Chapter 7

Pattern-driven Security, Privacy,
Dependability and Interoperability in loT

By Nikolaos Petroulakis, Konstantinos Fysarakis, Henrich C. Pihls,
Vivek Kulkarni, George Spanoudakis, Arne Broring, Manos Papoutsakis,
Manolis Michalodimitrakis and Sotiris Ioannidis

Copyright © 2020 Nikolaos Petroulakis ez al.
DOI: 10.1561/9781680836837.ch7

The work will be available online open access and governed by the Creative Commons “Attribution-Non
Commercial” License (CC BY-NC), according to https://creativecommons.org/licenses/by-nc/4.0/

Published in Security Risk Management for the Internet of Things: Technologies and Techniques for loT Security, Privacy
and Data Protection by John Soldatos (ed.). 2020. ISBN 978-1-68083-682-0. E-ISBN 978-1-68083-683-7.

Suggested citation: Nikolaos Petroulakis ez al. 2020. “Pattern-driven Security, Privacy, Dependability and
Interoperability in 10T” in Security Risk Management for the Internet of Things: Technologies and Techniques
for IoT Security, Privacy and Data Protection. Edited by John Soldatos. pp. 121-142. Now Publishers.
DOI: 10.1561/9781680836837.ch7.

now

the essence of knowledge

http://dx.doi.org/10.1561/9781680836837.ch7
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1561/9781680836837.ch7

This chapter presents the development of a pattern-driven approach for guarantee-
ing Security, Privacy, Dependability and Interoperability (SPDI) properties in the
IoT domain. The chapter details how SPDI patterns can be introduced to guaran-
tee multi-layer end-to-end properties, and how the enforcement of the patterns can
help and satisfy the requirements for network dependability guarantees. Moreover,
it briefly evaluates the presented approach and thus demonstrates how the appli-
cation of patterns offers a solution to semantic interoperability challenges in IoT
environments.

7.1 Introduction

While the fifth generation (5G) of mobile communications is already dawning
upon us, the next steps in their evolution will be key in supporting this soci-
etal transformation, while also leading to a fourth industrial revolution that will
impact multiple sectors. Next-generation networks, such as the Internet of Things
(IoT), aim to create open and global networks for connecting smart objects, net-
work elements, applications, web services, and end users. Research and industry

121

122 Pattern-driven Security and Privacy in loT

attempt to integrate this evolving technology and the exponential growth of IoT
by overcoming significant hurdles such as dynamicity, scalability, heterogeneity,
and end-to-end security and privacy. The introduction of digital technologies in
economic and societal processes is key to addressing economic and societal chal-
lenges such as aging of population, ensuring societal cohesion, and sustainable
development. IoT appears to be an important pillar of 5G. Global networks like
IoT create enormous potential for new generations of IoT applications, by leverag-
ing synergies arising through the convergence of consumer, business, and industrial
internet, and creating open, global networks connecting people, data, and #hings.
A series of innovations across the IoT landscape have converged to make IoT prod-
ucts, platforms, and devices technically and economically feasible. However, despite
these advances, significant business and technical hurdles must be overcome before
the IoT’s potential can be realized.
Some important challenges and complexities include:

¢ Sustaining massively generated, ever-increasing, network traffic with hetero-
geneous requirements

¢ Adaptation of communication technologies for resource-constrained virtual-
ized environments

® Provision of networking infrastructures featuring end-to-end connectivity,
security, and resource self-configuration

¢ Trusted information sharing between tenants and host systems.

Overcoming these challenges requires the implementation and deployment stack
of IoT applications. The overall aim of SEMIoTICS' proposes the development of
a pattern-driven framework [1, 2], built upon existing IoT platforms, to enable and
guarantee secure and dependable actuation and semi-autonomic behavior in IoT
and Industrial Internet of Things (IIoT) applications. The SEMIoTICS frame-
work supports cross-layer intelligent dynamic adaptation, including heterogeneous
smart objects, networks, and clouds. To address the complexity and scalability needs
within horizontal and vertical domains, SEMIoTICS develops and integrates smart
programmable networking and semantic interoperability mechanisms.

The SEMIoTICS architectural framework (Figure 7.1) has been envisaged and
developed for efficient interconnectivity of smart objects. Each layer contains spe-
cific developed modules able to handle different aspects and guarantee different
properties. More specifically, Software Defined Networking (SDN) Orchestration
layer provides data and control plane decoupling resulting in a cloud computing

1. SEMIoTICS: Smart End-to-end Massive IoT Interoperability, Connectivity and Security: http://www.

semiotics- project.eu

http://www.semiotics-project.eu
http://www.semiotics-project.eu

Background and Challenges 123

Mindsphere Usecase Apps

s | | o | oo, || D
s
pa

Industrial Private Cloud Public Cloud

Patten
Orchestrator

APPLICATION
LAYER

-] =

Cioud App1 Cloud AppN Cloud App1 Cloud AppN openHAB

Backend/Cloud

Thing Patiem
Directory Engine

aul opontias | | Usecase
Visualsaton

y SON Controller NV
I
Resource Sy NV
SONINFV based industrial networks T Pations ‘ Manager ra-t Man l Orchstrator
uff”]'“‘p » - ‘Open loT Parforms | Domain Speciic oT = . E [easrogea P VNF
(FIWARE) |Platiors (e.g. MindSphere) i » S 3 Munlaer Engine Manager
| =
suich | suich Jf suich Cusorn =, v
: o Entarad SO ‘ o ‘ ‘ l Gonnector l ™
|
|
i uubrw nmmm P ——
ocalAnalytics [l Conioland Adaptaie
A = L
Pre | Binding Manager Intell foscave 1
e lloT Components (Smart Objects| & Protocol Binding | lanager telligence
] w & W Somartc Pattom
& Ju ‘ — Monioring Usocase 2
Semkautonomous loT devices 3
- - g |[e rs«wr‘mm —
Logical View

Figure 7.1. SEMIOTICS envisaged and developed architecture.

approach that facilitates network management and enables programmatically effi-
cient network configuration meeting different IoT application requirements related
to security, bandwidth, latency, and energy efficiency, using semantic information.
Network Function Virtualization (NFV) Orchestration layer provides a flexible,
programmable, dynamic, and scalable networking paradigm, making it ideal for
satisfying the Quality of Service (QoS) demands of SEMIoTICS use cases. Field
layer is responsible for hosting all types of IoT devices such as sensors and actua-
tors as well as [oT gateway, which provides common way for communication and
ensures enforcement of SPDI patterns in this layer. Finally, Application Orchestra-
tion layer consists of all applications receiving the communication from field layer.

This chapter is organized as follows: Section 7.2 presents the IoT challenges
and the background of security, privacy, dependability and interoperability (SPDI)-
related issues. The main concept and the key building blocks of the proposed
pattern-driven IoT service orchestration solution are detailed in Section 7.3. Sec-
tion 7.4 provides a glimpse on the proposed SPDI patterns. Finally, Section 7.5
features the concluding remarks and pointers to future work.

7.2 Background and Challenges

The background of the SPDI properties and the necessity for the usage of pat-
terns to drive the fulfillment of the end users’ goals in the directions of security,
privacy, dependability and interoperability for the IoT are provided in this section.
Furthermore, the IoT challenges stemming from each of the four domains are also
briefly mentioned in order to highlight that being able to address them system-wide
and in a by-design-fashion is of paramount importance in industrial or larger IoT
environments.

124 Pattern-driven Security and Privacy in loT

7.21 10T Security

Smart objects, IoT applications, and their enabling platforms are often vulnerable
to security attacks and changing operating and context conditions that can compro-
mise their security [3]. This is exacerbated by the fact that they typically generate,
make use of, and inter-relate massive personal data in ways that can potentially
breach legal and privacy requirements. Preserving security and privacy properties
remains a particularly challenging problem, due to the difficulty of: (a) analyzing
vulnerabilities in the complex end-to-end compositions of heterogeneous smart
objects; (b) selecting appropriate controls for smart objects with heterogeneous
resources/constraints (e.g., different schemes for ID and key management, differ-
ent encryption mechanisms); and (c) preserving end-to-end security and privacy
under dynamic changes in IoT applications and security incidents, in the context
of the ever-evolving IoT threat landscape [4]. In this context, basic security tasks
such as mutual authentication, encryption, and data integrity remain challenging
in IoT, with a variety of lightweight solutions proposed [5]. Confidentiality and
integrity protection mechanisms also require strong authentication and authoriza-
tion mechanisms. Existing solutions requiring user involvement [6] or certificates
[7] lack scalability and support for dynamic IIoT networks. Security and privacy at
the IoT back-end, e.g., the cloud and centralized servers, requires distribution of
data and processing, which necessitates the use of new distributed and/or collabo-
rative paradigms of cloud computing [8]. To ensure that the most sensitive private
data remain secure from source to end user and only accessible to authorized enti-
ties, one of the solutions is to encrypt data based on policies for access control,
in addition to using secure communication channels. Thus, specific research areas
such as Attribute-based Encryption (ABE) need to be improved in order to make
them more efficient and scalable [9].

7.2.2 Privacy Invasion

With an increased consumer awareness by privacy invasions on general media or
on industrial IoT applications, the need for privacy protection becomes immanent.
From a business perspective, the problem of privacy comes framed as the problem
to protect companies trade secrets. Additionally, privacy legislation can be a major
concern in certain markets more than in others. Lately, the legal concerns have
been fueled by heightened fines for privacy violations introduced in data protection
laws, especially Europe’s GDPR [10, 11]. The GDPR [10] requires among other
things that personal data may be gathered only for a precisely specified purpose. It
also requires to minimize the amount of collected data [12] and the data subject.
Moreover, the individual person who’s personal data are handled needs to give their
informed consent a priori to the data gathering and must be able to intervene.

Background and Challenges 125

Further to being a legal or business challenge, privacy could also be seen as a human
right in either way privacy matters in the IoT domain and as such we discuss some
privacy challenges which have to be taken care of at the architectural level:

¢ Handle IoT devices as first-class citizens: Unsuspicious information com-
municated within the [oT could too easily be used by attackers to extract
companies trade secrets or infringe the human right to protect personal infor-
mation. Privacy requires to tackle the privacy problems already at the field
level, i.e., already deploy sensors and actuators which are capable of tackling
privacy problems [13]. As a minimum step, this requires to protect confiden-
tiality of any data that is communicated, i.e., by encrypting traffic [14].

¢ Minimize transferred data: Data minimization can be achieved in many
ways, by simple aggregation of data, but SEMIoTICS is even smarter and
performs intelligent analytics locally [15].

¢ Provision of privacy enhancing mechanisms and services Required to
implement in practical IoT deployments the technological advances that
allow to provide data with certain quality guarantees while still containing
less private information [16-18].

® Specify privacy requirements: A device that is communicating might leak,
i.e., even encrypted traffic may still be vulnerable to being analyzed for length
of packets, frequency of communication, and other observable communi-
cation meta-data. Thus, achieving unobservability of communication [19]
would be the highest goal for IoT privacy [20]. To achieve privacy holisti-
cally and deploy the right mechanisms correctly, privacy must become part
of the engineering framework [21].

® Monitor potential privacy breaches: The patterns approach allows to
address and specify privacy requirements. But, the potential of design pat-
terns for privacy goes beyond a single policy language cause; they allow com-
munication between different actors in different domains. Finally, they are
ideal for enabling information privacy into information systems [22].

The latter mentioned challenge of monitoring allows the data subject to exercise
some form of oversight, which adds to the transparency of the data processing.

7.2.3 Network Dependability

Dependability is the ability of a system to deliver its intended level of service to
its users [23]. The main attributes which constitute dependability are reliability,
availability, safety, and maintainability. Dependable systems impose the necessity
to provide higher fault and intrusion tolerance. The satisfaction of these attributes
can avoid threats such as faults, errors, and failures offering fault prevention; fault

126 Pattern-driven Security and Privacy in loT

tolerance; and fault detection. More specifically, dependability in SEMIoTICS is
focused on three major attributes such as reliability, availability, and fault tolerance
as follows:

¢ Reliability is the ability of a system to perform a required function under
stated conditions for a specified period of time [24]. It is an attribute of sys-
tem dependability, and it is also correlated with availability. For hardware
components, the property is usually provided by the manufacturer. This is
calculated based on the complexity and the age of the component. Reliability
can be classified into two main categories: the deterministic models and the
probabilistic ones.

® Availability guarantees that information is available when it is needed [24].
The lack of availability in network transmissions has a severe influence on
both the security and the dependability of network. More specifically, net-
work availability is the ability of a system to be operational and accessible
when required for use. Moreover, availability in networks is the probability
of successful packet reception [25]. Other factors which affect the availabil-
ity of a link are the transmission range of the signal strength, noise, fading
effects, interference, modulation method, and frequency.

¢ Fault Tolerance is the ability of a system or component to continue nor-
mal operation despite the presence of hardware or software faults [24]. Net-
work fault tolerance appears to be a critical topic for research [26]. The most
common solutions to guarantee fault tolerance and avoid single point of fail-
ure include the replication of paths forwarding traffic in parallel, the use of
redundant paths, and the ability to switch in case of failure (failover) and traf-
fic diversity. Fault tolerance mechanisms exist in all layers of field, network,
and back-end/cloud. In the field layer, failures involve the drop of sensors
or actuators and the gateways. More specifically, fault tolerance in network
architectures requires the design of a network able to guarantee avoidance of
single or multiple link failures, faulty end hosts and switches, or attacks. The
key technical solution of the problem includes the creation of a fault toler-
ance mechanism to provide open-flexible design where existing fault tolerance
solutions are not effective.

Dependability analysis of an IoT system includes whether non-functional
requirements such as availability, reliability, safety, and maintainability are pre-
served. The conditions depend on the respective dependability property that the
system guarantee. The satisfiability of a property can be defined by a Boolean value
(i.e., true, false), an arithmetic measure (i.e., delay), or probability measure (i.e.,
reliability/uptime availability).

Background and Challenges 127

7.2.4 |oT Interoperability

Interoperability gives an ability to a system or a product to connect and work with
other systems or products. Interoperability is defined as a characteristic of a product
or system, whose interfaces are completely understood, ro work with other products or
systems, present or future, in either implementation or access, without any restrictions
[27]. The following types of interoperability can be distinguished and are covered
in SEMIoTICS [28]:

¢ Technological interoperability enables seamless operation and cooperation
on heterogeneous devices that utilize different communication protocols.
Technological interoperability still remains a significant barrier in IoT set-
tings as up to 60% of the overall potential value is currently locked due to
lack of compatible solutions [29].

® Syntactic interoperability can establish clearly defined formats for data,
interfaces, and encoding. In terms of syntactic interoperability, IoT vendors
typically claim to utilize standardized and widely used technologies and plat-
forms in order to increase the acceptance of their products. Nevertheless, the
variety of common choices, such as the Constrained Application Protocol
(CoAP), eXtensible Messaging and Presence Protocol (XMPP), Advanced
Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT),
Devices Profile for Web Services (DPWS), and Universal Plug and Play
(UPnP), leads to a fragmented landscape [30]. Mechanisms for resolving this
issue include gateway proxies for the messaging protocols [31], but again their
presence cannot be assumed in all environments and their introduction leads
to increased complexity in interactions and additional costs.

® Semantic interoperability settles commonly agreed information models
and ontologies for the used terms that are processed by the interfaces or
are included in exchanged data. It is materialized by including informa-
tion regarding the data (metadata) and linking each element to a commonly
shared vocabulary. As IoT integrates an extremely large amount of heteroge-
neous entities, these entities need to be consistently and formally represented
and managed. The Open Geospatial Consortium (OGC) [32] and Semantic
Web Activity of the World Wide Web Consortium (W3C) [33] help provide
enhanced descriptions and meaning to sensor data. Several semantic frame-
works like Semantic Sensor Network (SSN) ontology [34] and IoT-Lite [35]
have been proposed in the international literature. One of the main concerns
leading to poor adoption of IoT semantic descriptions is that semantic tech-
niques increase the complexity and processing time, and therefore, they are
unsuitable for dynamic and responsive environments such as the IoT.

128 Pattern-driven Security and Privacy in loT

¢ Organizational interoperability cross-domain service integration and
orchestration through common semantic and programming interfaces. The
common interpretation of semantic information in a globally shared ontology
could be useful in enabling cross-domain and cross-organization interac-
tions. However, this is not always the case. Although several local sys-
tems may utilize popular or standardized ontologies, eventually they extend
them and establish their own semantics and interfaces. The use of Seman-
tic Information Broker (SIBs) is proposed the literature [36], while other
approaches focus on providing common and generic Application Program-
ming Interfaces (APIs) between the different IoT middleware platforms,
towards a marketplace of applications and services (e.g., BIG IoT [37]
project).

7.2.5 Achieving Security, Privacy, Dependability
and Interoperability by Design

Research and industry communities alike stress the need to adopt a by design
approach as the most effective means of addressing the above challenges, i.e., con-
sidering these early from the design phase. In this context, the pattern-driven
approach of SEMIoTICS follows the security-by-design concept, which aims to guar-
antee system-wide security properties by virtue of the design of the involved systems
and their subsystems. This is leveraged to provide orchestration-level SPDI guaran-
tees, while encompassing all involved components and entities which are composed
to create the orchestrations (e.g., physical devices and software). A key capability
required in security-by-design is the ability to verify the desired security properties
as part of the design process. A typical way to achieve this is using model-based
techniques [38—40], whereby software component and service compositions are
modeled using formal languages, and the required security properties are expressed
as properties on the model [41]. The satisfiability of the required properties is based
on model checking [42, 43]. Other approaches focus on software service workflows
using business process modeling languages (e.g., Sec-MoSC [44]). Pino et al. [45]
use Secure Service Orchestration (SSO) patterns to support the design of service
workflows with required security properties, leveraging pattern-based analysis to
verify security properties. This avoids full model checking that is computation-
ally expensive and non-scalable to larger systems, such as the IoT. Moreover, some
model-based approaches (e.g., [45]) support the transformation of security require-
ments to code for automated checking of the required properties, both at design
and at run time.

The SEMIoTICS pattern-driven framework’s operation is inspired by the many
works that have successfully used design patterns as a mean to communicate across

SPDI Patterns 129

different stakeholder domains and to reuse proven solutions for problems which
occur over and over again. The initial works date back to the 1977 book “A Pat-
tern Language: Towns, Buildings, Construction” by Alexander ez al. [46], where
the concept of reusable design solutions for architectural problems was intro-
duced. The pattern approach has ever since been successfully applied in other
domains, e.g., software design [47], security [48], privacy [49]. Here, SEMI-
oTICS, especially, builds upon ideas from similar pattern-based approaches used
in service-oriented systems [50, 51], cyber-physical systems [52], and networks
[53, 54], covering more aspects in addition to Security, and especially privacy
[55, 56] and also providing guarantees and verification capabilities that span both
the service orchestration and deployment perspectives, as detailed in Section 7.3
above.

7.3 SPDI Patterns

To enable the pattern-driven approach, it is necessary to develop a language for
specifying the components that constitute IoT applications along with their inter-
faces and interactions. In this context, the definition of the various functional and
non-functional properties of IoT components and their orchestrations is required
in the form of a model. The defined model appears in Figure 7.2 and is presented
in detail in [2]. A model with such characteristics effectively serves as a general
“architecture and workflow model” of the IoT application.

Verification 2 InterfaceType 2 VerificationType| ¥ DataState Means.
verificationType : VerificationType = patternbased = provided = pattembased = at_rest = pattemn
means : Means = pattem - required - monitoring - in transit - interface

- testing - in_processing
- centfcate - end to end
 properyType T Parametertype Category
———— = required = soap =
[& Propertyplan Property PropertySubject| - confirmed - REST
1.1 subject
10.1 progeries S
propertyType : PropertyType = required | 10-11Property
category:Category = confdentiaity
datastate : DataState = at est
[Parameter] Operation | 10 intertofe ™3 piacenoider Uik
parameterName : EString ‘operationName - ESting D e ESting |__(1.1) ikiD : EString
= parameterType : ParameterType = SOAP < type: EString < dst: EString
Interface a1 st EString
placeholdera: ESting
ESting -
. placeholderb: Strng
o= ieraceType: intrfaceType - provided pactoiden)
; 1.7 operation

P e
104] placeholder ————— [2."] placeholder
oramsvsionnciv] [B orestion
= ok e
= pateiden: g
= Mearetdan: g
([Enecomponen] [onssigretncony [By) s | [Ereme | [Bowe)
s E5vig = g G E5ung
oty | | decon: v 2 coeroprtes v - o2 g
= eaedare; g
(B sotmrecompone) [B sowarsenics | [Broracmor | [Biorsems][Boromewey)
= s ESving | [padires: Esing | | = podres 5w | [padresE5in || = pores 503
by el oo p=r iy

Figure 7.2. 10T orchestrations system model.

130 Pattern-driven Security and Privacy in loT

7.3.1 Pattern Language

Once defined, this model is used to derive a language which will allow the defini-
tion of pattern rules and facts which, consequently, enable the reasoning required
for verifying SPDI and QoS properties in specific IoT applications and subse-
quently enable different types of adaptations. The derived language for defining
IoT application models adopts an orchestration-based approach. An orchestration
of activities may be of different types depending on the order in which the dif-
ferent activities involved in it must be executed (e.g., sequence, parallel, choice,
merge). Moreover, an orchestration involves orchestration activities. The imple-
mentation of an activity in an IoT application orchestration may be provided by
a software component, software service, network component, an IoT sensor, actu-
ator or gateway, as well as a sub-orchestration of IoT application activities of the
previous types. These types of IoT application activity implementers are grouped
under the general concept of a placeholder, which is accessible through a set of
interfaces.

Opverall, this language: (i) provides constructs for expressing and encoding
dependencies between SPDI properties at the component and at the compo-
sition/orchestration level; (ii) is structural, without prescribing exactly how the
functions should be executed nor, e.g., how the ports ensure communication; (iii)
supports the static and dynamic verification of SPDI properties, and; (iv) can be
automatically processable by the SEMIoTICS framework so that IoT applications
can be adapted at run time.

Patterns expressed in the above-defined language enable the pattern-based IoT
application management process followed in SEMIoTICS, in which patterns are
used to: design IoT applications that satisfy required SPDI properties; verify that
existing IoT applications satisfy required SPDI properties at design time, prior to
the deployment of the application; and enable the adaptation of IoT applications
or partial orchestrations of components within them at run time in a manner that
guarantees the satisfaction of required SPDI properties.

To fulfill the above, SPDI patterns encode proven dependencies between
security, privacy, dependability and interoperability properties of individual
components of IoT applications and corresponding properties of orchestra-
tions of such components. More specifically, a pattern encodes relationships of
the form:

PIANP2A...APn— Pn+1 (7.1)

In the above, Pi (i = 1,...,n) are properties of individual components, and Pn+1
is a property of the orchestration of these components. The relation encoded by a
pattern is an entailment relation.

SPDI Patterns 131

The run-time adaptations that can be enabled by SPDI patterns may take three
forms: (a) to replace particular components of an orchestration; (b) to change the
structure of an orchestration; and (c) a combination of (a) and (b).

7.3.2 Machine-processable Pattern Encoding

An important requirement for implementing the SPDI pattern-driven manage-
ment and adaptation of the IoT infrastructure is to support the automated pro-
cessing of developed patterns. To achieve this, the SPDI patterns can be expressed
as Drools [57] business production rules, and the associated rule engine, by applying
and extending the Rete algorithm [58]. The latter is an efficient pattern-matching
algorithm known to scale well for large numbers of rules and datasets of facts, thus
allowing for an efficient implementation of the pattern-based reasoning process.
A Drools production rule has the following generic structure:

rule name

<attributes>*

when <conditional element>*
then <action>*

end

7.3.3 Reasoning Components

Pattern-related components are present in all layers of the SEMIoTICS framework
(Figure 7.3), in line and towards realizing the SEMIoTICS vision of embedded
intelligence across all layers of the IoT deployment.

In more detail, these components are:

o Partern Orchestrator: Module featuring an underlying semantic reasoner able
to understand IoT Orchestrations and workflows, as received from the Recipe
Cooker module, and transform them into composition structures (orchestra-
tions) to be used by architectural patterns to guarantee the required prop-
erties. The Pattern Orchestrator is then responsible to pass said patterns to
the corresponding Pattern Engine (as defined in the back-end, network and
field layers), selecting for each of them the subset of these that refer to compo-
nents under their control (e.g. passing network-specific patterns to the Pattern
Engine present in the SDN controller).

® Backend Pattern Engine: Features the pattern engine for the SEMIoTICS
back-end, along with associated subcomponents (knowledge base, reason-
ing engine). It is able reason on the SPDI properties of aspects pertaining
to the operation of the SEMIoTICS back-end. Moreover, at run time the

132

Pattern-driven Security and Privacy in loT

Backend Mindsphere Usecase
z Backend Mindsphere nEe
5 Security Backend Apps
=20 Semantic pp: Usecase 1
= ; Manager Orchestrator
Ok Validator Fiware
Egx
< Euw 2
o '5 > Recipe Pattern Morfior Fiware U
E.I % j Cooker Orchestrator onitoring Broker & GEs SRR
% g openHAB
Thin, Pattern
- Directgry Engine aut openHAB Usacase 3
Visualisation
SDN Controller NFV
z Resource VTN Security NFV
o Manager Manager Manager Orchestrator
=
oy ,
Z- w Bootstraping Path Pattern VNF
SnX Manager Manager Engine Manager
fws
(7]
e Clustering SFC VIM s
o) Manager Manager Connector
loT Gateway Field devices
Semantic API Security Local Embedded Useceaen
& Protocol Binding Manager Intelligence
4 ¥
(=]
- E aw Sqmantlc Pan'e m Monitoring Usecase 2
w S Mediator Engine
w
Local Thing Semantic Edge Supervisor and
Directory Platform LocalDB Yemnd

Figure 7.3. Pattern reasoning engines at all layers of the SEMIoTICS architecture.

Backend Pattern Engine may receive fact updates from the individual Pattern
Engines present at the lower layers (Network & Field), allowing it to have an
up-to-date view of the SPDI state of said layers and the corresponding com-
ponents

Network Pattern Engine: Integrated in the SDN controller to enable the capa-
bility to insert, modify, execute, and retract network-level patterns at design
or at run time. It is supported by the integration of all required dependencies
within the network controller, as well as the interfaces allowing entities that
interact with the controller to be managed based on SPDI patterns at design
and at run time.

Field Layer Pattern Engine: Typically deployed on the IoT/IIoT gateway, able
to host design patterns as provided by the Pattern Orchestrator. Since the
compute capabilities of the gateway can be limited, the module is able to host
patterns in an executable form compared to the pattern rules as provided in
the other layers.

Pattern Enforcement’s and Evaluation in SEMIoTICS Use Cases 133

7.4 Pattern Enforcement’s and Evaluation in SEMIoOTICS
Use Cases

Patterns in SEMIoTICS framework are enforced to satisfy SPDI properties on
the different use cases. In the next subsections, a demonstrated scenario to enable
pattern-driven IoT orchestration to satisfy QoS requirements is presented. More-
over, the policy enforcement through the pattern engine to monitor privacy viola-
tions is provided. Finally, the service function chaining patterns are also described to
enable the classification and forward traffic through the respective security service
functions in the SEMIoTICS pattern framework.

7.4.1 Pattern-enabled lIoT Orchestrations

A demonstration scenario that relies on the SEMIoTICS pattern-driven network
interface and its capabilities was designed and developed in industrial IoT environ-
ments and more specifically oil leakage detection in wind turbines through video
monitoring. The overarching aim of the scenario is to distribute a complex applica-
tion (composed of multiple tasks) to a network of IoT device and specify constraints
(through patterns) on the network orchestration. In this context, the developed sce-
nario leverages a user-friendly design and deployment of IoT orchestrations. The
two key research innovation of the scenario and associated demonstration relate to:
(1) True distribution of application flows over multiple devices and representing
the network perspective and (2) Automated enforcement of network orchestration
constraints by defining them as SEMIoTICS patterns.

In the above, other than the user-friendly, graphical interface and distributed
nature of defining the IoT orchestrations involved (including where/on which
devices parts of a flow are deployed), we also want to define SPDI and QoS between
these deployments. Focusing on the network aspects, while maintaining the high-
level abstractions needed for user-friendliness, a “Network Link” node enables
direct communication between distributed Node-RED instances. Said “Network
Link” node enables definition of QoS constraints (e.g., minimum bandwidth,
latency) and the whole orchestration specification (a “Recipe”) [59, 60], and the
QoS constraints are translated into the SEMIoTICS pattern language and sent
to Pattern Orchestrator [61, 62]. From the latter, the information is relayed to
the network (SDN) Pattern Engine. A high-level view of this process is shown in
Figure 7.4.

7.4.2 Security and Privacy Policy Enforcement Patterns

The main storyline is focused on a patient living in a smart home environment.
In this environment, the patients information is kept confidential by default;

134 Pattern-driven Security and Privacy in loT

1. Get TDs 2.a) Insert recipe
(in pattern grammar)

Thing Directory Pattern Orchestrator
Backend Layer
3. Add facts
2.b) Deploy flow
SDN Switch
SDN Layer Pattern Engine

4. Configure switch

SDN Controller

NanoBox
Field Layer

Oil Detection
Classifier

Camera %

Figure 7.4. Pattern enforcement QoS [61].

5 (*) request: “list all patients where a doctor
Backend Security Manager

A can see location attribute” Pattern Engine
(**) return: “empty list”
(4) check policy 7 >
(5) not (3) as|l|< if] — \
granted e Enforce
ment
Sidecar

monitors Proxy

9 \“ patient
Vv <

1) request patient’s
location
-—
Cloud

ocation Service +

Service

(GUI)

Body Area

Doctor
(7) not granted

Network

Figure 7.5. Interaction security manager and pattern engine.

however, in the event of an emergency, e.g., a patient fall, this information needs
to be available to a selected set of authorized users, e.g., in this case medical per-
sonnel. The process, also depicted in Figure 7.5, includes a doctor’s initial request
to a service where the request is checked for validity by a policy enforcement point
(PEP). Asking a SEMIoTICS component called Security Manager is only needed if
the service would be exposed by the field level and after the synchronization and
evaluation of the Security Manager. Based on this information, the PEP will then
decide if the request or the response will be granted or not.

With respect to the scope of privacy, the SEMIoTICS Security Manager as
depicted in Figures 7.3 and 7.5 acts to ensure that the privacy properties imposed by
the pattern are technically enforced. In detail, this happens by enabling the interac-
tion of a Security Manager located in the back-end with the Pattern Engine through
the associated privacy pattern rule as depicted in Figure 7.5. The goal is that the

Pattern Enforcement’s and Evaluation in SEMIoTICS Use Cases 135

Pattern Engine is able to check if the current policy used to make the decisions
inside the Backend Security Manager is conforming to the SPDI Patterns as speci-
fied by the application. The Pattern Engine thus periodically makes requests to the
Security Manager to obtain the necessary information to judge the quality of the
currently enforced policy. For example, to check that no one has access to a patient’s
location, it queries to obtain a list of entity that would be granted access. Based on
the response, the appropriate pattern rule expressing the SPDI pattern can reason
on the answers received from the Security Manager. For example, under normal
health conditions of all patients that response shall be an empty list. By reasoning
over the response, the Pattern Engine is able to identify if the policy being enforced
in SEMIoTICS is compliant with the privacy pattern; this is done without having
to check the actual technical enforcement (e.g., the access control policy as specified
in the PEP), but rather by checking its effectiveness; further, it is able to reflect this
to the outside via an API call that will allow other components to retrieve the SPDI
status.

7.4.3 Service Function Chaining and SPDI Patterns

E-health monitoring systems situated at homes can facilitate the monitoring of
patients’ activities and enable the remote provision of healthcare services. They
improve the quality of elder population well-being in a non-obtrusive way, allow-
ing greater independence, maintaining good health, preventing social isolation
for individuals, and delay their placement in institutions such as nursing homes
and hospitals. One of the scopes of SEMIoTICS is to provide security guarantees
through the traffic forwarding via different network security functions by applying
the Service Function Chaining (SFC). The main focus of scenario is to support
the traffic classification based on the predefined SFC for providing secure chains
to forward the different kind of traffic of this use case. SEMIoTICS framework
can be applied in order to support the SFC mechanism to guarantee security and
dependability based on the defined SPDI patterns instantiating the required (i)
Virtual Network Function (VNFs) and (ii) SFC for assuring the SPDI require-
ments. Traffic classification is based on the predefined SFC for providing secure
chains to forward the different kinds of traffic of this use case. The procedure of
instantiation and the identification of the respective SFCs and the VNFs based
on the patterns are depicted in the Figure 7.6. Considering the different types
of traffic reaching the back-end where the chaining of services will take place, a
variety of intricacies can be observed such as of low trust and low priority, low
bandwidth and latency, medium trust but high priority, medium trust and of low

priority, and finally high trust and high priority, as low latency and relatively high
bandwidth.

136 Pattern-driven Security and Privacy in loT

Forward Request Verify/Instantiate

to Pattern Engine Requested SFC st GG
Insert SFC
Requirement
Get Network Insert Flow
Topology Rules

£ /\
47 4

Figure 7.6. Pattern enforcement service function chains.

The design of an efficient control flow mechanism is required to be used not
only to verify SFC and VNFs but also to instantiate them for assuring the SPDI
requirements based on the enforcement of the respective SPDI patterns. When an
SFEC cannot be verified, the required VNFs are requested by the Virtual Infrastruc-
ture Manager (VIM) via NFV Orchestrator to identify them or to instantiate them
if they do not exist. The procedure of instantiation and the identification of the
respective SFCs and the VNFs based on the patterns are depicted in the Figure
7.6 including the following interactions with the components of the SEMIoTICS
architecture. Pattern Orchestrator forwards a specific chain request to the pattern
engine for forwarding the traffic between entities through a specific chain of func-
tions. Pattern engine forwards this request to the SFC manager which is located
in the SDN controller responding to the pattern engine whether the chain exist
or not. If the chain exists, then a respond of the chain satisfaction is returned to
the Pattern Orchestrator. If the chain does not exist, then a request is forwarded
to the VIM asking whether the service functions exist or not. If functions exist in
the VIM, then the chain can be instantiated in the SFC Manager and a respond of
the chain satisfaction is returned to the Pattern Orchestrator. If functions do not
exist in the VIM, then a function instantiation request is forwarded to the NFV
Orchestrator, which is responsible to instantiate them in the VIM. Then, the chain
can be instantiated in the SFC Manager, and a respond of the chain satisfaction is
returned to the Pattern Orchestrator. Based on the provided dynamic instantiation
of service chains and service functions through the pattern engine, the potentiality
within this use case can be increased and extended by the support of additional ser-
vice chains to enable traffic classification through different combinations of service
functions to guarantee different secure end-to-end traffic forwarding.

References 137

7.5 Conclusion

This chapter presented a pattern-driven framework addressing the often very
diverse and complex and not well-scaling requirements of commercial, societal,
and industrial IoT applications. The work presented the SEMIoTICS frame-
work’s approach towards the development of patterns for orchestration of smart
objects and IoT platform enablers in IoT applications with guaranteed security,
privacy, dependability and interoperability properties. The definition of the pat-
tern language and its development was also presented. Moreover, the chapter show-
cased the usefulness of a pattern-driven approach by describing how it works to
increase the security, privacy, interoperability and dependability in very differ-
ent and specific application scenarios. With this approach, the very diverse and
system-spanning goals of even large-scale IoT deployments also for industrial IoT
can be defined and securely and reliably orchestrated to meet the required SPDI
properties.

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreements No. 780315 (SEMIoTICS).

References

[1] N. E. Petroulakis ez al., “SEMIoTICS Architectural Framework: End-to-end
Security, Connectivity and Interoperability for Industrial IoT.” In 2019 IEEE
Global IoT Summit (GIoTS), 2019.

[2] K. Fysarakis et al., “Architectural Patterns for Secure IoT Orchestrations.”
In 2019 IEEE Global IoT Summit (GIoTS), 2019.

[3] M. Kert et al., “State of the Art of Secure ICT Landscape.” NIS Platform WG
3, V2, April 2015.

[4] ENISA, “Threat Landscape Report.” https://www.enisa.europa.eu/publica
tions/enisa-threat-landscape-report-2016, 2016.

[5] C. Manifavas, G. Hatzivasilis, K. Fysarakis, K. Rantos, “Lightweight Cryp-
tography for Embedded Systems — A Comparative Analysis.” In Data Privacy
Management and Autonomous Spontaneous Security. DPM 2013, SETOP
2013. Lecture Notes in Computer Science, vol 8247. Springer, Berlin, Hei-
delberg, 2014.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016

138 Pattern-driven Security and Privacy in loT

[6] T. Marktscheftel, W. Gottschlich, W. Popp, P. Werli, S. D. Fink, A. Bilzhause
and H. de Meer. “QR Code Based Mutual Authentication Protocol for Inter-
net of Things.” In Proc. of The 5th workshop on IoT-S0S: Internet of Things
Smart Objects and Services (WOWMOM SOS-IOT 2016), IEEE, 2016.

[7] R. Hummen ez al., “Towards viable certificate-based authentication for the
internet of things.” In Proceedings of the 2nd ACM workshop on Hot topics
on wireless network security and privacy, 2013.

[8] Big DataWorking Group. Expanded Top Ten Big Data Security and Privacy
Challenges. Cloud Security Alliance, 2013.

[9] M. Chase and S. S. Chow. Improving privacy and security in multi-authority
attribute-based encryption. Proceedings of the 16th ACM conference on
Computer and communications security — CCS’09, page 121, 20009.

[10] European Parliament and the Council of the European Union, “Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation).” In Official Journal L 119
of 4.5.2016, pp. 1-88, 2016.

[11] J. Leyden, “Last year’s ICO fines would be 79 times higher under
GDPR.” The Register, http://www.theregister.co.uk/2017/04/28/ico_fines_
post_gdpr_analysis/, 2017.

[12] EU Article 29 Data Protection Working Party, “Opinion 8/2014 on the on
Recent Developments on the Internet of Things.” 2014.

(13] H. C. Pohls ez al., “RERUM: Building a Reliable IoT upon Privacy- and
Security- enabled Smart Objects.” In Proc. of the Workshop on Inter-
net of Things Communications and Technologies (IEEE WCNC 2014),
pp. 122-127. IEEE, 2014.

[14] Z. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegard, S. Nechifor, G.
Oikonomou, H. C. Péhls and A. Gavras, “Enabling reliable and secure IoT-
based smart city applications.” In Proc. of Conference on Pervasive Comput-
ing and Communications (IEEE PERCOM 2014), pages 111-116. IEEE,
2014.

[15] SEMIoTICS, “Deliverable D4.3 — Embedded Intelligence and Local Analyt-
ics.” https://ec.europa.eu/research/participants/documents/downloadPublic?
documentlds=080166e5c9a45e55, 2019.

[16] H. C. Pshls and M. Karwe, “Redactable Signatures to Control the Maximum
Noise for Differential Privacy in the Smart Grid.” In Proc. of the 2nd Work-
shop on Smart Grid Security (SmartGridSec 2014), Springer, 2014.

http://www.theregister.co.uk/2017/04/28/ico_fines_post_gdpr_analysis/
http://www.theregister.co.uk/2017/04/28/ico_fines_post_gdpr_analysis/
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c9a45e55
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c9a45e55

References 139

[17] T. Loriinser, D. Slamanig, T. Linger and H. C. Péhls. “PRISMACLOUD
Tools: A Cryptographic Toolbox for Increasing Security in Cloud Services.”
In Proc. of the Workshop on Security, Privacy, and Identity Management in
the Cloud to be held at the 11th International Conference on Availability,
Reliability and Security (ARES SECPID 2016), Conference Publishing Ser-
vices (CPS), August, 2016.

[18] D. von Oheimb and J. Cuellar, “Designing and Verifying Core Protocols for
Location Privacy.” In Proc. of International Conference on Information Secu-
rity (ISC), pp. 502-516, Springer, 2000.

[19] R. C. Staudemeyer, H. C. Péhls and M. Wojcik. “The road to privacy in IoT:
beyond encryption and signatures, towards unobservable communication.”
In Proc. WOWMOM 2018, IEEE, July, 2018.

[20] R. C. Staudemeyer, H. C. Péhls and M. Wojcik. “What it takes to boost Inter-
net of Things privacy beyond encryption with unobservable communication:
a survey and lessons learned from the first implementation of DC-net.” In
Journal of Reliable Intelligent Environments (JRIE), 5 (1), pp. 41-64, 2019.

[21] A. Kung ez al. “A Privacy Engineering Framework for the Internet of Things.”
In Proc. of International Conference on Computers, Privacy and Data Pro-
tection 2016 (CDPD 2016), volume 36 of LGTS. Springer, 2016.

[22] N. Doty, M. Gupta, “Privacy design patterns and anti-patterns.” In: Workshop
“A Turn for the Worse: Trustbusters for User Interfaces Workshop” at SOUPS
2013, 2013.

[23] J. Laprie, “Dependable computing and fault-tolerance.” in Digest of Papers
FTCS-15, 1985.

[24] A. Geraci, E Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson,]. Radatz,
M. Yee, H. Porteous and F. Springsteel, “IEEE standard computer dictionary:
Compilation of IEEE standard computer glossaries.” 1991.

[25] PP. Park, P. Di Marco, C. Fischione and K. Johansson, “Modeling and opti-
mization of the IEEE 802.15. 4 protocol for reliable and timely communica-
tions.” Parallel and Distributed Systems, vol. 24, 2013.

[26] J. Chen, J. Chen, E Xu, M. Yin and W. Zhang, “When Software Defined
Networks Meet Fault Tolerance: A Survey.” Springer International Publishing,
pp. 351-368, 2015.

[27] G. Aful, “Definition: Interoperability.” Available: http://interoperability-def
inition.info/en/, 2018.

http://interoperability-definition.info/en/
http://interoperability-definition.info/en/

140 Pattern-driven Security and Privacy in loT

[28] G. Hatzivasilis, I. Askoxylakis, G. Alexandris, D. Anicic, A. Bréring, V. Kulka-
rni, K. Fysarakis and G. Spanoudakis, “The Interoperability of Things: Inter-
operable solutions as an enabler for IoT and Web 3.0.” IEEE International
Workshop on Computer-Aided Modeling Analysis and Design of Commu-
nication Links and Networks 2018 (IEEE CAMAD 2018), Barcelona, Spain,
Sept. 17-19, 2018

[29] J. Manyika ez al., 2015. Unlocking the potential of the Internet of Things.
McKinsey Global Institute Report, McKinsey & Company, June 2015,
pp- 1-4, 2015.

[30] A. Al-Fuqgaha ez a/., 2015. Internet of Things: a survey on enabling technolo-
gies, protocols, and applications, IEEE Communication Surveys & Tutorials,
IEEE, vol. 17, issue 4, pp. 2347-2376.

[31] E. Palavras, K. Fysarakis, I. Papaefstathiou and I. Askoxylakis, “SeMIBIoT:
Secure Multi-Protocol Integration Bridge for the IoT.” 2018 IEEE Interna-
tional Conference on Communications (ICC), pp. 1-7, 2018.

[32] http://www.opengeospatial.org/

[33] https://www.w3.0rg/2001/sw/

[34] “The SSN ontology of the W3C semantic sensor network incubator group.”
Web semantics: science, services and agents on the World Wide Web 17
(2012): 25-32.

[35] M. Bermudez-Edo ez al., “IoT-Lite: a lightweight semantic model for the
Internet of Things.” Intl. IEEE Conferences, Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
2016.

[36] J. Kiljander ez al., Semantic interoperability architecture for pervasive com-
puting and Internet of Things. IEEE Access, IEEE, vol. 2, pp. 856-873,
2014.

(37] A. Broring et al., Enabling IoT ecosystems through platform interoperability.
IEEE Software, IEEE, vol. 34, issue 1, pp. 54-61, 2017.

[38] M. Bartoletti ez al., “Semantics-based design for secure web services.” IEEE
Trans. on Software Engineering, 2008.

[39] M. Deubler er al., “Sound development of secure service-based systems.”
In Proc. of the 2nd Int. Conf. on Service oriented computing. ACM, 2004.

[40] G. Geor et al., “Verification and trade-off analysis of security properties in
UML system models.” IEEE Trans. on Software Engineering, 36(3): 338-356,
2010.

http://www.opengeospatial.org/
https://www.w3.org/2001/sw/

References 141

(41] J. Dong et al., “Automated verification of security pattern compositions.” Inf.
Softw. Technol., vol. 52, no. 3, 2010.

[42] L. Siveroni, A. Zisman and G. Spanoudakis, “A UML-Based Static Verification
Framework for Security, Requirements.” Engineering Journal, 15(1): 95-118,
2010.

[43] S. Rossi, “Model checking adaptive multilevel service compositions.” Interna-
tional Workshop of Formal Aspects of Component Software, 2010.

[44] A. R. Souza et al., “Incorporating Security Requirements into Service Com-
position: From Modelling to Execution.” In ICSOC-ServiceWave’09, 2009.

[45] L. Pino, K. Mahbub and G. Spanoudakis, “Designing Secure Service Work-
flows in BPEL.” International Conference on Service-Oriented Computing,
2014.

[40] C. Alexander, S. Ishikawa and M. Silverstein, “A Pattern Language: Towns,
Buildings, Construction.” Oxford University Press, Oxford, 1977.

(47] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software.” Addison-Wesley, Boston, 1994.

[48] M. Schumacher ez al., “Security Patterns — Integrating Security and Systems
Engineering.” Wiley, West Sussex, 20006.

[49] M. Hafiz, “A collection of privacy design patterns.” In: Proceedings of the
2006 Conference on Pattern Languages of Programs, PLoP 2006, pp. 7:1-
7:13. ACM, New York, 2006.

[50] L. Pino ez al., “Discovering Secure Service Compositions.” 4th International
Conference on Cloud Computing and Services Sciences (CLOSER 2014),
Barcelona, Spain, 2014.

[51] L. Pino et al., “Pattern Based Design and Verification of Secure Service Com-
positions.” IEEE Trans. on Services Computing, 2017.

[52] A. Mana et al., “Extensions to Pattern Formats for Cyber Physical Sys-
tems.” Proceedings of the 31st Conference on Pattern Languages of Programs
(PLoP’14), 2014.

[53] N. Petroulakis ez al., “Patterns for the design of secure and dependable software
defined networks.” Computer Networks 109 (2016): 39-49, 2016.

[54] N. Petroulakis ez al, “Fault Tolerance Using an SDN DPattern Frame-
work.” 2017 IEEE Global Communications Conference (GLOBECOM),
2017.

[55] T. Loriinser et al., “Towards a new paradigm for privacy and security in cloud
services.” In: CSP Forum 2015. CCIS, vol. 530, pp. 14-25. Springer, Heidel-
berg, 2015.

142 Pattern-driven Security and Privacy in loT

[56] T. Linger, H. C. Pohls and S. Ghernaouti, “Selected Cloud Security Patterns
to Improve End User Security and Privacy in Public Clouds.” In Proc. of
Privacy Technologies and Policy — 4th Annual Privacy Forum (APF 2016),
Springer, 2016.

[57] Business Rules Management System (BRMS), https://www.drools.org

[58] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern
match problem.” Artif. Intell., vol. 19, no. 1, pp. 17-37, Sep. 1982.

[59] J. Seeger, R. A. Deshmukh, V. Sarafov and A. Bréring, “Dynamic IoT Chore-
ographies — Managing Discovery,” Distribution, Failure and Reconfiguration.
IEEE Pervasive Computing, 18(1), pp. 19-27, 2019.

[60] A. S. Thuluva, A. Broring, G. P Medagoda Hettige Don, D. Anicic and J.
Seeger, “Recipes for IoT Applications.” Proceedings of the 7th International
Conference on the Internet of Things (IoT 2017), 22-25. October 2017,
Linz, Austria. ACM, 2017.

[61] A. Broring, J. Seeger, M. Papoutsakis, K. Fysarakis and A. Caracalli,
“Networking-Aware IoT Application Development.” Sensors 2020, 20(3).

[62] J. Seeger, A. Broring, M.-O. Pahl and E. Sakic, “Rule-Based Translation of
Application-Level QoS Constraints into SDN Configurations for the IoT.”
EuCNC 2019, 18-21. June, Valencia, Spain. IEEE, 2019.

https://www.drools.org

