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ABSTRACT

Based on unique panel data from a five-wave internet survey in
Japan, we show how the coronavirus disease 2019 (COVID-19) pan-
demic affects people’s prospect-theory risk preferences, especially
in the loss domain. The panel analysis indicates that following the
spread of the pandemic, diminishing sensitivity becomes stronger
for the participants’ value and probability weighting functions.
Therefore, owing to the pandemic, (i) people become less sensitive
to an increase in losses and feel less displeasure owing to losses,
especially large ones, and (ii) they become more pessimistic toward
losses occurring with tiny probabilities, and more optimistic toward
losses with larger probabilities. One implication of the study is that
people become less cautious about the risks of suffering large losses
with non-tiny probabilities, which may slow down the recovery of
society.
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1 Introduction

It is critical to know the effects of pandemics and other external negative shocks
on people’s risk attitudes. This is because personal risk preferences determine
one’s preventive and precautionary behaviors against further spreading and the
reoccurrence of shocks. This study aims (i) to show how the coronavirus disease
2019 (COVID-19, hereafter) affected people’s risk attitudes especially in the
loss domain, and (ii) to ascertain the underlying shift in risk preferences, using
the framework of prospect theory (Kahneman and Tversky, 1978; Tversky and
Kahneman, 1992).1 We use unique panel data from a five-wave internet survey
(N = 14, 470 for the balanced panel), conducted from March 2020, when the
number of infected individuals began increasing sharply, to June 2020, when
the infection rate remained low and the state of emergency was deregulated.

Many studies assert that risk attitudes are affected by exogenous negative
shocks including pandemics (e.g., Bu et al., 2020) and natural disasters (e.g.,
Page et al., 2014; Cameron and Shah, 2015; Cassar et al., 2017; Hanaoka et al.,
2018; Abatayo and Lynham, 2020; Di Falco and Vieider, 2022). However,
there are two concerns in literature. First, previous studies were based on the
expected utility theory. As is well known (e.g., Wakker, 2010), this theory only
has limited capability in describing actual risk attitudes. Second, risk attitudes
were examined by eliciting the degree of risk aversion from data on risky choices
over positive payoffs, that is, choices in the positive domain. There is need to
examine risk attitudes in the loss domain, because preventive and precautionary
behaviors are intrinsic choices between alternative losses. An example of this
would be taking a probabilistic risk of suffering from an infectious disease
versus paying a certain cost of preventive behavior (e.g., wearing a mask,
receiving vaccination) and/or precautionary behavior (e.g., getting insurance
and saving money).

Motivated by these points, we contribute to the literature by quantify-
ing people’s risk attitudes in the loss domain according to prospect theory.
Prospect theory describes people’s risky choices using (i) the value function,
which evaluates outcomes in the gain and loss domains differently, and (ii)
the probability weighting function, which describes the subjective impacts

1If people’s risk preferences were entirely fixed genetically, this research question might
not be relevant. However, twin studies of Cesearini et al. (2009) show that genetic variations
explain only about 20% of variations of risk preferences. This implies that risk preferences
can vary depending on environmental factors, which we focus on in this study.



COVID-19 Enhanced Diminishing Sensitivity in Prospect-Theory Risk Preferences 289

of cumulative probabilities (mathematically, probability ranks) and shapes
decision weights on outcomes, defined as differences in the probability weight
value of cumulative probability.

Experimental data, including those in the seminal articles by Kahneman
and Tversky (1979) and Tversky and Kahneman (1992), show that the value
function is concave in the gain domain and convex in the loss domain, while
the probability weighting function exhibits an inverse S-shaped curve with
respect to objective probability, where people put over-weights on outcomes
with extreme cumulative probabilities, that is, near endpoints 0 and 1 of
the probability axis, and under-weights on those in the middle region of the
probability axis (Abdellaoui et al., 2007; Booij et al., 2010; Dhami, 2017; Wu
and Gonzalez, 1996). Irrespective of the distinct shapes of the two functions,
the resulting risk preferences can be commonly characterized as diminishing
sensitivity. The value function reflects that decision makers exhibit diminishing
sensitivity to losses and gains; a larger loss (or gain) results in less sensitivity
to a marginal increase in loss (or gain). The probability weighting function
reflects that the less extreme the underlying cumulative probability is, the less
sensitive the decision maker becomes to a change in the probability.

To investigate changes in participants’ risk attitude under the pandemic,
our survey presents two hypothetical questions, Q1 and Q2, for each of the
five waves. Participants were asked to choose the highest acceptable insurance
premium from a given multiple price list to cover the probabilistic risk of
losing JPY 100,000 with a 50% probability in Q1, and of losing JPY 5 million
with a 0.1% probability in Q2. Based on the responses, we first report that
the participants are risk-loving for Q1 and risk averse for Q2 through all the
five waves. This is consistent with prospect theory’s prediction: people are
risk-loving when evaluating a prospect defined over the loss domain, insofar
as the payoff probability distribution is insignificantly negatively skewed, as
in Q1, whereas people are risk averse in the loss domain when the associated
distribution is significantly negatively skewed, as in Q2.

To quantify the observed risk attitudes in terms of diminishing sensitivity
under the given restriction of the data, we specify a priori the value function and
the probability weighting function according to what Tversky and Kahneman
(1992) developed and elicit two risk-preference parameters in prospect theory
for each participant. The first is a power parameter α of the value function
in the loss domain, where the degree of risk-lovingness is evaluated using the
parameter (1 − α). The second is a power parameter δ for the probability
weighting function in the loss domain, where the degree of distorted effects of
probability is evaluated using (1− δ). We aim to ascertain how the elicited
values of these prospect-theory risk parameters change across waves and
consequently, with the spread of the pandemic.

Our panel analysis shows that as COVID-19 spreads, diminishing sensitivity
becomes monotonically stronger for both the value and probability functions;
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the participants’ degree of risk-lovingness (1− α) and of probability perception
distortion (1− δ) both continued to rise. On the one hand, this implies that
people became less sensitive to an increase in losses during the pandemic, and
felt less displeasure from losses, particularly large ones. On the other hand,
they became more pessimistic about negative outcomes occurring with small
probabilities, referred to as tail loss risks, and more optimistic to non-tail
losses, that is, losses occurring with moderate or large probabilities. Therefore,
people are considered to have become relatively less cautious than before,
especially with the risk of suffering large non-tail losses.

Diminishing sensitivity, evaluated using (1 − α) and (1 − δ), exhibited
the sharpest rise at the third wave, which was conducted shortly after the
prime minister declared a state of emergency for the seven large prefectures
of Japan (Saitama, Chiba, Tokyo, Kanagawa, Osaka, Hyogo, and Fukuoka,
prefectures) on April 7. As the declaration had the most significant influ-
ence on Japanese society and economy, the observed change in the elicited
parameters could reflect the total influence of the pandemic, rather than the
pure direct effects of the risk of the virus infection. We also note some gender
differences. The female sample indicates stronger diminishing sensitivity than
the male sample for the value and probability weighting functions. Moreover,
female participants displayed a faster increase in diminishing sensitivity across
waves.

Our finding on the continuous rise of the degree of risk-lovingness (1− α)
with the spread of the pandemic appears to be inconsistent with the empirical
results in the literature, which states that negative shocks, either disasters or
stressful events, enhance people’s risk aversion (Page et al., 2014; Kandasamy
et al., 2014; Cameron and Shah, 2015; Casser, et al., 2017; Bu et al., 2020;
Di Falco and Vieider, 2022). Particularly, by conducting a two-wave panel
survey in Wuhan, China, the ground zero of the COVID-19 pandemic, Bu
et al. (2020) showed that participants more exposed to the pandemic allocated
lower proportions of wealth to risky assets in a hypothetical choice question
after the outbreak.

This apparent difference could have partially stemmed from the difference
in the domain under consideration. Our result considers risk preferences in the
loss domain, while previous studies considered them in the gain domain. The
difference between the two could be reconciled if we interpret the findings in
terms of diminishing sensitivity; pandemics and other negative shocks enhance
the diminishing sensitivity of the value function either in the gain or loss
domain. It is well known that Kahneman and Tversky’s (1979) reflection effect,
in which risk preferences in the gain domain are the mirror image of those in
the loss domain, occurs robustly (Fehr-Duda et al., 2006; Abdellaoui et al.,
2007). To the extent that the reflection property works, our finding that an
increase in risk-lovingness under COVID-19 could be considered consistent
with the literature, which states that negative shocks, including the pandemic
(Bu et al., 2020), enhance risk aversion in the gain domain.
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This rationalization of our result is consistent with the finding of Boutin
et al. (2022).2 By conducting a panel study based on risk-choice experiments
in Burkina Faso, they concluded that the diminishing sensitivity of the partici-
pants’ risk preferences were enhanced under the COVID-19 pandemic in that
risk aversion in the gain domain and risk lovingness in the loss domain were
both enhanced. Although they did not explicitly parameterize risk preferences,
their claim is consistent with our result.

Our finding on the continuous rise of probability perception distortion (1−δ)
during the pandemic is related to that of Li et al. (2011), Page et al. (2014),
and Abatayo and Lynham (2020), who show that natural disasters result in the
display of stronger preferences for prospects with positively skewed prizes, and
attributed this to the overweighting on outcomes with small probabilities. By
ascertaining the effect on probability weighting, our research provides evidence
of their claim.

We confirm the robustness of the main finding in two ways. First, using
an additional data set of a survey similar to ours, conducted independently
during the pre-COVID-19 period, we show that the two diminishing sensitivity
parameters became larger on average after the outbreak of the pandemic.
Second, we re-estimate the two risk parameters using the maximum likelihood
method, and thereby confirm that diminishing sensitivity is monotonically
enhanced during the sample period under the pandemic.

This paper proceeds as follows. Section 2 explains our data and empirical
strategy to elicit each participant’s prospect-theory risk preference. Section 3
presents the results. Section 4 discusses the possible mechanisms underlying
our findings, shows the robustness of our result, checks the goodness of fit of
the prospect theory model in comparison to the one-parametric expected value
model, and discusses implications of our study for the stability of measured
risk preferences. Section 5 further concludes the study.

2 Data and Empirical Strategy

2.1 Panel Survey and Event Flows

To examine the influence of the COVID-19 pandemic, we administered a
five-wave internet panel survey to Japanese respondents between ages 16 and
79, from March 13 to June 15, 2020.3 Based on our original questionnaire, the

2The research of Boutin et al. (2022), which cited the 2020 version of our paper, is
concurrently conducted with our study.

3Demographic distributions of the samples are reasonably similar to those of the Japanese
census, except that the density of the lowest income population in our sample is lower than
that in the census. For details, see Online Appendix A, in which sample distributions with
respect to residential location, age, and income are compared among (i) the first wave sample
of our (unbalanced) panel data, (ii) the sample of our balanced panel data, (iii) the sample
of NTTHID2018, discussed in Section 4, and (iv) the Japanese census.
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Table 1: Summary of the survey waves

Survey Survey Numbers of Response Numbers in
wave dates responses rates balanced panel

1st 2020/03/13–03/16 4,359 54.70% 2,894
2nd 2020/03/27–03/30 3,495 80.20% 2,894
3rd 2020/04/10–04/13 4,013 92.20% 2,894
4th 2020/05/08–05/11 3,996 91.90% 2,894
5th 2020/06/12–06/15 3,877 89.40% 2,894
Total 19,740 14,470

survey was conducted through Intage Inc., a Japanese company with experience
in conducting nationwide surveys for both academic and business purposes.

Table 1 and Figure 1 summarize the survey. As seen from Figure 1, the
survey period covers the main part of the first phase of the pandemic in Japan.
The first wave started on March 13, when the Act on Special Measures against
Pandemic Influenza was passed, and continued until March 16. As shown
in Table 1, it had 4,356 participants who were selected using the stratified
assignment method, in which Intage Inc. sent out invitation e-mails to its
pooled members until all bins stratified by sex, age, and residential location in
accordance with the Japanese census, Population Estimates in 2018, were ful-
filled. The second wave had 3,495 participants and was conducted from March
27 to March 30, when the cumulative number of infected rose sharply to 1,387.

Based on the Act on Special Measures against Pandemic Influenza, Japan’s
prime minister declared a state of emergency on April 7 for seven large
prefectures, including Tokyo and Osaka, to control the pandemic. Although
the declaration had no legal force in regulating people’s activities, the seven
prefectures were requested to follow the guideline of activities in the private
and public sectors. This significantly affected the whole Japanese society and
economy. Soon after the declaration of a state of emergency, the third wave
was conducted from April 10 to 13, with 4,013 participants. We conducted the
fourth wave from May 8 to 11 with 3,996 participants. By that time, the daily
infection rate had begun declining, while the state of emergency was extended
until the end of May. After the state of emergency was deregulated on May
25, the fifth wave was conducted on June 12 to 15 with 3,877 participants,
when society began attempting to return to normalcy, that is, the situation
before the pandemic.

As Table 1 shows, a total of 2,894 people participated in all five waves. In
the analysis in the following sections, although the results would not change
even if we used the whole, unbalanced sample, we focus on this subset of
observations constituting a balanced panel sample.
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Figure 1: COVID-19 infection rates in Japan and survey waves. Note: The graph depicts
the cross-wave development of the daily numbers of persons getting infected with COVID-19
in Japan, evaluated by the daily numbers of persons who are in the positive PCR test. The
first, second, third, fourth and fifth waves were conducted on March 13–16, March 27–30,
April 10–13, May 8–11, and June 12–15, respectively. Dashed lines indicate the date of the
surveys. Two bold lines show the dates when the state of emergency was declared (April 7),
and when the state of emergency was deregulated (May 25).

2.2 Risk Attitude

In the survey, two hypothetical questions, Q1 and Q2, are used to evaluate
participants’ risk attitudes in the loss domain. They are asked to choose
the highest acceptable insurance premium from a given multiple price list,
to cover a probabilistic risk of losing a certain amount of money. In Q1,
participants are assumed to lose an amount of JPY 1,00,000 (approximately
USD 1,000) with a 50% probability, whereas they are supposed to lose JPY 5
million (approximately USD 50,000) with a probability of 0.1% (for the precise
question in the survey, see Online Appendix B1) in Q2.

Note that Q1 and Q2 are designed such that they differ in the skewness
of the probability distribution of negative outcomes. In Q1, the outcome of
losing JPY 0 or JPY 100,000 occurs with a fifty-fifty chance, implying that the
distribution has zero skewness. In contrast, participants are supposed to lose
a huge amount of money (JPY 5 million) with a small probability (0.1%) in
Q2, in which case, skewness is highly negative (−31.575).4 As prospect theory
shows, people with an inverse S-shaped probability weighting function tend to
be averse to probabilistic losses with a negatively skewed distribution; they are

4Skewness of a distribution is defined as the third-order moment of the z-value distribu-
tion.
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pessimistic about rare negative events.5 By examining the responses to both
questions with different skewness, we can clearly characterize the participants’
risk attitudes by means of the value and probability weighting functions.

We suppose that each participant responds to Q1 and Q2 by evaluating
the (negative) value of the corresponding probabilistic losses based on their
prospect theory values V1 and V2. We let xi (i = 1, 2) denote the negative
outcome of question Qi (x1 = −100, 000; and x2 = −5, 000, 000) and pi,
the probability that xi occurs (p1 = 0.5; and p2 = 0.001). Accordingly, the
prospect theory value of the probabilistic loss supposed in question Qi is
evaluated using the value function v(xi), which evaluates the subjective value
of outcome xi, and the probability weighting function w(pi), which represents
the subjective impact of probability pi, as:6

Vi = w (pi) v (xi) , i = 1, 2. (1)

Following the functional specification of the two functions in Tversky and
Kahneman (1992), we specify functions v (x) and w (p) in the loss domain
(x < 0). Letting α (0 ≤ α ≤ 1) denote the power parameter of the value
function in the loss domain, which determines the degree of risk-lovingness
(1−α), and λ represent a parameter that determines the degree of loss aversion,
the value function a la Tversky and Kahneman (1992) is given as

v (x) = −λ (−x)
α
. (2)

With δ (0 ≤ δ ≤ 1) denoting a parameter for the probability weighting function,
where (1 − δ) determines the depth of the resulting inverse S-shaped curve,
the probability weighting function w (p) is given by

w (p) =
pδ(

pδ + (1− p)
δ
) 1

δ

. (3)

Note that, irrespective of specification (2) of the value function, the par-
ticipants’ choices in this study do not depend on loss aversion parameter λ,
because it does not consider prospects in which negative and positive outcomes
are mixed.

5In contrast, people with an inverse S-shaped probability weighting function in the gain
domain prefer probabilistic gains with a positively-skewed distribution; they are optimistic
about rare positive outcomes, such as lotteries.

6Precisely, cumulative prospect theory uses the decision weighting function π to decide
the weight of an outcome x occurring with probability p, where π is defined as a difference
in the value of the probability weighting function defined over cumulative probability
(probability rank). However, in the negative prospects considered in Q1 and Q2, there are
only two outcomes, zero and a negative outcome, so that from the definition of π (Tversky
and Kahneman, 1992) we have π (pi) = w (pi) for pi, the probability that the worst outcome
(suffering a loss) occurs.
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Let Ri (i = 1, 2) be the highest acceptable insurance premium revealed from
the response data to question Qi (see Online Appendix B2). By construction,
the prospect-theory values are equalized between paying Ri and taking a risk
of negative prospect (xipi; 0, 1− pi):

v (−Ri) = w (pi) v (xi) , i = 1, 2.

Substituting (2) and (3) into this equation yields the following:

(R1)
α
=

0.5δ (100, 000)
α{

0.5δ + (1− 0.5)
δ
} 1

δ

, (4)

(R2)
α
=

0.001δ (5, 000, 000)
α{

0.001δ + (1− 0.001)
δ
} 1

δ

, (5)

where λ disappears, because it is canceled out.
By solving these simultaneous equations, we can obtain the values of α

and δ for each participant. By taking the natural log of the equations and
rearranging the results, we have the following two equations:

ln (R2)− ln (5, 000, 000)

ln (R1)− ln (100, 000)
=

δln (0.001)−
(
1
δ

)
ln

(
0.001δ + (1− 0.001)

δ
)

δln (0.5)−
(
1
δ

)
ln

(
0.5δ + (1− 0.5)

δ
) , (6)

α =
δln (0.5)−

(
1
δ

)
ln

(
0.5δ + (1− 0.5)

δ
)

ln (R1)− ln (100, 000)
. (7)

Regarding the values of the highest acceptable insurance premiums R1 and
R2 that each participant revealed in Q1 and Q2, the value of parameter δ in
the probability weighting function is obtained from (6) for each respondent.
Consequently, the value of parameter α for the value function is computed
from (7) for each participant given the value of δ.7

3 Results

3.1 Mean Comparison

Table 2 summarizes the cross-wave changes in the participants’ acceptable
insurance premiums (R1, R2) in questions Q1 and Q2, and the risk premiums

7In Section 4.3, we estimate the prospect theory model using a maximum likelihood
method to re-elicit parameters α and δ for representative participants. The model is shown
to exhibit a better fit than a simple one-parametric model, in which choices are made based
on expected values of the risky choices.
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implied therefrom, R1/50, 000− 1 for Q1 and R2/5, 000− 1 for Q2. Note that
a positive risk premium implies risk-averse behavior, whereas a negative one
implies a risk-loving choice. Table 2 clearly shows two distinct tendencies. First,
participants are consistently risk-loving for Q1, and risk-averse for Q2 through
all five waves. This is consistent with the prospect theory’s prediction that
people are risk-loving when evaluating a prospect defined over the loss domain,
insofar as the payoff probability distribution is insignificantly negatively skewed,
as in Q1. The same theory states that people are risk averse in the loss
domain when the associated distribution is significantly negatively skewed,
as in Q2.

Second, and more importantly, Table 2 shows that as the wave proceeds
and COVID-19 spreads, risk premiums implied from Q1 and Q2 decrease
almost monotonically. This implies that average participants become more
risk-loving in Q1 and less risk averse in Q2 as the pandemic spreads.

Our main interest is in how these behavioral tendencies that occur with
the spread of COVID-19 are quantified in terms of risk preference parame-
ters in prospect theory. Table 3, which shows the summary statistics for
the elicited values of prospect theory parameters α and δ in each wave,
presents three noteworthy points. First, the mean values of α and δ are
both between 0 and 1 in each wave. This implies that the value function
and probability weighting function elicited, on average, have a diminishing
sensitivity property that prospect theory predicts. In other words, the average
participant has a convex value function in the loss domain, displaying dimin-
ishing sensitivity to marginal increases in the loss amount. The probability
weighting function in the loss domain of average participants is inversely S-
shaped; therefore, it has the diminishing sensitivity property. Overweighting
occurs for tail loss risks, whereas underweighting takes place for non-tail loss
risks.

Second, the mean values of α and δ seem to monotonically decrease as the
wave proceeds, suggesting that diminishing sensitivity tends to be stronger
for both the value and probability weighting functions. Figure 2(a) and (b)
depict the elicited mean cross-wave shifts of both functions. With COVID-19
spreading, the value function becomes more curved, and the inverse S shape
of the probability weighting function becomes deeper. Particularly, the effects
occur most substantially between Waves 2 and 3, that is, in response to the
declaration of the state of emergency.

Figure 3(a) and (b) show the statistical significance of these preference
shifts, where comparisons are made for the male and female samples. For either
of the male or female sample, α and δ both exhibit the sharpest, statistically
significant declines in the third wave. As the third wave was conducted shortly
after the government declared the state of emergency, the largest reductions
in the risk parameters could reflect the direct and indirect effects of the
declaration. Except for significant reductions in the female participants’ α in
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(a) The value function

(b) The probability weighting function

Figure 2: Cross-wave shifting of the value and the probability weighting functions in the
loss domain. Note: The figures depict the cross-wave shifting of the value function ([a]) and
the probability weighting function ([b[), where both are defined over the loss domain. The
loci of the functions are computed using mean values of α and δ at each wave summarized
in Table 4. Regarding the value function, we set the loss aversion parameter λ = 2.25, the
median value obtained by Tversky and Kahneman (1992).

the second wave, other decreases in α and δ between two consecutive waves are
statistically insignificant. It is important to note, however, that these results
are based on simple mean comparison, without controlling for fixed effects.
With fixed effects being controlled, cross-wave differences and, consequently,
the effects of the outbreak of COVID-19 become more significant, as we show
in the next section.

We can also find gender differences in Figure 3(a) and (b). Both α and δ
are lower for females than males, implying that the females tend to exhibit
a stronger diminishing sensitivity for both prospect-theory functions. This
result is consistent with that of Fehr-Duda et al. (2006), who showed through
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Figure 3: Cross-wave comparison of prospect theory parameters in the loss domain: Balanced
panel. Note: The balanced panel data are used (N=14,470). Parameters α and δ represent
the value and probability weighting functions, respectively. The first, second, third, fourth
and fifth waves were conducted on March 13–16, March 27–30, April 10–13, May 8–11, and
June 12–15, respectively. The intervals represent the 95% confidence intervals.

laboratory experiments, that women’s elicited probability weighting function
tends to be more curved than men’s in either the gain or loss domain. Partic-
ularly, as in this study, the study detected the same tendency in the context
of insurance evaluation. Our findings are consistent with these results.89

Our finding that females’ degree of risk-lovingness in the loss domain is
larger than that of males seems to contradict the stylized tendency that the
former is more risk averse than the latter (e.g., Croson and Gneezy, 2009).
However, previous research does not control for possible gender differences in
probability weighting. After controlling for gender difference in probability
weighting, Fehr-Duda et al. (2006) found no cross-gender difference in the
degree of risk-lovingness with respect to the value function. Both their results

8Figures 3(a) and (b) also show that cross-wave reductions, especially between Waves 2
and 3, are larger for females than males.

9Section 4.2 shows that another data set indicates the same gender difference that
females display stronger diminishing sensitivity.
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Table 3: Summary statistics of prospect-theory paramters in the loss domain.

α δ

Mean
H0: Wave t = Wave t− 1

Mean
H0: Wave t = Wave t− 1 Obs.(S.D.) (S.D.)

Wave 1 0.458 n.a. 0.424 n.a. 2,894
(0.223) (0.131)

Wave 2 0.438 0.001 0.417 0.023 2,894
(0.206) (0.113)

Wave 3 0.398 0.000 0.400 0.000 2,894
(0.171) (0.109)

Wave 4 0.397 0.823 0.399 0.765 2,894
(0.177) (0.107)

Wave 5 0.387 0.034 0.394 0.089 2,894
(0.170) (0.101)

All 0.416 0.407 14,470
(0.192) (0.113)

Note: Summary statistics of prospect theory parameters in five waves are given for the balanced
panel data. Parameter α represents the power of the value function in the loss domain (see
equation [2])), where the degree of risk lovingness is given by 1 - α, so that a higher α implies
a lower degree of risk lovingness. Parameter δ is one for the probability weighting function in
the loss domain (see equation [3]). A smaller δ value implies that the inverse S shape of the
probability weighting function is deeper. The third and fifth columns show the P-values of the
t-test with the hull hypothesis that the mean parameter value in the current wave equals that in
the previous one.

and ours suggest that gender differences in risk aversion could differ from what
the previous literature claimed.

3.2 Regressions

By controlling for the effects of individual participants’ heterogeneous at-
tributes, that is, fixed effects, we confirm the validity of the finding in the
previous subsection regarding the shifting of risk attitudes during the COVID-
19 pandemic. Accordingly, we estimate two fixed effect models for prospect-
theory parameters α and δ using the balanced panel data.10 First, the two risk
parameters are regressed on variable Infected COVID 19, the rate of persons
infected with COVID-19 in each respondent’s residential prefecture at each
wave. In the second model, we add four-wave dummy variables for the 2nd
to 5th waves, Wave2-Wave5, to the set of regressors, where Wave 1 is the
reference case, to capture nationwide cross-wave effects of the pandemic.

10Although individual income is not a fixed attribute, financial risk does not seem to be
a significant cause of the shifting of risk attitudes, because the economic situation did not
deteriorate even after the declaration of emergency on April 4 when risk attitudes changed
substantially. The year-over-year cash payroll increase in 2020 accounted for 0.1% in March
2020, while the year-over-year decline accounted for 0.7%, 2.3%, and 2.0% in April, May,
and June, respectively.
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Table 4: Fixed effect model estimations: Balanced panel.

Panel A

Dep. Variable = α Dep. Variable = δ

Full Male Female Full Male Female

Infected COVID 19 −2.401∗∗ −2.416∗∗ −2.385∗∗ −0.996∗∗ −0.947∗∗ −1.046∗∗

(0.154) (0.254) (0.174) (0.092) (0.137) (0.123)
Within R-Sq. 0.02 0.02 0.03 0.01 0.01 0.01
Groups 2,894 1,458 1,436 2,894 1,458 1,436
Obs. 14,470 7,290 7,180 14,470 7,290 7,180

Panel B

Dep. Variable = α Dep. Variable = δ

Full Male Female Full Male Female

Infected COVID 19 −0.267 −0.603 0.089 0.008 −0.010 0.028
(0.247) (0.412) (0.263) (0.135) (0.193) (0.188)

Wave1 <default> <default>
Wave2 −0.019∗∗ −0.014∗ −0.025∗∗ −0.007∗∗ −0.008∗ −0.006

(0.004) (0.007) (0.005) (0.003) (0.003) (0.003)
Wave3 −0.059∗∗ −0.052∗∗ −0.065∗∗ −0.025∗∗ −0.021∗∗ −0.029∗∗

(0.004) (0.006) (0.005) (0.003) (0.004) (0.003)
Wave4 −0.058∗∗ −0.046∗∗ −0.069∗∗ −0.026∗∗ −0.024∗∗ −0.028∗∗

(0.004) (0.008) (0.006) (0.003) (0.004) (0.004)
Wave5 −0.067∗∗ −0.058∗∗ −0.076∗∗ −0.030∗∗ −0.029∗∗ −0.032∗∗

(0.005) (0.008) (0.007) (0.003) (0.004) (0.004)
Waves 2 vs 3 P = 0.00 P = 0.00 P = 0.00 P = 0.00 P = 0.00 P = 0.00

Waves 3 vs 4 P = 0.73 P = 0.35 P = 0.68 P = 0.68 P = 0.41 P = 0.71
Waves 4 vs 5 P = 0.00 P = 0.00 P = 0.00 P = 0.00 P = 0.04 P = 0.07

Within R-Sq. 0.05 0.03 0.08 0.03 0.02 0.04
Groups 2,894 1,458 1,436 2,894 1,458 1,436
Obs. 14,470 7,290 7,180 14,470 7,290 7,180

Note: Parameters α and δ represent the value function and the probability weighting function,
respectively, in the loss domain (see equations [2] and [3]), where a higher α implies a lower degree
of risk-lovingness, and where a smaller δ value implies a deeper inverse S shape of the probability
weighting function. Panel A represents the results of fixed effect model estimation with the rate
of persons infected with COVID-19 in each respondent’s residence prefecture at each wave being
introduced as unique regressor. Panel B shows the estimation result when four wave dummies
are added as regressors. Numbers within parentheses are robust standard errors clustered on
individuals. ** and * indicate statistical significance at 1% and 5% levels, respectively.

Table 4 summarizes the estimation results, which show the shifting of the
risk parameters in two ways. First, Panel A shows that, in either the male,
female, or full sample, both risk parameters α and δ are negatively associated
with Infected COVID 19. This implies that the respondents’ diminishing
sensitivities 1 − α and 1 − δ are both positively associated with the rate of
persons infected with COVID-19 in their residence prefectures.

Second, in Panel B, where α and δ are regressed on wave dummies and
Infected COVID 19, the significant upward shifting of the respondents’ dimin-
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ishing sensitivity 1− α and 1− δ are captured by negative coefficients of the
wave dummy variables, rather than those of Infected COVID 19. This implies
that the observed effects on people’s risk attitudes represent the nationwide,
total influence of the pandemic, including deteriorations in various economic
and social conditions, rather than the pure direct effect of local virus infection
risk. To be consistent with this interpretation, Boutin et al. (2022) shows that
the COVID-19 pandemic affected risk preferences in the gain and loss domains
though effects on emotional concerns, rather than through actual effects in
individual daily life around small neighborhoods.

The effects occur most significantly in Wave 3, that is, just after the
declaration of the state of emergency significantly affected the entire Japanese
society and economy. The coefficients of Wave3 in absolute value are almost
more than triple those of Wave2.11 Additionally, unlike the simple t-tests
in Figure 3, the estimation in Panel B shows that marginal reductions in
α and δ between two consecutive waves are significant, except for those
between Waves 3 and 4. This means that 1 − α and 1 − δ continue to
rise, that is, diminishing sensitivity is monotonically enhanced for the value
and the probability weighting functions in association with the spread of
COVID-19.

Enhanced diminishing sensitivity in two prospect-theory functions has
different implications for the effect of the pandemic on risk attitudes. With
the value function exhibiting stronger diminishing sensitivity, that is, with
(1− α) continuously increasing, people gradually become less sensitive to an
increase in losses, and consequently feel less displeasure from given losses. For
example, for average participants in Wave 5, the displeasure of losing JPY 5
million, evaluated by |v (JPY 5million)|12 is only 0.33 times that of Wave 1.

Note that such a reduction in feeling displeasure |v (x)| against a loss
x(< 0) owing to an increase in (1 − α) becomes larger as the loss amount
|x| increases. Therefore, in association with the spread of COVID-19, people
feel less displeasure from large losses (e.g., losing JPY 5million) at a higher
speed than they do with smaller losses (e.g., losing JPY 1000). Therefore,
they become less cautious about large losses, for example, suffering serious
diseases, relative to smaller ones, for example, paying small costs for disease
protection.13

11Even when we introduce a dummy variable for the declaration of emergency state into
the set of explanatory variables, its coefficient is insignificant, whereas the coefficient of
Wave3 takes the greatest value in magnitude among estimated coefficients. Consistent with
the discussion in the text, this implies that it is the pandemic risk perceived commonly
nationwide, rather than locally estimated infection risk, that influences people’s risk attitudes.

12Average participants’ displeasure of losing JPY 5million, measured by
|v (JPY 5million)|, amounts to 1,203.13 for Wave 1, 897.79 for Wave 2, 480.91 for
Wave 3, 466.20 for Wave 4, and 399.66 for Wave 5.

13Displeasure of losing JPY 1,000 at Wave 5 becomes 0.61 times as much as that in Wave
1, compared to 0.33 for displeasure of JPY 5 million.
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As the probability weighting function enhances its diminishing sensitivity
property during the pandemic, the overweighting of tail losses and underweight-
ing of non-tail losses become more robust. For example, the probability weight
that average participants put on a negative outcome occurring with probability
0.1%, that is, w(0.1%), becomes larger from 4.7% in Wave 1 to 5.6% in wave 5,
implying that overweighting becomes more robust. In contrast, the probability
weight w(50%) decreases from 29.1% in Wave 1 to 26.3% in Wave 5.14 In
other words, underweighting for non-tail losses is enhanced during the spread
of the pandemic.

In sum, COVID-19 affects people’s risk attitudes in two ways. First,
owing to the pandemic, people become less sensitive to an increase in losses,
particularly when they are large. Second, people become more pessimistic
about tail loss risks, and more optimistic about non-tail loss risks. The two
findings imply that people are the least sensitive to a large non-tail loss risk.
Policy-makers should consider this side effect as the risk of large non-tail
losses is widely prevalent (e.g., risk of virus infection when staying home with
infected family members, risk of developing cancer when smoking, risk of global
warming, etc.), which could weaken people’s preventive and/or precautionary
behavior against large risks.

These results relate to the existing literature in the following ways. First,
the result that the degree of risk-lovingness in the loss domain continuously
rose with the spread of the pandemic appears to differ from the empirical
results in the literature, which states that negative shocks, either disasters
or stressful events, enhance risk aversion (Page et al., 2014; Kandasamy et
al., 2014; Cameron and Shah, 2015; Casser, et al., 2017; Bu et al., 2020;
Di Falco and Vieider, 2022). However, these studies, except Kandasamy
et al. (2014), do not control for the effect on probability weighting. More
importantly, previous studies evaluate risk aversion in the gain domain, while
this study considers the loss domain. Although the results may differ with
respect to the effects on the degree of risk aversion, it could be reconciled if
we interpret the results in terms of diminishing sensitivity. The findings of
previous studies and those of this study commonly indicate that pandemics and
other negative shocks reinforce diminishing sensitivity to a marginal increase
in losses and gains. The reflection effect, in which risk preferences in the
gain domain are the mirror image of those in the loss domain, is considered
robust (Kahneman and Tversky, 1979; Fehr-Duda et al., 2006; Abdellaoui
et al., 2007; Dhami, 2016). This interpretation is considered to have certain
validity.

Second, Li et al. (2011) and Page et al. (2014) show that natural disasters
lead people to display stronger preferences for prospects with positively skewed

14The value of w(0.1%) is 4.7% for Wave 1, 4.9% for Wave 2, 5.4% for Waves 3 and 5,
and 5.6% for Wave 5. The value of w(50%) amounts to 29.1% for Wave 1, 28.4% for Wave
2, 26.9% for Wave 3, 26.7% for Wave 4, and 26.3% for Wave 5.
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prizes. They attribute this to the increased overweighting of small probabilities.
However, they do not estimate the probability weights or control for the effect
on the value function. Our finding that people’s probability weighting exhibits
stronger diminishing sensitivity during the pandemic provides evidence for
their claim.

4 Discussions

4.1 Possible Mechanisms

We could consider two mechanisms, mental stress and liquidity shortage,
in which the spread of the COVID-19 pandemic affected participants’ risk
attitude.

4.1.1 Mental Stress

The spread of the COVID-19 infection directly or indirectly significantly
negatively affected mental health. For example, Yamamoto et al. (2020)
reported that 33.6% of 11,333 participants experienced mild-to-moderate
psychological distress, and 11.5% suffered from serious mental distress. Mental
stress is known to affect risk attitude (Haushofer and Fehr, 2014; Cohn et
al., 2015; Cahli kovai and Cingl, 2017). Therefore, mental stress induced
by the COVID-19 pandemic could affect people’s risk attitudes. Our results
could be interpreted as reflecting the influence of mental stress caused by
COVID-19.

In this sense, our results are comparable with the findings of Kandasamy
et al. (2014), who gave participants a dose of hydrocortisone and examined
how experimentally raised stress hormone (cortisol) levels affected their risk at-
titudes. The findings were captured by the shapes of the value and probability
weighting functions. The authors show that experimentally raised cortisol lev-
els (i) made the participants’ value function in the gain domain more concave,
wherein they became more risk averse in the gain region, and (ii) deepened
the inverse S shape of the weighting probability function for male participants.
In other words, overweighting of positive tail outcomes and underweighting
of positive non-tail outcomes were more exaggerated under increased stress
for males. If our result reflects the stress effect of the pandemic, our finding
on its effect on the probability weighting function is consistent with, and even
stronger, than that of Kandasamy et al. (2014) as stated in (ii), in which the
same effect was not detected in the female sample.15 Moreover, our finding

15Moreover, in Kandasamy et al. (2014), the elicited probability weighting function has
an irregular S shape, not an inverse S shape, for the placebo male sample and treatment
female sample.
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relates to Kandasamy et al.’s (2014) result (i); both commonly indicate that
stressful events enhance the diminishing sensitivity of the value function.

4.1.2 Liquidity Shortage

As COVID-19 had a persistent negative income effect,16 another plausible
mechanism could be the lack of liquidity; under a liquidity shortage, partici-
pants might become more reluctant to buy insurance as negative income shocks
continue (McDermott et al., 2014), which could result in reductions in accept-
able risk premiums in Q1 and Q2. To examine the validity of this hypothesis,
we re-estimate the fixed effect model by adding to the set of independent
variables the product terms of wave dummies and a low income dummy, which
equal one when the participant belongs to the bottom 10% income class at
Wave 1, and zero otherwise.17 If the lack-of-liquidity hypothesis holds, the
coefficients of the product terms are negative.

As seen in Table 5, the hypothesis is invalid. Contrary to the prediction
of the hypothesis, the coefficients of the interaction terms of wave dummies
and the low income group indicator are all positive and highly significant,
especially for the α estimation. This result could indicate the rational risk-
insuring behavior of low-income participants. Relative to those in higher
income groups, they became more willing to buy insurance in Q1 and Q2
because of poor self-insurance ability during the pandemic.

4.2 Comparing Risk Preference Before and After COVID-19

We have interpreted that the observed changes in the α and δ values observed
during the pandemic period reflect some level of effect, direct or indirect,
of the pandemic. However, the finding would be weak, because the elicited
parameter values are based on the data after the outbreak of the pandemic
and not compared with those before the pandemic.

To address this limitation, we can use comparable data from the NTT
Human Information Data 2018 (NTTHID2018, hereafter), a large-scale internet
survey conducted in Japan by the NTT Human Information Research Institute,
Inc. in October 2018 (N=20,160). Participants were selected from adults in
Japan using the stratified assignment method, as in our survey. In the NTT
survey, one of the authors participated in designing the questionnaire, and
asked participants questions similar to Q1 and Q2, where hypothetical loss
amounts were JPY 10,000, rather than JPY 100,000 in Q1, and JPY 50,000

16For example, seasonally-adjusted quarterly gross domestic product (GDP) on the
expenditure base dropped by 5.93% from the 4th quarter of FY 2019 to the 1st quarter of
FY 2020 (Monthly GDP Report- June, 2020, Japan Center for Economic Research).

17Note that the dummy variable for the bottom 10% income class is time-invariant. We
collected the income data only in Wave 1.
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Table 5: Fixed effect model with interaction terms with a low-income group indicator.

Dep. Variable = α Dep. Variable = δ

Full Male Female Full Male Female

Wave2 × 0.021 0.029 0.013 0.003 0.001 0.005
Bottom 10% (0.011) (0.019) (0.012) (0.006) (0.001) (0.009)
Wave3 × 0.027∗∗ 0.015 0.038∗∗ 0.005 −0.005 0.016∗

Bottom 10% (0.008) (0.013) (0.01) (0.006) (0.01) (0.008)
Wave4 × 0.024∗∗ 0.019 0.028∗ 0.012 0.012 0.011
Bottom 10% (0.008) (0.013) (0.011) (0.006) (0.009) (0.008)
Wave5 × 0.031∗∗ 0.029∗ 0.033∗∗ 0.019∗∗ 0.021∗ 0.018∗

Bottom 10% (0.009) (0.013) (0.012) (0.007) (0.01) (0.009)
Wave1 <default> <default>
Wave2 −0.022∗∗ −0.017∗∗ −0.027∗∗ −0.008∗∗ −0.008∗ −0.007

(0.004) (0.007) (0.006) (0.003) (0.004) (0.004)
Wave3 −0.062∗∗ −0.054∗∗ −0.069∗∗ −0.025∗∗ −0.020∗∗ −0.030∗∗

(0.004) (0.007) (0.006) (0.003) (0.004) (0.003)
Wave4 −0.060∗∗ −0.048∗∗ −0.073∗∗ −0.027∗∗ −0.025∗∗ −0.029∗∗

(0.005) (0.008) (0.007) (0.003) (0.004) (0.004)
Wave5 −0.070∗∗ −0.062∗∗ −0.079∗∗ −0.033∗∗ −0.032∗∗ −0.034∗∗

(0.006) (0.009) (0.007) (0.003) (0.004) (0.004)
Within R-Sq. 0.05 0.04 0.08 0.03 0.02 0.04
Groups 2,894 1,458 1,436 ,894 1,458 1,436
Obs. 14,470 7,290 7,180 14,470 7,290 7,180

Note: Bottom 10% represents a binary indicator which equals one when the participant’s household
belongs to the bottom 10% income group in Wave 1, where income data are not available for the
other waves. Although its result is not reported, the rate of persons infected with COVID-19 in
each respondent’s residence prefecture in each wave is included as a control variable. Numbers
within parentheses are robust standard errors clustered on individuals. ∗∗ and ∗ indicate statistical
significance at 1% and 5% levels, respectively.

rather than JPY 5 million in Q2. The probability setting is similar to that in Q1
and Q2. As participants were selected in a similar way as in this panel survey,
a comparison of the elicited risk attitude between the NTTHID2018 sample
and that of the present panel data could provide certain information on how
people’s risk attitudes differ between the pre- and post-outbreak periods of the
pandemic. If our conclusion that the pandemic enhances diminishing sensitivity
for prospect-theory risk preference is supported, diminishing sensitivity in the
pre-COVID-19 period, elicited from the NTTHID2018 sample, will be weaker
than it is in the present panel data. This prediction will hold valid especially
for the Wave 1 sample, in which diminishing sensitivity is the weakest among
the five wave samples.

To compare risk parameters before and after the outbreak of the pandemic,
we compute both simple sample and weighted means of the risk parameters.
The weights are calculated to conform the gender-age-residential prefecture
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distributions of the two samples to the census distribution derived from
Population Estimates in 2019, and Comprehensive Survey of Living Condition
in 2018. Therefore, the weighted means could be considered the means of the
representing sample of Japan, corrected for possible sampling biases.

Table 6 compares the mean values for α and δ between the Wave 1 sample of
the present panel data, and the pre-COVID-19 sample of NTTHID2018, where
the first, and second rows represent simple sample means and weighted means,
respectively. For both male and female samples, and for both (unweighted)
simple and weighted means, the pre-COVID-19 mean values of α and δ are
significantly larger than the corresponding post-COVID-19 values, that is, the
Wave 1 mean values. This could be considered the indirect evidence that the
observed cross-wave increase in diminishing sensitivity for prospect-theory risk
preferences reflect the effect of the COVID-19 pandemic.

Additionally, the table shows that females’ α and δ are also on average
smaller than males’ in the NTTHID2018 sample, implying that females exhibit
stronger diminishing sensitivity than males in the loss domain, consistent with
the gender difference found in Figure 3.

4.3 Alternative Estimation

Using the maximum likelihood method, we re-estimate the system for our
prospect-theory model. This has two merits. First, it enables us to estimate
the two risk parameters for the representative participant, and consequently
check the robustness of our finding, which states that diminishing sensitivity
becomes more robust during the pandemic.

As the second merit, we can check the model fitting of the prospect theory
model. Thus far, we have assumed a priori the prospect theory model,
formalized by (1) to (3). We check whether the prospect theory model has
a better fit to the observed data than the usual one-parametric expected
value model, in which people respond to questions Qi (i = 1, 2) based on the
expected value of the value function,

Vi = piv (xi) , i = 1, 2. (8)

instead of (1).
We therefore estimate two systems: one for the prospect theory model,

comprising (4) and (5), and the other for the expected value model (8), which
is rewritten by replacing probability weights w(0.5) and w(0.001) in (4) and
(5) with objective probability values 0.5 and 0.001 as:

(R1)
α
= 0.5 (100, 000)

α
, (9)

(R2)
α
= 0.001 (5, 000, 000)

α
. (10)
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Table 6: Comparing risk preference before and after COVID-19.

α

Male Female
Census-data weights

Wave 1 NTTHID2018 Wave 1 NTTHID2018

Mean 0.465 0.618 0.450 0.566
(S.D.) (0.241) (0.283) (0.204) (0.262)
t-value 22.134 19.427 No
obs. 1,458 10,365 1,436 9,591

Mean 0.474 0.624 0.456 0.578
(S.D.) (0.332) (0.364) (0.261) (0.490)
t-value 14.634 9.177 Yes
obs. 1,458 7,741 1,436 6,641

δ

Male Female
Census-data weights

Wave 1 NTTHID2018 Wave 1 NTTHID2018

Mean 0.431 0.501 0.417 0.447
(S.D.) (0.144) (0.204) (0.117) (0.169)
t-value 16.269 8.093 No
obs. 1,458 10,365 1,436 9,591

Mean 0.438 0.502 0.422 0.449
(S.D.) (0.240) (0.246) (0.176) (0.305)
t-value 9.092 3.239 Yes
obs. 1,458 7741 1436 6641

Note: The table compares the mean values of the prospect-theory parameters α and δ in the loss
domain in the Wave 1 sample of the present panel data with those in the NTTHID2018 data.
NTTHID2018 is a web survey conducted in 2018 independently of this research, where similar
questions in the loss domain to Q1 and Q2 are asked. The means of α (δ) of the present panel data
and the NTTHID2018 data are shown in the first row of α (δ) panel. In the second row, we show
the means of α (δ) of the representing sample of Japan, which are estimated using the sampling
weights with respect to prefecture, age, and household income. Census data of population in
October, 2019 by gender, age, and residential prefecture are collected from the website e-stat for
Population Estimates in Japanese Government Statistics. Data of the number of households by
household income class are collected from the Comprehensive Survey of Living Conditions in 2018,
taken from the website of e-stat. Here, we define the number of female (male) households of each
household income class as the total number of households minus the number of single-male (single
female) households.

Note that the expected value model, comprising (9) and (10), is a special case
of the prospect theory model with restriction that δ = 1. The prospect theory
model therefore nests the expected value model.

The goodness of fit is compared between the two models in three ways. We
first test the nested hypothesis using Wald test to check if δ = 1 in the prospect
theory model. However, because of the nonlinearity of the models, various
tests including Wald test possibly report inconsistent results. Therefore, we
also compare the fit of the two models using log-likelihood ratio test and AIC.
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Table 7: Prospect theory model vs. expected value model

Prospect theory model Expected value model

α δ α

0.387∗∗ 0.392∗∗ 1.305∗∗

(0.002) (0.001) (0.007)
Wave2 −0.009∗∗ −0.003 −0.017∗

(0.003) (0.002) (0.008)
Wave3 −0.037∗∗ −0.016∗∗ −0.034∗∗

(0.003) (0.002) (0.008)
Wave4 −0.038∗∗ −0.017∗∗ −0.036∗∗

(0.003) (0.002) (0.008)
Wave5 −0.045∗∗ −0.020∗∗ −0.040∗∗

(0.003) (0.002) (0.008)
Log-likelihood −2,70,809.8 −283,371.3
Obs. 14,470 14,470
(1) Wald test (δ = 1 for all waves)

χ2 1,411,966∗∗

(2) Log-likelihood ratio test
χ2 25,123.0∗∗

(3) AIC 37.432 39.167

Note: The system equation of the prospect theory model, defined by (4) and (5), and that
of the expected value model, comprising (9) and (10), are estimated from the balanced panel
dataset using the full information maximum likelihood method. The rows of Wave2 to Wave5
show the coefficients of the corresponding dummy variables, with the Wave 1 value being the
reference. Numbers within parentheses are standard errors. Rows (1) through (3) represent the
goodness-of-fit statistics. Row (1) shows the result of Wald test with the null hypothesis that
in the prospect theory model, the probability weights equal objective probabilities for all waves:
δ = 1, as is the case of the expected value model. Row (2) represents the result of log-likelihood
ratio test for the relative goodness-of-fit of the prospect theory model to the expected value model.
Row (3) compares the values of the Akaike information criterion. ∗∗ and ∗ indicate the statistical
significance at 1% and 5% levels, respectively.

Using the full information maximum likelihood method, we estimate the
logarithmic version of each system, where four wave dummies, Wave2 to Wave5,
are added to each preference parameter.

Table 7 summarizes the results. It is important to note the following
two points. First, the regression result shows that the two prospect-theory
parameters tend to decline during the sample period, similar to that in Tables 2
and 3. This confirms our main result that diminishing sensitivity becomes
more robust during the pandemic.

Second, Table 7 shows that the prospect theory model better fits to our
data than the one-parametric expected value model: (1) the Wald test strongly
rejects the null hypothesis that δ = 1; (2) the χ2-value of the log-likelihood
ratio test is 25,123.0, which strongly rejects the equality of the log-likelihood
values between the two models; and (3) the AIC value for the prospect theory
model (37.432) is smaller than that for the expected value model (39.167).
Therefore, the fit of the prospect theory specification is better to our data, than
the one-parametric expected value specification with any statistics, even when
correcting for the difference in the number of parameters. This reflects the fact
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that the usual expected value specification cannot explain why people’s risk
attitude can be either risk-averse or risk-loving, depending on the skewness of
the probability distribution, as observed in our samples.

These results can be shown robust against controlling for the effects of (i)
the rate of persons infected with COVID-19 in each respondent’s residential
prefecture, (ii) the gender difference, and (iii) alternative function forms of the
expected value model (e.g., CARA, instead of the present CRRA form).

4.4 Implications for the Stability of Risk Preferences

Our panel study has implications for the stability of risk preferences. As
surveyed by Chuang and Schechter (2015), many researchers have been exam-
ining how stable risk and other preferences evaluated using experiments and
surveys are over time, across different questions/tasks, between incentivized
and hypothetical settings, etc. The discussions still remain controversial. Par-
ticularly, based on their unique panel data in Paraguay, Chuang and Schechter
show that estimated game-based measures of risk preferences tend to be very
noisy, in that the measured risk preferences are not stable over time or across
games, namely across frames of questions and tasks, nor affected by negative
income/health shocks.

Irrespective of their claim, our dataset implies that participants’ risk
choices and their imputed risk preferences are quite stable. First, as shown
in Online Appendix C, significant positive cross-wave correlations are found
both in acceptable insurance premiums R1 and R2 for Q1 and Q2, and in
the imputed prospect theory risk parameters α and δ. The mean cross-wave
correlation coefficient amounts to 0.549 for R1 and 0.282 for R2. Imputed
value function parameter α has cross-wave correlation of 0.515 on average.
Regarding probability weighting function parameter δ, the mean cross-wave
correlation amounts to 0.500 (for details, see Table A2 in Online Appendix
C). Second, imputed risk attitudes are also consistent between acceptable
insurance premiums R1 and R2, namely between underlying survey questions
Q1 and Q2. As shown in Table A3 in the Online Appendix, the cross-
question correlations for acceptable insurance premiums are between 0.370–
0.413. Finally, as we have shown in the previous sections, negative shocks
owing to COVID-19 systematically affected participants’ risk attitudes and
the imputed risk preferences. These findings imply that, in contrast to what is
emphasized by Chuang and Schechter (2015), measured risk attitudes in our
survey are quite stable.

5 Conclusions

Based on the analysis of a unique five-wave panel survey in Japan, we find that
diminishing sensitivity in the loss domain became more robust for people’s
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prospect-theory risk preference with the spread of COVID-19. Therefore, (i)
losses, particularly large losses, became less displeasing, and (ii) people became
more pessimistic toward tail loss risks, but more optimistic toward non-tail
loss risks.

This research provides new insights in understanding the effects of pan-
demics and other negative shocks on risk attitudes. First, the effects are
captured in terms of resulting changes in diminishing sensitivity, rather than
in risk aversion/tolerance. Our findings and those of the literature commonly
indicate that pandemics and other negative shocks enhance diminishing sen-
sitivity in risk evaluation. Second, by detecting the distorting effect of the
pandemic on probability weighting, we provide robust empirical evidence to
the previous finding, stating that disasters drive those affected to avoid tail loss
risks (Li et al., 2011; Page et al., 2014). Our finding on this point could also be
considered evidence to Bu et al.’s (2020) conjecture that changes in people’s
risk attitudes after the outbreak could occur because of their pessimistic beliefs
on various probabilistic environments.

Findings (i) and (ii) imply that, after pandemic outbreaks and other
negative shocks, people become much less cautious to the risk of non-tail, large
losses. Because the risk of large non-tail losses is widely prevalent (e.g., the
risk of virus infection when joining a meeting/party, risk of developing cancer
when smoking, risk of global warming, etc.), policy-makers should consider
this side effect, as it could weaken people’s preventive and/or precautionary
behavior against large risks.

Further research is necessary to make our study robust. First, due to the
data limitation, we cannot use an appropriate proxy variable to capture the
infection risk of COVID-19. Relationships between the infection risk and risk
attitudes need to be examined more rigorously using richer data. Second, we
have elicited two risk parameters from response data to two questions. More
reliable estimation needs more questions per parameter.18 Third, we assume a
priori the forms of the value and probability weighting functions a la Tversky
and Kahneman (1992). Seeking better-fitting specifications of the functions
are called for.19 Fourth, to the best of our knowledge, there is no explanation
on how neural activity relates to the S-shaped curvature of the value function
that underlies the reflection effect property (Fox and Poldrack, 2009), which
we rely on to reconcile our result to that of the literature. The effect on
risk attitude should be comprehensively compared between the positive and

18Irrespective of the problem, several important studies adopt the similar approach to
ours in that, by specifying a priori evaluation function forms, risk preference parameters are
elicited from the same number of questions (or the number of multiple price lists, MPLs) as
that of the parameters. For example, see Hanaoka et al. (2018) and Kimball et al. (2008),
and Cramer et al. (2002), in which each respondent’s risk aversion parameter for a CARA
or CRRA type utility function is elicited from one MPL.

19See Dhami (2016), in which alternative specifications of prospect-theory type risk
preferences are discussed based on the goodness of fit.
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negative domains. Fifth, we need to examine how our results relate to the effect
of mental stress. Particularly, with the important exception of Kandasamy
et al. (2014), there have been few attempts to examine how mental stress
affects prospect theory preferences captured by the value function and the
probability weighting function. Sixth, it is important to examine how the
effects of negative shocks, including pandemics and natural disasters, are
interacted with people’s loss-aversion inclination. Such shocks may affect
people’s degree of loss aversion, consequently changing their preventive and
precautionary behaviors. This issue has been left unexamined.
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Appendix A Comparison of sample distributions in four data sets. 

This appendix compares the sample distributions regarding residential location, age, and household 

income among the four data: (i) the first wave of our (unbalanced) panel data, (ii) our balanced panel 

data, (iii) NTTHID2018, and (iv) the Japanese census.  

Figure A1 compares sample distributions among the four data sets regarding residential locations, 

where the participants’ residential locations are sorted into 47 prefectures, local administrative 

divisions in Japan. The Japanese census data of population in 47 prefectures in October, 2019 are 

collected from the website for Japanese Government Statistics, e-stat.1 Figure A1 shows that 

residential distributions of the data sets are fairly similar.  

Figure A1: Comparison of location distributions among four data. Note: “First_survey” represents the 

1 https://www.e-stat.go.jp/stat-
search/files?page=1&layout=datalist&toukei=00200524&tstat=000000090001&cycle=7&year=201
90&month=0&tclass1=000001011679 

Online Appendix



first wave sample of our (unbalanced) panel data; “Balance” represents our balanced panel data sample 

of our data; “NTT” represents NTTHID2018; and “Census” represents the Japanese census data, 

obtained from Population Estimated in 2019. Deeper color indicates higher frequency of the 

respondents in the corresponding prefectures. 

We further compare sample distributions among four data with respect to age and household 

income. Age distribution in the Japanese census is obtained from Population Estimated in 2019, as in 

Figure A1. Data of the number of households by household income class are from Comprehensive 

Survey of Living Conditions in 2018, collected from the website of e-stat.2 We define the number of 

female (male) households of each household income class as the total number of households minus 

the number of single-male (single female) households.  

Figure A2 shows the results. Panel (a) indicates that the age distributions are also reasonably 

similar, except that for the NTT data, the rates of respondents under age 21 and over age 71 are smaller 

than for the other data sets. Panel (b) also shows the similarity of the four data sets in the household 

income distribution, except that the proportions of low income groups with less than JPY 200 million 

income are smaller, compared to the Japanese census data. This skewness could take place, first 

because the three data sets are collected using web survey, so that it can be hard for poor people to 

access the internet surveys, and second, because poorer people may be reluctant to answer their income 

amounts.  

 

 

  

 
2 https://www.e-stat.go.jp/stat-
search/files?page=1&layout=datalist&toukei=00450061&kikan=00450&tstat=000001129675&cycle
=7&tclass1=000001130605&result_page=1&tclass2val=0 



 

(a) Age 

 

(b) Household income 

 

Figure A2: Comparison of sample distributions among four data sets. Note: “Census” represents the 

Japanese census data, obtained from Population Estimated in 2019 for (a) and Comprehensive Survey 

of Living Conditions in 2018 for (b); “NTT” represents NTTHID2018; “Balance” represents our 

balanced panel data sample of our data; and “First” represents the first wave sample of our 

(unbalanced) panel data.  
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Appendix B Risky choice questions and acceptable insurance premiums. 
B1 Questions Q1 and Q2. 

 

Q1. Assume that there is a 50% risk of losing JPY 100,000 on a given day. You can take out insurance 

to cover this amount in case of a loss. What is the maximum amount you would pay to purchase the 

insurance? (Place an X in ONE box.) 

 

� 1. Not purchase even if the price is JPY 0.  

� 2. Purchase if the price is less than or equal to JPY 1,000. 

� 3. Purchase if the price is less than or equal to JPY 5,000. 

� 4. Purchase if the price is less than or equal to JPY 10,000. 

� 5. Purchase if the price is less than or equal to JPY 15,000. 

� 6. Purchase if the price is less than or equal to JPY 20,000. 

� 7. Purchase if the price is less than or equal to JPY 30,000.  

� 8. Purchase if the price is less than or equal to JPY 40,000. 

� 9. Purchase if the price is less than or equal to JPY 45,000. 

� 10. Purchase if the price is less than or equal to JPY 50,000. 

� 11. Purchase even if the price is more than JPY 50,000. 

 

Q2. Assume that there is a 0.1% risk of losing JPY 5 million on a given day. You can take out insurance 

to cover this amount in case of a loss. What is the maximum amount you would pay to purchase the 

insurance? (Place an X in ONE box.) 

 

� 1. Not purchase even if the price is JPY 0. 

� 2. Purchase if the price is less than or equal to JPY 1,000. 

� 3. Purchase if the price is less than or equal to JPY 5,000.  

� 4. Purchase if the price is less than or equal to JPY 10,000.  

� 5. Purchase if the price is less than or equal to JPY 20,000.  

� 6. Purchase if the price is less than or equal to JPY 30,000.  

� 7. Purchase if the price is less than or equal to JPY 50,000.  

� 8. Purchase if the price is less than or equal to JPY 100,000.  

� 9. Purchase if the price is less than or equal to JPY 500,000.  

� 10. Purchase if the price is less than or equal to JPY 1 million. 

� 11. Purchase even if the price is more than JPY 1 million. 

 

  



B2 Acceptable insurance premiums (𝑹𝟏, 𝑹𝟐) 

In the price list of questions Q1 and Q2, we could not elicit the prospect-theory preference parameters 

for participants who chose “1. No purchase even if the price is JPY 0.” if their acceptable insurance 

premium 𝑅# 	were considered zero. Instead of considering the choice as irrational behavior not to 

exploit the free opportunity of taking out the insurance, we assume that they are reluctant to incur 

some fixed costs, mental or pecuniary, required for insurance contacts. The fixed costs for insurance 

contracts are assumed to amount to JPY 450, half of the average minimum hourly wage in Japan (JPY 

901).  

Participants who chose option 1, i.e., those who choose not to buy insurance even when the price 

is JPY 0, are assumed to be willing to buy it for JPY 0 if the fixed cost is reduced by half, to JPY 225. 

For the other respondents, i.e., those who chose options 2 through 11, acceptable insurance premiums 

are elicited as the corresponding prices in the price list plus the fixed cost JPY 450.  

In sum, acceptable insurance premiums 𝑅$	and	𝑅% are obtained as in the following tables: 

 

Table A1: Prospect prices and the corresponding acceptable insurance premiums. 

  

Q1 Chosen prices 
(JPY) 

acceptable premiums 
including fixed costs 
𝑅$ (JPY) 

 1 < 0 225 
2 1000 1450 
3 5000 5450 
4 10000 10450 
5 15000 15450 
6 20000 20450 
7 30000 30450 
8 40000 40450 
9 45000 45450 

10 50000 50450 
11 60000 60450 

 

Q2 Chosen prices 
(JPY) 

acceptable premiums 
including fixed costs 𝑅% 
(JPY) 

1 < 0 225 
2 1000 1450 
3 5000 5450 
4 10000 10450 
5 20000 20450 
6 30000 30450 
7 50000 50450 
8 100000 100450 
9 500000 500450 

10 1000000 1000450 
11 1200000 1200450 

 



Appendix C Stability of imputed risk attitudes. 
 

Stability of imputed risk attitudes are shown in terms of correlation coefficients across waves and 

between the underlying survey questions for acceptable insurance premiums and prospect theory 

parameters. Table A2 shows that risk attitudes measured by 𝑅$, 𝑅%, 𝛼, and 𝛿 all have significant 

positive cross-wave correlation of weak to moderate magnitudes. Table A3 summarizes correlations 

between acceptable insurance premiums 𝑅$ and 𝑅% imputed from responses to different questions Q1 

and Q2 in each wave. The table implies that risk attitudes implied from responses to two different 

questions are relatively consistent.  

 

Table A2: Cross-wave correlation of measured risk attitudes. 

 
Note: Using the balanced panel samples (#obs. 14,470), cross-wave correlation coefficients are elicited 

for acceptable insurance premiums imputed from the responses to Questions Q1 and Q2 in panels (a-

1) and (a-2), respectively, and the prospect theory parameters α and δ in panels (b-1) and (b-2), 

respectively. *** indicates statistical significance at 1% level. 

 

Table A3: Cross-question correlation of measured risk attitudes. 

 

Note: The balanced panel samples (#obs. 14,470) are used.  

(a-1) Acceptable insurance premium R 1 (a-2) Acceptable insurance premium R 2

Wave 1 1 Wave 1 1

Wave 2 0.467 *** 1 Wave 2 0.224 *** 1

Wave 3 0.457 *** 0.565 *** 1 Wave 3 0.168 *** 0.206 *** 1

Wave 4 0.495 *** 0.569 *** 0.647 *** 1 Wave 4 0.216 *** 0.265 *** 0.293 *** 1

Wave 5 0.449 *** 0.558 *** 0.621 *** 0.659 *** Wave 5 0.160 *** 0.238 *** 0.453 *** 0.595 ***

(b-1) Value function parameter α (b-2) Probability weighting function parameter δ

Wave 1 1 Wave 1 1

Wave 2 0.444 *** 1 Wave 2 0.379 *** 1

Wave 3 0.420 *** 0.503 *** 1 Wave 3 0.394 *** 0.533 *** 1

Wave 4 0.449 *** 0.508 *** 0.611 *** 1 Wave 4 0.439 *** 0.541 *** 0.577 *** 1

Wave 5 0.400 *** 0.512 *** 0.622 *** 0.684 *** Wave 5 0.413 *** 0.518 *** 0.564 *** 0.604 ***

Wave 1 Wave 2 Wave 3 Wave 4

Wave 1 Wave 2 Wave 3 Wave 4 Wave 1 Wave 2 Wave 3 Wave 4

Wave 1 Wave 2 Wave 3 Wave 4

Correlation coefficients
btw. R 1 and R 2

0.381 *** 0.413 *** 0.370 *** 0.392 *** 0.393 ***

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5
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