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ABSTRACT

This is a survey of unconditional pseudorandom genera-
tors (PRGs). A PRG uses a short, truly random seed to
generate a long, “pseudorandom” sequence of bits. To be
more specific, for each restricted model of computation (e.g.,
bounded-depth circuits or read-once branching programs),
we would like to design a PRG that “fools” the model, mean-
ing that every function computable in the model behaves
approximately the same when we plug in pseudorandom
bits from the PRG as it does when we plug in truly random
bits. In this survey, we discuss four major paradigms for
designing PRGs:

• We present several PRGs based on k-wise uniform gen-
erators, small-bias generators, and simple combinations
thereof, including proofs of Viola’s theorem on fooling
low-degree polynomials [242] and Braverman’s theorem
on fooling AC0 circuits [36].

• We present several PRGs based on “recycling” random
bits to take advantage of communication bottlenecks,
such as the Impagliazzo-Nisan-Wigderson generator
[131].

Pooya Hatami and William Hoza (2024), “Paradigms for Unconditional Pseudoran-
dom Generators”, Foundations and Trends® in Theoretical Computer Science: Vol.
16, No. 1-2, pp 1–210. DOI: 10.1561/0400000109.
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• We present connections between PRGs and computa-
tional hardness, including the Nisan-Wigderson frame-
work for converting a hard Boolean function into a
PRG [183].

• We present PRG frameworks based on random restric-
tions, including the “polarizing random walks” frame-
work [49].

We explain how to use these paradigms to construct PRGs
that work unconditionally, with no unproven complexity-
theoretic assumptions. The PRG constructions use ingredi-
ents such as finite field arithmetic, expander graphs, and
randomness extractors. The analyses use techniques such as
Fourier analysis, sandwiching approximators, and simplifi-
cation-under-restrictions lemmas.
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1
Introduction

To make random choices, it would be useful to have an unlimited supply
of “truly random” bits: unbiased and independent coin flips. What
can we do if we only have a few truly random bits? A pseudorandom
generator (PRG) uses a small amount of true randomness, called the
“seed,” to generate a long sequence that appears to be completely random
(even though it isn’t). PRGs are ubiquitous in computing theory and
practice. The basic motivation is that we think of randomness as a
scarce computational resource, akin to time or space, so whenever we
get our hands on some random bits, we want to stretch them as far as
possible.

To model PRGs mathematically, we consider some “observer,” mod-
eled as a function f . Let Un denote the uniform distribution over {0, 1}n.
We would like to “fool” f in the following sense.

Definition 1.1 (Fooling). Suppose f : {0, 1}n → {0, 1} is a function, X
is a probability distribution over {0, 1}n, and ε > 0. We say that X
fools f with error ε, or ε-fools f , if

| Pr[f(X) = 1] − Pr[f(Un) = 1]| ≤ ε.

3
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4 Introduction

More generally, we can consider a real-valued function f : {0, 1}n → R.
In this case, we say that X fools f with error ε if

|E[f(X)] − E[f(Un)]| ≤ ε.

If ε = 0, we say that X perfectly fools f .
Remark 1.1. As a shorthand, we often identify the function f with the
random variable f(Un). For example, instead of E[f(Un)], we simply
write E[f ].

Definition 1.1 says that although X might not be uniform, X and
Un are nevertheless indistinguishable, at least from f ’s perspective.
Conversely, if X does not ε-fool f , we refer to f as a “distinguisher”
for X. A PRG’s job is to use a few truly random bits to sample a
distribution that fools f .
Definition 1.2 (PRGs). Suppose f : {0, 1}n → R and G : {0, 1}s →
{0, 1}n are functions and ε > 0. We say that G is an ε-PRG for f if
G(Us) fools f with error ε. In this case, we also say that G fools f with
error ε (see Figure 1.1.)

f f

G

≈

$ $$$$$$$

$ $ $ $

Figure 1.1: A PRG (G) uses a few truly random bits (depicted here using $ symbols)
to sample a pseudorandom string that is indistinguishable from a truly random
string, from the perspective of the observer (f).

The parameter s is called the seed length of the PRG; we would like
s to be as small as possible. Throughout this text, the parameter “n”
will always denote the number of pseudorandom bits we are generating.
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1.1. Whom Shall We Fool? Three Approaches to PRGs 5

1.1 Whom Shall We Fool? Three Approaches to PRGs

An unavoidable fact of life is that for any nontrivial PRG, there exists
a function that is not fooled by the PRG.

Claim 1.1 (Impossibility of fooling all functions). LetG : {0, 1}s → {0, 1}n

where s < n. There exists some f : {0, 1}n → {0, 1} such that G does
not 0.49-fool f .

Proof. Let f be the indicator function for the image of G. Then
E[f(G(Us))] = 1, whereas E[f ] ≤ 1/2 because s < n.

In light of Claim 1.1, the best we can hope for is generating bits
that fool some large sets of observers but not all of them. After all, as
Avi Wigderson says, randomness is in the eye of the beholder [248].

Definition 1.3 (PRG for a class of functions). Let n ∈ N, let F be a class
of functions f : {0, 1}n → R, let G : {0, 1}s → {0, 1}n be a function, and
let ε > 0. We say that G is an ε-PRG for F if G fools every f ∈ F with
error ε.

Which observers shall we fool? The study of PRGs can be crudely
divided into three approaches based on three possible answers:

1. Everyday non-adversarial applications.

2. All efficient observers.

3. Restricted models of computation.

We discuss these three approaches in Sections 1.1.1 to 1.1.3.

1.1.1 PRGs for everyday non-adversarial applications

In practice, when programmers want randomness, they invoke some type
of random() method provided by the computing environment. Under
the hood, these random() methods typically involve several components,
each of which might be quite sophisticated. When practitioners speak
of “pseudorandom number generators” or “random number generators,”
they are usually referring to the entire randomness system as a whole,

Full text available at: http://dx.doi.org/10.1561/0400000109



6 Introduction

including whatever techniques are used to produce an initial seed. For
example, the system might derive a seed from the current time of day,
even though such a seed is rather predictable. As another example,
the system might use hardware random number generators based on
thermal noise measurements.

In this text, we sidestep the important issue of producing a seed,
along with many other issues that are important in practice. We fo-
cus on the challenge of stretching a truly random seed out to a long
pseudorandom string. In our terminology, this is the job of a PRG (see
Definition 1.2). A PRG is thus one of multiple components of a prac-
tical randomness system. For example, Java’s Math.random() method
currently uses a type of PRG called a linear congruential generator. For
such a PRG, the seed is a random number X0 ∈ {0, 1, . . . ,M − 1}, and
the output sequence is (X1, X2, X3, . . . ), where

Xi+1 = a ·Xi + b mod M

for some parameters M,a, b. Meanwhile, Python’s random.random()
method uses an algorithm called the “Mersenne twister” [169], and
major web browsers currently use a PRG in the “xorshift+ family” [240]
to implement Javascript’s Math.random() function.

Why these PRGs are unsatisfactory

Practitioners use these randomness systems for both casual applications
(e.g., video games) and serious applications (e.g., scientific simulations).
However, for a generic randomized algorithm, there is no firm mathe-
matical guarantee that the outputs will be reliable when the algorithm is
executed using one of these practical randomness systems. The methods
that practitioners typically use to run randomized algorithms must be
considered heuristics.

To be clear, a lot of work goes into designing high-quality practical
randomness systems. Designers strive to ensure that these systems can
be safely used in any application that “comes up naturally” in practice.
The system is only deemed acceptable for everyday use when it passes
a great number of creative statistical tests, such as those in the TestU01
family [147].

Full text available at: http://dx.doi.org/10.1561/0400000109



1.1. Whom Shall We Fool? Three Approaches to PRGs 7

These statistical tests are valuable, but there is a wide gap between
the statistical tests and a typical randomized algorithm. The designers
behind practical systems such as Java’s Math.random() method wisely
do not claim that they work in adversarial scenarios, so these systems
are considered unsuitable for cryptography. This is true even if we focus
solely on the PRG component of these systems. Furthermore, sometimes
programs “accidentally” distinguish pseudorandom numbers from truly
random numbers. There are quite a few documented cases in which
PRGs have been shown to cause inaccurate scientific simulations [68],
[69], [88], [89], [107], [139], [174], [187]! One must imagine that other
cases have gone unnoticed.

To a theoretician, this state of affairs is deeply unsatisfactory. Yes,
modern practical PRGs seem to almost always work well in practice,
but we don’t have a mathematically rigorous explanation for why these
systems work. It’s not even clear what precisely the goal is. (Mathemat-
ically, how can we make a distinction between “adversarially-designed”
programs and “naturally-occurring” programs?) By theoreticians’ stan-
dards, the success of practical PRGs is largely a mystery.

1.1.2 PRGs for all efficient observers

One of the great ideas in the theory of computing is the concept of a PRG
that fools all computationally efficient observers. Given such a PRG
and a truly random seed, we would be able to execute any randomized
algorithm that is actually worth executing. (After all, there’s no point
running a program if one won’t even survive long enough to see the
output!) Such a PRG could also be used in cryptographic settings,
because we can safely assume that eavesdroppers and hackers only have
so much computational power.1

For example, the Blum-Blum-Shub (BBS) generator [27] uses a
short seed to randomly select a suitable modulus M and a number

1There is a subtle distinction here. In the context of randomized algorithms,
it’s okay if the PRG itself uses a little more time than the algorithms that we
are trying to fool. On the other hand, in the context of cryptography, we want an
efficiently-computable PRG that fools all efficient adversaries, including those that
use polynomially more time than the PRG uses.

Full text available at: http://dx.doi.org/10.1561/0400000109



8 Introduction

X0 ∈ {1, 2, . . . ,M − 1}, and then it outputs the sequence (X1 mod
2, X2 mod 2, X3 mod 2, . . . ) where

Xi+1 = X2
i mod M.

This PRG is reminiscent of linear congruential generators, but the
similarity is only superficial. It is believed that the BBS generator fools
polynomial-time algorithms.

Why these PRGs are also (currently) unsatisfactory

Fooling all efficient observers is a well-defined and well-motivated
goal. Unfortunately, nobody knows how to prove that some efficiently-
computable PRG actually has this marvelous property.

To be clear, there is a substantial body of “evidence” indicating
that such PRGs exist. For example, Blum et al. [27] showed that their
generator fools all polynomial-time observers, under the plausible-but-
unproven assumption that there is no good algorithm for the “quadratic
residuosity problem”. There are many other examples of PRGs that
fool all polynomial-time observers under reasonable cryptographic or
complexity-theoretic assumptions [28], [83], [119], [134], [144], [183],
[236], [249].2 For practical cryptography, software developers tend to
use PRGs that are not even supported by rigorous conditional proofs
of correctness, but rather are supported by heuristic and intuitive
arguments.

There is a genuine possibility that these PRGs are not secure. In
one infamous incident, the U.S. National Institute of Standards and
Technology (NIST) recommended using a PRG called “Dual_EC_DRBG.”
The PRG was designed by the U.S. National Security Agency (NSA), and
allegedly, they intentionally designed it to be insecure for surveillance
purposes [189].

Once again, to a theoretician, this state of affairs is not satisfactory.
There is genuine room for doubt about whether known PRGs work, and
perhaps more importantly, even if they do work, we don’t have a good

2Note that some of these PRGs use somewhat more time than the observers
they fool, and hence are suitable for simulating randomized algorithms but not for
cryptography (cf. Footnote 1).
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1.1. Whom Shall We Fool? Three Approaches to PRGs 9

explanation for why they work. Conditional proofs can be considered
partial explanations at best. The problem of designing PRGs that
unconditionally fool all efficient observers is very challenging, with
connections to deep topics such as the famous P vs. NP problem (see
Section 4.1).

1.1.3 PRGs for restricted models of computation

The main topic of this text is a third approach to PRGs. In this third
approach, we identify an interesting and well-defined restricted model
of computation. Then we design PRGs that fool the chosen model of
computation (unconditionally – with no unproven assumptions) and try
to optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG

G : {0, 1}2 → {0, 1}3

that fools every observer f that only looks at two of the three output
bits. This problem is not completely trivial, because we don’t know
which two bits f will observe. Nevertheless, the problem can be solved
by defining

G(u1, u2) = (u1, u2, u1 ⊕ u2),
where ⊕ denotes the XOR operation. When u1 and u2 are chosen
uniformly at random, the three output bits are correlated, but any two
of the bits are independent and uniform random.

Unconditional PRGs can be constructed for much richer and more
interesting restricted models of computation. We are especially inter-
ested in fooling models of computation that have a “complexity theory”
flavor, i.e., we want the output of the PRG to appear random to any
observer that is “sufficiently efficient” in some sense. Arguably, the two
most important models in this field are constant-depth circuits (AC0,
see Definition 2.13) and read-once branching programs (ROBPs, see
Definition 1.5).

The value of these PRGs

Could PRGs for restricted models ever be directly used in practical
applications? Potentially. PRGs for restricted models can be used to
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10 Introduction

simulate randomized algorithms without significantly distorting their
behavior, provided that the algorithms in question are “sufficiently
efficient” in the appropriate sense. (See Section 1.5 for more details.)

Admittedly, it’s a bit unrealistic to imagine the PRGs studied in the
theoretical literature being implemented on actual computers, because
it is hard to compete with the practical PRGs discussed in Section 1.1.1.
Instead, the study of PRGs for restricted models has a much grander
and broader purpose: these PRGs help to uncover the mysteries of
the theory of computing, and hence are invaluable from a scientific
perspective.

We briefly elaborate on some of the applications of PRGs within
the theory of computing in Section 1.5. Apart from any application,
we hope to convince the reader that PRGs for restricted models are
interesting in their own right.

1.2 Overview of this Text

In this work, we survey some of the most important frameworks and
techniques for constructing unconditional PRGs for restricted models
of computation. We focus on four major PRG paradigms:

• In Section 2, we present k-wise uniform generators, small-bias
generators, and simple combinations thereof.

• In Section 3, we present PRGs that “recycle” randomness to take
advantage of communication bottlenecks, such as the Impagliazzo-
Nisan-Wigderson generator [131].

• In Section 4, we present connections between PRGs and compu-
tational hardness, including the Nisan-Wigderson framework for
converting a hard Boolean function into a PRG [183].

• In Section 5, we present methods for constructing PRGs based
on (pseudo)random restrictions, including the relatively recent
“polarizing random walks” framework [49].

Along the way, as needed, we introduce the computational models that
we fool (decision trees, circuits, branching programs, etc.) and tech-
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1.3. The Generic Probabilistic Existence Proof 11

niques for analyzing PRGs (Fourier analysis, sandwiching approximators,
simplification-under-restriction lemmas, etc.)

The literature on unconditional PRGs is vast, and this survey is far
from exhaustive. (For example, we do not discuss the important line
of work on fooling linear threshold functions [78], [104], [173], [195].)
Instead, we hope that this work serves as a suitable introduction to the
field of unconditional PRGs, preparing the reader to study new and old
papers on PRGs and make their own contributions.

The results that we cover include both classic and recent works.
Besides covering the most important principles of PRG design and
analysis, we also made sure to include expositions of many of the most
important examples of unconditional PRGs, such as Viola’s [242] PRG
for low-degree polynomials, Braverman’s [36] theorem that limited
independence fools AC0, and Forbes and Kelley’s [91] relatively recent
PRG for arbitrary-order ROBPs.

This text is primarily expository. However, we couldn’t help but
include a few novel theorems and proofs. For example, we present a
new proof of Braverman’s theorem (Section 2.6), and we present a
new improvement to the polarizing random walks framework in the
low-error regime (Section 5.1.4). We also highlight plenty of important
open problems regarding PRGs for restricted models of computation.

Many wonderful prior expository works [15], [97], [165], [175], [185],
[238] and lecture notes [45]–[47], [215], [216], [218], [219], [229], [233],
[244], [253] include some coverage of unconditional PRGs. However,
none of them has quite the same focus as our work, so we feel that our
work fills a gap.

In the rest of this section, we discuss some additional basic issues re-
lated to the concept of a PRG, paving the way for the PRG constructions
in subsequent sections.

1.3 The Generic Probabilistic Existence Proof

For many classes F , including classes defined by standard nonuniform
computational models (such as decision trees, circuits, branching pro-
grams, etc.), there is a totally generic argument showing that there
exist PRGs that fool F with a small seed length.

Full text available at: http://dx.doi.org/10.1561/0400000109



12 Introduction

Proposition 1.1 (Nonexplicit PRGs). Let F be a class of functions
f : {0, 1}n → {0, 1}. For every ε > 0, there exists an ε-PRG for F with
seed length log log |F| + 2 log(1/ε) +O(1).

Proof. Pick a function G : {0, 1}s → {0, 1}n uniformly at random. Con-
sider any arbitrary f ∈ F . For each seed y, the value f(G(y)) is a
random bit satisfying

E
G

[f(G(y))] = E
Un

[f(Un)].

Furthermore, as y ranges over all 2s possible seeds, these random
variables f(G(y)) are independent. Therefore, by Hoeffding’s inequality,

Pr
G

∣∣∣∣∣∣E[f ] − 2−s
∑

y∈{0,1}s

f(G(y))

∣∣∣∣∣∣ > ε

 ≤ 2e−2ε22s
.

By the union bound, the probability that G fails to ε-fool F is bounded
by 2|F|e−2ε22s . For s = log log |F| + 2 log(1/ε) +O(1), this probability
is less than 1, i.e., there exists a G that does ε-fool F .

In a typical case – e.g., if F is the set of all circuits of size at
most n – each function f ∈ F can be described using poly(n) bits, i.e.,
|F| ≤ 2poly(n). In this case, the PRG guaranteed by Proposition 1.1 has
seed length O(log(n/ε)).

1.4 Explicitness

Proposition 1.1 has a major weakness: it does not guarantee that the
PRG is efficiently computable. The proof of Proposition 1.1 is in some
sense “nonconstructive.” Ideally, we want an algorithm for sampling
from a pseudorandom distribution, and we want the algorithm to be
reasonably efficient with respect to randomness and more conventional
complexity measures simultaneously.

Definition 1.4 (Explicitness). A PRG G : {0, 1}s → {0, 1}n is explicit if
it can be computed in time poly(n).

One could consider alternative standards of explicitness. We could re-
quire that each individual output bit can be computed in time polylogn,
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1.4. Explicitness 13

or that the PRG runs in space O(logn), or that each bit can be com-
puted in AC0, or any number of other conditions. The truth is, there
is no “one true definition” of explicitness. The appropriate definition
depends on what one hopes to gain from the PRG; see Section 1.5.

In this text, we will stick with Definition 1.4 for concreteness, but
when we present PRG constructions, we will generally not bother
carefully verifying the runtime bound. Instead, we will focus on making
the construction clear to the reader.

1.4.1 Families of PRGs

Definition 1.4 refers to the time complexity of a PRG. To meaningfully
speak of time complexity, we technically ought to be considering a
whole family of PRGs. The convention in this line of work is to keep
the family implicit. For example, a theorem might say something like
the following.

For all n,m ∈ N and all ε > 0, there exists an explicit ε-PRG for
size-m decision trees on n input bits with seed length O(log(m/ε) +
log logn).

(See Section 2.3.3.) Translating into more precise language, the same
theorem can be restated as follows.

There exists a randomized algorithm G satisfying the following.

1. Given input parameters n,m, ε, the algorithm G outputs a
string G(n,m, ε) ∈ {0, 1}n.

2. For all n,m, ε, the output distribution G(n,m, ε) fools size-m
decision trees with error ε.

3. G(n,m, ε) uses at most O(log(m/ε) + log logn) random bits
and runs in time poly(n).

There is something potentially troubling about this “translation”
process. The quantifiers got flipped! In the informal theorem statement,
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we say “for all n,m, ε, there exists an explicit PRG,” but strictly speak-
ing, we mean that there exists a single algorithm G that works for all
n,m, ε simultaneously! Is this “flipped quantifiers” convention wise?

Let us make an analogy with big-O notation. Recall, e.g., the famous
planar separator theorem:

For all n ∈ N, for every n-vertex planar graph, there exists a set of
O(

√
n) vertices such that removing those vertices splits the graph

into connected components with at most 2n/3 vertices each.

If we wanted to be more rigorous, we ought to flip the quantifiers
and write something like the following:

There exists a function f : N → N such that f ∈ O(
√
n) and for

all n ∈ N, for every n-vertex planar graph, there exists a set of
f(n) vertices such that removing those vertices splits the graph into
connected components with at most 2n/3 vertices each.

We don’t bother with such careful language because it obscures
more than it clarifies. The important thing is that the expression
“O(

√
n)” tells how the number of removed vertices scales with the

universally quantified parameter n. Analogously, when we say “there
exists an explicit PRG,” the word “explicit” tells how the computational
complexity of the PRG scales with the parameters.

1.4.2 The default conjecture: Explicit PRGs exist

For each “reasonable” class F , the standard conjecture is that there
exists an explicit PRG with essentially the same seed length as the
generic nonexplicit bound (Proposition 1.1). Oftentimes, this conjecture
can be supported with evidence in the form of conditional constructions.
For example, consider the class F of all CNF formulas of size at most
n. The nonexplicit PRG has seed length O(log(n/ε)). Under plausible
complexity-theoretic assumptions, there is indeed an explicit PRG for
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all size-n Boolean circuits (whether CNF formulas or not) with seed
length O(log(n/ε)) [134].

Even without a compelling conditional construction, the “default”
conjecture would be that for natural families of functions a probabilistic
existence proof can be matched by an explicit construction. The main
challenge is to find the explicit construction. Typically, such a PRG
would be optimal, i.e., one can unconditionally prove a seed length lower
bound matching the nonexplicit bound to within a constant factor.3
For example, every PRG for size-n CNF formulas (explicit or not) must
have seed length at least Ω(log(n/ε)).

1.5 Applications of PRGs

PRGs for restricted models have many applications. We will not attempt
to exhaustively list these applications, nor even to properly survey
them. We will, however, briefly describe some of the most important
applications. Hopefully, this brief discussion of applications will serve
to motivate the main topic of this text, which is the construction and
analysis of PRGs.

1.5.1 Simulating randomized algorithms

One of the most natural applications of PRGs is to simulate a random-
ized algorithm using only a few truly random bits (the seed of the PRG).
Let A be a randomized algorithm that we would like to simulate. In
order to simulate A without significantly distorting its behavior, what
property should our PRG have?

For simplicity, let us assume that A is a decision algorithm, i.e.,
it outputs a bit. Let A(a, x) denote the output value of A when the
input is a and the random bits are x. For each input a, we can define
a function fa : {0, 1}n → {0, 1}, where n is the number of random bits
that A uses,4 by the rule fa(x) = A(a, x). That is, fa describes the
behavior of A on input a as a function of its random bits. Definition 1.2

3For a counterexample, see the work of Hoza et al. [127].
4For simplicity, we assume that n is determined by a rather than varying based

on the random bits. This is a “Monte Carlo” algorithm rather than a “Las Vegas”
algorithm.
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implies that if G : {0, 1}s → {0, 1}n is an PRG that fools fa with error
ε, then G can be used to simulate A without changing its acceptance
probability by more than ε:

| Pr[A(a, Un) = 1] − Pr[A(a,G(Us)) = 1]| ≤ ε.

Thus, if we wish to design a PRG to simulate A, we should study the
computational complexity of the functions fa.

Simulating randomized polynomial-time algorithms

One important case is when A is a polynomial-time randomized al-
gorithm, corresponding to the complexity class BPP. In this case,
the following claim says that the functions fa can be computed by
polynomial-size Boolean circuits.5

Claim 1.2 (PRGs for circuits can be used to simulate BPP). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let T be the running
time of A on input a and assume T ≥ |a|. Then fa can be computed by
a Boolean circuit of size poly(T ).6

Proof. The function A(a, x) can be computed by a Boolean circuit of
size poly(T ) that reads both a and x [190]. When we fix the “a” portion
of the input bits to arbitrary values, what remains is a circuit of size
poly(T ) operating on x.

Claim 1.2 implies that if G : {0, 1}s → {0, 1}n fools circuits of size
poly(T ), then G can be used to simulate time-T randomized algorithms.
The running time of this simulation is essentially T plus the running time
of G, so for this application, the appropriate “explicitness” condition is
that G can be computed quickly, e.g., in time poly(T ). Unfortunately,
as discussed previously, the challenge of designing explicit PRGs for
general Boolean circuits is extremely difficult.

5Recall that a Boolean circuit is a network of AND, OR, and NOT gates.
6Again, we assume for simplicity that n and T are determined by a rather than

varying based on the random bits (cf. Footnote 4).
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Remark 1.2 (Nonuniformity). The Boolean circuit model is a nonuniform
model, i.e., each individual Boolean circuit operates on inputs of some
fixed length. The reader might find it counterintuitive that we seek
PRGs for circuits in order to simulate uniform randomized polynomial-
time algorithms (i.e., the one randomized algorithm can handle inputs
of any arbitrary length). The concept of advice might be helpful [141].
Recall that a family of polynomial-size circuits (one circuit for each input
length) is equivalent to a polynomial-time algorithm with a polynomial
amount of advice: data that is trustworthy but that depends only on
the input length. In our setting, the input a to the polynomial-time
algorithm A can be viewed as advice that A uses to try to distinguish
between truly random bits and the output of a PRG. We want to
simulate A correctly even on a worst-case input a, and hence we want
a PRG that fools an adversarial polynomial-time observer with advice,
i.e., a Boolean circuit.

Simulating randomized log-space algorithms

Another important case is when A is a log-space randomized algorithm,
corresponding to the complexity class BPL. In this case, for each input
a, the function fa can be computed by a polynomial-width standard-order
read-once branching program (ROBP), defined next.

Definition 1.5 (Standard-order read-once branching programs). A length-
n standard-order read-once branching program (standard-order ROBP)
f consists of a directed layered multigraph with n+ 1 layers, V0, . . . , Vn.
For every i < n, each vertex v ∈ Vi has two outgoing edges leading to
Vi+1, one labeled 0 and the other labeled 1. Vertices in Vn have zero
outgoing edges. There is a designated “start vertex” vstart ∈ V0. An
input x ∈ {0, 1}n selects a path (v0, v1, . . . , vn) through the graph: the
path starts at v0 = vstart, and upon reaching a vertex vi ∈ Vi, the bit
xi+1 specifies which outgoing edge to use. There is a designated set of
“accept vertices” Vaccept ⊆ Vn, and f(x) = 1 if vn ∈ Vaccept and f(x) = 0
otherwise. The width of the program is the maximum number of vertices
in a single layer (see Figure 1.2).
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Figure 1.2: A width-5 length-6 standard-order ROBP computing the function
f(x) = MAJ(x1 ⊕ x2, x3 ⊕ x4, x5 ⊕ x6).

Claim 1.3 (PRGs for ROBPs can be used to simulate BPL). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let S be the number
of bits of space used by A on input a and assume S ≥ log |a|. Then fa

can be computed by a standard-order ROBP of width 2O(S).

Proof. We think of A as a Turing machine with an input tape, a work
tape, and a random tape. Each vertex in the program corresponds to
a configuration of A, consisting of the contents of its work tape, the
location of the input tape and work tape read heads, and the internal
state of A. An edge (u, v) labeled b ∈ {0, 1} indicates that if we run A

on input a starting at configuration u until its next coin toss, and if that
coin toss outcome is b, then the machine’s configuration immediately
following the coin toss is v.
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Remark 1.3 (The read-once property). In general, a log-space algorithm
with a polynomial amount of advice is equivalent to a polynomial-size
branching program that might read its bits many times (see Defini-
tion 5.16). Nevertheless, we get a read-once branching program in
Claim 1.3. The reason is that we are focusing on the behavior of the
algorithm as a function of its random bits. An algorithm in the standard
BPL model only has read-once access to its random tape: the algorithm
cannot go back and re-read old random bits. (If one is computing using
a single fair coin, then one cannot ask the coin what the outcome of
the first toss was after tossing it a second time.)

Remark 1.4 (ROBP terminology). In the pseudorandomness literature,
standard-order ROBPs are often referred to as simply “ROBPs.” This
practice is a bit misleading, since the definition is not simply “a branch-
ing program that is read-once.” Indeed, in addition to being read-once,
we are assuming that the program is oblivious, meaning that the variable
queried in time step i depends only on i, and more specifically, we are
assuming that the branching program follows the standard variable
ordering, meaning that in time step i, the program queries the variable
xi. (The branching program in the proof of Claim 1.3 indeed reads its
input bits in the standard order, because without loss of generality,
the algorithm A reads its read-once random tape from left to right.)
Unsurprisingly, many papers outside the pseudorandomness literature
use terms like “read-once branching program” to refer to more general
models that are not necessarily even oblivious [17], [21], [22], [201], [247].
In this text, for clarity, we use the more verbose term “standard-order
ROBP” to emphasize the variable ordering assumption.7

Claim 1.3 implies that if G : {0, 1}s → {0, 1}n fools standard-order
ROBPs of width 2O(S), then G can be used to simulate space-S ran-
domized algorithms. For this application, the appropriate “explicitness”
condition is that G can be computed in low space – perhaps space O(S).
More precisely, the space complexity of the deterministic simulation
is essentially S plus the space complexity of computing G(y) given
one-way read-only access to the seed y.

7Hoza used the same verbose terminology in some other recent expository
work [125].
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Simulating other types of randomized algorithms

One can consider numerous other classes of randomized algorithms, as
well as specific important randomized algorithms. In each case, if we
wish to replace the truly random bits with pseudorandom bits, then the
question we must answer is, what is the algorithm doing as a function of
its random bits? If, for each fixed input a, the algorithm’s behavior can
be described by a function of “sufficiently low complexity” applied to its
random bits, then we can design a PRG that fools such “low-complexity”
functions and use it to simulate the algorithm. Because of the presence
of the worst-case input a, the appropriate complexity measure will
generally be captured by some nonuniform model of computation.

1.5.2 Derandomizing algorithms

If we use a PRG to simulate a randomized algorithm in the most
natural possible way (as discussed above), we are still using a small
amount of randomness, namely the truly random seed of the PRG.
However, in many cases it is possible to eliminate this small amount
of randomness, leading to a completely deterministic simulation. The
most straightforward way to do this is to exhaustively try all possible
seeds.

Claim 1.4 (Trying all seeds and taking a majority vote). Let A be a
randomized decision algorithm, let a be an input, and let n be the
number of random bits that A uses on input a.8 Let ε > 0 and assume
that A succeeds with probability greater than 1/2 +ε, i.e., there is some
“correct answer” b ∈ {0, 1} such that

Pr[A(a, Un) = b] > 1/2 + ε.

Define fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let G : {0, 1}s

→ {0, 1}n be a PRG that ε-fools fa. Then

MAJy∈{0,1}s(A(a,G(y))) = b.

Proof. First, suppose b = 1. The definition of fooling implies that

E[A(a,G(Us))] = E[f(G(Us))] ≥ E[f ] − ε > 1/2 + ε− ε = 1/2.
8Again, we assume for simplicity that n is determined by a.
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Therefore, A(a,G(y)) = 1 for a majority of seeds y. Now suppose instead
that b = 0. The fact that G fools fa with error ε implies that G also
fools 1 − fa with error ε, because for any distribution X, we have

|E[1−fa(X)]−E[1−fa]| = |1−E[fa(X)]−1+E[fa]| = |E[fa]−E[fa(X)]|.

Therefore, by our previous analysis applied to 1 −A(a, x), we see that
A(a,G(y)) = 0 for a majority of seeds y.

Claim 1.4 implies, for example, that if G : {0, 1}s → {0, 1}n fools
standard-order ROBPs of width 2O(S), then we can use it to determin-
istically simulate randomized space-S decision algorithms. The space
complexity of this deterministic simulation is essentially S, plus s, plus
the space complexity of computing G(y). Thus, for this application, the
appropriate “explicitness” condition is that G can be computed in low
space – perhaps space O(s). In particular, for this application, there
is no significant benefit to constructing a PRG with space complexity
o(s), because in the end we are going to use s bits of space to iterate
through all possible seeds anyway.

The standard nonconstructive argument (Proposition 1.1) implies
that there exists a nonexplicit ε-PRG for width-w length-n standard-
order ROBPs with seed length O(log(wn/ε)). Furthermore, the standard
definition of BPL implies that randomized log-space algorithms have
polynomial running time, and hence they use at most polynomially
many random bits. Consequently, if we can design a PRG for standard-
order ROBPs with seed length O(log(wn/ε)) and space complexity
O(log(wn/ε)), then it will follow that L = BPL. That is, such a PRG
would imply that randomized algorithms have at most a constant-factor
advantage over deterministic algorithms in terms of space complexity.
This would be a profound conclusion about the intrinsic relationship
between randomness and memory as computational resources.

So far, optimal constructions of explicit PRGs for ROBPs are not
known, but we do have “pretty good” constructions (see, e.g., Sec-
tion 3.2). Furthermore, there are many partial derandomization results
known for space-bounded computation, building on the theory of PRGs
for ROBPs (in nontrivial ways). For example, it has been shown that
randomized space-S algorithms can be simulated deterministically in
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space slightly less than S3/2 [124], [206]. The challenge of constructing
optimal PRGs for standard-order ROBPs is an exciting and central
open problem in the study of unconditional PRGs.

Other applications

We have briefly discussed the most straightforward applications of PRGs,
namely simulating randomized algorithms using little or no randomness.
We now give a small sample of less straightforward applications.

• Ironically, it turns out that PRGs are sometimes useful for design-
ing randomized algorithms. For example, PRGs for space-bounded
computation are often used in the design of randomized streaming
algorithms using a technique first introduced by Indyk [136].

• Unconditional PRGs for restricted models have applications to
“hardness amplification within NP” [105], [121], [160].

• Unconditional PRGs for restricted models have applications in
the area of “meta-complexity.” It turns out that PRGs can be
used to rule out certain types of “natural proofs” of strong circuit
lower bounds [199] or to show that certain models of computation
cannot solve the “Minimum Circuit Size Problem” [137]. For these
applications, the “correct” definition of explicitness is that for
each fixed seed y ∈ {0, 1}s, there is a small Boolean circuit Cy

such that for every i ∈ [n], we have Cy(i) = G(y)i.

1.6 Beyond PRGs: Hitting Set Generators and More

For the sake of context, in this section we briefly describe some relax-
ations of the PRG definition. The main motivation behind studying
these relaxations is that constructing PRGs is challenging. These “gen-
eralized PRGs” are sometimes easier to construct, and yet they suffice
for some (but not all) of the applications of PRGs. We only give a short
overview of these concepts, since our main focus is true PRGs.

The most well-known “generalized PRG” concept is a hitting set
generator (HSG).
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Definition 1.6 (HSGs). Suppose F is a class of functions f : {0, 1}n →
{0, 1}. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that for
every f ∈ F , if E[f ] ≥ ε, then there exists some x such that f(G(x)) = 1.

An HSG is a “one-sided PRG.” HSGs have been studied since the
1980s [3] if not earlier. HSGs can be used to derandomize algorithms
that have one-sided error, simply by trying all seeds. In some contexts,
HSGs can also be used (in nontrivial ways) to derandomize algorithms
that have two-sided error [11], [12], [40], [61], [100].

A few years ago, [37] introduced a different generalization of PRGs,
called weighted PRGs (WPRGs).9

Definition 1.7 (WPRG). Suppose F is a class of functions f : {0, 1}n →
R. An ε-WPRG for F is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and
ρ : {0, 1}s → R, such that for every f ∈ F , we have∣∣∣∣ E

U∼Us

[f(G(U)) · ρ(U)] − E[f ]
∣∣∣∣ ≤ ε.

Thus, WPRGs generalize PRGs because we consider sparse linear
combinations of the outputs of f rather than sparse convex combinations
of the outputs of f . Several recent works have exploited this extra
flexibility to construct WPRGs with better parameters than known
PRGs [37], [52], [70], [124], [193].

Yet another generalization of PRGs is the concept of a deterministic
sampler.

Definition 1.8 (Deterministic sampler). Suppose F is a class of functions
f : {0, 1}n → R. An ε-deterministic sampler for F is a deterministic
oracle algorithm A that makes queries to a function f ∈ F and outputs
a number Af ∈ R such that |Af − E[f ]| ≤ ε.

The deterministic sampler model isolates a key feature of PRGs,
which is that they are useful even if we merely have black-box access to
the function f . Deterministic samplers have been discussed (by name)

9In Braverman, Cohen, and Garg’s [37] original paper, they speak of “pseudoran-
dom pseudo-distributions.” The “weighted PRG” terminology was introduced later,
by Cohen et al. [70].
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in a few recent works [61], [191], [194]. Several older algorithms can also
be understood as deterministic samplers [11], [12], [40], [100], [132].

One can show that these four concepts form a hierarchy:

PRG =⇒ WPRG =⇒ deterministic sampler =⇒ HSG.

Thus, PRGs (our focus in this text) are the most desirable of the four.
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A
Converse of the Sandwiching Lemma

Suppose we wish to show that every distribution that fools one class
Fsimp also fools another class F . We presented two techniques for proving
such a “transfer theorem”:

1. The first technique is to express each f ∈ F as a linear combination
of functions in Fsimp and invoke the Triangle Inequality for PRG
Errors.

2. The second technique is to sandwich each f ∈ F between functions
in Fsimp and invoke the Sandwiching Lemma.

As discussed in Section 2.5.1, we will now prove the following converse
statement: If every distribution that fools Fsimp also fools F , then every
f ∈ F is sandwiched between linear combinations of functions in Fsimp.

Theorem A.1 (Characterization of when fooling one class implies fooling
another). Let n ∈ N, let Fsimp be a finite class of functions f : {0, 1}n →
R, and let g : {0, 1}n → R. Let ε0, ε > 0 and suppose that every
distribution X that fools Fsimp with error ε0 also fools g with error ε.

174
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Then g is (2ε)-sandwiched between two functions fℓ, fu : {0, 1}n → R
of the form

fℓ(x) = λ
(0)
ℓ +

kℓ∑
i=1

λ
(i)
ℓ f

(i)
ℓ (x) (A.1)

fu(x) = λ(0)
u +

ku∑
i=1

λ(i)
u f (i)

u (x), (A.2)

where kℓ, ku ∈ N, λ(i)
ℓ , λ

(i)
u ∈ R, f (i)

ℓ , f
(i)
u ∈ Fsimp, and

ε0 ·
kℓ∑

i=1
|λ(i)

ℓ | ≤ ε (A.3)

ε0 ·
ku∑
i=1

|λ(i)
u | ≤ ε. (A.4)

Conversely, if we start from the assumption that Equations (A.1)
to (A.4) hold, then for any distribution X that fools Fsimp with error
ε0, the Triangle Inequality for PRG Errors implies that X fools fℓ and
fu with error ε, and therefore the Sandwiching Lemma implies that X
fools g with error 3ε. This recovers the assumption of Theorem A.1 up
to a factor of three1 in the error parameter. In this sense, Theorem A.1
shows that the Triangle Inequality for PRG Errors and the Sandwiching
Lemma are “complete.”

Before presenting the proof, let us elaborate on what the theorem
says in two important special cases.

• Let Fsimp be the class of Boolean k-juntas and let ε0 = 0. Then
Theorem A.1 says that a function is fooled by every k-wise uniform
distribution if and only if the function can be sandwiched between
two low-degree real polynomials. This was first shown by Bazzi
[20] and, independently, by Benjamini et al. [26].

• Next, let Fsimp to be the class of parity functions. Then Theo-
rem A.1 essentially says that a function is fooled by every small-
bias distribution if and only if the function can be sandwiched

1A more refined analysis, involving a more cumbersome version of the Sandwiching
Lemma, gives a tight characterization without the extra factor of three.
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between two functions with low Fourier L1 norm.2 This was first
shown by De et al. [75].3

The general case seems to be folklore.

Proof of Theorem A.1. The proof uses linear programming duality. For
each f ∈ Fsimp, define f : {0, 1}n → R by f(x) = f(x) − E[f ]. Consider
the following linear program in the variables {px}x∈{0,1}n :

Maximize
∑

x∈{0,1}n

pxg(x),

subject to px ≥ 0 for all x ∈ {0, 1}n

and
∑

x∈{0,1}n

px = 1

and
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp

and −
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp.

The constraints say that the px variables are the probability mass
function of some distribution that fools Fsimp with error ε0. The program
is feasible, because if nothing else we can set px = 2−n (the uniform
distribution). The objective function is the expectation of g under the
distribution defined by the px variables, so the optimal value must be
at most E[g] + ε.

The dual linear program, in the variables z and {y+
f , y

−
f }f∈Fsimp , is

as follows:

Minimize z + ε0 ·
∑

f∈F0

(y+
f + y−

f ),

subject to y+
f , y

−
f ≥ 0 for all f ∈ Fsimp

and z +
∑

f∈F0

f(x) · (y+
f − y−

f ) ≥ g(x) for all x ∈ {0, 1}n.

2Actually the quantity that matters is the sum of absolute values of the nonempty
Fourier coefficients, whereas we included the empty Fourier coefficient in our definition
of Fourier L1 norm.

3Note that there is a minor mistake in the formulation by De et al. [75]: in their
Proposition 2.7, the lower and upper sandwichers should be allowed to have different
values of “l” and “δ.”
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By strong LP duality, the optimal value of this dual linear program is
also at most E[g] + ε. Observe that given a feasible solution to the dual
linear program, if we subtract min{y+

f , y
−
f } from y+

f and from y−
f , then

we get another feasible solution and the objective function can only
decrease. Therefore, by setting yf = y+

f − y−
f , we obtain real numbers

z∗ and {y∗
f }f∈Fsimp such that

z∗ + ε0 ·
∑

f∈Fsimp

|y∗
f | ≤ E[g] + ε, and

z∗ +
∑

f∈Fsimp

f(x)y∗
f ≥ g(x) for all x ∈ {0, 1}n.

Define

fu(x) = z∗ +
∑

f∈Fsimp

y∗
f · f(x)

=

z∗ −
∑

f∈Fsimp

y∗
f E[f ]

+
∑

f∈Fsimp

y∗
f · f(x).

Then fu has the form given by Equation (A.2), and fu ≥ g. Furthermore,
E[fu] = z∗, so

0 ≤ E[fu − g] = z∗ − E[g] ≤ ε− ε0 ·
∑

f∈Fsimp

|y∗
f |.

This shows that E[fu − g] ≤ ε and that Equation (A.4) holds.
Fooling g is equivalent to fooling −g, so the above also shows that

there is some function fℓ of the form given by Equation (A.1) such that
−fℓ ≥ −g, E[g − fℓ] ≤ ε, and Equation (A.3) holds. Therefore, g is
(2ε)-sandwiched between fℓ and fu.
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B
List of PRGs

For reference, we conclude this text by listing the best explicit PRG
constructions currently known for various models of computation, ar-
ranged by the model they fool. The list is not meant to be exhaustive;
only a selection of important computational models are included. In
each case, we only record a single state-of-the-art seed length, which in
many cases is superior to the PRG constructions that we presented.
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B.1 Circuit Models

In the list below, we use d to denote depth and m to denote size. Assume
d = O(1) and m ≥ n.

• Conjunctions/disjunctions of literals

– Seed length: O(log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: Folklore

• AC0 circuits

– Seed length: Õ(logd−1m · log(m/ε))
– Approach: Variant of the Ajtai-Wigderson framework
– Reference: [166]

• Read-once CNFs/DNFs

– Seed length: O(logn) + Õ(log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [81]

• Read-once AC0 formulas

– Seed length: Õ(log(n/ε))
– Approach: Iterated restrictions with early termination
– References: [80], [82]

• De Morgan formulas

– Seed length: m1/3+o(1) · polylog(1/ε)
– Approach: Variant of the IMZ framework
– Reference: [120]

• Read-once De Morgan formulas

– Seed length: O(log2 n · log(n/ε))
– Approach: Iterated restrictions
– Reference: [91]
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B.2 Branching Program Models

In the list below, we use m to denote size and w to denote width.
Assume m ≥ n.

• Unrestricted branching programs

– Seed length:
√
m · polylog(n/ε)

– Approach: Variant of the IMZ framework
– Reference: [120]

• Width-2 branching programs that read d bits at a time

– Seed length: O(d logn+ d · 2d · log(m/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [29]

• Standard-order ROBPs with w = 3

– Seed length: Õ(logn · log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [171]

• Standard-order ROBPs with 4 ≤ w ≤ n

– Seed length: O(log(n/ε) · logn)
– Approach: Recycling seeds
– References: [131], [181]

• Standard-order ROBPs with w ≫ n

– Seed length: O
(

log(w/ε)·log n
log log w

)
– Approach: Recycling seeds
– References: [13], [140]
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• Standard-order regular ROBPs

– Seed length: Õ(log(w/ε) · logn)
– Approach: INW generator
– Reference: [38]

• Standard-order permutation ROBPs with w = O(1)

– Seed length: O(logn · log(1/ε))
– Approach: INW generator
– References: [74], [145], [224]

• Arbitrary-order ROBPs

– Seed length: O(log(wn/ε) · log2 n)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order ROBPs with w = O(1)

– Seed length: Õ(log(n/ε) · logn)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order permutation ROBPs with w = O(1)

– Seed length: Õ(logn · log(1/ε))
– Approach: Polarizing random walks
– Reference: [49]

• Decision trees, or more generally parity decision trees

– Seed length: O(log(m/ε))
– Approach: δ-bias
– Reference: [146]
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B.3 Algebraic Models

• Parity functions

– Seed length: O(log(n/ε))
– Approach: Balanced codes
– References: [178], [217]

• Parities of at most k bits

– Seed length: O(log(k/ε)) + log logn
– Approach: ε-biased seed for k-wise uniform generator
– Reference: [178]

• Degree-d polynomials over F2

– Seed length: O(d logn+ d2d log(1/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [242]

B.4 Models Based on Locality

• [−1, 1]-valued k-juntas

– Seed length: O(k + log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: [178]

• Two-dimensional combinatorial rectangles

– Seed length: n
2 +O(log(1/ε))

– Approach: Random edge of expander
– Reference: [131]

• d-dimensional combinatorial rectangles

– Seed length: Õ(n/d+ log(1/ε) + log logn)
– Approach: Iterative alphabet reduction
– Reference: [106]
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• Two-party communication protocols with cost m

– Seed length: n
2 +O(m+ log(1/ε))

– Approach: Random edge of expander
– Reference: [131]
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