021. doi: 10.1137/1.9781611976465.144.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1137/20M1364886
https://doi.org/10.1137/20M1364886
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.4086/toc.2022.v018a021
https://doi.org/10.1137/1.9781611976465.144

References 191

[63] M. Cheraghchi, V. Kabanets, Z. Lu, and D. Myrisiotis, “Circuit
lower bounds for MCSP from local pseudorandom generators,”
ACM Trans. Comput. Theory, vol. 12, no. 3, 2020, Art. 21, 27.
doi: 10.1145/3404860.

[64] R. Chiclana and Y. Peres, “A local central limit theorem for
random walks on expander graphs,” arXiv preprint arXiv:2212.
00958, 2022.

[65] B. Chor and O. Goldreich, “Unbiased bits from sources of weak
randomness and probabilistic communication complexity,” SIAM
J. on Computing, vol. 17, no. 2, 1988, pp. 230–261. doi: 10.1137/
0217015.

[66] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and
R. Smolensky, “The bit extraction problem or t-resilient func-
tions,” in Proc. 26th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 396–407, 1985. doi: 10.1109/
SFCS.1985.55.

[67] S. M. Cioabă and M. R. Murty, “Expander graphs and gaps
between primes,” Forum Math., vol. 20, no. 4, 2008, pp. 745–756.
doi: 10.1515/FORUM.2008.035.

[68] T. H. Click, A. Liu, and G. A. Kaminski, “Quality of random
number generators significantly affects results of monte carlo
simulations for organic and biological systems,” Journal of Com-
putational Chemistry, vol. 32, no. 3, 2011, pp. 513–524. doi:
10.1002/jcc.21638.

[69] P. Coddington, “Analysis of random number generators us-
ing monte carlo simulation,” International Journal of Modern
Physics C, vol. 05, no. 03, 1994, pp. 547–560. doi: 10.1142/
S0129183194000726.

[70] G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma,
“Error reduction for weighted PRGs against read once branching
programs,” in Proc. 36th Computational Complexity Conference
(CCC), 22:1–22:17, 2021. doi: 10.4230/LIPIcs.CCC.2021.22.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/3404860
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1515/FORUM.2008.035
https://doi.org/10.1002/jcc.21638
https://doi.org/10.1142/S0129183194000726
https://doi.org/10.1142/S0129183194000726
https://doi.org/10.4230/LIPIcs.CCC.2021.22

192 References

[71] G. Cohen, D. Minzer, S. Peleg, A. Potechin, and A. Ta-Shma,
“Expander Random Walks: The General Case and Limitations,”
in Proc. 49th International Colloquium on Automata, Languages
and Programming (ICALP), 43:1–43:18, 2022. doi: 10.4230/
LIPIcs.ICALP.2022.43.

[72] G. Cohen, N. Peri, and A. Ta-Shma, “Expander random walks:
A Fourier-analytic approach,” in Proc. 53rd Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 1643–1655, ACM,
New York, 2021. doi: 10.1145/3406325.3451049.

[73] M. B. Cohen, “Ramanujan graphs in polynomial time,” in Proc.
57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 276–281, 2016. doi: 10.1109/FOCS.2016.37.

[74] A. De, “Pseudorandomness for permutation and regular branch-
ing programs,” in Proc. 26th Annual IEEE Conference on Com-
putational Complexity (CCC), pp. 221–231, 2011. doi: 10.1109/
CCC.2011.23.

[75] A. De, O. Etesami, L. Trevisan, and M. Tulsiani, “Improved
pseudorandom generators for depth 2 circuits,” in Proc. 14th
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), pp. 504–517, 2010.
doi: 10.1007/978-3-642-15369-3_38.

[76] R. De Wolf, “A brief introduction to fourier analysis on the
boolean cube,” Theory of Computing, 2008, pp. 1–20.

[77] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan, “Fine-
grained cryptography,” in Proc. 36th Annual International Cryp-
tology Conference (CRYPTO), pp. 533–562, 2016. doi: 10.1007/
978-3-662-53015-3_19.

[78] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and
E. Viola, “Bounded independence fools halfspaces,” SIAM J.
Comput., vol. 39, no. 8, 2010, pp. 3441–3462. doi: 10 .1137/
100783030.

[79] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy ex-
tractors: How to generate strong keys from biometrics and other
noisy data,” SIAM J. Comput., vol. 38, no. 1, 2008, pp. 97–139.
doi: 10.1137/060651380.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2022.43
https://doi.org/10.4230/LIPIcs.ICALP.2022.43
https://doi.org/10.1145/3406325.3451049
https://doi.org/10.1109/FOCS.2016.37
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1007/978-3-642-15369-3_38
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1137/100783030
https://doi.org/10.1137/100783030
https://doi.org/10.1137/060651380

References 193

[80] D. Doron, P. Hatami, and W. M. Hoza, “Near-Optimal Pseudo-
random Generators for Constant-Depth Read-Once Formulas,”
in Proc. 34th Computational Complexity Conference (CCC),
16:1–16:34, 2019. doi: 10.4230/LIPIcs.CCC.2019.16.

[81] D. Doron, P. Hatami, and W. M. Hoza, “Log-Seed Pseudo-
random Generators via Iterated Restrictions,” in Proc. 35th
Computational Complexity Conference (CCC), 6:1–6:36, 2020.
doi: 10.4230/LIPIcs.CCC.2020.6.

[82] D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan, “Pseu-
dorandom Generators for Read-Once Monotone Branching Pro-
grams,” in Proc. 25th International Workshop on Randomization
and Approximation Techniques in Computer Science (RAN-
DOM), 58:1–58:21, 2021. doi: 10 . 4230 / LIPIcs . APPROX /
RANDOM.2021.58.

[83] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman, “Nearly
optimal pseudorandomness from hardness,” in Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 1057–1068, 2020. doi: 10.1109/FOCS46700.2020.00102.

[84] S. Egashira, Y. Wang, and K. Tanaka, “Fine-grained cryptogra-
phy revisited,” J. Cryptology, vol. 34, no. 3, 2021, Paper No. 23,
43. doi: 10.1007/s00145-021-09390-3.

[85] P. Erdős, P. Frankl, and Z. Füredi, “Families of finite sets in
which no set is covered by the union of r others,” Israel J. Math.,
vol. 51, no. 1-2, 1985, pp. 79–89. doi: 10.1007/BF02772959.

[86] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veličković, “Ef-
ficient approximation of product distributions,” Random Struc-
tures Algorithms, vol. 13, no. 1, 1998, pp. 1–16. doi: 10.1002/
(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

[87] B. Fefferman, R. Shaltiel, C. Umans, and E. Viola, “On beating
the hybrid argument,” Theory Comput., vol. 9, 2013, pp. 809–843.
doi: 10.4086/toc.2013.v009a026.

[88] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, “Monte carlo
simulations: Hidden errors from ‘good’ random number gener-
ators,” Phys. Rev. Lett., vol. 69, 23 Dec. 1992, pp. 3382–3384.
doi: 10.1103/PhysRevLett.69.3382.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.CCC.2019.16
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://doi.org/10.1109/FOCS46700.2020.00102
https://doi.org/10.1007/s00145-021-09390-3
https://doi.org/10.1007/BF02772959
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1103/PhysRevLett.69.3382

194 References

[89] T. Filk, M. Marcu, and K. Fredenhagen, “Long range correlations
in random number generators and their influence on monte carlo
simulations,” Physics Letters B, vol. 165, no. 1, 1985, pp. 125–
130. doi: 10.1016/0370-2693(85)90705-1.

[90] Y. Filmus, “Smolensky’s lower bound,” 2010. URL: https://
yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf.

[91] M. A. Forbes and Z. Kelley, “Pseudorandom generators for read-
once branching programs, in any order,” in Proc. 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 946–955, 2018. doi: 10.1109/FOCS.2018.00093.

[92] J. Friedman, “Some geometric aspects of graphs and their eigen-
functions,” Duke Math. J., vol. 69, no. 3, 1993, pp. 487–525. doi:
10.1215/S0012-7094-93-06921-9.

[93] J. Friedman, “A proof of Alon’s second eigenvalue conjecture and
related problems,” Mem. Amer. Math. Soc., vol. 195, no. 910,
2008, pp. viii+100. doi: 10.1090/memo/0910.

[94] Z. Füredi, “Matchings and covers in hypergraphs,” Graphs Com-
bin., vol. 4, no. 2, 1988, pp. 115–206. doi: 10.1007/BF01864160.

[95] O. Goldreich and L. A. Levin, “A hard-core predicate for all
one-way functions,” in Proc. 21st Annual ACM Symposium on
Theory of Computing (STOC), pp. 25–32, 1989. doi: 10.1145/
73007.73010.

[96] O. Goldreich, Foundations of Cryptography Volume I: Ba-
sic Tools. Cambridge University Press, 2001. doi: 10 . 1017 /
CBO9780511546891.

[97] O. Goldreich, A primer on pseudorandom generators, vol. 55,
ser. University Lecture Series. American Mathematical Society,
Providence, RI, 2010, pp. x+114. doi: 10.1090/ulect/055.

[98] O. Goldreich, “In a world of P = BPP,” in Studies in complexity
and cryptography, ser. Lecture Notes in Comput. Sci. Vol. 6650,
Springer, Heidelberg, 2011, pp. 191–232. doi: 10.1007/978-3-
642-22670-0_20.

[99] O. Goldreich, H. Krawczyk, and M. Luby, “On the existence
of pseudorandom generators,” SIAM J. Comput., vol. 22, no. 6,
1993, pp. 1163–1175. doi: 10.1137/0222069.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/0370-2693(85)90705-1
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1215/S0012-7094-93-06921-9
https://doi.org/10.1090/memo/0910
https://doi.org/10.1007/BF01864160
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1090/ulect/055
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1137/0222069

References 195

[100] O. Goldreich, S. Vadhan, and A. Wigderson, “Simplified deran-
domization of BPP using a hitting set generator,” in Studies in
Complexity and Cryptography, ser. Lecture Notes in Computer
Science, vol. 6650, Springer, Heidelberg, 2011, pp. 59–67. doi:
10.1007/978-3-642-22670-0_8.

[101] S. Goldwasser, S. Micali, and P. Tong, “Why and how to estab-
lish a private code on a public network,” in Proc. 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 134–144, 1982. doi: 10.1109/SFCS.1982.100.

[102] L. Golowich, “A new Berry-Esseen theorem for expander walks,”
in Proc. 55th Annual ACM Symposium on Theory of Computing
(STOC), pp. 10–22, ACM, New York, 2023. doi: 10.1145/3564246.
3585141.

[103] L. Golowich and S. Vadhan, “Pseudorandomness of Expander
Random Walks for Symmetric Functions and Permutation
Branching Programs,” in Proc. 37th Computational Complexity
Conference (CCC), 27:1–27:13, 2022. doi: 10.4230/LIPIcs.CCC.
2022.27.

[104] P. Gopalan, D. M. Kane, and R. Meka, “Pseudorandomness via
the discrete Fourier transform,” SIAM J. Comput., vol. 47, no. 6,
2018, pp. 2451–2487. doi: 10.1137/16M1062132.

[105] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan,
“Better pseudorandom generators from milder pseudorandom
restrictions,” in Proc. 53rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 120–129, 2012. doi:
10.1109/FOCS.2012.77.

[106] P. Gopalan and A. Yehudayoff, “Concentration for limited inde-
pendence via inequalities for the elementary symmetric polyno-
mials,” Theory Comput., vol. 16, 2020, Paper No. 17, 29. doi:
10.4086/toc.2020.v016a017.

[107] P. Grassberger, “On correlations in ‘good’ random number gen-
erators,” Physics Letters A, vol. 181, no. 1, 1993, pp. 43–46. doi:
10.1016/0375-9601(93)91122-L.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/978-3-642-22670-0_8
https://doi.org/10.1109/SFCS.1982.100
https://doi.org/10.1145/3564246.3585141
https://doi.org/10.1145/3564246.3585141
https://doi.org/10.4230/LIPIcs.CCC.2022.27
https://doi.org/10.4230/LIPIcs.CCC.2022.27
https://doi.org/10.1137/16M1062132
https://doi.org/10.1109/FOCS.2012.77
https://doi.org/10.4086/toc.2020.v016a017
https://doi.org/10.1016/0375-9601(93)91122-L

196 References

[108] V. Guruswami and V. M. Kumar, “Pseudobinomiality of the
Sticky Random Walk,” in Proc. 12th Conference on Innovations
in Theoretical Computer Science (ITCS), vol. 185, 2021. doi:
10.4230/LIPIcs.ITCS.2021.48.

[109] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy
codes,” J. ACM, vol. 56, no. 4, 2009, Art. 20, 34. doi: 10.1145/
1538902.1538904.

[110] I. Haitner, D. Harnik, and O. Reingold, “Efficient pseudoran-
dom generators from exponentially hard one-way functions,” in
Proc. 33rd International Colloquium on Automata, Languages
and Programming (ICALP), pp. 228–239, 2006. doi: 10.1007/
11787006_20.

[111] I. Haitner, D. Harnik, and O. Reingold, “On the power of the
randomized iterate,” SIAM J. Comput., vol. 40, no. 6, 2011,
pp. 1486–1528. doi: 10.1137/080721820.

[112] I. Haitner, O. Reingold, and S. Vadhan, “Efficiency improve-
ments in constructing pseudorandom generators from one-way
functions,” SIAM J. Comput., vol. 42, no. 3, 2013, pp. 1405–1430.
doi: 10.1137/100814421.

[113] E. Haramaty, C. H. Lee, and E. Viola, “Bounded independence
plus noise fools products,” SIAM J. Comput., vol. 47, no. 2, 2018,
pp. 493–523. doi: 10.1137/17M1129088.

[114] P. Harsha and S. Srinivasan, “On polynomial approximations
to AC0,” Random Structures Algorithms, vol. 54, no. 2, 2019,
pp. 289–303. doi: 10.1002/rsa.20786.

[115] T. Hartman and R. Raz, “On the distribution of the number
of roots of polynomials and explicit weak designs,” Random
Structures Algorithms, vol. 23, no. 3, 2003, pp. 235–263. doi:
10.1002/rsa.10095.

[116] J. Hastad, “Almost optimal lower bounds for small depth cir-
cuits,” Adv. Comput. Res., vol. 5, 1989, pp. 143–170. URL:
https://www.csc.kth.se/~johanh/largesmalldepth.pdf.

[117] J. Håstad, “A slight sharpening of lmn,” Journal of Computer
and System Sciences, vol. 63, no. 3, 2001, pp. 498–508. doi:
10.1006/jcss.2001.1803.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ITCS.2021.48
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1007/11787006_20
https://doi.org/10.1007/11787006_20
https://doi.org/10.1137/080721820
https://doi.org/10.1137/100814421
https://doi.org/10.1137/17M1129088
https://doi.org/10.1002/rsa.20786
https://doi.org/10.1002/rsa.10095
https://www.csc.kth.se/~johanh/largesmalldepth.pdf
https://doi.org/10.1006/jcss.2001.1803

References 197

[118] J. Håstad, “On the correlation of parity and small-depth circuits,”
SIAM J. Comput., vol. 43, no. 5, 2014, pp. 1699–1708. doi:
10.1137/120897432.

[119] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A
pseudorandom generator from any one-way function,” SIAM
J. Comput., vol. 28, no. 4, 1999, pp. 1364–1396. doi: 10.1137/
S0097539793244708.

[120] P. Hatami, W. M. Hoza, A. Tal, and R. Tell, “Fooling constant-
depth threshold circuits,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 104–115, 2022.
doi: 10.1109/FOCS52979.2021.00019.

[121] A. Healy, S. Vadhan, and E. Viola, “Using nondeterminism to
amplify hardness,” SIAM Journal on Computing, vol. 35, no. 4,
2006, pp. 903–931. doi: 10.1137/S0097539705447281.

[122] T. Holenstein, “Pseudorandom generators from one-way func-
tions: A simple construction for any hardness,” in Theory of cryp-
tography, ser. Lecture Notes in Comput. Sci. Vol. 3876, Springer,
Berlin, 2006, pp. 443–461. doi: 10.1007/11681878_23.

[123] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and
their applications,” Bull. Amer. Math. Soc. (N.S.), vol. 43, no. 4,
2006, pp. 439–561. doi: 10.1090/S0273-0979-06-01126-8.

[124] W. M. Hoza, “Better pseudodistributions and derandomization
for space-bounded computation,” in Proc. 25th International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), 28:1–28:23, 2021. doi: 10.4230/
LIPIcs.APPROX/RANDOM.2021.28.

[125] W. M. Hoza, “Recent progress on derandomizing space-bounded
computation,” Bulletin of the EATCS, no. 138, 2022, pp. 114–
143. URL: https://eatcs.org/images/bulletin/beatcs138.pdf.

[126] W. M. Hoza, A technique for hardness amplification against AC0,
ECCC preprint TR23-176, 2023. URL: https://eccc.weizmann.
ac.il/report/2023/176/.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/120897432
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1137/S0097539705447281
https://doi.org/10.1007/11681878_23
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://eatcs.org/images/bulletin/beatcs138.pdf
https://eccc.weizmann.ac.il/report/2023/176/
https://eccc.weizmann.ac.il/report/2023/176/

198 References

[127] W. M. Hoza, E. Pyne, and S. Vadhan, “Pseudorandom Genera-
tors for Unbounded-Width Permutation Branching Programs,”
in Proc. 12th Conference on Innovations in Theoretical Com-
puter Science (ITCS), 7:1–7:20, 2021. doi: 10.4230/LIPIcs.ITCS.
2021.7.

[128] W. M. Hoza and D. Zuckerman, “Simple optimal hitting sets
for small-success RL,” SIAM J. Comput., vol. 49, no. 4, 2020,
pp. 811–820. doi: 10.1137/19M1268707.

[129] R. Impagliazzo, W. Matthews, and R. Paturi, “A satisfiability
algorithm for AC0,” in Proc. 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 961–972, 2012. URL:
https://dl.acm.org/doi/10.5555/2095116.2095193.

[130] R. Impagliazzo, R. Meka, and D. Zuckerman, “Pseudorandom-
ness from shrinkage,” J. ACM, vol. 66, no. 2, 2019, Art. 11, 16.
doi: 10.1145/3230630.

[131] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudorandomness
for network algorithms,” in Proc. 26th Annual ACM Symposium
on Theory of Computing (STOC), pp. 356–364, 1994. doi: 10.
1145/195058.195190.

[132] R. Impagliazzo, R. Shaltiel, and A. Wigderson, “Near-optimal
conversion of hardness into pseudo-randomness,” in Proc. 40th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 181–190, 1999. doi: 10.1109/SFFCS.1999.814590.

[133] R. Impagliazzo, R. Shaltiel, and A. Wigderson, “Reducing the
seed length in the Nisan-Wigderson generator,” Combinatorica,
vol. 26, no. 6, 2006, pp. 647–681. doi: 10.1007/s00493-006-0036-8.

[134] R. Impagliazzo and A. Wigderson, “P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma,” in Proc.
29th Annual ACM Symposium on Theory of Computing (STOC),
pp. 220–229, 1997. doi: 10.1145/258533.258590.

[135] R. Impagliazzo and A. Wigderson, “Randomness vs time: Deran-
domization under a uniform assumption,” J. Comput. System
Sci., vol. 63, no. 4, 2001, pp. 672–688. doi: 10.1006/jcss.2001.
1780.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.1137/19M1268707
https://dl.acm.org/doi/10.5555/2095116.2095193
https://doi.org/10.1145/3230630
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/195058.195190
https://doi.org/10.1109/SFFCS.1999.814590
https://doi.org/10.1007/s00493-006-0036-8
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780

References 199

[136] P. Indyk, “Stable distributions, pseudorandom generators, em-
beddings, and data stream computation,” J. ACM, vol. 53, no. 3,
2006, pp. 307–323. doi: 10.1145/1147954.1147955.

[137] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in
Proc. 32nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 73–79, 2000. doi: 10.1145/335305.335314.

[138] V. Kabanets and Z. Lu, “Satisfiability and Derandomization for
Small Polynomial Threshold Circuits,” in Proc. 22nd Interna-
tional Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM), 46:1–46:19, 2018. doi:
10.4230/LIPIcs.APPROX-RANDOM.2018.46.

[139] C. Kalle and S. Wansleben, “Problems with the random number
generator ranf implemented on the cdc cyber 205,” Computer
Physics Communications, vol. 33, no. 4, 1984, pp. 343–346. doi:
10.1016/0010-4655(84)90139-5.

[140] D. M. Kane, J. Nelson, and D. P. Woodruff, Revisiting norm
estimation in data streams, 2008. arXiv: 0811.3648 [cs.DS].

[141] R. M. Karp and R. J. Lipton, “Some connections between nonuni-
form and uniform complexity classes,” in Proc. 12th Annual ACM
Symposium on Theory of Computing (STOC), pp. 302–309, 1980.
doi: 10.1145/800141.804678.

[142] Z. Kelley, “An improved derandomization of the switching
lemma,” in Proc. 53rd Annual ACM Symposium on Theory
of Computing (STOC), pp. 272–282, 2021. doi: 10.1145/3406325.
3451054.

[143] A. R. Klivans, H. K. Lee, and A. Wan, “Mansour’s conjecture
is true for random DNF formulas,” in Proc. 23rd Conference
on Learning Theory (COLT), pp. 368–380, 2010. URL: http:
//www.learningtheory.org/colt2010/papers/085Lee.pdf.

[144] A. R. Klivans and D. van Melkebeek, “Graph nonisomorphism
has subexponential size proofs unless the polynomial-time hierar-
chy collapses,” SIAM J. Comput., vol. 31, no. 5, 2002, pp. 1501–
1526. doi: 10.1137/S0097539700389652.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46
https://doi.org/10.1016/0010-4655(84)90139-5
https://arxiv.org/abs/0811.3648
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/3406325.3451054
https://doi.org/10.1145/3406325.3451054
http://www.learningtheory.org/colt2010/papers/085Lee.pdf
http://www.learningtheory.org/colt2010/papers/085Lee.pdf
https://doi.org/10.1137/S0097539700389652

200 References

[145] M. Koucký, P. Nimbhorkar, and P. Pudlák, “Pseudorandom
generators for group products,” in Proc. 43rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 263–272, 2011.
doi: 10.1145/1993636.1993672.

[146] E. Kushilevitz and Y. Mansour, “Learning decision trees using
the Fourier spectrum,” SIAM J. Comput., vol. 22, no. 6, 1993,
pp. 1331–1348. doi: 10.1137/0222080.

[147] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical
testing of random number generators,” ACM Trans. Math. Softw.,
vol. 33, no. 4, Aug. 2007. doi: 10.1145/1268776.1268777.

[148] C. H. Lee, “Fourier bounds and pseudorandom generators for
product tests,” in Proc. 34th Computational Complexity Confer-
ence (CCC), 7:1–7:25, 2019. doi: 10.4230/LIPIcs.CCC.2019.7.

[149] C. H. Lee, E. Pyne, and S. Vadhan, “Fourier Growth of Reg-
ular Branching Programs,” in Proc. 26th International Work-
shop on Randomization and Approximation Techniques in Com-
puter Science (RANDOM), 2:1–2:21, 2022. doi: 10.4230/LIPIcs.
APPROX/RANDOM.2022.2.

[150] C. H. Lee, E. Pyne, and S. Vadhan, “On the Power of Regular and
Permutation Branching Programs,” in Proc. 27th International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), 44:1–44:22, 2023. doi: 10.4230/
LIPIcs.APPROX/RANDOM.2023.44.

[151] C. H. Lee and E. Viola, “Some limitations of the sum of small-
bias distributions,” Theory Comput., vol. 13, 2017, Paper No.
16, 23. doi: 10.4086/toc.2017.v013a016.

[152] C. H. Lee and E. Viola, “More on bounded independence plus
noise: Pseudorandom generators for read-once polynomials,”
Theory Comput., vol. 16, 2020, Paper No. 7, 50. doi: 10.4086/
toc.2020.v016a007.

[153] L. A. Levin, “One way functions and pseudorandom generators,”
Combinatorica, vol. 7, no. 4, 1987, pp. 357–363. doi: 10.1007/
BF02579323.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1993636.1993672
https://doi.org/10.1137/0222080
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/BF02579323

References 201

[154] N. Linial, M. Luby, M. Saks, and D. Zuckerman, “Efficient
construction of a small hitting set for combinatorial rectangles
in high dimension,” Combinatorica, vol. 17, no. 2, 1997, pp. 215–
234. doi: 10.1007/BF01200907.

[155] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits,
Fourier transform, and learnability,” Journal of the ACM, vol. 40,
no. 3, 1993, pp. 607–620. doi: 10.1145/174130.174138.

[156] N. Linial and N. Nisan, “Approximate inclusion-exclusion,” Com-
binatorica, vol. 10, no. 4, 1990, pp. 349–365. doi: 10 . 1007 /
BF02128670.

[157] S. Lovett, “Unconditional pseudorandom generators for low de-
gree polynomials,” Theory of Computing, vol. 5, no. 1, 2009,
pp. 69–82. doi: 10.4086/toc.2009.v005a003.

[158] S. Lovett and S. Srinivasan, “Correlation bounds for poly-size
AC0 circuits with n1−o(1) symmetric gates,” in Proc. 15th Inter-
national Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM), pp. 640–651, 2011.
doi: 10.1007/978-3-642-22935-0_54.

[159] C.-J. Lu, “Improved pseudorandom generators for combinatorial
rectangles,” Combinatorica, vol. 22, no. 3, 2002, pp. 417–433.
doi: 10.1007/s004930200021.

[160] C.-J. Lu, S.-C. Tsai, and H.-L. Wu, “Improved hardness ampli-
fication in NP,” Theoret. Comput. Sci., vol. 370, no. 1-3, 2007,
pp. 293–298. doi: 10.1016/j.tcs.2006.10.009.

[161] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,”
Combinatorica, vol. 8, no. 3, 1988, pp. 261–277. doi: 10.1007/
BF02126799.

[162] A. Lubotzky, “Expander graphs in pure and applied mathemat-
ics,” Bull. Amer. Math. Soc. (N.S.), vol. 49, no. 1, 2012, pp. 113–
162. doi: 10.1090/S0273-0979-2011-01359-3.

[163] M. Luby and B. Veličković, “On deterministic approximation of
DNF,” Algorithmica, vol. 16, no. 4/5, 1996, pp. 415–433. doi:
10.1007/BF01940873.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/BF01200907
https://doi.org/10.1145/174130.174138
https://doi.org/10.1007/BF02128670
https://doi.org/10.1007/BF02128670
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.1007/978-3-642-22935-0_54
https://doi.org/10.1007/s004930200021
https://doi.org/10.1016/j.tcs.2006.10.009
https://doi.org/10.1007/BF02126799
https://doi.org/10.1007/BF02126799
https://doi.org/10.1090/S0273-0979-2011-01359-3
https://doi.org/10.1007/BF01940873

202 References

[164] M. Luby, B. Veličković, and A. Wigderson, “Deterministic ap-
proximate counting of depth-2 circuits,” in Proc. 2nd Israel
Symposium on Theory and Computing Systems (ISTCS), pp. 18–
24, 1993. doi: 10.1109/ISTCS.1993.253488.

[165] M. Luby and A. Wigderson, “Pairwise independence and de-
randomization,” Foundations and Trends in Theoretical Com-
puter Science, vol. 1, no. 4, 2006, pp. 237–301. doi: 10.1561/
0400000009.

[166] X. Lyu, “Improved Pseudorandom Generators for AC0 Circuits,”
in Proc. 37th Computational Complexity Conference (CCC),
34:1–34:25, 2022. doi: 10.4230/LIPIcs.CCC.2022.34.

[167] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families I: Bipartite Ramanujan graphs of all degrees,” Ann. of
Math. (2), vol. 182, no. 1, 2015, pp. 307–325. doi: 10.4007/
annals.2015.182.1.7.

[168] G. A. Margulis, “Explicit group-theoretic constructions of com-
binatorial schemes and their applications in the construction of
expanders and concentrators,” Problemy Peredachi Informatsii,
vol. 24, no. 1, 1988, pp. 51–60. URL: http://mi.mathnet.ru/eng/
ppi/v24/i1/p51.

[169] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1,
Jan. 1998, pp. 3–30. doi: 10.1145/272991.272995.

[170] N. Mazor and J. Zhang, “Simple constructions from (almost)
regular one-way functions,” in Proc. 19th Theory of Cryptography
Conference (TCC), pp. 457–485, 2021. doi: 10.1007/978-3-030-
90453-1_16.

[171] R. Meka, O. Reingold, and A. Tal, “Pseudorandom generators
for width-3 branching programs,” in Proc. 51st Annual ACM
Symposium on Theory of Computing (STOC), pp. 626–637, 2019.
doi: 10.1145/3313276.3316319.

[172] R. Meka and D. Zuckerman, “Small-bias spaces for group prod-
ucts,” in Proc. 13th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RAN-
DOM), pp. 658–672, 2009. doi: 10.1007/978-3-642-03685-9_49.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1109/ISTCS.1993.253488
https://doi.org/10.1561/0400000009
https://doi.org/10.1561/0400000009
https://doi.org/10.4230/LIPIcs.CCC.2022.34
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
https://doi.org/10.1145/272991.272995
https://doi.org/10.1007/978-3-030-90453-1_16
https://doi.org/10.1007/978-3-030-90453-1_16
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/978-3-642-03685-9_49

References 203

[173] R. Meka and D. Zuckerman, “Pseudorandom generators for
polynomial threshold functions,” SIAM J. Comput., vol. 42,
no. 3, 2013, pp. 1275–1301. doi: 10.1137/100811623.

[174] A. Milchev, K. Binder, and D. Heermann, “Fluctuations and lack
of self-averaging in the kinetics of domain growth,” Zeitschrift
für Physik B Condensed Matter, vol. 63, no. 4, 1986, pp. 521–535.
doi: 10.1007/BF01726202.

[175] P. B. Miltersen, “Derandomizing complexity classes,” in Hand-
book of randomized computing, Vol. I, II, ser. Comb. Optim.
Vol. 9, Kluwer Acad. Publ., Dordrecht, 2001, pp. 843–941. doi:
10.1007/978-1-4615-0013-1_19.

[176] S. Mohanty, R. O’Donnell, and P. Paredes, “Explicit near-Rama-
nujan graphs of every degree,” in Proc. 52nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 510–523, ACM,
New York, 2020. doi: 10.1145/3357713.3384231.

[177] M. Morgenstern, “Existence and explicit constructions of q + 1
regular Ramanujan graphs for every prime power q,” J. Combin.
Theory Ser. B, vol. 62, no. 1, 1994, pp. 44–62. doi: 10.1006/jctb.
1994.1054.

[178] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” SIAM J. Comput., vol. 22, no. 4,
1993, pp. 838–856. doi: 10.1137/0222053.

[179] A. Nilli, “On the second eigenvalue of a graph,” Discrete Math.,
vol. 91, no. 2, 1991, pp. 207–210. doi: 10.1016/0012-365X(91)
90112-F.

[180] N. Nisan, “Pseudorandom bits for constant depth circuits,”
Combinatorica, vol. 11, no. 1, 1991, pp. 63–70. doi: 10.1007/
BF01375474.

[181] N. Nisan, “Pseudorandom generators for space-bounded compu-
tation,” Combinatorica, vol. 12, no. 4, 1992, pp. 449–461. doi:
10.1007/BF01305237.

[182] N. Nisan and A. Ta-Shma, “Extracting randomness: A survey
and new constructions,” J. Comput. System Sci., vol. 58, no. 1,
part 2, 1999, pp. 148–173. doi: 10.1006/jcss.1997.1546.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/100811623
https://doi.org/10.1007/BF01726202
https://doi.org/10.1007/978-1-4615-0013-1_19
https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1137/0222053
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01305237
https://doi.org/10.1006/jcss.1997.1546

204 References

[183] N. Nisan and A. Wigderson, “Hardness vs randomness,” J. Com-
put. Syst. Sci., vol. 49, no. 2, 1994, pp. 149–167. doi: 10.1016/
S0022-0000(05)80043-1.

[184] N. Nisan and D. Zuckerman, “Randomness is linear in space,”
J. Comput. System Sci., vol. 52, no. 1, 1996, pp. 43–52. doi:
10.1006/jcss.1996.0004.

[185] R. O’Donnell, Analysis of Boolean Functions. Cambridge Uni-
versity Press, 2014. doi: 10.1017/CBO9781139814782.

[186] C. H. Papadimitriou and M. Sipser, “Communication complex-
ity,” J. Comput. System Sci., vol. 28, no. 2, 1984, pp. 260–269.
doi: 10.1016/0022-0000(84)90069-2.

[187] G. Parisi and F. Rapuano, “Effects of the random number gen-
erator on computer simulations,” Physics Letters B, vol. 157,
no. 4, 1985, pp. 301–302. doi: 10.1016/0370-2693(85)90670-7.

[188] R. Peralta, “On the randomness complexity of algorithms,”
University of Wisconsin, Milwaukee CS Research Report TR
90-1, 1990.

[189] N. Perlroth, “Government announces steps to restore confidence
on encryption standards,” The New York Times, 2013. URL:
https ://bits .blogs .nytimes . com/2013/09/10/government -
announces - steps - to - restore - confidence - on - encryption -
standards/ (accessed on 07/14/2021).

[190] N. Pippenger and M. J. Fischer, “Relations among complexity
measures,” Journal of the ACM, vol. 26, no. 2, 1979, pp. 361–381.
doi: 10.1145/322123.322138.

[191] E. Pyne, R. Raz, and W. Zhan, Certified hardness vs. randomness
for log-space, ECCC preprint TR23-040, 2023. URL: https://
eccc.weizmann.ac.il/report/2023/040/.

[192] E. Pyne and S. Vadhan, “Limitations of the Impagliazzo-Nisan-
Wigderson pseudorandom generator against permutation branch-
ing programs,” in Proc. 27th International Computing and Com-
binatorics Conference (COCOON), pp. 3–12, 2021. doi: 10.1007/
978-3-030-89543-3_1.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1016/0022-0000(84)90069-2
https://doi.org/10.1016/0370-2693(85)90670-7
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://doi.org/10.1145/322123.322138
https://eccc.weizmann.ac.il/report/2023/040/
https://eccc.weizmann.ac.il/report/2023/040/
https://doi.org/10.1007/978-3-030-89543-3_1
https://doi.org/10.1007/978-3-030-89543-3_1

References 205

[193] E. Pyne and S. Vadhan, “Pseudodistributions that beat all
pseudorandom generators (extended abstract),” in Proc. 36th
Computational Complexity Conference (CCC), 33:1–33:15, 2021.
doi: 10.4230/LIPIcs.CCC.2021.33, Full version: ECCC preprint
TR21-019.

[194] E. Pyne and S. Vadhan, “Deterministic approximation of random
walks via queries in graphs of unbounded size,” in Proc. 5th
Symposium on Simplicity in Algorithms (SOSA), pp. 57–67,
2022. doi: 10.1137/1.9781611977066.5.

[195] Y. Rabani and A. Shpilka, “Explicit construction of a small ε-net
for linear threshold functions,” SIAM J. on Computing, vol. 39,
no. 8, 2010, pp. 3501–3520. doi: 10.1137/090764190.

[196] A. Rao and A. Yehudayoff, Communication Complexity and
Applications. Cambridge University Press, 2020. doi: 10.1017/
9781108671644.

[197] R. Raz, O. Reingold, and S. Vadhan, “Extracting all the ran-
domness and reducing the error in Trevisan’s extractors,” J.
Comput. System Sci., vol. 65, no. 1, 2002, pp. 97–128. doi:
10.1006/jcss.2002.1824.

[198] A. A. Razborov, “Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition,” Math. Notes,
vol. 41, no. 4, 1987, pp. 333–338. doi: 10.1007/BF01137685.

[199] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput.
Syst. Sci., vol. 55, no. 1, 1997, pp. 24–35.

[200] A. Razborov, “A simple proof of Bazzi’s theorem,” ACM Trans-
actions on Computation Theory, vol. 1, no. 1, 2009. doi: 10.1145/
1490270.1490273.

[201] A. A. Razborov, “Lower bounds for deterministic and nondeter-
ministic branching programs,” in Proc. 8th International Confer-
ence on Fundamentals of Computation Theory (FCT), pp. 47–60,
1991. doi: 10.1007/3-540-54458-5_49.

[202] O. Reingold, T. Steinke, and S. Vadhan, “Pseudorandomness for
regular branching programs via Fourier analysis,” in Proc. 17th
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), pp. 655–670, 2013.
doi: 10.1007/978-3-642-40328-6_45.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://eccc.weizmann.ac.il/report/2021/019/
https://doi.org/10.1137/1.9781611977066.5
https://doi.org/10.1137/090764190
https://doi.org/10.1017/9781108671644
https://doi.org/10.1017/9781108671644
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/1490270.1490273
https://doi.org/10.1145/1490270.1490273
https://doi.org/10.1007/3-540-54458-5_49
https://doi.org/10.1007/978-3-642-40328-6_45

206 References

[203] O. Reingold, L. Trevisan, and S. Vadhan, “Pseudorandom walks
on regular digraphs and the RL vs. L problem,” in Proc. 38th
Annual ACM Symposium on Theory of Computing (STOC),
pp. 457–466, 2006. doi: 10.1145/1132516.1132583.

[204] V. Rödl, “On a packing and covering problem,” European Journal
of Combinatorics, vol. 6, no. 1, 1985, pp. 69–78. doi: 10.1016/
S0195-6698(85)80023-8.

[205] B. Rossman, “Criticality of Regular Formulas,” in Proc. 34th
Computational Complexity Conference (CCC), 1:1–1:28, 2019.
doi: 10.4230/LIPIcs.CCC.2019.1.

[206] M. Saks and S. Zhou, “BPHSPACE(S) ⊆ DSPACE(S3/2),” J.
Comput. System Sci., vol. 58, no. 2, 1999, pp. 376–403. doi:
10.1006/jcss.1998.1616.

[207] J. Schönheim, “On coverings,” Pacific J. Math., vol. 14, 1964,
pp. 1405–1411. URL: http ://projecteuclid .org/euclid .pjm/
1103033815.

[208] R. A. Servedio and L.-Y. Tan, “Luby-Veličković-Wigderson revis-
ited: Improved correlation bounds and pseudorandom generators
for depth-two circuits,” in Proc. 22nd International Workshop
on Randomization and Approximation Techniques in Computer
Science (RANDOM), 56:1–56:20, 2018. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2018.56.

[209] R. A. Servedio and L.-Y. Tan, “Improved Pseudorandom Gener-
ators from Pseudorandom Multi-Switching Lemmas,” in Proc.
28th International Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM), 45:1–45:23,
2019. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.45.

[210] R. A. Servedio and L.-Y. Tan, “Pseudorandomness for read-k
DNF formulas,” in Proc. 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 621–638, 2019. doi: 10.
1137/1.9781611975482.39.

[211] R. Shaltiel, “Recent developments in extractors,” Bulletin of the
European Association for Theoretical Computer Science, vol. 77,
Jun. 2002, pp. 67–95.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1132516.1132583
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.4230/LIPIcs.CCC.2019.1
https://doi.org/10.1006/jcss.1998.1616
http://projecteuclid.org/euclid.pjm/1103033815
http://projecteuclid.org/euclid.pjm/1103033815
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.1137/1.9781611975482.39
https://doi.org/10.1137/1.9781611975482.39

References 207

[212] R. Shaltiel, “An introduction to randomness extractors,” in Proc.
38th International Colloquium on Automata, Languages and
Programming (ICALP), pp. 21–41, 2011. doi: 10.1007/978-3-
642-22012-8_2.

[213] R. Shaltiel and C. Umans, “Simple extractors for all min-
entropies and a new pseudorandom generator.,” J. ACM, vol. 52,
no. 2, 2005, pp. 172–216. doi: 10.1145/1059513.1059516.

[214] A. Shamir, “On the generation of cryptographically strong pseu-
dorandom sequences,” ACM Trans. Comput. Syst., vol. 1, no. 1,
1983, pp. 38–44. doi: 10.1145/357353.357357.

[215] A. Ta-Shma, “Randomized algorithms and de-randomization,”
2015. URL: http://www.cs.tau.ac.il/~amnon/Classes/2015-
PRG/class.htm.

[216] A. Ta-Shma, “Expanders, pseudorandomness and derandomiza-
tion,” 2016. URL: http://www.cs.tau.ac.il/~amnon/Classes/
2016-PRG/class.htm.

[217] A. Ta-Shma, “Explicit, almost optimal, epsilon-balanced codes,”
in Proc. 49th Annual ACM Symposium on Theory of Computing
(STOC), pp. 238–251, 2017. doi: 10.1145/3055399.3055408.

[218] A. Ta-Shma, “Space-bounded computation,” 2018. URL: http:
//www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm.

[219] A. Ta-Shma, “A first course in derandomization,” 2019. URL:
http : / / www . cs . tau . ac . il / ~amnon / Classes / 2019 -
Derandomization/class.htm.

[220] J. Šíma and S. Žák, “A polynomial-time construction of a hitting
set for read-once branching programs of width 3,” Fund. Inform.,
vol. 184, no. 4, 2021, pp. 307–354. doi: 10.3233/fi-2021-2101.

[221] M. Skorski, “Tight Chernoff-Like Bounds Under Limited In-
dependence,” in Proc. 26th International Workshop on Ran-
domization and Approximation Techniques in Computer Science
(RANDOM), 15:1–15:14, 2022. doi: 10.4230/LIPIcs.APPROX/
RANDOM.2022.15.

[222] R. Smolensky, “On representations by low-degree polynomials,”
in Proc. 34th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 130–138, 1993. doi: 10.1109/SFCS.
1993.366874.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/978-3-642-22012-8_2
https://doi.org/10.1007/978-3-642-22012-8_2
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1145/357353.357357
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
https://doi.org/10.1145/3055399.3055408
http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
https://doi.org/10.3233/fi-2021-2101
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874

208 References

[223] R. Smolensky, “Algebraic methods in the theory of lower bounds
for Boolean circuit complexity,” in Proc. 19th Annual ACM
Symposium on Theory of Computing (STOC), pp. 77–82, 1987.
doi: 10.1145/28395.28404.

[224] T. Steinke, Pseudorandomness for permutation branching pro-
grams without the group theory, ECCC preprint TR12-083, 2012.
URL: https://eccc.weizmann.ac.il/report/2012/083/.

[225] T. Steinke, S. Vadhan, and A. Wan, “Pseudorandomness and
Fourier-growth bounds for width-3 branching programs,” Theory
Comput., vol. 13, 2017, Paper No. 12. doi: 10.4086/toc.2017.
v013a012.

[226] B. A. Subbotovskaya, “Realizations of linear function by formulas
using +, ·,−,” Doklady Akademii Nauk SSSR, vol. 136:3, 1961,
pp. 553–555. URL: http://mi.mathnet.ru/eng/dan/v136/i3/
p553.

[227] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom gener-
ators without the xor lemma,” J. Comput. Syst. Sci., vol. 62,
no. 2, 2001, pp. 236–266. doi: 10.1006/jcss.2000.1730.

[228] A. Tal, “Tight Bounds on the Fourier Spectrum of AC0,” in Proc.
32nd Computational Complexity Conference (CCC), 15:1–15:31,
2017. doi: 10.4230/LIPIcs.CCC.2017.15.

[229] A. Tal, “Pseudorandomness,” 2021. URL: https : / / www .
avishaytal.org/pseudorandomness.

[230] J. Tarui, “Probabilistic polynomials, AC0 functions and the
polynomial-time hierarchy,” Theoret. Comput. Sci., vol. 113,
no. 1, 1993, pp. 167–183. doi: 10.1016/0304-3975(93)90214-E.

[231] S. Toda and M. Ogiwara, “Counting classes are at least as hard
as the polynomial-time hierarchy,” SIAM J. Comput., vol. 21,
no. 2, 1992, pp. 316–328. doi: 10.1137/0221023.

[232] L. Trevisan, “Extractors and pseudorandom generators,” J. ACM,
vol. 48, no. 4, 2001, pp. 860–879. doi: 10.1145/502090.502099.

[233] L. Trevisan, “Pseudorandomness and combinatorial construc-
tions,” 2005. URL: https : / / web . archive . org / web /
20150115081847/http://www.cs.berkeley.edu/~luca/pacc/.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/28395.28404
https://eccc.weizmann.ac.il/report/2012/083/
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4086/toc.2017.v013a012
http://mi.mathnet.ru/eng/dan/v136/i3/p553
http://mi.mathnet.ru/eng/dan/v136/i3/p553
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://www.avishaytal.org/pseudorandomness
https://www.avishaytal.org/pseudorandomness
https://doi.org/10.1016/0304-3975(93)90214-E
https://doi.org/10.1137/0221023
https://doi.org/10.1145/502090.502099
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/

References 209

[234] L. Trevisan and S. Vadhan, “Pseudorandomness and average-case
complexity via uniform reductions,” Comput. Complexity, vol. 16,
no. 4, 2007, pp. 331–364. doi: 10.1007/s00037-007-0233-x.

[235] L. Trevisan and T. Xue, “A derandomized switching lemma and
an improved derandomization of AC0,” in Proc. 28th Annual
IEEE Conference on Computational Complexity (CCC), pp. 242–
247, 2013. doi: 10.1109/CCC.2013.32.

[236] C. Umans, “Pseudo-random generators for all hardnesses,” J. of
Computer and System Sciences, vol. 67, no. 2, 2003, pp. 419–440.
doi: 10.1016/S0022-0000(03)00046-1.

[237] S. Vadhan and C. J. Zheng, “Characterizing pseudoentropy and
simplifying pseudorandom generator constructions,” in Proc.
44th Annual ACM Symposium on Theory of Computing (STOC),
pp. 817–836, 2012. doi: 10.1145/2213977.2214051.

[238] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends in
Theoretical Computer Science, vol. 7, no. 1-3, 2012, pp. 1–336.
doi: 10.1561/0400000010.

[239] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting
unique solutions,” Theoret. Comput. Sci., vol. 47, no. 1, 1986,
pp. 85–93. doi: 10.1016/0304-3975(86)90135-0.

[240] S. Vigna, “Further scramblings of Marsaglia’s xorshift genera-
tors,” J. Comput. Appl. Math., vol. 315, 2017, pp. 175–181. doi:
10.1016/j.cam.2016.11.006.

[241] E. Viola, “Pseudorandom bits for constant-depth circuits with
few arbitrary symmetric gates,” SIAM J. Comput., vol. 36, no. 5,
2007, pp. 1387–1403. doi: 10.1137/050640941.

[242] E. Viola, “The sum of D small-bias generators fools polynomials
of degree D,” Comput. Complexity, vol. 18, no. 2, 2009, pp. 209–
217. doi: 10.1007/s00037-009-0273-5.

[243] E. Viola, “Randomness buys depth for approximate counting,”
Comput. Complexity, vol. 23, no. 3, 2014, pp. 479–508. doi:
10.1007/s00037-013-0076-6.

[244] E. Viola, “Special topics in complexity theory,” 2017. URL:
https://www.ccs.neu.edu/home/viola/classes/spepf17.html.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1109/CCC.2013.32
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1145/2213977.2214051
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/j.cam.2016.11.006
https://doi.org/10.1137/050640941
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.1007/s00037-013-0076-6
https://www.ccs.neu.edu/home/viola/classes/spepf17.html

210 References

[245] E. Viola, “Fourier conjectures, correlation bounds, and majority,”
in Proc. 48th International Colloquium on Automata, Languages
and Programming (ICALP), 111:1–111:15, 2021. doi: 10.4230/
LIPIcs.ICALP.2021.111.

[246] E. Viola, Correlation bounds against polynomials, ECCC preprint
TR22-142, 2022. URL: https://eccc.weizmann.ac.il/report/2022/
142/.

[247] I. Wegener, The complexity of Boolean functions, ser. Wiley-
Teubner Series in Computer Science. John Wiley & Sons, Inc.,
1987, pp. xii+457. URL: https://dl.acm.org/doi/10.5555/35517.

[248] A. Wigderson, Randomness and pseudorandomness, IAS Institute
Letter, 2009. URL: https://www.ias.edu/ideas/2009/wigderson-
randomness-pseudorandomness.

[249] A. C. Yao, “Theory and applications of trapdoor functions,” in
Proc. 23rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 80–91, 1982. doi: 10.1109/SFCS.1982.45.

[250] Y. Yu, D. Gu, X. Li, and J. Weng, “The randomized iterate,
revisited—almost linear seed length PRGs from a broader class
of one-way functions,” in Proc. 12th Theory of Cryptography
Conference (TCC), pp. 7–35, 2015. doi: 10.1007/978-3-662-
46494-6_2.

[251] Y. Yu, X. Li, and J. Weng, “Pseudorandom generators from
regular one-way functions: New constructions with improved
parameters,” Theoret. Comput. Sci., vol. 569, 2015, pp. 58–69.
doi: 10.1016/j.tcs.2014.12.013.

[252] D. Zuckerman, “General weak random sources,” in Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 534–543, 1990. doi: 10.1109/FSCS.1990.89574.

[253] D. Zuckerman, “Pseudorandomness and combinatorial construc-
tions,” 2001. URL: https://www.cs.utexas.edu/~diz/395T/01/.

Full text available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2021.111
https://doi.org/10.4230/LIPIcs.ICALP.2021.111
https://eccc.weizmann.ac.il/report/2022/142/
https://eccc.weizmann.ac.il/report/2022/142/
https://dl.acm.org/doi/10.5555/35517
https://www.ias.edu/ideas/2009/wigderson-randomness-pseudorandomness
https://www.ias.edu/ideas/2009/wigderson-randomness-pseudorandomness
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1016/j.tcs.2014.12.013
https://doi.org/10.1109/FSCS.1990.89574
https://www.cs.utexas.edu/~diz/395T/01/

