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Foreword

This monograph is a comprehensive guide to creating a new network design using
network function virtualization (NFV concept), emphasizing application over the-
ory. It is written for teachers, students, network engineers, software developers, and
the general public interested in modern ICT trends. It assumes the reader is famil-
iar with basic terminology, has elementary knowledge about computer networking,
and possesses fundamental programming skills. The text is divided into the follow-
ing ten sections:

1. Introduction – bring a detailed review of shortcomings in traditional net-
works and explain the primary motives that guide network designers and
software developers in developing and implementing the NFV concept.

2. Network Function Virtualization – explains the NFV concept fundamentals
and describes the key components of the ETSI NFV framework, including
the benefits of NFV implementation in network infrastructure,

3. Virtualization techniques – provides a comprehensive review of the virtu-
alization techniques and their application in modern computing environ-
ments, with an accent on the characteristics and functionality of virtual enti-
ties (virtual machines and containers),

4. Containerization technology – shows more details about motives for cre-
ation, characteristics of various containers, and their orchestration. This sec-
tion also gives a detailed review of the Kubernetes platform and its features.

5. NFV-based network design – describes the basic principles of NFV-based
network design and discovers the path for migration from traditional to
NFV-based architecture. Also, this section explains the advantages, short-
comings, and challenges of VNF implementation.

ix



x Foreword

6. SDN and NFV – explains the key SDN principles, including architecture,
protocols, and use cases, and describes the SDN and NFV integration in
modern networks.

7. NFV implementation in the cloud – explains the role of virtualization in
the cloud, clouds’ architectures, types, and delivery models, and describes
OpenStack as an open-source cloud computing platform.

8. Service chaining in modern computer environments – describes key service
chaining strategies and explains standardized architecture for SFC deploy-
ment and SDN/NFV-based architecture for SFC deployment.

9. Network slicing – describes the current trends in network softwarization,
explains the concept of network slicing and its key principles, brings many
details related to ONF network slicing architecture, management, and
orchestration of network slices, and, finally, explains network slicing use cases
in networks with implemented NFV and SDN.

The monograph offers a practical blend of theoretical considerations and the
practical implementation of the NFV concept in modern computer environments.
It is a valuable resource for the practitioner looking for a comprehensive guide to
further network softwarization and building a highly programmable, scalable, and
software-based network infrastructure.

We expect that readers’ attention moves smoothly from one section to another.
Taking all the facts into account, we propose:

• Content for students: Sections 1, 2, 3, 4, 5, and 6
• Content for teachers: Sections 1, 2, 3, 4, 5, 6, 7, 8 and 9
• Content for network engineers: Sections 1, 2, 3, 4, 5, 7, 8 and 9
• Content for software developers: Sections 4, 5, 8 and 9
• Content for the general public: Sections 1, 2, 3, 4, 5, 6, 7, 8 and 9



Preface

The intensive growth of the Internet continues with the increase in the number
of users. According to some statistics (https://www.demandsage.com/interne
t-user-statistics/), in 2023, the Internet had more than 5.3 billion active Inter-
net users, which was about 65.4% of the total planet’s population. Many reasons
influence this trend, but the real flood of new services and the emergence of new
technologies are the key factors. The growth of the Internet has a lot to do with
the softwarization of the network. This development trend in network communi-
cations began in the late 2010s with the maturity of novel technologies. It caused
progress in the whole telecom industry, and crucial changes reflected in a deep
transformation of computer networks from traditional, hardware-centric network
functions into software-based solutions. The virtualization of network functions
and their implementation, together with software-defined networking (SDN) and
cloud computing, are key enabling technologies for building more flexible networks
that are scalable and adaptable to changing requirements. Current research in this
field refers to the resource, service, security, and other orchestration types and fur-
ther automation of the processes. The main intention is to ensure that different
software components work together seamlessly and efficiently, improve efficiency,
reduce errors, and enhance the overall agility of the network.

This approach in the further development of network communications brings
numerous benefits.

More programmability supports building software-defined networks, which are
more adaptable to changing requirements (it is possible to accommodate new ser-
vices easily) and enable networks to grow based on demand without the need
for significant hardware changes. By virtualizing network functions and utilizing
cloud infrastructure, it is possible to optimize resource usage and reduce hard-
ware costs. The virtual functions can be deployed more quickly than traditional
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hardware-based solutions and enable faster service delivery. Overall, previously
mentioned technologies and software-based networks are results that align with
the more expansive trend of digitalization. Virtualization and other innovative tech-
nologies are seen as key enablers for the development of more efficient and dynamic
networks.

This monograph is the culmination of years of consideration as to whether
providers were ready to implement new technologies and open their architectures.
It provides an overview of network softwarization and explains network changes
and transformations regarding the convergence to software-defined networking and
implementation of virtual functions, as well as pushing the network control to data
centers and network edge. The monograph will be an interesting and valuable pub-
lication describing the theoretical, methodological, and practical challenges in the
usage of advanced computing technologies for providers’ and customers’ needs. It
offers solutions to important issues, shows the road to further work in this field, and
represents a solid foundation for the exchange of experiences of students and teach-
ers from various universities and even developers in the professional community.
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Chapter 1

Introduction

The goals of improving the quality of existing services and enabling simple imple-
mentation of new services have long attracted the attention of telecom operators
and inspired the academic and professional community. Despite the huge efforts
made to achieve progress in this area, the strict standards that need to be met in
terms of hardware and software have significantly slowed down these processes [1].
Great progress was made at the end of the last century with the appearance of the
so-called Over-The-Top (OTT) services [2]. Service providers offer new services
to users via the telecom operator’s Internet network. One of the first examples of
providing services via network operators’ infrastructure (wired or wireless) was the
Voice over Internet Protocol (VoIP) service. Although it could not meet the strict
Quality of Service (QoS) initially, this service attracted many users, primarily thanks
to its financial benefits [3].

Development in the market has forced telecom operators to change their busi-
ness policies and urgently start redesigning the network architecture [4]. This
redesigning involved the application of advanced technical and technological solu-
tions and the implementation of a new concept of network infrastructure man-
agement. Prerequisites for survival in a highly competitive market are prompt
responses to all user needs for more complex and resource-demanding services and
the construction of a flexible and scalable network environment. Consequently, the
computer infrastructure virtualization technology and the network function virtu-
alization concept (NFV) application have emerged as one of the most significant
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solutions [5]. These technologies enabled seamless network function and new
service deployment, a more responsive service provision approach, and greater net-
work management control.

The basis of virtualization technology is the concept of “decoupling” network
software from hardware, i.e., making it possible for network software to run on any
hardware. This concept allows the designers of computer networks to choose and
apply various technical and technological solutions freely, without restrictions such
as the requirement for specialized hardware for each network function. It provides
telecom operators and users with benefits such as reducing the costs of maintaining
the existing and building new network infrastructure, agility in implementing new
network functionalities, and others.

The primary motive that guides the designers of computer networks when
implementing the NFV concept is the elimination of existing limitations in tra-
ditional computer networks. The limitations are mainly related to implementing
network functions (such as firewalls, load balancers, or packet gateways), where it is
necessary to possess specific software and hardware [6]. For example, in traditional
networks, we can meet hardware load balancers. These balancers were loaded with
specialized and proprietary built-in software that could handle massive application
traffic. Vendors loaded proprietary software onto dedicated hardware and sold it
to users as standalone appliances, usually in pairs, to provide failover if one system
goes down [7]. This implementation of network functions indicates a high degree
of dependence between software and hardware.

To eliminate this dependency, it is necessary to implement network functions,
i.e., make the software that provides that functionality independent of the hard-
ware. In other words, instead of using dedicated hardware, the software should be
implemented on some general-purpose hardware (so-called Commercial-Off-The-
Shelf hardware – COTS), where all operations will be performed by the proces-
sor [8]. Implementing such solutions enables new business opportunities on the
market, thus attracting the interest of cloud and Internet service providers, mobile
operators, and other players in the telecommunications market.
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Chapter 2

Network Function Virtualization (NFV)

NFV technology develops rapidly, significantly influencing the application of new
networking concepts. It implies redesigning traditional, hierarchical, organized net-
works, implementing more flexible and scalable solutions, and a new concept of
network infrastructure management. By operating in a virtual environment such
as virtual machines (VMs) and containers, the NFV enables architecture scaling
faster, easier, and without extra (specialized) hardware. For example, in the case of
system failure on physical devices, the NFV can facilitate disaster recovery. We can
relocate a virtual entity to another location in the network so regular functions can
be resumed even more quickly. The absence of the need for additional hardware
helps operators reduce operational expenses. The new pay-as-you-go business phi-
losophy associated with applying the NFV concept and the cloud also helps clients
reduce costs. That is why it can be said with great certainty that organizations are
rapidly moving from using dedicated hardware with pre-implemented software to
applying advanced software solutions on standard hardware. The significantly wider
application of software technologies aims to ensure a substantially higher level of
programmability in the network [9].

For the rapid acceptance of NFV technology, it is important to identify contem-
porary socio-economic trends and analyze the potential problems that follow the
implementation of existing and future services in traditional computer networks.
Therefore, it must be borne in mind that, besides the numerous advantages of the
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NFV concept, certain risks slow down its wider application, primarily in operator
networks. One risk refers to multiple standards and open-source initiatives (Open
Platform for NFV, Open-Source MANO, Open Network Automation Platform,
European Telecommunications Standards Institute – ETSI, and the Metro Ethernet
Forum) that encourage NFV development. A clear architectural direction, which
would provide acceptable conditions for all providers and operators, is necessary
for the wider application of the NFV concept. Another risk is security in complex
environments with the implemented NFV concept. Namely, it is essential to apply
appropriate solutions to protect the physical layer, the virtualized layer, and the
carrier application. This requirement additionally complicates the NFV setup.

Further, when moving from a physical to a virtual infrastructure, the degradation
of network function performances may occur. Therefore, it is necessary to continu-
ously monitor the performance of virtualized network functions and avoid poten-
tial traffic bottlenecks (e.g., a virtual switch can be a potential bottleneck between
virtual machines and network services for different traffic). To correctly compre-
hend the changes, it is necessary to understand the importance of the transition
from a hardware-based approach to a virtualized network approach based on the
software [10].

Undeniably, the NFV concept, along with technologies such as software-defined
networking (SDN), cloud and edge computing, and others, significantly affects
telecom providers, technology vendors, and other players of the connected ecosys-
tems. Widespread use of these technologies leads to further “softwarization” of net-
work environments (5G and 6G networks), resulting in a new value chain for
various industries, including public administrations. For example, many admin-
istrations implement citizen-centric, data-driven, and performance-focused gov-
ernance, transforming their e-government system into a smart government [11].
This transformation implied the appliance of different virtualization techniques to
solve problems from technical, financial, and privacy perspectives. Operators and
providers have become aware of the need to build a more flexible, scalable, and
resilient network infrastructure. The main feature of the new infrastructure must
be a high degree of agility in responding to heterogeneous user requirements. In
most cases, this refers to service requirements based on cloud technologies, new
types of communication such as M2M (Machine-to-Machine), or the application
of smart Internet of Things (IoT) environments [12]. In such circumstances, the
role of NFV and other advanced software technologies is to “introduce” a signif-
icantly higher level of programmability into the computer network to create an
appropriate basis for implementing and efficiently operating all services.

The rest of this section is organized as follows: Subsection 2.1 provides the char-
acteristics of traditional, hierarchically organized networks and indicates shortcom-
ings, whose solving is the motive for developing and applying the NFV concept.
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Subsection 2.2 explains two main principles representing the NFV concept’s basics.
Further, we explain the ETSI NFV framework, application fields, and the role of
VNF in modern computer environments in Subsection 2.3. Subsection 2.4. deals
with the concept and the importance of the ETSI NFV framework application for
modern ICT (Information and Communication Technology) trends and makes
the general picture of the basic building blocks, with more detailed insight into the
structure of each of them. Finally, Subsection 2.3.2 highlights the advantages of
NFV deployment.

2.1 Computer Networks with the Traditional Architecture

Many computer networks still have the traditional, hierarchical network architec-
ture model. A characteristic of this model (Fig. 2.1) is that numerous functionalities
are defined on specially developed hardware, where specialized, proprietary software
runs. When manufacturers design and build their equipment, they are guided by
a generic set of requirements and offer functionality that combines specific hard-
ware and software. Thus, hardware and software are integrated as a single entity and
represent a certain manufacturer’s property [9]. Such software remains the manu-
facturer’s property (clients can use it under predefined conditions). Manufacturers
want to protect their intellectual property. However, this approach restricts users’

Control plane

Forwarding
plane

Control plane

Forwarding
plane

Control plane

Forwarding
plane

Proprietary so�ware

Dedicated hardware 
(FPGA, ASIC, CPU,...)

with a specialized
opera�ng system

Control plane

Forwarding
plane

Fixed network func�ons

Distributed control plane architecture

Figure 2.1. Characteristics of computer infrastructure in traditional networks.
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rights to modify, distribute, or access its underlying source code, thereby diminish-
ing flexibility and the possibility of rational use of available resources. Moreover,
clients can become dependent on the manufacturer, which can produce negative
effects from the financial and technical side (they must purchase equipment only
from a certain manufacturer).

In real network environments, we meet numerous proprietary solutions, and
the problem of establishing connections and communication between them (inter-
operability problem) is one of many problems we can encounter. Apart from the
interoperability problem, the functioning of traditional computer networks is also
significantly affected by the need to provide greater bandwidth. The emergence of
new and more intelligent services (e.g., video, mobile, and IoT applications), as
well as the exponential growth of the number of devices in the network, requires
the engagement of significant resources and greater agility in the network. Telecom
operators are challenged: How can they expand and scale network resources more
effectively without increasing costs?

We must note that traditional networks have certain shortcomings which reduce
operational efficiency, such as:

• Limited scalability due to the dependence on physical hardware devices.
• Low level of flexibility in coordinating between fixed-function network

devices (require significant manual intervention).
• A single change can have a cascading effect because it can degrade the entire

network’s performance.
• A rigid, hierarchical architecture that is difficult to modify or adjust to varying

user demands.

For example, to implement any hardware, providing a certain amount of elec-
trical power and space for its accommodation is necessary, which can be a problem
and an additional cost. Limitations also exist regarding software, as traditional net-
work devices sometimes cannot keep up with changes in data networks (e.g., in
terms of the number of routes to be created). In other words, traditional network
devices are designed to function in a limited multidimensional space from the per-
spective of resources, so telecom operators have limited options for upgrading and
expanding the network infrastructure.

Managing such a heterogeneous infrastructure is complex because there is no
single management interface. For traffic measurement and computer resource
load [13], monitoring tools are used with standardized monitoring protocols
(e.g., Simple Network Management Protocol, NetFlow, and syslog). Often, more
is needed, especially when monitoring parameters specific to certain manu-
facturers’ equipment (e.g., the manufacturer uses a non-standard Management
Information Base (MIB) or syslog messages). Work and business organization in
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this environment represent a serious challenge for telecom providers. They must
have highly trained staff capable of maintaining equipment from different manu-
facturers, which affects operating costs, i.e., increases them.

Traditional computer networks can only sometimes follow the changes in the
ICT market and the constant growth of user numbers. The variety of service
requests creates a need, initiates a network redesign, optimizes the system, and
overcomes difficulties in choosing the appropriate equipment. The upgrade pro-
cess is burdened with costs related to providing physical access to personnel who
need to install new hardware, reconfigure the system, and perform service. Addi-
tional training or employment of newly trained personnel represents another cost
and slows decision-making on acquiring and installing equipment from another
manufacturer. This situation potentially leads to the “lock-in” of telecom providers
with one manufacturer’s equipment. Every change in network capacity that must be
made to satisfy user requirements, even in a longer time interval, requires additional
financial resources.

2.2 Fundamentals of NFV Concept

The rapid development of information technologies and the emergence of new
forms of communication represent the main driving force behind the development
of contemporary society. To enable continuous tracking of these trends, the aca-
demic and professional community must find adequate answers to numerous chal-
lenges. These challenges are mainly related to allowing the open and flexible imple-
mentation of new and increasingly demanding services, which can only be done
in a flexible and scalable environment. Building such an environment is only pos-
sible through the continuous development and application of advanced software
technologies, such as virtualization technology of the computer infrastructure and
network as a whole [9].

Today, there is almost no computer network in which there is no virtual (log-
ical) version of at least some devices, whether they are servers, operating systems
(Oss), processors, data stores, switches, or routers. The virtualization technology
itself has taken root, especially in data centers. Their physical infrastructure, con-
sisting of many independent server systems, has already been largely replaced by vir-
tual servers running on shared hardware. The NFV concept was built on the server
virtualization technique, although it has a much larger scope today. It extends to
network devices and enables the ecosystem to deploy and manage virtualized net-
work entities. The implementation of the NFV concept in the network is based on
two main principles:

• decoupling software from hardware, and
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• building network functionalities independent of the network location (e.g.,
firewalls, load balancers, routers, customer equipment for connecting to the
Internet, and even access devices can be implemented at any location with
virtualized computing infrastructure).

The NFV concept is a technology that enables the construction of a specific
ecosystem. That ecosystem comprises virtual network devices, management tools,
and infrastructure that integrate these software solutions with computing hardware.
In other words, this technology enables replacing physical devices that perform a
network function with one or more software programs that serve the same func-
tion running on generic computer hardware (e.g., replacing a firewall with a virtual
machine on a standard server). In this way, it is possible to build a suitable environ-
ment where network functions can be implemented on any generic hardware that
offers basic data processing, storage, and transmission resources. The term COTS
hardware is often used in practice and implies hardware that contains the required
resources and can run any software (Fig. 2.2) [14].
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Load balancer
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layer

Figure 2.2. The transition from traditional to NFV networking concept.

In traditional computer networks, telecom operators fully control the hardware
and software that performs a specific network function. However, the problem
arises when user requirements change and when it is necessary to make quick
changes in the network. The problem is most pronounced when it is needed to
ensure the dynamic establishment of network functions and the rapid realization
of the required services. That is why telecom operators, in such situations, opt for
the application of NFV technology, with the important assumption that they have
standard equipment with the necessary resources at the location [15]. Therefore,
virtualizing the computer infrastructure and the network opens some new possibil-
ities regarding configuration and network management. Through the application
of open software interfaces, it is possible to create a flexible and scalable environ-
ment with the necessary level of agility to solve all user requests, realize certain
innovations, and implement new network architectures optimally and efficiently.
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2.3 ETSI NFV Framework

In traditional computer networks, where virtualization technology is not applied,
the nodes usually contain network functions that represent a combination of soft-
ware and hardware characteristics of a certain manufacturer. Virtualization technol-
ogy is emerging as a natural solution to avoid being “lock-in” in specific hardware
and software. Bearing in mind the main principles of NFV, it is easy to conclude
that this technology represents a step forward in the realization of a more flexible
and scalable computer infrastructure because it introduces the following novelties
into the traditional network architecture [16]:

• The network element is no longer a set of integrated hardware and software
entities because software is developed separately from hardware and vice versa.

• Flexible and scalable deployment of network functions – by separating soft-
ware from hardware, a high level of flexibility is obtained regarding redis-
tribution and sharing of infrastructure resources, enabling different network
functions to be performed simultaneously on shared hardware.

• Dynamic performance of activities in the network – control of operational
parameters of network functions takes place through granular control and
monitoring of network conditions.

From a strategic point of view, the goal of NFV technology is to enable the
implementation of network functions as software entities that run on a virtual
infrastructure [17]. In doing so, virtual infrastructure is created on standard hard-
ware (widely used and relatively inexpensive), using various virtualization software
(so-called hypervisor tools). In Fig. 2.3, we show the program framework, which
represents the basis for work on the standardization of NFV architecture. This
programming framework was first presented by the ETSI Industry Specification

VNF VNFVNF VNF VNF

Virtualised Network Func�ons – VNFs

ServerComputer Storage Network

Virtualiza�on layer

Virtual 
machine Virtual server Virtual storage Virtual network

Hardware resources

NFV 
infrastructure

(NFVI)

Management 
and 

orchestra�on 
(NFV MANO)

Virtual resources

Figure 2.3. Structure of ETSI NFV framework.
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Group (ISG) at the “SDN and OpenFlow World” congress, held in October 2012
in Germany [18].

The above mentioned program includes standards defining the management
of virtualized network functions (VNF), relationships, mutual dependencies, data
flow between VNFs, and allocating required resources. In this regard, the ETSI
ISG divided roles within the program framework and categorized three functional
blocks [19]:

• NFVI (Network Functions Virtualization Infrastructure) block – the basic
building block of the entire architecture in which hardware for hosting virtual
machines, software for virtualization, and virtualized resources are grouped.

• VNF block – the block with virtual machines with software-implemented
network functions.

• MANO (Management and Network orchestration) block – the block for
management and orchestration of network functions through constant inter-
action with NFVI and VNF blocks, ensures efficient management and
orchestration of all resources in virtualized data centers (physical hardware,
networking, and storage devices, resources of virtual machines, etc.), with the
focus on the dynamic allocation of resources following the requirements of
different services.

2.3.1 Application Fields

To better understand the NFV framework, we must consider that it is possible to
apply NFV technology to various functions of packet processing in the control and
packet forwarding planes, whether in fixed or mobile networks [20]. In practice,
there are numerous solutions in which this technology is actively applied, such as:

• Software-implemented deep packet inspection (DPI) [21] – enables advanced
analysis of packet content and traffic, simpler mechanisms for application,
updating, testing, and scaling of resources following changing workloads, and
multidimensional reporting.

• Functions – include Carrier Grade Network Address Translation (enables
Internet access by allowing customers to share a single, public IP address)
and Broadband Remote Access Server (a specialized server that enables easier
convergence of multiple Internet traffic flows such as digital subscriber line
(DSL), Ethernet, cable, and wireless).

• Virtualization of services in network environments [22].
• Virtualization of content delivery networks (CDN) enables easier expansion

and scaling of content delivery services and allows reusing hardware to install
other service delivery applications [23].
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• Virtualization of mobile network core – enables more flexible network man-
agement and creates conditions allowing serving a larger amount of traffic
with better use of resources (including energy saving, hardware consolida-
tion, support for multi-tenancy access where one software instance with its
infrastructure provides service to a larger number of users and faster config-
uration of new services) [24].

• Coordinated implementation of cloud technologies in organizations –
enables on-demand services and network resources to the organization’s needs
(in general, different versions of a service coexist on shared hardware).

2.3.2 Virtual Network Functions

For an easier understanding of the process and the architecture defined by the
ETSI NFV program framework, it is essential to correctly interpret the concept
of virtual network functions (VNFs). This concept differs from the traditional
concept, where network functions are usually implemented on specially designed
hardware (the so-called integrated implementation of hardware and software enti-
ties). Instead, it implies a new method of implementation, where network func-
tions shall be implemented as independent software entities on a standard and
arguably cheaper computing infrastructure. Therefore, the basic idea on which
we base the whole concept rests is the creation of prerequisites for software
and hardware to be developed independently [25]. This approach is the only
way to enable greater agility and innovation in providing various services in the
network.

Industry efforts to articulate and standardize the context of virtual network func-
tions initially took place within the ETSI NFV initiative and later in the open-
source context, within projects such as Open Platform for NFV (OPNFV) [26],
Open-Source MANO (OSM) [27], and Open Network Automation Platform
(ONAP) [28]. Today, a widely accepted definition treats virtual network functions
as software applications connected to the network and independent of hardware.
That is the basis for the widespread use of microservice architectures, middleware
platforms, and distributed applications.

By applying the VNF concept, telecom operators can improve their operations
because they implement new services faster in their networks. The programma-
bility that comes with this concept allows network functions to be upgraded and
scaled dynamically and in a much more flexible way with a greater degree of
granularity, which makes better use of available network resources and thereby
reduces operational and capital costs. However, it is important to point out that
the implementation level to which the advantages mentioned above will be realized
depends primarily on the VNF model implemented in the network. Namely, the
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basic requirements for designing virtual network functions include ensuring their
modularity, portability (transferability to another virtualized resource), indepen-
dence from hardware, multiple use, and scalability [29]. Implementing the VNF
concept can be accelerated if there is already a certain set of hardware (physical)
resources at the locations, which is very important from the speed and flexibility
needed to, e.g., implement various cloud and network technologies.

We can implement a network service using only one virtual network function
(as an independent entity) or by combining several virtual network functions. If
different virtual network functions are combined, it must be emphasized that there
is communication between them. However, they must know they are not physically
connected or work on standard hardware. In Fig. 2.4, we explain the implementa-
tion of virtual network functions for security (firewall functionality), encryption,
and load balancing.

Encryp�on

Firewall Load balancing

Cloud

Figure 2.4. An implementation of network services by combining virtual network func-

tions.

To run virtual network functions from Figure 2.4, one can use only one
general-purpose hardware device with generic hardware resources (processor, stor-
age, memory, and network interfaces) or multiple devices (so-called integrated
hardware solution) that provide the necessary hardware resources to run them [1].
Both solutions have been used in data centers for a long time, whether concerning
hypervisor-based virtualization [30] or container-based virtualization [31].

Therefore, virtualized infrastructure (NFVI) is a virtual computing environ-
ment. This environment is created when certain subsets of resources are extracted
from standard hardware (a common set of resources) and following the techni-
cal requirements of the VNF software application. When creating virtual environ-
ments, it is imperative to consider the software vendor’s recommendations, which
refer to the minimum requirements regarding resources to be provided. The vir-
tualization layer plays a key role in this process, which uses physical hardware to
create a virtual environment with the resources needed to implement a VNF soft-
ware application. It is important to point out that any VNF needs to be aware of
another with which it may even share physical hardware. In virtualized network
architectures (networks with applied NFV programming framework), a functional
system must oversee the management, automation, coordination, and interconnec-
tion of layers and available blocks.
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2.4 Layered Design of the NFV Architecture

To properly understand the concept and the importance of the ETSI NFV frame-
work application for modern ICT trends, apart from the general picture of the basic
building blocks, it is necessary to have a more detailed insight into the structure of
each of them. This point of view implies the need to define elements within these
blocks with different roles and responsibilities to realize certain processes [1]. In
this sense, in Fig. 2.5, a detailed view of the ETSI NFV framework is given, where
functional blocks are grouped into three layers:

• The infrastructure layer (consists of hardware and software components that
build the environment for VNFs)

• The layer of virtual network functions (a place where the virtual network
functions operate)

• The application layer (consists of many applications/functions, such as net-
work management, fault management, configuration management, service
management, etc.).

Each layer deals with a certain aspect of NFV implementation.
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Figure 2.5. Detailed structure of the ETSI NFV framework [1].
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2.4.1 Infrastructure Layer

For the functioning of VNFs, virtual resources must be available in the NFV infras-
tructure layer (NFVI), which can emulate the virtual environment by the software
installed on the physical hardware. The building blocks of this layer are physi-
cal (hardware) resources, a virtualization layer, and virtual resources, as shown in
Fig. 2.6.

In the ETSI NFV program framework, hardware resources are divided into
computers (client computers, servers, processors, and memories that can be com-
bined into clusters), data storage resources organized using Storage Area Network
(SAN) [32] or Network-Attached Storage (NAS) technologies for data storage [33])
and network resources consisting of sets of network cards. Developing special-
ized hardware resources for implementing virtual network functions is unneces-
sary because we can apply virtualization technology to physical hardware available
on-site (COTS hardware) and build the requested environment. Therefore, virtual
environments (virtual resources) are created by virtualizing the available hardware,
which can be connected even when located on different physical hardware and even
in different locations. To enable this connection and provide the NFV infrastruc-
ture needed to implement virtual network functions, network devices (switches,
routers, and so on) are used. These devices are installed physically and are not part
of the resources allocated to a virtual network function.

The part of the NFV infrastructure that is responsible for creating a suitable vir-
tual environment (virtual machine with computer, network, and storage resources)
in which the VNF software application will be executed is the virtualization layer
(hypervisor), i.e., through direct interaction with the physical hardware. Its role is
twofold: (i) it must decouple the software application from the hardware, and (ii)
allow the VNF software applications to function independently.

Figure 2.6 shows that the structure of this layer, in addition to the previously
mentioned NFV infrastructure, also consists of a virtualized infrastructure manager
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Figure 2.6. Infrastructure layer in the ETSI NFV framework [1].
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(VIM) responsible for managing its resources [1]. The management process implies
that this manager, having full information about hardware resources and their
operational attributes (power supply and status), directly implements management
functions over the virtualized infrastructure. In other words, the virtual infrastruc-
ture manager also manages the virtualization layer, thus controlling the hardware
resources. It is important to note that one virtual infrastructure manager can control
multiple devices, and even multiple virtual infrastructure managers can simultane-
ously control various hardware devices from one or more locations. The VIM can
allocate resources under traffic engineering rules to support defining operational
rules, define hub-to-facility mapping, and provide information for provisioning
virtual infrastructure orchestration (VIO).

2.4.2 Virtual Network Function Layer

The layer of virtual network functions (VNF) layer is a part of the programming
framework, which is responsible for their implementation. The structure of this
layer is shown in Fig. 2.7. This layer is composed of two basic building elements:
a Block of virtual network functions (VNF block) and a control block (VNF Man-
ager – VNFM) [1].

In general, the idea of virtualization of network functions (regardless of which
network function it is – router, firewall, load balancer, nodes in mobile networks,
and other devices) emphasizes software development:

• which can be implemented on any hardware with the necessary resources and
• with identical characteristics and external interfaces, as in traditional com-

puter networks.

Certain specificities must be considered when realizing network services via
NFV infrastructure. In a real environment, we can implement network services by
using only one VNF software or by combining several VNF software applications

VNF VNFVNF VNF VNF

Virtualized network func�ons

EM EMEM EM EM
Ve-VnfmVNF manager

Management and 
orchestra�on
 (NFV MANO)

Figure 2.7. Virtual network function layer in ETSI NFV framework [1].
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(between VNFs, a particular dependency can exist). If there is a dependency
between VNF software applications, then such network services are implemented
per a specific procedure. That procedure implies that the data must be pro-
cessed according to some predefined sequence to ensure connectivity between VNF
instances (software applications). This kind of implementation is called service
chaining and is executed following the graph for forwarding VNF instances (VNF
Forwarding Graph – VNF-FG). If there is a dependency between VNF software
applications, then such network services are implemented per a specific proce-
dure. That procedure implies the data must be processed according to a predefined
sequence to ensure connectivity between VNF instances (software applications).
This kind of implementation is called service chaining and is executed following
the VNF-FG instances.

Implementing network services using the NFV concept can be nicely explained
using the example of vEPC (virtual Evolved Packet Core) implementation in 4G,
5G, and 6G [34] mobile networks. It is a standard framework for processing and
routing voice and other packets through the IP backbone, the key virtual compo-
nents of which are:

• Mobility Management Entity (MME) – responsible for authentication and
monitoring of users on the network, as well as session state management.

• Serving Gateway (SG) entity – enables the routing of packets through the
network.

• Packet Data Network Gateway (PDN GW) entity – manages the quality of
the provided service and enables deep packet analysis.

• Policy and Charging Rules Function (PCRF) entity – helps implement the
charging policy and enables disclosure of services-related data.

Some VNF instances, such as the MME and SG, operate in parallel to enable
some vEPC functionality but perform their functions independently. The MME
entity manages the mobile devices, authenticates the user, and selects the appro-
priate SGV, while the SGV forwards the user’s packets independently of the
MME function. However, implementing the VNF instance for the PDN GW
implies data processing after implementing the VNF instance for the SG, indi-
cating a dependency. Figure 2.8 shows the interconnection of the mentioned VNF
instances, carried out under a certain procedure or sequence, and represents the
so-called VNF-FG.

To properly understand the activities in the core of the mobile network, we
should focus on two types of traffic: control and user traffic. Therefore, it is nec-
essary to introduce the Network Forwarding Path (NFP) concept to identify the
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Figure 2.8. A vEPC implementation in mobile networks using the NFV concept.

actual traffic flows on virtual links. Figure 2.8 clearly shows that the control traf-
fic has two paths, and the user traffic has only one. Therefore, the network service
is implemented by combining the activities of the component functional blocks,
including individual VNF instances and the VNF graph for packet forwarding.
Forwarding Graph [1].

The VNF instance manager (VNFM) is responsible for configuring and manag-
ing VNF instances and their resources. Its role is to communicate with the VIM,
and before starting the instantiation of a new virtual network function or modifying
the resources assigned to one of the existing VNF instances, to check whether addi-
tional hardware is available. Essentially, this manager manages the configuration of
VNF instances, i.e., parameters that directly depend on their performance, security,
errors, and resource distribution (Fault, Configuration, Accounting, Performance,
and Security – FCAPS).

The element manager (EM) is responsible for the implementation of manage-
ment functions, which can be applied to one or more VNF instances [1]. This
entity ensures reliable communication, i.e., interaction by proxy model, with the
VNF instance manager (VNFM) and the VNF instances themselves. For this pur-
pose, it uses proprietary methods to communicate with VNF instances. In con-
trast, it uses open standards for communication with the VNF instance manager, as
shown in Fig. 2.9 (the VNF instance manager can have a centralized or distributed
architecture).
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2.4.3 Operational and Business Support Layer

This layer consists of two functional components, as shown in Fig. 2.10 [35]. The
first component is the Operation Support Subsystem (OSS), which manages the
network, errors, configuration, and service operations. The long component is the
mobile operator’s Business Support System (BSS) from user management, services,
and user requests. In the NFV architecture, the mobile operator’s BSS/OSS systems
most often integrate with NFV management and orchestration through standard
interfaces.

OSS/BSS
NFVO

VNFM

Os-Ma-NFVO

Or-Vnfm

Management and Governance

VNF lifecycle management
VNF performance management 
VNF fault management

VNF package management

Different component of OSS/BSS 
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Figure 2.10. OSS/BSS support layer.

After moving to a virtual infrastructure, many operators do not make changes
regarding the tools used for management and do not implement new OSS/BSS
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applications. They prefer to rely on systems that are built within organizations.
This approach limits the ability to take full advantage of the NFV programming
framework, as it is not designed to communicate with functional management
blocks such as VNFM and VIM. Therefore, one of the solutions can be the gradual
evolution of existing tools and systems to create conditions for connection with
functional blocks for management and to take advantage of the advantages of the
NFV program framework, such as elasticity, agility, and flexibility.

2.4.4 NFV Management and Orchestration

By virtualizing network functions, we introduce a much higher level of programma-
bility into computer networks, which entails applying a new method of managing
the network infrastructure and orchestrating resources and services. Unlike tradi-
tional networks, where network functions are tied to specific hardware, in mod-
ern computer networks, we use virtualization technology to decouple the soft-
ware implementation of network functions from computer storage and network
resources. In this way, building new virtual entities (VNF instances) and establish-
ing connections within the NFV infrastructure (NFVI) is possible. In most cases,
network services are provided by interconnecting these virtual entities. On the other
hand, in practice, there are also examples of a certain network service being imple-
mented by connecting virtual entities with network functions implemented tradi-
tionally, i.e., using dedicated hardware.

Therefore, network services can be fully or partially realized by connecting vir-
tualized and non-virtualized resources. Virtualized resources are generally associ-
ated with virtual machines, which can be viewed as containers that run programs
and execute applications on software computing resources (rather than a physical
computer). Such an environment is created on physical hardware. It functions as a
virtual computer system with its central processing unit (CPU), memory, network
interfaces, and data storage (with storage organized on block or file access).

For the implementation of virtual network functions, the orchestration of virtual
resources on virtual machines is of particular importance, which implies allocating
the virtual resources necessary to release those that are no longer needed. Orchestra-
tion is a complex task, especially considering different requirements and constraints
(e.g., some VNF instances require low latency, while others require high-bandwidth
links to communication participants). It should be noted here that allocating the
necessary resources has a dynamic character, especially considering that the needs
of VNF instances for resources change and that it is required to respond to them
almost in real time. In other words, the NFV concept relies on the service orches-
tration process as on a service definition model using VNF instances and applying
different topologies of their connection.
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NFV Management and Orchestration (MANO) systems were primarily devel-
oped to manage virtual network functions in 5G/6G networks in an agile and flex-
ible manner. In this sense, the ETSI ISG has adopted appropriate instructions,
which describe the requirements and standards that the software and hardware of
the NFV MANO system should satisfy from the realization of virtual network func-
tions [18]. However, mobile operators offer different solutions. They should choose
the best solution: the MANO system that suits their needs. For mobile operators
to make a quality choice, it is necessary to define the MANO system’s key perfor-
mance indicators (KPI), based on which the performance analysis and comparison
could be performed.

Defining key performance indicators, which would be used to quantify the per-
formance of the NFV MANO system, is a big challenge, especially when consid-
ering the dynamics and flexibility of services provided by VNF instances [36]. In
addition to performing traditional infrastructure management, providing life cycle
management of VNF instances and network services is necessary. All key perfor-
mance indicators of the MANO system can be classified as functional and opera-
tional. Functional performance indicators define the so-called non-runtime features
of the MANO system, such as:

• Number of committed resources (resource footprint).
• List of different VIM platforms (virtual infrastructure manager solutions)

that the MANO system can manage.
• The number of virtual infrastructure managers that one MANO system can

effectively manage.
• The maximum number of VNF instances that the MANO system can mon-

itor and manage within the NFV infrastructure.
• Support for DevOps (procedures and tools that increase delivery applications

and services compared to the traditional software development process), man-
agement of VNF images, and integrated monitoring.

Operational performance indicators define the so-called run-time operations,
and their quantification is done through the measurement of delay and efficiency
determination of the control procedure/task. One of these indicators is the time
required to launch the virtualized network function image (so-called onboarding
process delay), i.e., a virtual machine with all its resources. This image is a package
which contains the following:

• VNF descriptor file (VNFD) – a file with information about the configura-
tion, network requirements to be met, resources to be provided, routing and
security policies, available IP ranges, and interfaces.
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• Network Service Descriptor (NSD) – a template that describes the network
service requirements in terms of function, operation, security, characteristics
of virtual links, quality of service, quality of experience, and reliability. It
includes VNF-FG (identifies the types of VNF instances, the sequence of
their chaining, and the characteristics of the virtual links connecting them).

The next important indicator is the time required to start one VNF instance
inside a virtual machine, and the network service becomes operational [37]. That
is a critical parameter when it comes to complex network services (composed of
multiple VNF instances), where the role of the MANO system is precisely to pro-
vide the necessary resources for instantiating VNFs and connecting them via appro-
priate virtual links and then configuring each VNF -a following the information
contained in NSD templates and VNFD files.

A further important indicator is the delay in orchestrating various management
procedures. Namely, with each management action, the delay can be quantified by
measuring the time interval from the moment when the action was started to the
moment when the action initiated by that action was completed. The use value of
this indicator largely depends on the monitoring system that continuously monitors
the state of VNF instances during their life cycle.

Also, an important indicator is the quality-of-decision, which represents a metric
that can be used to quantify the performance of the MANO system in terms of
managing the life cycle of VNF instances (VNF Life Cycle Management), their
scaling, and migrations. In other words, this indicator indicates the effectiveness of
management decisions from the point of view of committed resources (e.g., whether
long-term and short-term resource requirements for a specific VNF instance are
provided in the selected computing node or how the instantiation action affects
other VNF instances in the same computing node).

2.4.5 NFV Referent Points

By virtualizing network functions, a much higher level of programmability is intro-
duced into computer networks. One of the basic requirements implemented within
the ETSI program framework is providing open and consistent communication
between its functional blocks. Reference points are defined to identify and effec-
tively monitor this communication precisely. They represent a specific working
environment for VNFs by applying the NFV concept and building the NFV infras-
tructure (without defining a special control protocol, a hardware-independent life
cycle, performance, and portability requirement of VNFs are guaranteed). In this
sense, the ETSI NFV framework defines the following reference points:
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• Os-Ma is a reference point between the OSS/BSS system and the MANO
control block, which defines the communication between OSS/BSS and
NFVO as follows:

– Activates network service and VNF instances lifecycle management by
generating and sending adequate requests.

– Exchanges information about the status of functional blocks defined by
the NFV framework.

– Creates different policies and forwards management instructions, which is
necessary for NFVO operations.

– Exchanges data obtained using analytical methods.
– Forwards record that refers to the use of NFV resources and calculate

billing accordingly.
– Exchanges information about the capacity of the NFV infrastructure and

its availability.

• Ve-Vnfm is a reference point that defines the communication between the
manager of virtual network functions on the one hand and EMs and VNF
instances on the other through:

– Requirements for managing the lifecycle of VNF instances.
– Exchange of configuration information
– Exchange of information necessary for managing the life cycle of network

services.

• Nf-Vi represents a reference point where virtual infrastructure managers
exchange information with functional blocks of NFV infrastructure (e.g.,
information on configuration and state of hardware resources, availability of
virtual resources, and their allocation according to current requirements).

• Or-Vnfm is the point of reference through which the NFV orchestrator com-
municates with the virtual function manager related to the instantiation of
VNF software applications (e.g., authorization, validation, reservation and
allocation of virtual resources by the VNF instance manager, forwarding the
appropriate information to enable the VNF instances to adequately config-
ured within VNF-FG) and forwarding collected information about the state
of VNF instances that is necessary for managing their life cycle.

• Or-Vi is a reference point through which the NFV orchestrator directly
communicates with the virtual infrastructure manager and forwards poten-
tial requests for reservation and resource allocation based on previously
exchanged information about the configuration and state of virtualized hard-
ware resources.

• Vi-Vnfm is the reference point through which communication occurs
between the VNF instance manager and the virtual infrastructure manager
(e.g., they send requests to the VNF instance manager to allocate resources
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based on information about the configuration and state of the virtualized
hardware resources).

• Vn-Nf is a reference point through which performance information is trans-
mitted to the infrastructure block, indicating the need to migrate VNF
instances to another.

• Wi-Ha is the reference point through which the virtualization of hardware
resources takes place.

Figure 2.11. End-to-end (E2E) communication flow in the ETSI NFV framework.

Figure 2.11 shows a generic scheme that describes end-to-end (E2E) commu-
nication in a general way, which takes place between different functional blocks
defined by the ETSI NFV program framework, intending to implement some net-
work service.

2.5 Advantages of Applying the NFV Concept

The NFV concept application aims to eliminate numerous problems that hamper
the application of new and increasingly demanding services in computer net-
works. The virtualization of network functions changes the network’s design,
infrastructure configuration, individual network units, and the way of managing
the network, fundamentally affecting the introduction of a new work model in the
network environment. Figure 2.12 shows the main advantages of implementing this
technology.
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Figure 2.12. Benefits of applying the NFV concept in modern computer networks.

Those advantages primarily refer to the following:

• Elimination of vendor dependency (no vendor lock-in) – allows the creation
of the conditions to replace the existing equipment or expand the infrastruc-
ture faster and at a lower cost (it is possible to choose equipment based on the
availability of functions, software licensing prices, and support models after
implementation).

• Flexibility – free hardware choice (the NFV concept enables the use of COTS
hardware), the possibility of building a network environment that best suits
service requirements, and running VNFs across different servers or moving
them around as needed.

• Scalability and elasticity – introducing into the network a higher level of pro-
grammability, which will enable the creation of a network environment in a
flexible and scalable manner and resource allocation and release dynamically
(when there is a need for it, and it is the so-called fast elasticity, which is
primarily characteristic for the cloud environment).

• Agility – enables fast deployment and creation of new network services,
reducing time-to-market and improving competitiveness.

• Adaptability – enables adaptation to changing customer requests and other
conditions (NFV components possess flexible and customizable character).

• Operational efficiency – fast implementation of network services and func-
tions on request and, as needed, allows the application of a virtual network
function or services in different places in the network without changes or
with minimal changes in the configuration. Also, hosting VNF instances on
standard hardware reduces operational costs because there is no longer a need
to host them on special, purpose-built hardware.

• Easier use of existing tools – provide easy implementation of the existing tools
from traditional computer networks, which even more easily can be used in
modern computer networks (on the same physical infrastructure)
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• Simple validation – simpler implementation of a test environment enables
the check of new solutions and validation of various service capabilities when
necessary.

• Rapid development – The open-source components of NFV prioritize code
development and represent the base for quickly delivering proof of concepts
(PoC) for use case implementation specified by the standards (the simplifica-
tion led to the development and deployment of sustainable solutions easily).

• A more dynamic service life cycle – implies ease and fast usage of VNFs,
maintenance over their lifetime, and deployment when needed (the NFV
facilitates such an approach and provides benefits from VNFs by performing
adequate tasks).

2.6 Conclusion

NFV allows for the separation of network services from dedicated hardware,
meaning that network operations provide new services dynamically and without
installing new hardware. This way, we can deploy network functions more easily
and quickly than in traditional networks. Besides that, virtualized functions run
on generic hardware, which is less expensive. The application of the NFV concept
includes additional reasons, such as pay-as-you-go models that allow us to pay only
for what we use, fewer appliances that lead to lower operational costs, and faster
and easier scalability, which do not require the procurement of additional hardware.
The application of the NFV concept has certain risks that we must consider. These
risks refer to security in NFV-based networks. Virtualizing network components
increases their vulnerability to new attacks compared to the physical devices. Tra-
ditional tools for traffic monitoring need to be more efficient to identify malicious
traffic between virtual machines within a network infrastructure. The complex lay-
ered architecture can cause numerous issues. For this reason, we must implement
more comprehensive security policies.

At each layer of the NFV infrastructure, we have solutions representing an exam-
ple of applying different virtualization techniques. This application aims to enable
the rapid development of network services with elastic scale and automation. In
the next section, we will provide many more details, which can give a closer look
at each virtualization technique, the subject matter, goals, and their ranges. Accu-
rately understanding virtualization technology’s essence, benefits, and limitations is
crucial to properly comprehending the NFV concept and the principles of modern
computing environments.



DOI: 10.1561/9781638283591.ch3

Chapter 3

Virtualization Technology

3.1 The Historical Development

In daily life, we can meet different types of virtualizations that support the cre-
ation of virtual (software) representations of servers, storage, networks, and other
physical machines. Virtualization indicates that its application provides a high
level of abstraction of computer hardware on which different software applications
can be executed [5]. The beginnings of this technology are related to the 1960’s
and the application of mainframe computers. These computers were used to pro-
cess demanding and complex data, and multiple virtual servers were created on
them. This technology allows the software installation and update on one virtual
server without affecting the operation of other virtual servers. During that period,
the professional community continued with activities on virtualization and other
resources. Virtualization (sharing) of hard disks into separate logical partitions was
also implemented [38]. IBM introduced System/370TM, the first of its architectures
to use virtual storage and address spaces. Whether a batch job or a timesharing user,
each user may have his virtual storage. A segment table maps each virtual storage
with page tables for all allocated segments.

Time-sharing enabled users to share computer resources, aiming to increase
users’ efficiency and the efficiency of expensive computer resources they share. It
represented a significant breakthrough in computer technology, which caused the
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prices of computing capacity to drop considerably. Moreover, it became possible
to use a computer without even owning one. Despite the time-sharing advantages,
in the 1990s, proprietary solutions and the “one server – one application” man-
agement model were still dominant. Such solutions did not allow software applica-
tions to run on third-party hardware. Irrational use of server resources was a reality.
The emergence of hypervisor technology and the ability to run multiple virtual
machines with different operating systems on one computer simultaneously greatly
reduced the dependence on hardware manufacturers. The hypervisor allowed the
optimal use of physical IT infrastructure by allocating underlying physical comput-
ing resources such as CPU and memory to individual virtual machines as required.

Virtualization technology is important in building modern computing environ-
ments and is a part of our daily lives. Its capabilities significantly impact the devel-
opment of the ICT sector, primarily through significant savings in resources and
money. By applying some of the virtualization techniques, it is possible, for exam-
ple, to reduce hardware procurement costs, the cost of rental space for computer
infrastructure, and electrical consumption. All of these indicate that technology
virtualization exponentially increases resource utilization. The application of vir-
tualization technology has other goals, such as simplified resource administration,
greater data security, and resistance to possible hardware failures [9, 39].

Virtualization allows us to abstract applications and their components from the
hardware they run on. This technology enables a logical (virtual) view of computer
resources, strikingly different from the physical view. The aim is to improve system
performance, increase scalability, achieve greater operational reliability, and build
a unique domain for security and management. A virtualization application can
create a virtual display into:

• Computational resources divided into several separate computing environ-
ments are, in essence, several operating systems simultaneously run on one
physical machine.

• Several physically separated computer machines aggregate (merge) into a
larger computer resource (grid computing), which the operating system sees
as one logical set of computer resources.

Users often have different needs depending on what they want to achieve, and
they can use other tools to realize goals, such as [9]:

• allowing any device to access any application over the Internet, even if that
application is not compatible with the device,

• isolation of applications from each other to enable safe operation and greater
environmental manageability,

• isolation of applications from the operating system to enable function on
other versions of the operating system,
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• launching multiple application instances to run simultaneously on different
machines,

• reduction of time required to run an application through segmentation of
data or the application itself and by delegating tasks to multiple computer
systems,

• system optimization allows it to work smarter and more by reducing the time
the processor is idle,

• to ensure the required redundancy to affect the high reliability and availability
of applications and data.

Virtualization offers significant benefits for almost any business or development
environment. Its implementation has become part of the smart government strat-
egy, which aims to improve the efficiency of various processes in society and even the
work of public administration bodies, significantly affecting those processes [40].
Public institutions often implement servers to run certain applications and, in doing
so, consume only a small part of the available resources. They were dissatisfied when
the applications would not run and the servers were completely inactive. Their
network staff can identify active and passive computing resources anytime by look-
ing into the existing infrastructure. Breaking the inefficient use of resources and
reducing costs have become important tasks for many public institutions. With
the implementation of virtualization, we can allocate the resources required for
the correct execution of tasks. The remaining resources become available for other
applications, reducing the cost of purchasing and maintaining additional hardware.

3.2 Virtualization and NFV Concept

The organizations’ networks usually consist of many server machines. Experience
of the Spiceworks community shows that they work in a mode that rarely exceeds
30% of the system load [41]. This state indicates insufficient utilization of the avail-
able resources and the need to increase it by applying advanced technologies (such
as virtualization). To overcome this problem, we can implement virtualization tech-
nology and provide that multiple server applications run on one physical machine.
Instead of acquiring and installing a physical server for each application, the orga-
nization can install and run various server applications on one physical server. The
results of virtualization are savings in electrical consumption and the reduction of
financial resources necessary to procure and maintain server equipment, including
administration.

Virtualization as a software technology changes the fundamental principles
of information technologies and creates conditions for realizing a wider range
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of possibilities in different environments. When it comes to environments that
primarily consist of server infrastructure [9], this technology should enable:

• decreasing the number of physical servers needed to build a suitable environ-
ment,

• significantly greater infrastructural savings by reduction of electrical con-
sumption (for server hardware and cooling systems), decreasing the number
of active network components, and reduction of space necessary for server
infrastructure hosting,

• to implement a centralized administration of computer infrastructure
through a single management console,

• installation of server applications independently of the hardware and creation
of the possibility that applications run on another functional hardware and

• to perform faster and less expensive data backup.

We must emphasize that the server infrastructure is only a part of the computer
network infrastructure and that virtualization technology can be applied to other
parts of the computer network, such as data storage, firewalls, load balancers, and
others. That is why there must be a software platform with a central administra-
tive function over all virtualized network resources in the computer network. The
platform’s role is to enable the creation of multiple virtual (logical) network envi-
ronments (so-called slices) on one (shared) physical computer network infrastruc-
ture. In this way, we can achieve the key goal of virtualization (Fig. 3.1), to enable
different groups of users on one (shared) physical infrastructure to:

• form their own and mutually isolated virtualized environments where users
are not aware of network hardware details,
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Figure 3.1. Virtualization in modern computer networks.
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• use traditional services of equal or even better quality compared to an unvir-
tualized environment,

• implement new, smarter, and resource-demanding services,
• make interconnections using virtualized network functions (VNFs).

The virtualization-based model of the network infrastructure organization cre-
ates the conditions to realize numerous advantages, the most important of which
are [9]:

• free choice of network topology and methods for routing and forwarding
packets,

• simple infrastructure management,
• easy and quick expansion of the virtual network with minimal equipment

acquisition and maintenance costs,
• a higher level of security in the network,
• a greater level of network elements’ programmability and
• an efficient and inexpensive implementation of an environment for testing

new technologies and services on the Internet.

The application of virtualization inevitably leads to the development of a new
business model, which implies a different distribution of responsibilities in the
telecommunications market [42]. The infrastructure provider is in charge of man-
aging the physical and virtual infrastructure. The service provider is any legal entity
or individual capable of creating and implementing different services in the virtual
network. To fulfill the demands of increasingly sophisticated services and to solve
the needs of different groups of users, we can apply different concepts of network
infrastructure virtualization [9]:

• building multiple heterogeneous virtual networks on one physical network,
• combination the resources of different physical networks to create one virtual

network and
• switching of virtual machines from one network to another.

3.3 Virtualization Software

Virtualization software (hypervisor) plays a key role in creating virtual machines.
Its task is to manage hardware resources, create virtual machines (a simulated envi-
ronment often called a guest machine), and the environment in which they run.
Existing hypervisors are divided by type and design (Fig. 3.2) [9].

The task of the hypervisor’s software is to provide a certain degree of abstraction
of computing resources and create an environment in which the program runs the
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Figure 3.2. Types of hypervisors.

same as if it were on an equivalent physical machine. In other words, the hyper-
visor has complete control over virtualized resources. At the same time, it must
be considered that, statistically, most of the operating system’s instructions execute
without the intervention of the hypervisor. In practice, there are three types of
hypervisors [43]:

• native or bare-metal hypervisor – placed between the hardware and the oper-
ating system. It runs directly on the hardware and creates virtual environ-
ments with its operating system (e.g., Citrix XenServer, VMware ESX, and
Microsoft Hyper-V),

• the hosted hypervisor, located on top of the host operating system, manages
hardware resources. It allows virtual machine operating systems to be installed
on the host to run in parallel and share resources (KVM and VirtualBox),

• hybrid hypervisor – generally runs directly on the hardware but uses the host
operating system for I/O operations (IBM VM/370, VMware Server, and
VMware Workstation).

From the aspect of software architecture, we can meet the following hypervi-
sors [9]:

• monolithic hypervisors (Fig. 3.3) – have special modules (hypervisor-aware
drivers) that allow the virtual machine’s operating system to communicate
with host hardware,

• microkernel hypervisors (Fig. 3.4) – use the host’s operating system, which
acts as the root (parent) partition, to access the hardware and use a wide range
of existing drivers not part of the hypervisor.
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3.4 Overview of Virtualization Techniques

In a real environment, we can meet various virtualization techniques. These tech-
niques can support hardware, software, and even network virtualization. Today, the
following virtualization techniques are most often used [41]:

• Full virtualization,
• Hardware-assisted virtualization,
• Paravirtualization,
• Partial virtualization,
• Application virtualization,
• Desktop virtualization,
• Operating system-level virtualization,
• Memory virtualization,
• Storage virtualization,
• Data virtualization,
• Network virtualization.
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3.4.1 Full Virtualization

The full virtualization technique enables the complete virtualization of a physical
machine (server) and creates a virtual environment necessary to run the operating
system of a virtual machine (guest). The guest’s operating system is completely iso-
lated from the physical host in such an environment. Between them is a hypervisor,
which provides a guest operating system to run in the original design (Fig. 3.5).
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Figure 3.5. Full virtualization technique.

This technique increases the computer system’s security and significantly affects
its flexibility and scalability (we can create multiple virtual instances on one physical
server with its operating systems). As a result, we obtain a global system with new
possibilities. With its implementation, some shortcomings that existed on physical
servers can be eliminated, such as resource utilization on each server. Full virtu-
alization is, in practice, implemented in solutions such as VMware Workstation,
VMware Server, VirtualBox, Parallels Workstation, Oracle VM, Hyper-V, KVM,
and others.

Full virtualization has certain constraints, such as the reflection of hardware
features in each virtualized machine. We can virtualize servers, data storage, or
desktops, but hardware features reflect in virtualized machines to occur full vir-
tualization. In some cases, synchronicity between hardware and software resources
must necessitate the purchase of new hardware. Depending on what we need to
virtualize, such an expenditure could be significant. Further, configuring an OS
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as stand-alone, fully virtualized needs expert-level implementation knowledge and
causes additional costs.

3.4.2 Hardware-assisted Virtualization

In addition to significant savings, virtualization technology also enables the appli-
cation of new functionalities. Implementing these functionalities requires hardware
manufacturers to focus on developing new devices with more powerful processors
and new types of memory to support virtualization (examples are AMD, Intel, and
Oracle). Hardware-assisted virtualization is a technique where underlying hard-
ware provides special CPU instructions to aid virtualization. These instructions
allow a virtual context to be set up so that the guest executes privileged instructions
directly on the processor without affecting the host. This technique makes hyper-
visor implementation less complex and more maintainable. However, to enable the
operation of new devices, it is necessary to apply special drivers (developed for a
specific type of device, as shown in Fig. 3.6). Only in this way it is possible to
provide support for [44, 45]:

• separate startup of virtual machines’ operating systems,
• effective virtualization with the help of hardware, primarily the motherboard,
• the hypervisor to intercept and emulate privileged operations (operations of

the highest priority in the operating system) on the virtual machine.
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Figure 3.6. A hardware-assisted virtualization.
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Examples of hardware-assisted virtualization techniques are VMware Worksta-
tion, Xen, Linux KVM, and others. Its limitations are that it creates high processing
capacity costs and reduces server consolidation’s scalability and efficiency.

3.4.3 Paravirtualization

In some solutions, virtualization technology allows a virtual machine to run in a
similar, but not the same, hardware environment as a physical machine (it presents
virtual machines with an interface similar to real hardware). That is why it is neces-
sary to port the virtual machine’s operating system, i.e., modify and adapt to work
in a virtual environment [1, 41]. Modification is done by recompiling the oper-
ating system’s kernel or installing a specially developed Application Programming
Interface (API), i.e., paravirtualized drivers (para-drivers), as shown in Fig. 3.7.

The task of paravirtualized drivers is to enable real-time access to the hyper-
visor and ensure communication between the virtual machine’s operating system
and the physical machine’s operating system (native operating system). The virtual
machine’s operating system receives the hardware data directly from the physical
machine’s operating system. Therefore, simulation of the complete hardware is not
required, and the performance of the virtual system is significantly better (the allo-
cation of the necessary resources is performed by the hypervisor, which results in an
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Figure 3.7. Paravirtualization technique.
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almost natural execution of operations. It should emphasize that in solutions with
the applied paravirtualization technique (systems based on UNIX, some variants
of BSD, or Open Solaris), the speed of the guest’s operating system is less than the
speed of the physical host’s operating system by a maximum of 10%, which is pre-
cisely the consequence of the modification operating system of the virtual machine.

3.4.4 Partial Virtualization

In a real environment, we can meet examples with partially applied virtualization
(only a part of the environment is simulated [44]). Such an approach imposes the
need to modify the virtual machine’s operating system. It is a prerequisite that an
operating system can run in such an environment. This partially virtualized envi-
ronment supports resource sharing and process isolation but does not instantiate
virtual machines’ operating systems (Fig. 3.8).
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Figure 3.8. Partial virtualization.

3.4.5 Virtualization of Applications

The running of certain applications is often related to the need to emulate an ade-
quate runtime environment. This virtualization technique implies that the emu-
lator (in addition to creating the environment) can manage the lower layers of
the operating system. In doing so, the applications are unaware that they are not
communicating with the host’s operating system but with the emulated environ-
ment [46]. This technique enables the virtualization of applications, and it imple-
ments a software interface between the applications and the operating system,
which takes over part of the work of the operating system and presents the nec-
essary resources to each application (e.g., locations on the file system). In this way,
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we can avoid problems between applications on the one hand and operating sys-
tems and the environment in which they are running on the other. These problems
are mainly due to software incompatibilities, software bugs, and various types of
mismatches with the environment (Fig. 3.9).
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Figure 3.9. Virtualization of applications.

In practice, we can implement this technique of virtualization through [47]:

• Portable Applications – software runs from portable memory media (flash
drives or optical media) and does not require installation in the operating
system.

• Cross-platform virtualization – the application compiles in a “non-platform”
specific format and then runs by platform-adapted middleware on any oper-
ating system or processor.

• Virtual Appliance – installation of image files that contain a virtual machine
for a specific virtualization platform.

• Simulation – a complete software implementation of a processor or computer
system.

3.4.6 Desktop Virtualization

The virtualization technique of the user’s desktop environment aims to build an
environment independent of the device that the client uses to access remotely.
It is similar to virtualization of applications and can be done on the client and
the server side. This technique is executed through a client-server communication
model (Fig. 3.10).

Remote desktop virtualization implies that users can access the virtual machine
from any location and run in a desktop environment created according to their
request. Access to a server with virtualized resources does not depend on the local
environment. It is enough for the user to have an Internet connection and to be
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Figure 3.10. Desktop virtualization technique.

able to configure a session via Remote Desktop Protocol (RDP) or Virtual Network
Computing (VNC) protocol [48]. In cloud gaming, we can meet this virtualiza-
tion technique due to the possibility of sharing Graphics Processing Unit (GPU)
resources. This approach enables greater utilization of this still-expensive resource,
which can be upgraded or replaced with more modern and faster chips without
affecting the cost of using services.

This technique uses strong server machines or even server clusters in business
environments at a central location. The Virtual Desktop Infrastructure (VDI) cre-
ated by its application enables [49, 50]:

• Centralized and efficient administration,
• Quick recovery of the virtual machine in unwanted situations using snapshots

(a snapshot of the current state of the virtual machine),
• Lower costs – users work on a shared server infrastructure, whose resources

are allocated to users as needed,
• Secure access and work on virtual infrastructure for users,
• Work in multitasking mode (multiple virtual desktops run on the same phys-

ical machine and move backward through operating systems and applica-
tions),

• Effective backup of data.

This technique is characterized by the fact that hypervisors are often not used
in virtualization. We can perform this virtualization by using a large number of
computers, implemented in the form of modules (board with processor, memory,
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and hard disk) and placed in appropriate housings at a central location (blade solu-
tions) [51]. In doing so, customers retain their physical devices, which are moved
from the customer’s location to a central location. This technique enables simpli-
fied management and administration. It also provides greater security, and what is
particularly important is that the price of such a solution is of little importance for
organizations that want to implement it.

3.4.7 OS-level Virtualization

This virtualization technique is executed at the host’s operating system level. Its
application notes down rapid growth in recent years. The base of a solution is
its kernel’s usage for creating multiple and mutually isolated user-space instances
(Fig. 3.11) [9].
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Figure 3.11. Operating system level virtualization technique [9].

In this case, we use the term containers for the virtual instances, which often
run as private virtual servers. These virtual instances share the host operating system
kernel and have separate root file systems [52]. The advantages of this virtualization
technique are the secure operation of virtual instances (each instance isolated from
the other) and centralized administration and configuration performed on the host
operating system. This solution is often encountered in Linux-Vserver, FreeBSD
Jails, OpenVZ, Solaris Containers, Virtuozzo, and other classic Linux systems.

3.4.8 Memory Virtualization

For the normal operation of any software, providing the appropriate amount of
random-access memory (RAM) is necessary. However, the available amount of
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RAM is not enough in some situations, so there is often a request for its expan-
sion in a fast and efficient way to avoid “bottlenecks” and stoppages in the opera-
tion of applications. In this case, the memory virtualization technique appears as a
natural solution. This technique allows a part of the hard disk to be joined to the
RAM through the operating system quickly and efficiently. That part of the disk
represents additional (virtual) RAM. We can use it to avoid interrupting processes
(Fig. 3.12) [53].

Virtual 
memory

Hard Disk 
Drive

RAM

Figure 3.12. Memory virtualization technique.

Switching to and working on such virtualized memory is accompanied by a drop
in performance (software running on a slower medium). Despite this, the mem-
ory virtualization technique is often applied in server virtualization because it is
possible to identify the current memory state and forward the obtained informa-
tion to a remote host in the network [54]. Although a larger capacity of RAM on
server machines reduces the need for memory virtualization, the need to preserve
the integrity of the process. Moreover, it can harm system stability, which we must
consider as a possibility because there is always the chance of an immediate overload
of the available memory.

3.4.9 Storage Virtualization

Data storage technology is an area of computing that is continuously evolving. The
reason for this is the implementation of advanced networking solutions that pro-
vide high-performance communications between servers and storage devices. These
solutions create the conditions to improve the work of companies, state adminis-
trations, and other societal structures, whose functioning depends on information
stored in data storage. Implementing new technologies ensuring data protection,
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facilitating access, and simplifying management has long been a reality in the IT
environment.

In some organizations, there are still non-consolidated data storage systems. The
inefficient use of existing capacities characterizes these storage systems, such as the
inability to quickly and easily add new hardware, the constant replacement of stor-
age space due to the short life of devices, the high costs of complex administration,
and manual data backup. For storage consolidation and cost reduction, it is neces-
sary to implement new solutions that would increase the flexibility and reliability
of the system [9]. A solution is storage device virtualization. It implies the creation
of a virtual layer of storage by combining several physically separate storage systems
into one virtual storage network, which is managed centrally and is completely
transparent with file systems, hypervisors, and applications (Fig. 3.13).
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Figure 3.13. Storage virtualization technique [9].

It is clear that virtual storage performs better and uses less space than physi-
cal devices. Its application directly reduces the need for new device procurement
and costs. The first solutions in the field of storage virtualization appeared in the
1950’s by physical disk partitioning and creating more logical (virtual) disks. A new
solution to storage virtualization technique appeared based on Redundant Array
of Inexpensive Disks (RAID) technology. These arrays are formed by aggregating
several physical disks into one logical disk. We can divide this virtual disk into
smaller logical units according to needs, and implemented solutions have a much
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higher level of abstraction. In this manner, it is possible to enable the aggregation
of multiple physical storages into one virtual data storage via different systems and
interfaces, i.e., protocols (e.g., SCSI, iSCSI, or Fiber Channel, including FCoE –
Fiber Channel over Ethernet) [9]. The administrator on the centralized console
assigns virtual storage to an application server, and this server treats it as a real data
storage device (virtual storage appears in the list of devices connected to the server).

Storage virtualization enables users to access data regardless of location (by
abstracting the logic from the physical storage space). It is a shield for application
servers because it defends them from the influence of heterogeneous storage, pro-
tocols, mixed disk arrays, storage controllers, and network cards. By ensuring the
necessary level of interoperability, we can create different virtual environments in
which the server treats them in the same way (regardless of the configuration behind
the virtual one). This approach eliminates the user’s dependence on equipment sup-
pliers and other specific technology, reducing initial and exploitation costs. Admin-
istrators can independently choose the best solutions and more efficiently adapt the
storage to the user’s needs.

Figure 3.14. Storage virtualization technique [9].

There are three levels of storage virtualization in the network, as shown in
Fig. 3.14.

These virtualization levels indicate the subject(s) of virtualization, the location
of virtualization, and its implementation. The first level of storage virtualization
defines the object of virtualization, whether it may be blocks, disks, or file systems.
The second level of storage virtualization indicates where implementation occurs
(server, network, or storage) and how it changes the environment and its functions.
The third level of virtualization defines the methodology of virtualization, which
can be [55]:
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• In-band virtualization – abstraction occurs on the datapath, that is, on the
same path where both data and metadata pass (information about how the
domain manager performed the mapping).

• Out-of-band virtualization – physical separation of the datapath from the
metadata flow (metadata control), and the mappings indicate execution of
storage aggregation.

3.4.10 Data Virtualization

Modern users work with different types of data, which can be structured, unstruc-
tured, semi-structured, or even written in other formats. Each aims to extract a
certain context from the data, more specifically, to obtain as much useful infor-
mation as possible by applying the appropriate data processing method. One must
consider data locations in several logical and physical locations (ERP systems, web-
sites, applications, and file repositories) that provide users with a unique presenta-
tion interface for necessary data access. That interface should abstract the complete
structure of the data storage and transfer system. This way, users believe data exists
in one logical location [42].

The primary task of the data virtualization technique is to enable user utilization
of applications to use resources without location details, interface with access and
implementation mechanisms, platform used, and the amount of available resources.
This virtualization technique is closely related to the following concepts [9]:

• Encapsulation – represents the separation of external aspects which the object
made available to other objects from internal details of its implementation,

• Abstraction – identification process of important aspects of virtualization,
while details are not a subject of consideration,

• Data federations – data stored in a heterogeneous set of autonomous data
storage locations is made available to users as a single integrated storage using
on-demand data integration,

• Data integration – implies the process of combining data from a heteroge-
neous set of storage to create a unique view of all data,

• Enterprise Information Integration (EII).

Virtualization software plays a key role in data virtualization (Fig. 3.15), which
should provide an abstraction of technical aspects relating to stored data (location,
structure and storage technology, API, and Access language). It depends on what the
virtual data access will look like (access to different data sources from one common,
logical access point) and how the data transformation will be performed (reformat-
ting and adaptation to user needs.) Integration must also be enabled by the appli-
cation of data virtualization software [11]. It involves combining different data sets
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Figure 3.15. Data virtualization technique.

from multiple sources and delivering them through various transactions executed
by client applications.

To ensure the accuracy and relevance of the delivered data, i.e., the quality of the
virtualized data, the following procedures are applied [12]:

• Data transformation – implies the process of converting data from a source
format to a destination format.

• Data mapping – represents connecting a data field from one source to a
data field in another source). Data transformation is a part of data mapping
because as data moves, the data mapping uses the transformation formulas to
get the data in the correct format for analysis.

• Data validation – brings many benefits, such as improving data quality and
usability, reducing data errors and risks, and enhancing data security and
compliance. It ensures that data is accurate, complete, consistent, and rel-
evant to the use case.

• Data parsing and standardization – typically provides data standardization
capabilities, enabling users to standardize and validate their data. It usually
includes an interface to design, build, and manage data quality efforts.

• Data cleaning – recognizing and correcting errors, inconsistencies, outliers,
and missing values in data collection. Sometimes, it involves transforming,
aggregating, filtering, or merging data to suit analysis and visualization goals.

• Data enrichment – refers to appending or enhancing collected data with rel-
evant context obtained from additional sources.

3.4.11 Network Virtualization

Most computer networks still have a traditional, hierarchically organized network
infrastructure, which is quite heterogeneous and mostly built from devices from dif-
ferent manufacturers. This fact indicates the complexity of network infrastructure
management, especially due to the lack of a single management interface. One of
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the reasons is that most manufacturers supply equipment/devices that use their own
(proprietary) protocols for connection [1]. That complicates and sometimes makes
it impossible to interact with devices from other manufacturers. A special challenge
for administrators of traditional networks is the implementation of user requests,
which relate to implementing new and increasingly resource-demanding services (a
direct result of developing and applying new, more advanced information and com-
munication technologies). Given that a large number of functionalities depend on
the hardware, there needs to be more flexibility to adequately respond to the users’
needs, which impacts the cost of implementation of those services and the main-
tenance of the existing computer infrastructure. In other words, modern trends
in computing intensify the problems associated with changes in the amount and
types of network traffic, demands for greater availability, and the need for parallel
processing of large amounts of data.

Other computer network virtualization concepts are also applied in addition
to the existing virtualization techniques in the network (VLAN, VXLAN, and
VPN) to meet different user demands [9]. These concepts imply the existence of a
single software platform with centralized administration over virtualized network
resources. Its task is to enable the creation of multiple virtual networks on one
physical network or to create a combination of virtualized resources from different
physical networks to build one – virtual network (Fig. 3.16).

Figure 3.16. Network virtualization technique.

Network virtualization aims to introduce a layer of abstraction between physical
infrastructure and the applications and services that use it. As a result, network func-
tions, hardware, and software resources can be delivered independently of hardware.
Service providers can optimize server resources (i.e., fewer idle servers), allow them
to use standard servers for functions that once required expensive proprietary hard-
ware, and generally improve their networks’ speed, flexibility, and reliability [56].
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Network virtualization brings two key innovations. It allows the creation of multi-
ple virtual networks on one infrastructure and the resources of different networks
to be combined to build a new virtual network.

3.4.12 Advantages and Shortcomings – Summary Review

Virtualization brings many benefits. It keeps the budget by reducing hardware costs
and helps organizations to automate and outsource routine tasks and centralize
resource management. Also, virtualizations provide users access to their data any-
time, anywhere, from any device type. However, before implementing any kind of
virtualization in computer infrastructure, we must possess the right picture of the
advantages and shortcomings of each of them. In Table 3.1, we give a summarized
review of the benefits and weaknesses.

Table 3.1. Advantages and shortcomings – summary review

Type of Outcome of
virtualization virtualization Advantages Shortcomings

Full virtualization Provides complete
simulation of the
underlying hardware.

Provides full
simulation of each
VM and the VMM.

Requires the right
combination of
hardware and
software elements

Hardware-assisted
virtualization

Enables a computer
to run multiple
operating systems or
applications
simultaneously by
creating VMs that
use the hardware
resources of the host
system.

Improves
performance,
security, and
flexibility for
various scenarios,
such as cloud
computing, server
consolidation, and
software
development.

Causes some
challenges, such as
compatibility,
complexity, and
cost.

Paravirtualization Provides partial
simulation of the
underlying hardware.

Highest performing
VMs for network
and disk I/O.

VMs suffer from a
lack of backward
compatibility and
are not very
portable

Partial
virtualizaton

Only certain
components or
resources of a system
are virtualized, while
others remain in their
physical form.

Offers a more
targeted approach
to virtualization.
Enables
optimization of
infrastructure and
improvement of
resource utilization.

It represents a
historic milestone
on the way to full
virtualization.

(Continued )
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Table 3.1. Continued

Type of Outcome of
virtualization virtualization Advantages Shortcomings

OS-level
virtualization

Provides OS single
instance.

It tends to be
efficient as it is
single OS
installation
management and
updates.

Does not support
mixed families,
such as Windows
and Linux.
VMs are not as
isolated and secure
as other
virtualization
forms.

Virtualization of
applications

It provides the ability
to run server
applications on user’s
desktop

Creates
pre-packaged
applications for
user’s instant access.

Not all types of
software can be
virtualized.

Storage
virtualization

Assembles multiple
physical disks into a
single entity.

Offers
high-performance
storage solutions.

Introduces a high
degree of
complexity,
interoperability, and
scalability issues.

Desktop
virtualization

Provides users with
an operating
environment that is
separate from their
local physical system.

Access from
anywhere.
Centralized OS &
application updates
and security
Faster, reliable, and
easier backup/
recovery of data
Allows to allocate/
limit server
resources that can
be used per user,

Capex intensive.
No reduction in the
number of end-user
client machines.
The network
infrastructure needs
to handle all that
extra bandwidth
that Desktop
Virtualization is
going to introduce.

Memory
virtualization

Computers use
secondary memory to
compensate for the
scarcity of physical
memory.

Provides benefits in
terms of costs,
physical space,
multitasking
capabilities, and
data security.

Holds vital storage
space.
Slower speed than
physical memory
Stability problems
Context switch
requires extra time.

(Continued )
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Table 3.1. Continued

Type of Outcome of
virtualization virtualization Advantages Shortcomings

Data
virtualization

Data handling
involves adding a
layer of extraction on
the logical level.

Access in real-time.
Cost-effective.
It improved data
governance and
security.
Reduced
complexity.

Time spent locating
test results.
High network
traffic costs.
There is no batch
data support.

Network
virtualization

Combines network
hardware and
software resources
into a single virtual
network

Easy network use
and customized
access to critical
network services.

Introduces a high
degree of
complexity and
performance
overhead.

3.5 Difference Between Virtualization and Emulation

Conceptually, virtualization is a set of techniques that organize available computing
resources into separate work environments. It is possible to build such an environ-
ment using hardware or software partitioning, hardware emulation, software pro-
cess simulation, or resource abstraction and merging multiple physically separate
entities into a single logical entity. From this, we sometimes use emulation during
resource virtualization. Strictly speaking, there are significant differences between
these two technologies [1].

In emulation, special software (emulator) allows programs or processes to run on
platforms other than the ones for which they were designed. Most emulators have
the task of simulating some hardware environment architecture, but there are cases
when certain software (e.g., operating system) must adapted to work in a particular
environment [1]. We can see an emulator as an application translator running on
the available hardware. The hardware needed for emulation (CPU, memory, disk,
I/O processes) must not be limited to the underlying operating system. Moreover,
an application made for one operating system or processor can also run on another.
Essentially, the emulator runs as an application on the underlying operating system,
which relies on the resource-sharing and allocation capabilities of that operating
system on another platform.

The goal of virtualization is different because it should enable the sharing
of hardware resources between other applications or operating systems. As basic
building blocks, virtualization uses the process of resource separation and their
mutual isolation. Fig. 3.17 shows both technologies schematically and tabulates
their essential differences, which point to the fact that emulation represents the
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Figure 3.17. Virtualization and emulation – schematic view and features.

ability of software in a computer device to simulate the behavior of another program
or device. At the same time, virtualization is a technique used to create virtual
instances (environments).

3.6 Virtual Machines

In practice, different definitions describe virtualization technology but mostly
explain virtualization as a procedure for abstracting physical resources and building
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mutually isolated virtual environments. Each environment has its layer of hardware,
software, data, network, and memory. The layers are isolated, so their processes are
easily controlled and can be directly accessed to make changes and allocate resources
according to the user’s needs. This way, virtualization deployment enables the
building of environments called virtual machines or virtual containers (Fig. 3.18).
Strictly speaking, there are differences between virtual machines and virtual con-
tainers. They mainly refer to building virtual environments, their isolation level,
and the results of applying different virtualization techniques.

Physical resources

Host opera�ng system

Hypervisor

App#1

Bins/Libs

Guest OS

App#1

Bins/Libs

Guest OS

Virtual Machines

Figure 3.18. Virtual machines.

The basic components of each virtual machine are [38]:

• The physical machine’s operating system – runs directly on the hardware and
supports virtualization and an appropriate set of applications installed,

• Virtual Machine Manager (VMM) or hypervisor – creates a virtual machine,
assigns resources to that virtual machine, changes its parameters, and deletes
it on request,

• Virtual machine operating system – represents a guest operating system that
runs on a virtual machine and is compatible with the offered resources (the
hypervisor provides needed resources).

The virtualization techniques allow the running of different program codes on
physical machines. The question that accompanied the appearance of the first vir-
tual machines was: Is the host processor capable of serving other operating systems
on virtual machines in addition to native operating systems? This question is very
important because different applications run on virtual machines. Their functional-
ity depends on the operating system and its ability to engage the necessary hardware
resources (the operating system, through its kernel, communicates with drivers and
engages hardware resources) [55].
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Each virtual machine is characterized [38] by:

• Isolation from other virtual machines on the host, even though they share
resources (this allows an error on one virtual machine not to affect other
virtual machines on the host),

• The ability to copy and transfer a file to another physical machine (a virtual
machine is a software container that encapsulates virtual hardware resources,
an operating system, and an application),

• Partial hardware dependency because there is no knowledge about most of
the hardware features it is running on,

• Simpler configuration than physical machines (necessary resources we can
allocate easily),

• Absence of the need for additional hardware procurement,
• Performance dependence on the available hardware resources (memory, hard

disk speed, and number of processors).

3.6.1 Resource Allocation for a Virtual Machine

Virtualization should enable efficient usage of hardware resources on physical
machines (such as memory, CPU, interfaces, and disk space). In this sense, resource
allocation is a very important process that needs an answer to how to divide
resources between the VMs in physical machines. Effective resource allocation is
a prerequisite to ensure all VMs complete jobs successfully without consuming
excessive resources. A hypervisor is key in running virtual machines and allocat-
ing needed resources. Its task is to provide adequate mechanisms, which should
enable optimal resource allocation, has a hypervisor [1]. The operating system of a
virtual machine treats the allocated resources as physical. In the case of the CPU, the
allocated resources depend on the host CPU infrastructure and the type of virtual
machine operating system. For example, we can take a physical map using Intel’s
Xeon E5-2680v2 CPU with ten cores/sockets with dual threads. In this case, the
hypervisor can offer 20 virtual CPUs to the virtual machine. It is similar to allocat-
ing memory to a virtual machine, which its operating system treats as its physical
memory.

The hypervisor is important in defining the necessary disk space to run the vir-
tual machine’s operating system. There are two methods of allocating disk space:
thick and thin provisioning [1]. In the first case, the wide provisioning method
implies that the disk necessary for the virtual machine is pre-allocated and reserved
on the host’s operating system. The advantage of this method is that the virtual
machine receives the data required storage space in advance. At the same time, the
shortcoming is the need for more possibility to use this space for other purposes.
Unlike this method, the thin provisioning method saves disk space and prevents
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it from being wasted. This method aims to simulate the full capacity needed for
the normal functioning of the virtual machine’s operating system by creating and
reserving a smaller file on the host operating system. In parallel with occupying the
pre-allocated space, the hypervisor increases the reserved space and lets it grow to
the required size.

It is important to note that virtual machines are unaware of disk virtualization.
They treat virtual disks as physical disks, which should provide storage space for
virtual machine data. We can create files that represent virtual disks in one of the
following formats [1]:

• Virtual Machine Disk (VMDK) – is an open-source virtual disk-drive for-
mat that allows cloning of a physical hard disk and backup of VMs off-site.
VMDK files can be dynamic or fixed. Dynamic disks start with one size and
expand with the size of the files in the OS of virtual machines. Fixed disks are
static and do not change in size.

• Virtual Disk Image (VDI) – a regular file that represents a replica of a portion
of the actual hard disk and contains the contents and structure of a physical
hard disk.

• Virtual Hard Disk (VHD) – is a disk image file format that enables replication
of an existing hard drive, including all data and structural elements.

Sometimes, it is possible to use these files to package a virtual machine for trans-
port across hosts (these files contain the virtual machine operating system, appli-
cation, and data). Numerous tools can convert files representing virtual disks from
one format to another. For example, when the new host uses a different hypervisor,
it is possible to convert the file from the base format to a format supported by the
new hypervisor. As an alternative to the distribution of virtual machines mentioned
above, we can apply the packaging method, which converts the image file of the
virtual machine into the International Organization for Standardization (ISO) file
format. We can transfer and install this file as a virtual disk of another instance
on another physical machine. The existence of different types of hypervisors is the
reason for the increasing usage of the Open Virtualization Format (OVF), which is
compatible with other formats.

Virtual machines represent isolated environments, and it is necessary to imple-
ment a mechanism for connecting and exchanging data with the outside world and
other virtual machines. For this purpose, it is required to implement a technique
that enables virtual machines to share the network interface card (NIC) of a phys-
ical machine [9]. In practice, we can meet different techniques. One of them is
creating a virtual card (virtual Network Interface Card – vNIC) by the hypervi-
sor. This card, the hypervisor, presents to the virtual machine’s operating system
as its physical network card. The task of the hypervisor is to perform appropriate
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mappings on the physical card for this purpose. Connecting virtual machines, i.e.,
their virtual network cards with the network card of the physical machine, can only
be done via a virtual switch (vSwitch).

3.7 Virtual Containers

Container-based virtualization focuses on creating isolated user spaces (containers)
whose processes run on the host operating system’s kernel with limited access to
resources (Fig. 3.19). Unlike virtual machines, containers do not have their own
virtualized hardware but use the hardware of a physical machine [57]. The con-
tainer’s software runs on the native operating system and communicates directly
with the kernel. Virtual instances created in this way can run in a few milliseconds
and be more efficient than classic virtual machines because, among other things,
their image files are smaller than for virtual machines. Moreover, they do not con-
tain a complete chain of tools for running the operating system (e.g., device drivers,
kernel, or daemon process for initialization).
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System

Applica�on memory 
space (user space)

Virtual machines

Binary 
libraries

Bare metal 
hypervisor

Hardware resources of 
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Engine to run containers

Host opera�ng system

Hardware resources of 
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Figure 3.19. Containers and virtual machines (created by hosted and bare metal hyper-

visors).

The application of the containerization technique directly corresponds to the
development of the Linux kernel. Therefore, we often come in contact with the
term Linux Containers (LXC), although all containers are not Linux. The goal of
the container’s creation is to ensure appropriate isolation between applications at the
kernel level and build isolated environments. To achieve this goal, we use numerous
features already built into the Linux kernel, such as the chroot function, namespace
isolation, and control groups [58]. Taking into consideration the increasing interest
in containerization, more details about containerization will be provided in the next
section.



54 Virtualization Technology

3.8 Conclusion

In traditional networks, servers only run on dedicated hardware with specific appli-
cations. It leads to lower capacity utilization and higher operating costs. To solve this
problem, we can use software that provides a layer of abstraction over the physical
hardware. On a single physical server, it is possible to create numerous virtual com-
puters, operating systems, and applications and make more efficient use of hardware
resources. The key virtualization component is a hypervisor, which assigns each vir-
tual machine needed resources, such as underlying computing power, memory, and
storage. Consolidating the applications into the virtual environment and running
several different operating systems on the same physical machine is a solution that
brings numerous cost savings to users.

Virtualization brings additional benefits, such as downtime reduction, lower
energy consumption, enhanced resiliency in disaster recovery cases, and mainte-
nance efficiency. Nowadays, our attention focuses on a new technique of virtu-
alization – containerization. The fundament of this technology is the creation of
isolated user spaces (containers) whose processes run on the host operating system’s
kernel with limited access to resources.

In this section, we presented an overview of the existing techniques for various
types of virtualizations. Virtualization offers many advantages, but certain short-
comings still exist. We cannot apply virtualization on every server and application
currently in existence. Therefore, many users must implement a hybrid approach.
Some solutions need exorbitant costs of implementation. Virtualization takes less
time to implement, but there are additional procedures that we need to complete
to achieve the expected result.
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Chapter 4

Containerization

Sometimes, developers have issues deploying their code to remote machines. They
traditionally develop codes in controlled computing environments, such as code
writing that runs efficiently on a local machine. Problems occur when they try to
run code on a remote computer, and possible reasons are inappropriate operating
systems running on the remote device or using incompatible software installed to
launch the application, e.g., using different versions of interpreters. It indicates a
lack of portability caused by OS-specific dependencies, and solving these problems
is time-consuming for software developers.

The containerization technique is a viable solution for a multitude of issues. This
technique ensures that software code is shipped with the corresponding configura-
tion files, libraries, and dependencies required to run the code on any infrastructure.
Containers are virtual entities that are more efficient than virtual machines regard-
ing portability and resource consumption. Many use the term “lightweight” for
them. Each application can be associated with the operating system without pro-
cesses requiring overhead because applications share the same kernel. Containers
possess other advantages over virtual machines, such as smaller capacity require-
ments and shorter start-up times. Other benefits include the possibility of reducing
server and licensing costs.
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4.1 Containerization Fundamentals

The development of Linux kernels triggered the widespread use of containerization,
intending to create isolated environments at the kernel level. For this purpose, we
can use features built into the Linux kernel, such as the chroot function, names-
pace isolation, and control groups [58]. The chroot mechanism is one feature that
ensures changes to the root directory follow a certain process (this implies changes
to all its subprocesses). Thus, we can restrict access to the file system to one folder,
which the observed process and its subprocesses treat as the root directory (/). We
can also use the chroot mechanism to test software in isolated environments to
install or repair systems. It provides only the displacement processes of the root
directory to another directory somewhere within the file system.

It is important to note that the chroot mechanism is not a security feature on
Linux. Some software may bypass it and directly access parts of the file system.
Despite implementing the chroot mechanism, some processes may be able to see
other processes and information, such as user and group IDs, access the hostname,
and communicate with them. The namespace functionality prevents this and iso-
lates processes, groups of processes, and their mutual communication. This func-
tionality implies applying a flexible separation mechanism by creating a namespace
for each process, thereby defining the kernel resources the process can access. An
application started under Linux uses processes and their IDs defined by its names-
pace. These processes are not visible to other applications.

Furthermore, an application can be assigned a separate network namespace,
allowing it to have its own routing plan and network stack organization. An inter-
face or route created in an application that uses a particular network namespace
will only be visible to other applications on the same host if they have a shared
namespace.

In practice, we can meet one of the following six types of isolation based on using
namespaces at the kernel level typically [1]:

• Isolation of user namespace – enables creating a separate set of user and group
IDs for processes.

• Isolation of Unix time-sharing (UTS) namespace – allows creating a separate
view for the hostname and domain name for the application.

• Isolation of system identifiers – using Inter-process communications (IPC)
namespace structures communication between processes in the form of mes-
sage queues.

• Isolation of processes – mount namespace provides a file system view for each
process.

• Isolation of process ID number space – Process ID (PID) namespace isolates
process ID from other applications on the host. For example, an application
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that uses a special PID namespace can start some of its child processes with
a PID. This PID can be the same as an existing one on the host but without
creating conflict due to implemented namespace isolation.

• Isolation of network interfaces – Network namespace provides isolated access
to each application’s network interfaces and routing tables.

Namespace functionality enables an individual view of system resources for each
process. This isolation method gives access to unlimited usage of resources (e.g.,
mount namespace cannot limit the disk space that the process consumes). The Linux
kernel possesses control group (Cgroup) functionality, which provides a resource
allocation mechanism for each process or set of processes, such as CPU time,
memory, and disk I/O. This mechanism enables resource utilization measurement,
defines different usage priorities, and even limits resource usage. Namespace and
Cgroup functionalities support the creation of isolated environments and coopera-
tive management of physical resources.

At first glance, virtual containers and virtual machines appear to be similar. These
similarities are minimal because virtual machines run in a hypervisor environment,
where each virtual machine has its operating system with associated binary files,
libraries, and applications. The key difference indicates higher consumption of sys-
tem resources, especially when several virtual machines run on the same physical
server. Containers are smaller than virtual machines. They share the same operat-
ing system and kernel, taking only seconds to run. There are important differences
compared to hypervisor virtualization that affect the application of containers [1]:

• Sharing the physical machine’s operating system kernel instead of hypervisor
software allows virtualization implementation at the process level (namespace
and Cgroup functionality enable access through APIs such as LXC runtime
with API).

• Containers use the native operating system to run applications directly, saving
resources using the same kernel, binaries, and libraries.

• Compared to virtual machines that use a hypervisor and consume much more
resources, containers offer higher throughput for memory read/write opera-
tions and better CPU utilization while providing performance similar to a
physical host.

• Some applications cannot run from the native operating system.
• Less security than virtual machines is the consequence of kernel and library

sharing, e.g., if a container application causes a kernel crash, it will affect all
containers running on that physical machine.

Containerization significantly differs from other virtualization techniques based
on the creation of virtual machines. Instead of virtualizing the entire hardware, we
create isolated environments with limited access to system resources at the operating
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system level. This limited access to system resources represents the fundamental
characteristic differentiating containers from virtual machines.

Today, in computer environments, virtual containers are often used for [59]:

• migration of existing applications to more modern network environments
such as the cloud – existing applications can be transferred to a container with
minimal modifications, creating prerequisites for high portability of applica-
tions,

• efficient support for distributed applications in a way that microservices can
be more easily isolated, deployed, and scaled,

• easier construction, testing, and implementation of virtual environments
using the same container image files, and

• easier scheduling of repetitive jobs and tasks applies to background processes,
such as ETL (Extracts, Transforms, and Loads data) functions or batch jobs.

4.2 Types of Virtual Containers

Typically, users install and run various applications in virtual containers. Some
applications run independently as a standalone container, while others are oper-
ating systems. It is possible to group containers into two categories: application
containers (App container) and operating system containers (OS container). Fig-
ure 4.1 shows the structure of the application container [60].

So�ware dependencies

                                                       Hardware requirements

CPURAM Network interface cardDrive

Applica�ons

Figure 4.1. The structure of the application container.

As seen in Fig. 4.1, the application container runs independently. It contains
packaged application binaries, software dependencies, and hardware requirements.
After installation, we can directly start the application container using local hard-
ware, the binaries, and the libraries of the host operating system and its kernel.
Such a container has its namespace functionality for networking purposes and disk
mount points, running only one service.

In practice, it is possible to use these containers and isolate different services
running on the native operating system. Thus, we can create a group of application
containers where each application provides some service. Such an approach in



Types of Virtual Containers 59

software architecture is called microservice architecture, which has an ideal applica-
tion where scalability, minimality, and cohesiveness are required [61]. In this archi-
tecture, each service possesses the resources necessary and runs independently. Each
service grows and scales independently, changing and upgrading without affecting
other services. This service communicates with other services using the appropriate
API. A modular approach in the software architecture provides solid isolation, scala-
bility, and fast recovery and allows the merging of application containers (microser-
vices) into one software (Fig. 4.2) [62].
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Figure 4.2. A virtualized environment with containerized applications.

Users can sometimes install an operating system in the container (OS container).
This container runs the operating system in the virtualized environment. Like in a
virtual machine, the guest operating system runs applications inside the container
(Fig. 4.3) [1, 52].

Why is the guest’s operating system started before starting the application
directly? The answer is that the applications in the container use the kernel, libraries,
and binary files of the native operating system. Applications may require a greater
degree of independence. We must grant access to libraries or system binaries that are
different from the native operating system. For this reason, we must install a guest
operating system containing the libraries and system binaries necessary to run a spe-
cific application. It eliminates the dependency on the host operating system, with
the host and guest operating systems still sharing the kernel. Implementing OS con-
tainers provides better isolation, security, and independence for the containerized
application. The only limitation is that the container and native operating system
must be fully compatible because they share a kernel.
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Figure 4.3. A virtualized environment with containers for operating systems.

4.3 Basic Terminology

Each virtual container can be in one of two states – rest or running state [63]. In
the rest or idle state, the container behaves like a Container image file or a set of files
on disk, which is the Container Repository. Before the user starts a container from
the rest state, he must run the container’s engine. The container engine has a task to
unpack files and send metadata to the operating system’s kernel. For this purpose,
the engine transmits an API call to the kernel and initiates additional isolation
and mounting file copies representing the Container Image. It is important to note
that the containers behave like a normal Linux process after starting. We can meet
various container engines based on Open Container Initiative (OCI) standards, such
as LXD, CRI-O, or Docker. Most of them do not run containers but use tools such
as Runc, which should provide [1, 64]:

• Responses to requests that users sent through the API,
• Unpacking and expanding the container’s image file on the disk using the

graph driver,
• Preparing the mount point for the container, and
• Processing of metadata for passing to the appropriate Container Runtime envi-

ronment.

We consider containers as execution environments for virtual applications that
run on top of an operating system’s kernel. Containers emulate the operating system
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rather than the underlying hardware. Their application provides an isolated envi-
ronment and file sharing with the native operating system. A particular challenge is
the replication and transfer of containers from one host to another. To understand
these processes, we must possess knowledge about the building blocks of a virtual
container, such as:

• Configuration files defining its environment,
• A set of files on disk that represent its mountable namespace,
• Executable files and libraries belonging to the application.

Each container contains libraries of the native operating system and binary files.
Moving the container to another location in the network is a complex task. Some
container engines like LXC cannot pack the container files and the environment as
a group. Before the OCI standard and Runc tool emerged, users utilized LXC as a
container runtime [65]. There are many purposes for LXC runtime utilization:

• Communication with the kernel at the moment of container process initia-
tion,

• Adjusting to the Cgroup function,
• Update SELinux policy (uses labels to enforce access control for applications,

processes, and files on the system) and AppArmor policy (by creating profiles,
affects the access of individual processes to the kernel),

• Access to attachment points, as defined by the container engine, and
• Access to container engine metadata.

4.4 Docker

User needs quickly exceeded the technical capabilities of LXC runtime. In 2014,
the professional community developed the libcontainer tool as an integral part of
the new Docker engine. This engine appeared under the name dotCloud, intend-
ing to provide a new method for container packaging. This new method ensures
greater portability, required replication level, and more efficient container version
control [65]. The idea was to run Docker as a single process, i.e., Docker engine,
which would work with Docker image files. Figure 4.4 shows the method of pack-
ing applications, binaries, and dependencies into one Docker image file, ready for
transfer or replication. We must note that Docker services are backed by containers
and defined by a Docker image and set of runtime arguments.

Docker is a platform that we can use to deploy, run, and modify containers.
This platform manages containers as standardized, executable components by com-
bining application source code with operating system libraries and dependencies.
That is important if we need to run that code in any environment. Container-based
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Figure 4.4. Docker architecture and image file.

virtualization has proven to be an effective solution for developing and deploying
distributed applications, especially when organizations move their applications to
the cloud or hybrid multi-cloud environments. It is possible to create containers
without Docker, using capabilities already existing in Linux and other operating
systems. With Docker, users can perform containerization easily, quickly, and safely.
The reason is that the Docker platform possesses the following advantages:

• Portability – allows users to create or install a complex application on any
machine,

• Automation – using Cron jobs and Docker containers, users can easily auto-
mate their work and save time by avoiding certain repetitive tasks.

• Large community – has a Slack channel for many developers in different loca-
tions on the web.

The Docker platform also has the following shortcomings:

• Running an application from a Docker container is faster than running on a
virtual machine but slower than running applications on a physical server,

• It is impossible to run applications requiring a Graphical User Interface (GUI).
Users should possess the knowledge to work from the command line, and

• Docker runs on the native operating system, which means any malware hid-
den in containers can find their way to a physical machine.

The Docker platform consists of four key components (Fig. 4.5) [66]:

• Docker client – this component is responsible for creating, managing, and
running containerized applications and communication with one or more
servers.
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Figure 4.5. Docker – functioning model.

• Docker server or Docker daemon – waits for REST API requests from Docker
clients and manages images, containers, networks, and volumes while com-
municating with other Docker daemons to manage Docker services.

• Docker image – represents a read-only template with instructions to the
Docker server related to creating a container. It is possible to download from
the Docker Hub website or any Docker image repository.

• Docker image registry is an open-source server-side application that stores and
distributes images. In practice, we can use the Docker hub for public image
distribution.

The Docker platform uses a client-server architecture for communication. The
client communicates with the daemon, which performs the tasks of building, run-
ning, and distributing Docker containers. In doing so, the client and daemon can
run on the same physical machine, or the client can connect to a remote daemon.
Communication between these components of the Docker platform takes place
using a REST API via a UNIX socket or a network interface. The Docker compose
tool is also often used to define instructions for creating multi-container applica-
tions.

4.4.1 Docker Alternatives

Reasons such as the complexity of an architecture that relies on daemons and the
desire to avoid vendor lock-in and conform to specific development requirements
necessitate the search for an alternative to the docker engine. Today, several options
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for the Docker engine exist. One is Rocket (Rkt), but we can use other solutions,
such as Rkt, for packing and transferring containers, except for a Docker platform.
Rkt has a mechanism for running applications in Linux. This solution uses the open
App Container specification, which defines the image format for packaging con-
tainers. Today, we can utilize the Open Container Initiative (OCI) format, which
all container tools can use and adapt to best fit needs [67].

Another alternative is Podman, a daemonless, open-source Linux native tool
designed to make it easy to find, run, build, share, and deploy applications using
OCI. Podman, like other engines, relies on compliant OCI Container Runtime to
interface with the operating system and create running containers. Podman can
run containers on Windows and Mac systems with a Podman-managed virtual
machine. The next alternative is Containerd, a Cloud Native Computing Foun-
dation (CNCF) container runtime project that handles all aspects of container life-
cycle management for its host system. It can create, run, and delete containers as
needed. It also handles image transfers and storage, container supervision, low-level
storage, and network attachments. Besides the mentioned solutions, other solu-
tions, which are used less often, can be found in practice, such as Vagrant, Buildah,
ZeroVM, and others.

4.5 Container Orchestration

The term orchestration comes from the word orchestra, a musical ensemble con-
sisting of a conductor and musicians. The musicians’ task is to perform a specific
piece of music on their instrument, while the conductor or orchestrator’s role guides
the performance. The conductors define the tempo, part of the composition, and
timing and make real-time adjustments.

We can apply this analogy to applications and services in the network. The goal
is to create a clear picture of each service in the system whose conductor is also an
orchestrator. To achieve this goal, the orchestrator utilizes a set of tools configured
to ensure optimal execution of applications and management of their state. One
of the orchestrators’ key roles is to provide the coordination between applications.
Each application must run in a precisely defined space and time to improve the
system’s performance [68].

Often, the question arises about where to expect the greatest benefit from orches-
tration. As a logical answer, it imposes a network with many interconnected services,
such as Google. This network uses over a million servers. The number of services
(containers) that run weekly is billions [69]. In such an environment, orchestrators
are the mainstay of the architecture because manual monitoring, individual setup,
and software installation are not practical. The orchestrator is the main manager of
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the entire system. Its role is reflected in the system and application startup process
and maintaining the state and high system availability.

From the orchestration aspect, we must point to the containers’ light and short-
lived nature. Starting them in production requires a massive effort, especially if done
manually. A good example is microservices, usually isolated in special containers.
Their running requires managing hundreds or thousands of containers. With con-
tainer orchestration, organizations can automate many operations and significantly
reduce management complexity.

Orchestration implies automating many operational activities and running con-
tainerized workloads and services. These activities encompass the whole container’s
lifecycle management, including provisioning, deployment, scaling, networking,
and load balancing. By working in a containerized environment, organizations gain
the following benefits:

• Simplification of operations – the most important benefit because containers
are highly complex, which can quickly and easily get out of control without
proper container orchestration,

• Resiliency – container orchestration tools can automatically restart or scale,
increasing resiliency,

• Additional security – container orchestration protects applications and
reduces or eliminates human error during instantiation.

Large companies have recognized the role and importance of container orches-
tration. Above all, it refers to Google’s internal Borg project and Microsoft’s Service
Fabric project [70]. The Borg project laid the foundations of the Kubernetes plat-
form. There are also Docker Swarm, Apache Mesos Marathon, Nomad, and other
similar projects.

4.6 The Kubernetes Platform

Kubernetes is an extensible open-source platform that enables the management of
different types of containers, automatic deployment, scaling, and application man-
agement. Their characteristics are the portability of applications and consistency in
operation on other infrastructures. Since containers are a good solution for connect-
ing and running applications, managing them effectively in a production environ-
ment is very important. We must pay special attention to the automatic container
management system, ensuring their operation without downtime. If a container
goes down, another container must be started [71].

The Kubernetes platform makes it possible to entirely define an application’s
elements packed in containers in the program code and the infrastructure required
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for its functioning. The platform provides numerous functionalities, such as [72]:

• Service detection and traffic balancing, i.e., communication between all ser-
vices in the system, is transparent via DNS (Domain Name System) records.
We direct all traffic to a service that we can schedule using the round-robin
method,

• Orchestration of abstracted systems for data storage with independent appli-
cations regardless of the storage type,

• Update the current version of any application and automatically return to the
previous version in case of errors (rollout and rollback),

• Optimal usage of available system resources – balancing of containers
depending on processor time and system memory requirements,

• Automated system recovery – in case of errors, provides and executes con-
tainerized applications automatically.

• Management of application configurations with the possibility of encryp-
tion – the configurations can be easily and quickly replicated to many differ-
ent applications, e.g., parameters for accessing a database server.

The main components of Kubernetes are:

• Cluster – a control plane that consists of one or more computing machines
or nodes.

• Control plane – processes that control Kubernetes nodes, where all task
assignments originate.

• Kubelet – primary node agent runs on nodes, reads the container manifests,
and ensures the defined containers are running.

• The pod is the smallest deployable computing unit that is possible to create
and manage in Kubernetes. It represents one or a group of containers that
share an IP address, IPC, hostname, and other resources.

The Kubernetes platform possesses many functionalities, distributed architec-
ture, and the possibility to replace one component without affecting the rest of
the system. These capabilities significantly influence the application of Kubernetes,
the development of various software distributions, and the building of numerous
platforms. Kubernetes distribution represents a set of applications and services con-
nected to a single unit. It is possible to optimize the components of the Kubernetes
platform to meet the users’ needs of a particular distribution. Some distributions
aim to be close to the standard Kubernetes version. They incorporate additional
functionalities on top of the source Kubernetes platform, such as drivers for network
services and disks. Other distributions adapt the Kubernetes system to requirements
like speed, ease of use, and integration with external services. There are sixty-nine
certified Kubernetes distributions, the most famous of which are Amazon Elastic
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Kubernetes Distro, Cisco Container Platform, IBM Cloud Private, k3s, Rancher
Kubernetes, Red Hat OpenShift, Oracle Cloud Native Environment, and VMware
Tanzu Kubernetes.

The Kubernetes platforms are services that companies offer by abstracting the
physical installation, management, and maintenance processes of Kubernetes clus-
ters. They present services concerning users’ business needs, such as container
installation, privilege instruction setting, and network. There are currently 48
certified vendor platforms. Some of them are Microsoft Azure Kubernetes Ser-
vice (AKS), Alibaba Cloud Container Service, Amazon Elastic Kubernetes Ser-
vice (EKS), Google Kubernetes Engine (GKE), Huawei Cloud Container Engine
(CCE), IBM Cloud, Oracle Container Engine, Red Hat OpenShift Dedicated and
Tencent Kubernetes Engine (TKE) [73].

The popularity of the Kubernetes platform continues to increase due to its close
association with Docker technology. We use Kubernetes for container orchestra-
tion in a multi-cloud environment. This type of container orchestration refers to
using container management orchestration tools in multiple infrastructure cloud
environments. Along with numerous other reasons, optimizing infrastructure costs,
flexibility, portability, and scalability play a key role. An example is dynamic expan-
sion of the cloud from the local environment when necessary. We must note the
increasing usage of multi-cloud environments and containers due to portability and
the ability to run in any environment.

4.6.1 Architecture of Kubernetes Platform

The Kubernetes platform appeared due to the requirement to create complex appli-
cations that are highly available, scalable, portable, and deployable in small inde-
pendent modules. The platform’s fundament represents a client-server communi-
cation model and a cluster of several nodes [74]. The architecture of Kubernetes is
complex, and at the highest level of abstraction, there are two main components
(Fig. 4.6):

• The Master node’s role is to manage the Kubernetes cluster,
• Several worker nodes for running specific user applications.

Its design supports horizontal scaling, which means adding and removing
resources as needed is possible, according to the current load in computer infras-
tructure and requirements of various applications. We can run the Kubernetes clus-
ter in a cloud environment, on local infrastructure, and in a hybrid environment,
e.g., on-premises, cloud, and VM. For the Kubernetes cluster to run, it is necessary
to provide infrastructure such as bare-metal servers, virtual machines, and cloud
resources, install Kubernetes software, and set various configurations and settings.
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Figure 4.6. Kubernetes – architecture and components.

4.6.2 The Role of Nodes in the Kubernetes Platform

In the basic architecture of the Kubernetes cluster, the Worker nodes represent the
computer environment where containers are running, while the control plane role
is a Master node (Fig. 4.7). It takes care of the cluster’s state and the running of
containers, which implies [75]:

• Pods scheduling and monitoring of Worker Nodes,
• Resource provisioning for each container and Pod,
• Starting Pods, monitoring the state of containers and Pods, and restarting

them as needed,
• Adjusting the number of containers on the Pod depending on the load and
• Configure the network so containers can communicate with each other and

the outside world.
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Figure 4.7. Kubernetes – Master Node architecture.
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The control plane’s functionalities are possible to implement using the following
services:

• The kube-apiserver is a central control plane component. It allows sending
requests to the API server and creating, updating, or deleting Kubernetes
resources through REST API calls. We must emphasize that the API server
stores its states in the Etcd database and represents a stateless service [76],

• Etcd is a distributed database that is the backbone of the Kubernetes cluster.
The features of this database represent a simple interface (interaction is possi-
ble via the HTTP protocol), hierarchical organization of data in a key-value
format, and the ability to monitor data changes [72],

• The kube-scheduler is a control plane service that monitors the newly created
Pod and assigns it to a certain Worker Node. It must check all Worker Nodes
and define an optimal node according to constraints and available resources,
such as percentage of processor time and minimum RAM. After selection, it
must inform the API server. If there is no suitable node, deploying the Pod is
impossible, and the Pod’s state remains pending [77],

• Kube-controller-manager constantly monitors the cluster and responds to
events. It consists of several closely specialized controllers with a precisely
defined scope and method of operation. Each controller uses a watch mech-
anism to receive notifications about any resource changes. The main task is
to track that the current state converges into the new desired state [78],

• Cloud-controller-manager is an optional system component that enables the
cluster’s connection with cloud API. During this process, isolating the ele-
ments that interact with the cloud from other components within the cluster
is possible.

The Worker node also possesses installed services, which represent key compo-
nents that enable the implementation of certain functionalities (Fig. 4.8):

• Kubelet – tracks changes on the API server and performs the tasks that the
API server publishes for it. It must send a status report back to the API server
whether the result is successful,

• Kube-proxy – is responsible for network communication between applications
running on nodes and their communication with external users.

• Container Runtime (CR) is a software component that runs containers on
a host operating system. It is responsible for the whole container life-
cycle, including image loading from the repository, resource monitoring,
and resource isolation required for containers. Sometimes, users need to
incorporate multiple runtimes into Kubernetes. They would use the Con-
tainer Runtime Interface (CRI) that a container runtime requires to place on
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behalf of Kubernetes. Kubernetes supports numerous CRs, such as contain-
erd and CRI-O (the CRI implementation for OCI-compatible runtimes),
and many manufacturers also build their solutions [79].

Worker  Node

Containers

pod pod

Kube-proxy

Container Run�me

Kubelet

System services

Figure 4.8. Kubernetes – key components of worker node.

4.7 Kubernetes Objects

Kubernetes objects describe the cluster’s desired state [80]. They provide important
information for the API server, such as a list of containerized applications running
on which nodes, the availability of needed resources, and different policies that
shape the behavior of applications. Users can treat Kubernetes objects as records
of intent because they define the desired cluster’s workload when they create an
object. The management of Kubernetes objects is possible only through client-
server interaction, where the client sends a request to the API server in YAML (Yet
Another Markup Language) or JSON format. We can create, modify, and delete
objects using the API server.

A special type of Kubernetes object is a namespace. We use this object to create
virtual units within the cluster. Users employ the namespace to shape parts of a
cluster by applying different policies, such as limiting resource consumption. They
provide access control by using a namespace in particular locations in a cluster.
Users define a role object type and assign it using role binding. This way, names-
paces allow flexible resource allocation into clusters, such as granular organization,
managing, and securing resources. Namespaces enable users to create virtual spaces
to isolate the resources from one another. Work with objects sometimes requires the
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use of different namespaces. In this case, we must isolate objects from other domains
and make them independent. For example, namespace A can create object X while
supporting the creation of object X in namespace B. This object is fundamentally
different from the object in namespace A.

Mandatory fields in each object are:

• ApiVersion – indicates the version of Kubernetes,
• Kind – indicates the type of object,
• Metadata – users enter values related to a specific object, such as object

name, namespace, labels, and annotations. They can use tags to find and filter
Kubernetes objects, while annotations are descriptions and are not filterable.

• Spec – describe the desired state.

In Fig. 4.9, we show the program code for one Kubernetes object:

Figure 4.9. The code for a single Kubernetes object.

The Kubernetes objects consist of resources such as CPU, memory, disk size,
I/O, and network bandwidth. Managing these resources is essential because it allows
for controlling each resource and application’s needs at any time. For example, the
application makes a lot of HTTP requests and needs to limit its available memory
so that it does not consume all the RAM and crash the cluster. We must treat any
resource in Kubernetes as a lightweight object representing a single cluster entity.
Each object in the cluster has a unique name for that type of resource and a unique
UID string that generates Kubernetes to uniquely identify objects across the whole
cluster. There are several types of Kubernetes objects: Pod, ReplicaSet, Deployment,
StatefulSet, Job, CronJob, Service, ConfigMap, Secret, Volume, and others.
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4.7.1 Pod

Pod represents the simplest deployable object in the Kubernetes system. It man-
ages/runs one or more containers on the Worker node. The containers share
resources like network interfaces, memory, and dependencies. They also communi-
cate with each other and coordinate activities for their termination. The containers
run from Container runtime, and their mutual communication occurs as they run
on the local system. They can use different communication methods, such as socket
and HTTP. Each Pod possesses a unique IP address and network ports for commu-
nication with other objects in the system. It also has persistent or non-persistent
(temporary) data storage. The continuous data storage data can be recovered if the
Pod shuts down. If the Pod possesses temporary storage, data disappears after the
Pod shuts down.

Like individual application containers, we should consider Pod as a temporary
entity. If the Worker node is not operational, the Pod running on the Worker node
will be scheduled for deletion after a timeout period if it is not in function.

During its lifetime, the Pod goes through different phases:

• Pending – the Pod has not fully started because one or more of the containers
are not ready to run,

• Running – we created all the containers, bound the Pod to the node, and it
is ready for execution,

• Succeeded – the Pod and all its containers started successfully,
• Failed – the Pod failed to start because the containers terminated; at least one

is in error.
• Unknown – typically occurs due to a communication error. The node where

the Pod is running and the Pod is in an unknown state.

4.7.2 ReplicaSet

Running the Pod as an independent resource is possible, but this is not good because
it loses all the benefits Kubernetes offers. Instead of running an individual Pod, it is
preferable to use the ReplicaSet concept [81]. We should replicate Pods for several
reasons, such as:

• Redundancy – by having multiple copies of the Pod on different physical
servers, the other copies continue to work in case of a server failure,

• Scaling – with multiple copies of Pod, the system can accept and process more
requests and

• Traffic balancing – by having multiple copies of the Pod on different servers,
traffic can be balanced and thus achieve an even load on the server.
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Users can define many Pod replicas using a ReplicaSet object, which represents
a process that runs multiple copies of the same Pod. We can group Pods within a
ReplicaSet into a single unit that we can reference easily. ReplicaSet ensures that
there are always a certain number of copies on the Pod. In the event of an error, the
system is not in the desired state. Pod switches to the failed state, and the number
of defined copies decreases. The ReplicaSet will start a new pod, and the system
will return to the designated (original) state. The same applies if the configuration
of the ReplicaSet object has changed and the defined number of pod copies is less
than the number of currently running copies. It is necessary to satisfy the defined
condition and stop a certain number of Pods.

We can select the pods with the appropriate labels and manage them using the
label selector inside the spec section of the ReplicaSet object. This way, it is possible
to isolate certain pods at runtime and remove them from the ReplicaSet. Moreover,
we can define and add Pods outside of the existing ReplicaSet. The Pod’s isolation we
can use to examine the Pod’s state if it has a problem without affecting the operation
of other Pods. The advantage of adding existing Pods to a ReplicaSet is the ability
to make additional copies without stopping the Pod’s running.

The task of the ReplicaSet is to ensure that the number of replica pods under
its command is always in the desired state. Although very useful, there are better
solutions than ReplicaSet. Sometimes, the ReplicaSet cannot be an ideal solution to
locate applications because it is impossible to provide its update properly. ReplicaSet
links to a specific image and its version, and after the update, the object deletes, and
a new one is created, so the state of the pods is lost [81].

4.7.3 Deployment

Manual update of containerized applications is time-consuming and requires sig-
nificant effort. It consists of multiple actions. An example is stopping the current
version of the Pod, starting the new one, and updating the latest version of the
application. We must check if the new version of the application launched success-
fully due to the possibility of human errors. Kubernetes aims to automate these
actions, eliminate potential bottlenecks, and make the process more efficient.

Deployment is the Kubernetes platform’s top-level application management
object [82]. Its role is to describe the application’s life cycle and to define the desired
cluster’s workload, such as selecting the type of image, the number of pods, and the
method for updating applications. The Kubernetes deployment provides additional
possibilities:

• Automatic scaling, debugging, and updating of applications according to the
latest version,

• Specification of the desired state of the application and its maintenance,
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• The presence of the required number of application replicas,
• The application updates without interruptions.

Deployment manages ReplicaSets in the background on the server side without
client interaction. It means that through the Deployment object, ReplicaSet gets
the functionality of Pod replicas and works directly with Pods. Figure 4.10 shows
the relationship between Deployment, ReplicaSet, and the Pod. We must emphasize
that the task of ReplicaSet is to raise a new Pod in case of a Pod’s failure during
deployment.

Container A Container B Container C Container D

1doP1doP

ReplicaSet

DeploymentCluster

Figure 4.10. The relationship between Deployment, ReplicaSet, and the pod [83].

The main task of Kubernetes deployment is to provide a simple transition from
one application version to another. This transition is a two-way process. It is pos-
sible to update the application to a new version, but we can also revert to previous
versions. For example, if an error occurs in the latest version of the application, it
is possible to do a rollback, i.e., return to the previous version. The transition from
one version to another represents strategy, which depends on user requirements.
In practice, several strategies exist, and each possesses certain advantages and con-
straints. In most cases, we can meet the following strategies [84]:

• The recreate strategy represents the simplest strategy, which implies terminat-
ing all instances (containers) from the current version and then starting all
new containers,

• The ramped or rolling update strategy provides a controlled, phased replace-
ment of the application’s Pods and ensures that a minimum number of Pods
is always available. In practice, we can start with a Deployment update and
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then launch a new ReplicaSet (with a new application version). The con-
trolled number of replicas will increase and decrease in the old one. After
the number of replicas in the old ReplicaSet drops to zero and the new one
reaches the desired number, the old ReplicaSet disappears, leaving only the
new one.

• The Blue/green or red/black strategy simultaneously supports creating two
environments, blue and green. After testing the new environment (blue), the
load balancer routes traffic from the old (green) environment to the new envi-
ronment.

• The canary strategy aims to redirect some users to the new version of the
environment while the remaining users access the old version. It is important
to note that the share of the latest and old environments is variable.

In Table 4.1, we summarize the advantages and shortcomings of the mentioned
strategies.

Table 4.1. Advantages and shortcomings of the strategies used.

Strategy Advantages Shortcomings

Recreate The user must run the application
from the beginning because the
state between versions is not saved.

For applications that consist of
resource-demanding services, the system
takes time to stop and restart.

Ramped (rolling
update)

A controlled transition to a new
application version (without
downtime) allows services to adapt
to changes. Easy implementation
and the possibility to deploy on
any application are the main
advantages.

Sometimes, it is slow, especially in the
case of a large number of pods. Perform
troubleshooting is difficult if the new
version of the application possesses an
error.

Blue/green If an error occurs in a new
computer environment, it is easy
to roll back to a safe, old
environment in real time. This
way reduces the risks of
experimentation in a production
environment.
It provides a great mechanism to
push software into production
quickly.

Setting up can be complex and risky,
and sometimes, it is necessary to repeat
it several times to work properly.
This deployment requires doubling the
production environment and causes
costs (e.g., users on-premises purchase
more equipment, while in the cloud,
they pay double for the infrastructure).
During the transition, it does not
support changes in a database schema,
and the database stays read-only.

(Continued )
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Table 4.1. Continued

Strategy Advantages Shortcomings

Canary It enables a granular transition of
users to a new environment. A certain
number of them can have negative
operational issues, but this number is
kept low by performing the rollback
to the old version quickly.
It provides a rapid update, high
development velocity, and a reduction
of cycle length.
It improves users’ trust because they
know that the software vendor
continuously tracks and takes care of
problems as they occur.

It introduces additional complexity because
it is necessary to manage multiple API
versions and database schemas.
Remote software deployment on customer
devices or sites is difficult for management
and requires time to ensure customers have
updated and evaluated the software.
This deployment requires a certain level of
visibility, which refers to user behavior and
system and application issues, but in many
environments, this level of visibility has yet
to be available.

We must note that providing the required number of replicas in the Kubernetes
system is always necessary. The deployment object utilizes the Deployment con-
troller. One of the many tasks of this controller is to track the number of active
replicas. If one of the replicas is not functional due to hardware, software, or other
reasons, the controller will automatically replace it and create a new one. The con-
troller represents the entity that allows users to manage the update, downgrade, and
service scaling (Pods) without downtime. The controller enables the containerized
applications to run in the cluster without interruption.

4.7.4 Horizontal Pod Autoscaler and Vertical Pod Autoscaler

In a real environment, there is a need to continuously control the number of repli-
cas for each Pod and their scaling. In some cases, it is necessary to deploy more
Pods as a response to increase the load. To provide this horizontal scaling, we can
use a Horizontal Pod Autoscaler (HPA) [85]. Its main task is to analyze the current
state and automatically update the workload according to current demands. The
term horizontal scaling implies increasing the number of replicas and decreasing
the number of Pods following the system’s current state. HPA provides information
about the system’s current state by using a service that downloads data about proces-
sor occupancy, system memory, and other downloadable metrics. HPA ensures that
applications have enough optimized resources to run, avoiding excessive resource
consumption and performance degradation (Fig. 4.11).

In practice, it is important to identify the proper size of resource requests associ-
ated with the application Pod. In the initial phase, the Pod creates schedules accord-
ing to the initial request. These requirements change over time, and re-evaluation is
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Figure 4.11. Horizontal Pod Autoscaler [86].

necessary to prevent problems with over-allocated resources or the absence of essen-
tial resources. Kubernetes utilizes the Vertical Pod Autoscaler (VPA) for this purpose.
Its main task is to adjust the Pod’s configuration based on the results of the Pod’s
resource load measurement [87]. Instead of just scaling the number of replicas, VPA
can adjust CPU and RAM limits and requirements for a particular pod. This way,
we reduce excessive and inefficient resource usage, application downtime, and large
cloud storage costs. This Kubernetes object uses the Custom Metrics API to gain
insight into current resource usage. We must note that VPA only works on partic-
ular Pods in a certain namespace. It is possible to configure VPA to use different
scaling algorithms, such as those based on predictive modeling.

4.7.5 Job

The Job is responsible for task execution on the Kubernetes platform. It is different
from other Kubernetes controllers. Its role is to construct transient Pods to perform
assigned duties. The Job’s tasks can be very different, such as starting an application
that enters initial data into the system or launching the integration script to connect
system components. Its core task is Pod instantiation. The main function of this
process is that the Job stops itself after successful completion.

Kubernetes uses the Job to execute one-time tasks in a cluster reliably and
deterministically without manual control. Depending on the user’s needs, the Job
controller can work differently. For example, the Parallel Job can run multiple tasks
simultaneously. The next one, the so-called Parallel Job with a fixed number of
completions mode, can run concurrent tasks a few times before they are considered
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complete. In a Non-parallel Job, it runs one Pod at a time. Completions set the
required number of successful starts attributes until it finally switches to the com-
pleted state. The value of the parallelism attribute indicates the number of Pods
that need to run in parallel (Fig. 4.12) [88].

Figure 4.12. Running a job object.

4.7.6 CronJob

More and more applications require periodic execution of scheduled tasks, such as
data backup or periodic input of fresh data into cache server [89]. To execute these
tasks on the server, Kubernetes uses a CronJob mechanism. Cron is a background
service that executes jobs according to schedules defined in the Crontab file. For
example, CronJob can run in the background to instantiate the Job while running
multiple Pods in parallel and achieving the desired number of successful runs. It is
necessary to optimize tasks so they may be repeated (Fig. 4.13).

CronJob

Job Pod

Job Pod

Figure 4.13. Running a CronJob object [89].
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CronJob represents a standard mechanism that runs scheduled jobs in regular,
predefined intervals. Its application in computer infrastructure implies:

• Data processing, periodic storage cleaning, and automatic report generation,
• Job specification, which defines the Docker container and its commands,
• Task scheduling by configuration using a YAML Crontab file.

4.7.7 Service Object

Traffic routing of logical pools of Pods or external resources is an important func-
tionality on the Kubernetes platform. We use the Service object as a logical abstrac-
tion for a deployed group of pods in a cluster that performs the same function. The
Service originated from needing each Pod to have an IP address. Since a Pod rep-
resents a temporary object, a Service enables a group of Pods that provide specific
functions of web services to obtain a name and unique IP address. This IP address
will stay the same as the Service running it. The role of the Service is to connect a
set of pods to an abstracted service name and IP address to provide discovery and
routing between pods.

The Service object should provide a persistent IP address and DNS service name
for an application and its replicas. Service is not a node-specific object. It points to
pods regardless of location and running time in the cluster. By knowing a service
IP address and a DNS service name, we can access the application as long as the
Service exists. We must note that clients use DNS as a standard mechanism for
Service discovery on the cluster. Its task is to monitor the Kubernetes API and make
its name available for resolution after creating a new service. Further, Service works
in a way that:

• Allows other applications on the cluster to communicate with the replica
group as a single entity regardless of the number of replicas currently running,

• Performs load balancing, which means that application access requests will
be distributed across replicas to ensure optimal performance and

• Ensure communication security by using encryption and identity verifica-
tion.

4.8 Kubernetes Labels

Labels are metadata in Kubernetes that represent a key-value pair linked to objects
(Pods and Services). They are used to identify a Kubernetes object and cannot
change any functionality directly. They help users to map data structures onto
objects. Users can add labels to resources in a few different ways. The first implies
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that users enter labels in configuration files to set labels when the resource is cre-
ated or modified. The Kubectl CLI (Command-Line Interface) tool is the second
choice, which is used for small resource modifications and does not have automatic
reflection in configuration files. Finally, it is possible to add and remove labels and
other details using the CLI editor [90].

Within the Service object, we can use attributes, such as selector and port, to
create a logical set of Pods, to choose the protocol for traffic forwarding, such as
TCP, UDP, SCTP, HTTP, and PROXY, or to define the communication endpoints.
One endpoint will be available to other services within the system, while the second
represents a target for traffic forwarding (Fig. 4.14).

Figure 4.14. Application of Service object on Kubernetes platform [90].

4.8.1 Kubernetes Selector

Label selectors allow the identification of the objects tagged with particular labels.
In practice, equality-based and set-based selectors exist. An equality-based label
selector specifies the exact value for a possible comparison. A set-based selector is
similar, but this selector allows the user to select several values in the selector. Only
one value should match the object to qualify. Selectors are typically used in clus-
ters with many resources running, where they can help to discriminate and quickly
identify the required resources.

Specifying the selector attribute in the Service object is necessary to define a
logical set of Pods. We must use the ports attribute and the Endpoint objects created
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manually for traffic routing. The instantiated Service object receives a virtual IP
address, whose value depends on the attribute type field. This attribute can have
one of the following values [91]:

• ClusterIP – default value if the type of attribute is not defined. The Ser-
vice object obtains an internal IP address from the cluster range. Only
resources from the internal cluster can access the Service instance,

• NodePort – this value allows the Service instance to receive the address of
the Kubernetes node and a communication endpoint. The Service instance is
visible on the network and outside the Kubernetes system and advertises to
all system nodes. It is unnecessary to know the Pod’s location.

• The kube-proxy Service will forward the traffic to the appropriate node and
the communication endpoint.

• LoadBalancer – The Service is allocated an IP address outside the Kubernetes
system. Network communication to the logical set of Pods occurs outside the
Kubernetes system. Service uses a public IP address over the Internet.

• ExternalName is a special case where DNS records can be used instead of
selectors. They often refer to services outside the Kubernetes system.

External access to cluster applications represents a common request. For this
purpose, the Kubernetes platform exposes the Ingress object, which should enable
communication between applications on the cluster. Users can define routing rules
on Ingrees and forward application requests based on URL, hostname, or another
attribute (Fig. 4.15) [89, 92].

External request for 
cluster access

Service A Service B

Ingress

Pods Pods

Cluster

Figure 4.15. Deploying the Ingress object on the Kubernetes platform platform [92].
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4.8.2 ConfigMap

Data storage and exchange have great importance for Kubernetes. Kubernetes uti-
lizes the ConfigMap object to store and present various data types, which can present
data as a file or in a key-value format. The Pods use ConfigMap as a configuration file
or environment variable. Its implementation aims to isolate environment-specific
configurations from container images and make applications portable. The appli-
cation of ConfigMap possesses some limitations. These limitations refer to the con-
fidentiality of stored data and the lack of possibility to hold large chunks of data.
ConfigMap does not provide encryption services, and anyone can access it. For con-
figurations greater than 1MiB, mounting a new disk or other database is necessary.

In practice, there are different methods of accessing ConfigMap. The first method
is remote access by Pods in the same namespace. The second is to define a a Con-
figMap separately from Pods and use them for other components of the Kubernetes
cluster. The third access is to mount ConfigMap as a data storage. We can use the
values defined in the ConfigMap object for Pods and other objects. We use them
to configure containers running in a pod in the same namespace. The ConfigMap
object must exist before we reference it in the Pod specification, and it is a prereq-
uisite for the Pod to run.

Many applications depend on configuration data used during either initializa-
tion or runtime. Often, we must adjust values assigned to configuration parame-
ters on ConfigMap to update applications with configuration data. Another reason
to utilize ConfigMap is to provide a solution that keeps configuration data sepa-
rate from application code [93]. It is possible to facilitate application management
and reduce the code volume required to change the configuration. It represents
the twelve-factor methodology. The goal is to provide the preconditions for sim-
ple modification, depending on the environment. This way, dynamic changes are
introduced at runtime. Finally, the ConfigMap object is a text YAML file, which
can be created or updated only in the Kubernetes cluster (Fig. 4.16).

ConfigMap

                  Pod  A changing 
environmentContainer

CLI arguments

Kubernetes cluster

Figure 4.16. Application of ConfigMap object on the Kubernetes platform.
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There are three ways to use ConfigMap on Kubernetes. The first is through envi-
ronment variables, as shown in Fig. 4.16. The second refers to configuring the
application through command-line arguments. The third concerns the presenta-
tion of the ConfigMap value through the file system added to Pod [79]. It means
propagating changes automatically to each Pod in an update, and containers’ restart
is unnecessary. Each of these three ways of using ConfigMap has its advantages. The
choice comes down to preferences and how to implement the application inside the
container.

4.8.3 Secret

The Secret is similar to the ConfigMap object and usually contains sensitive infor-
mation, such as passwords, OAuth tokens, and SSH keys. A Secret object eliminates
the need to store sensitive information inside the container application code. It pro-
vides greater control over the use of sensitive information and reduces the risks of
accidents. There are several types of Secret objects: opaque, basic-auth, ssh-auth, tls,
and others. They all have origins from the opaque type. Each type adds its attributes
over the opaque type in order. In the case of the ssh-auth type, the Secret object facil-
itates communication between the SSH server and the client [91]. There are three
ways of using the ConfigMap object: through environment variables, command line
arguments, and the file system presented to a Pod. If Secret is present through the
file system, the changes automatically propagate to the file system after the update.
The container can see those changes without restarting the container itself. We
must emphasize that the Secret object is separate from the application and enables
storing sensitive information in a central place [94]. Unlike ConfigMap, it stores
encrypted data protected from unauthorized access. It can provide information for
Kubernetes resources, such as deployments, Pods, or Services. Most importantly, an
application can create it manually or generate it using the Kubernetes API.

We note that the local disk inside the Pod is short-lived. All information placed
on the file system is lost after the Pod is deactivated; a new Pod will start. Kubernetes
solves this problem by introducing logical disks. It supports many types of logical
disks (Volume) by the Container Storage Interface (CSI) abstraction [78]. Any logical
disk whose implementation satisfies this interface represents an object within the
system. After presenting the logical disks to the system, a Pod can simultaneously
use the disks presented to it. The object PersistentVolume (PV) represents a part of
the space on the logical disk created by the administrator. It is available for claim
by user request, i.e., object PersistentVolumeClaim (PVC). PersistentVolume can be
static or dynamic. The dynamic method uses StorageClass abstraction, where the
disk space (PVC) request uses its attributes for mapping. At the same time, the
static PersistentVolume is created manually by the administrator.
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Some PV types are azureDisk, azureFile, csi, fc, glusterfs, hostPath, iscsi, local,
and nfs. PersistentVolumeClaim is an object through which disk access is claimed.
The request specifies the amount of disk and the type of access. Types of access
are [90]:

• ReadWriteOnce – the disk is presented for reading and writing on a single
node,

• ReadWriteMany – the disk is presented for reading and writing on multiple
nodes,

• ReadOnlyMany – the disk is presented as read-only on multiple nodes,
• ReadWriteOncePod – the disk is presented for reading and writing on only

one pod.

4.9 Methods of Saving Application State

In Kubernetes, various applications save their states differently. We grouped them
into Stateless and Stateful applications. At the beginning of containerization, the
designed applications do not save the states inside the containers. Their primary
goal is to be flexible and portable to different architectures. With the popularization
of this technology, stateful applications appeared. They store states on a persistent
medium in the same location where the application is running. The most famous
Stateful applications are databases, such as MySQL, PostgreSQL, and MongoDB.
Unlike stateless applications with a transient data flow, the stateful application must
keep states and take into consideration the temporary nature of storage. It can be
problematic during cluster setup because they need persistent storage to survive a
service restart [95].

To clarify the previous remarks, we will begin with the assumption that three
Pods represent the members of the MySQL database cluster. Cluster members can
communicate and exchange data if the addresses of the members exist on each
Pod in the configuration. In case we configure the cluster using Deployment or
ReplicaSet, after the Pod’s failure, a new Pod runs with a new address and without
the data of the previous Pod. This state leads to errors in the cluster configuration
and can cause inoperability. We must change the cluster configuration of cluster
members so that they point to the new Pod. This process is impossible to automate,
and we must find another solution.

The deployment and scaling of Pods with Stateful applications is challenging.
Providing guarantees that the Pod is in the correct order and the Pod’s uniqueness
is another challenge. To remedy these challenges, we can use the StatefulSet object,
whose Pod identity is static. If the existing Pod fails, a new one starts. It obtains
the identity (IP address) from the old Pod. When implementing a StatefulSet, if
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Pods possess multiple replicas, they must instantiate sequentially. It means the new
Pod runs if the running of the previous Pod was completed. The containerized
applications in Pods must have unique names, stable network identities, and per-
sistent data storage. This way, it is possible to ensure that each instantiated Pod is
maintained in a unique order and with a unique name. It permanently maintains
the application’s identity and creates an assumption for scaling it and increasing its
capacity (Fig. 4.17) [96].

StatefulSet 
Pod 0

StatefulSet 
Pod 1
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Volume 0

StatefulSet controller
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Figure 4.17. Application of StatefulSet controller on the Kubernetes platform.

4.10 Alternatives for Kubernetes

If we consider an alternative to Kubernetes, it is important to define specific require-
ments, such as simple usage, scalability, community support, possibility of inte-
gration with existing tools, and control of applications. In practice, we meet sev-
eral alternatives with their features and intentions, such as Apache Mesos, Docker
Swarm, and Amazon ECS.

Apache Mesos is an open-source manager that provides resource isolation and
sharing across distributed clusters or applications. It uses the same principles as the
Linux Kernel, and key features are greater scalability, multi-resource scheduling,
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web user interface for cluster state monitoring, and others. It consists of a master
process and frameworks with a master process managing slave daemons running
on each cluster node and frameworks that handle tasks on these slaves. Apache
Mesos can move resources from one framework to another as required, and many
processes in the deployment of applications are automated. Its location is between
the application layer and the operating system, allowing it to deploy and manage
applications in large-scale clusters efficiently [97].

Docker Swarm is a container orchestrator that can manage multiple physical or
virtual nodes whose roles are different. The nodes are classified as manager and
worker nodes. The manager node contains the Swarm Manager process (man-
ages the commands in the Swarm mode and reconciles the desired with the real
cluster state), while worker nodes contain the workloads. Docker Swarm provides
benefits, such as high-availability environments with reliable communication and
fault tolerance between nodes (nodes coordinate with each other to ensure reliable
operations), load balancing (manager node distributes requests evenly across the
worker nodes), and simplicity for easily managing applications and containers in
swarm and non-swarm mode. Docker Swarm is suitable for deployment of small
to medium configurations and for deployment where it is necessary to prioritize
high service availability and automatic load balancing over automation and fault
tolerance.

Amazon ECS is a container orchestrator developed to simplify the deployment
and management of large-scale containers. It allows to run, scale, and control appli-
cations. Its advantages are task definitions for container configurations, seamless
integration with different services, automatic scaling based on request, and efficient
resource allocation. It can simplify deploying and managing applications, deliv-
ering a flexible and robust platform for container orchestration within the AWS
ecosystem.

4.11 Software Architectures with One or More Users

Virtualization technology offers a wide range of possibilities. From the aspect of
shared (virtual) infrastructure, we recognize two software architectures – architec-
ture with one and architecture with multiple users or tenants (Fig. 4.18). In non-
virtualization scenarios, only one user owns and controls the entire server. The
user can modify the server’s hardware and software independently, without any
changes affecting users of other servers. A single instance of a software application
and supporting infrastructure serves one customer. This model of resource usage
is a single lease. A user who utilizes resources independently for a certain time is
a tenant, and this approach is a single tenant [98]. In a virtual environment, it is
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Figure 4.18. Single-tenant and multitenant architecture.

possible to implement a single-tenant architecture in which a user uses one virtual
instance for a certain time. However, virtualization technology allows the sharing
of a virtual instance and its resources between multiple users. Any change in the
shared infrastructure affects other users. The user is only free to modify the system
with the support of other users. This software environment represents multitenant
architecture [98].

As depicted in Fig. 4.18, multitenant software architecture brings some advan-
tages but also reduces the isolation level between users, affecting security and
increasing vulnerability compared to single-tenant architecture. Although this
architecture is commonplace in the industry, its shortcomings sometimes become
a critical factor (often due to regulatory requirements) influencing the choice of
software architecture.

4.12 Conclusion

The NFV concept’s development occurred due to the desire to include server virtu-
alization more widely in computer networking. For this reason, the virtualization
techniques represent the NFV concept’s fundamentals. If we return to the design of
the ETSI architecture, we recognize that the NFVI block represents a result of activ-
ity at the virtualization layer. These activities can be infrastructure virtualization
using a hypervisor or containerization using an LXC or Docker virtual container.
They are an integral part of the virtualization layer of each NFVI block [1].

Today, containerization focuses on deploying and managing applications, while
NFV’s goals are virtualization and optimization of network services and functions.
The goals of these technologies are different because containerization primarily
deals with packaging and deploying applications to provide them with regular
running across different environments. Unlike containerization, the NFV focus
is virtualization and network services running on standard hardware. The overlap
between Network Functions Virtualization (NFV) and containerization is possible,
especially due to further network softwarization, which requires more flexibility,
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scalability, and efficiency in deploying network services and applications. In prac-
tice, overlaps occur in service chaining, where we use containerization to implement
and manage specific applications or microservices that complement or enhance the
NFV services.

Further, containerization technologies, such as Kubernetes, can manage con-
tainers and VMs in the same infrastructure. It is the reason for the fast devel-
opment of NFV orchestration, which aims to integrate the management of vir-
tual machines and containers within the same infrastructure. Containerization’s
lightweight nature and rapid development can increase agility, faster service deploy-
ment, and efficient resource utilization in NFV-based networks. By using con-
tainer orchestration platforms, such as Kubernetes or Docker Swarm, it is possi-
ble to achieve greater agility, scalability, and operational efficiency in NFV-based
networks. These platforms have capabilities to enable the abstraction of the VNFs
management complexity, providing a flexible and scalable infrastructure for numer-
ous network services.

The advantages of containerization bring a dominant trend for micro-services
with containers, significantly influencing NFV efficiency. There are many bene-
fits, such as the short time needed to create, reload, and delete containers. In the
long term, we see that containers’ usage in NFV is increasing more than virtual
machines. In practice, users utilize the same tools to connect different VNFs, i.e.,
virtual machines or containers. This approach encourages the development of new,
more efficient virtual switches based on solutions that imply advanced packet pro-
cessing techniques at the kernel and network card level (e.g., Intel’s Data Plane
Development Kit – DPDK) [99]. More details will be provided in the next section.
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Chapter 5

NFV-based Network Design

Today, the traditional concept of network service implementation is still dominant
in most computer networks. We have specialized functions implemented on dedi-
cated hardware, such as packet switching (L2 switching), traffic routing (L3 rout-
ing), network address translation (NAT), firewall, deep packet inspection, intrusion
detection system (IDS), load balancing, WAN optimizing and stateful proxy [100].
However, the rapid increase in user requirements, great heterogeneity, and resource-
demanding services [98] require the engagement of additional financial resources
for equipment procurement and staff training. It increases capital expenditures
(CapEx) and operational expenditures (OpEx) and indicates the need to change
the current concept of network function application to be more efficient.

The practice shows that adding new functionalities to traditional networks is
long and challenging. To implement a new network function, staff often must visit
different locations and install devices in a predefined order to form service func-
tion chains (SFCs). Service instantiation can take days; worse, service maintenance
usually involves repeating the same process. This fact significantly limits innovative
approaches and increases the time it takes to bring a new network function to the
market [101].

Academic and professional communities know that new technological solutions
are necessary to increase the utilization of resources and encourage an innovative
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approach in the network. They define greater network management flexibility, effi-
cient service provision, and achieving more significant financial effects as key goals.
Technologies such as software-defined networking [102] and the NFV [103] sup-
port the achievement of these goals. Environments based on SDN decouple the
control plane from the data plane and use a logically centralized controller to con-
figure programmable switches based on a global view of the network infrastructure.
At the same time, the NFV concept allows the replacement of network functions
on dedicated hardware with software-based virtual network functions (VNF) on
COTS hardware. The key to the success of the new network management concept
lies in reducing service implementation time and providing a diversity of network
services.

5.1 NFV Concept in Modern Network Design

The NFV concept brings numerous opportunities and advantages in designing and
building modern network environments. The core of the NFV concept is imple-
menting network functions independent of hardware and equipment vendors. It
means a free choice of virtual network functions and their running mode regard-
less of the physical infrastructure design. Figure 5.1 shows the three dimensions of
implementing the NFV concept in networks.

As with any complex system, the constitution of an NFV network usually
includes numerous software and hardware components that are in close interaction.

Figure 5.1. Three dimensions of NFV application in modern networks.
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Depending on the design’s intentions, where to implement VNFs, and in what way,
dealing with the life cycle of network functions implies considering different factors.
It includes the VNFs execution model, state management methods, other APIs,
VNFs interconnection, and various data path acceleration techniques such as batch
processing and zero-copy packet transmission. The goal is to describe the design of
a typical NFV platform. Although the ETSI program framework defines a reference
architecture, most existing NFV platforms do not follow it strictly. Some key ETSI
components still need to be implemented in industrial NFV platforms [16], while
other implementations have focused only on management aspects.

We can meet different network architecture designs in environments that com-
bine the ETSI reference architecture with existing solutions. An NFV platform gen-
erally consists of three primary components: the NFV MANO plane, the service
plane, and the NFV infrastructure (NFVI). The MANO plane provides central-
ized control of service delivery and management. NFVI contains a collection of
compute, storage, and network resources distributed across different infrastructure
nodes. MANO plane components systematically monitor and schedule resources
to build a virtualized environment and adapt various network services. The service
layer contains diverse VNFs deployed as service chains to fulfill desired network
services [104]. MANO plane components also closely monitor and adapt these ser-
vice chains to multiplex NFVI resources effectively. Generally, we can enable the
service plane through coordinated operations with MANO and NFVI blocks.

5.1.1 NFVI Design

The implementation of NFV aims to create a generic infrastructure characterized by
the scalability and elasticity of VNFs. This infrastructure can also be used (shared)
for various servers and other data center applications. The basic requirement of
such a shared environment is great flexibility in resource allocation for individual
software applications. The infrastructure designed this way is quite independent
of the network layer. It is impossible to predict all hardware resource requirements
that can arise during exploitation.

The telecom operators aim to align resources as much as possible to current
needs. They intend to initially provide an infrastructure with significant hard-
ware resources to avoid the need for future changes (expansions). In practice,
the installed hardware often cannot meet the growing demands. For this reason,
we must upgrade hardware or change the utilization of shared resources per new
requirements. The solution is the free choice of scalable hardware that can be
replaced without impact on the virtualized applications and hosted VNFs (e.g.,
servers must be able to scale hardware resources, such as network cards and mem-
ory). As an example of a flexible solution, we can take a virtual infrastructure with a
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system of shared disks, which reduces the possibility of failures compared to servers
with embedded disks.

The hardware selection is a complex process related to the telecom operator’s
intention to reduce costs. Although COTS hardware has emerged as the best solu-
tion, the situation is complicated because numerous vendors require more com-
patibility between their and COTS equipment. This fact directly affects the choice
of equipment because reliable operation and vendor support must be guaranteed.
Also, we must consider the choice of the host operating system and the hypervisor
as the virtualization layer. They must be compatible and easily integrated with the
installed hardware to create a stable foundation for the rest of the infrastructure. In
the case of COTS hardware, it is necessary to consider the following:

• types of technical support available,
• licensing costs,
• procurement costs,
• possibility of upgrading,
• stability in work, and
• ability to interact with open-source software and commercially available tools.

The optimal network design depends on a balance between all these factors. The
preferences of telecom operators are also important because they like the “bundled”
software solutions, such as VMware, RedHat, or Canonical packages. In contrast,
others insist on open, freely available operating systems (e.g., Ubuntu or CentOS)
that run open-source hypervisors like KVM. In the first case, the telecom operator
bears the licensing costs but also has results, technical support, and a secure future
with a clear upgrade path. There are no licensing costs in the second case, but
support will be internal or from the community.

The rational usage of space and energy for the infrastructure is another important
requirement regarding operating costs. This requirement is important because data
centers are spatially large facilities and consume energy measured in hundreds of
MW. Every virtualization-based implementation is significant because of the ratio-
nal use of the available computer infrastructure and great elasticity. The software
footprint can be created on shared hardware and replicated in different locations,
making work easier.

The selection of the location for the NFVI infrastructure is also important. It
would be ideal to install it in geographically different locations, in areas with a
high concentration of users. For the smooth functioning of the infrastructure, there
must be geographic redundancy. It implies providing flexibility and VNF running
where the greatest need is. The flexibility in providing redundancies is necessary
to eliminate numerous problems in traditional networks, especially in the case of
network device failure. Traditional networks have redundancy implemented at the
device level. In the case of a device failure (e.g., one of the router’s hard drives fails),



NFV Concept in Modern Network Design 93

there may also be traffic interruption because the network function is unavailable.
It is possible to avoid this problem if we install redundant devices in advance or
create a backup path, which can be expensive and sometimes complex.

Within NFVI infrastructure, redundancy is provided at the component level,
so the chances of losing network function due to a single component failure are
minimal. A network function, such as a router, can be implemented as a VNF on a
server using RAID (Redundant Array of Independent Disks) technology. A failure
on one of the drives will not affect the network function provided on the other
drives. Besides redundancy at the hardware level, the NFV concept also implies
redundancy for virtual machines and containers. In this sense, we can implement
different virtualization solutions to create a robust network infrastructure design.

5.1.2 Life Cycle of NFV Infrastructure

The hardware infrastructure of traditional networks consists of devices whose life
cycle begins with the purchase and ends after a certain period with failures. The
devices’ life cycle lasts as long as the hardware works without failure and providers
possess the support contract and repair components. Their replacement is necessary
when they reach the end of their life cycle to reduce the possibility of failure. The
devices should return the invested funds within that period, which is sometimes
impossible. Similar time estimates and practices can be applied to NFV infrastruc-
ture because the host operating systems, hypervisors, and VNFs also have lifetimes.
After the lifetime expires, the upgrade is required for enhancements or bug fixes
and renewal of the support contract. In the process of NFV infrastructure design,
it is necessary to consider factors such as program support, VNFs life cycle, hyper-
visor software update, and replacement of switches and servers. The coordination
between them should enable providers to avoid potential traps and ensure they plan
to perform upgrades efficiently.

5.1.3 The Key Principles of NFV Design

Using the NFV concept, we create virtual (logical) networks that look like overlay
networks around the physical infrastructure (underlay network). They should over-
come the limitations of the physical network under the overlay. Although they share
a physical infrastructure, their services are separate and independent of the physical
devices and connections between them. The virtual network design is independent,
flexible, and without the limitations that come from the physical hardware. With
multi-instance technology, virtual networks can provide different services to one
or more users (tenant and multitenant access). Figure 5.2 shows that the underlay
network is a physical network consisting of many devices, such as switches, routers,
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Figure 5.2. Typical underlay network.

load balancers, and firewalls, responsible for transmitting packets over different net-
works.

Different protocols should be used at different network layers to ensure network
connectivity and data transfer between the devices shown in Fig. 5.2. We use the
Ethernet and VLANs at layer L2. At the L3 layer, we use Internet protocol (IP)
and different protocols for routing traffic within one network, such as Open Short-
est Path First (OSPF) or Intermediate System to Intermediate System (IS-IS) or
between different networks (Border Gateway Protocol - BGP). With the advance-
ment of technology, Multiprotocol Label Switching (MPLS), which works between
the L2 and L3 layers and routes traffic using the shortest path based on labels, has
also appeared. Data forwarding in traditional networks is hardware-dependent and
burdened with numerous challenges, such as:

• Packet forwarding based on destination IP addresses with a high dependence
on transmission paths,

• The long-term process of implementing new and selecting existing services
(complex and time-consuming reconfiguration procedure),

• Security problems caused by different types of attacks, and
• Dynamic resource allocation and design change are impossible per user’s

request.

Virtual (overlay) networks are built using network virtualization technologies to
eliminate the limitations of underlay networks, as shown in Fig. 5.3.

Implementing network functionalities in software is a key difference between
the NFV and traditional networks. Network functions in NFV-based networks
can be added, removed, and transferred exclusively in software. We can achieve
such flexibility using open APIs. Their role is to provide third-party software
with a documented and publicly available way to access and download data
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Figure 5.3. An overlay network on top of physical network infrastructure.

from the application or to pass the application parameters necessary for program-
ming/configuration. Implementing open APIs enables various orchestration and
management tools to control the deployment and lifecycle of VNFs. The virtual-
ization layer receives instructions on connecting VNFs in a certain order. Also, the
virtualization layer should enable the instantiation of new VNFs and their over-
all programmability. Figure 5.4 shows three key principles of designing the NFV
networks.

We can notice the underutilization of transport and network resources by ana-
lyzing today’s network efficiency. The reason is resource over-dimensioning to meet
future requirements and to ensure redundancy as a form of protection against hard-
ware or network software failures. The new network must have better resource uti-
lization during its lifetime and increase the return on investment (in traditional
networks, the capital and the operating costs are high).

The NFV concept implies implementing VNFs with only the required resources.
The allocation of new or deallocation of existing resources is performed dynam-
ically based on traffic requests. This way, it is possible to simplify the network
designers’ activities. They do not have to dedicate unnecessary power, memory,
throughput, and other resources. More importantly, they can flexibly eliminate or
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Figure 5.4. NFV principles.

provide minimal redundancy of network functions because additional VNFs can
be created as needed easily. So, we can expand NFV-based networks dynamically
according to resource consumption and demand. What does it mean in practice?
Suppose the telecom operator has already implemented the NFV concept in its
network and wants to introduce a new type of service. In this case, the operator
only introduces new services in network segments that expect business profit. The
operator can organize testing of new services quickly and, based on feedback, make
changes in the design of virtual devices or VNFs used for new service implemen-
tation. It means the operator can incrementally perform any further change and
expand the new service offer. Also, the operator can implement this approach for
partial or complete service termination.

In NFV-based networks, one important requirement is ensuring network func-
tions’ redundancy. The problems caused by a hardware failure are solved at the
orchestration layer by reallocating VNFs to new hardware, considering the mini-
mal impact on the network. We can implement most network functions via several
VNFs as a service function chain (SFC) on different nodes. Ensuring high VNF reli-
ability represents one of the major and critical challenges for the further expansion
of the NFV concept. Distributing VNFs to other nodes has numerous advantages,
such as cost reduction and flexible resource management [15]. A problem can also
occur due to an error on a VNF, causing the entire SFC to collapse. NFV-based
networks have higher reliability requirements than traditional networks, especially
at the network’s edge, where bandwidth for storage and processing is limited.
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We can use two solutions to improve SFC’s reliability in NFV-based networks.
One solution optimizes the VNF deployment scheme, selecting highly reliable
nodes to implement VNFs [105]. The drawback of this solution is that it cannot
ensure adequate reliability and avoid hardware failures. Another solution is imple-
menting redundant applications, i.e., making VNF copies [106]. The redundant
VNFs effectively provide high reliability of network functions but require addi-
tional resources, leading to increased costs. Duplicating each VNF with a fixed
number of backup instances can lead to exceeding resource capacity, especially at
the network’s edge, which causes unnecessary hardware costs. Considering all the
above (Fig. 5.5), it is necessary to implement fault protection measures in NFV-
based networks at several layers.
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Figure 5.5. Redundancy in NFV-based networks.

Figure 5.5 shows NFV design considerations focused on redefining disaster
recovery and failure mitigation at multiple layers. Providing hardware redundancy
at the component or device level aims to prevent a failure of a component (CPU or
memory module) from propagating to the VNFs, allowing the VNFs to continue
operating without any impact. In the case of catastrophic hardware failures, such
as a failure of multiple disks, the orchestration layer could instantiate the affected
VNFs at new hardware with minimal impact on the network. At the NFI layer,
the redundancy mechanisms aim to enable the routing functions available when
a device fails, and protocol selection is an important task that depends on many
factors. For example, suppose a failure occurs in the part of the network containing



98 NFV-based Network Design

end devices (e.g., servers). In that case, choosing a protocol to move the default
gateway function to a backup device is necessary. Such a solution is resilient in data
center and server virtualization deployments and can enable high availability for
network services.

With the NFV concept, we can decouple network functions into separate VNF
instances or groups of VNFs, creating a modular network design without incur-
ring costs. Figure 5.6 shows a physical router with multiple functions implemented
on one device, such as firewall, Network Address Translation (NAT), and routing
simultaneously.

In traditional networks, upgrading previously mentioned functionalities will
require changing the complete software or hardware. The NFV design shown in
Fig. 5.6 is modular, provides higher flexibility and agility, and allows the easy incor-
poration of any change into the design. Any change is precise and tightly focused
on a concrete function, making it easy to quickly redesign, validate, and deploy the
new feature. This way, the network modular design enables the implementation
of the VNFs (e.g., NAT, firewall, and routing protocols) from different vendors,
selected according to individual function requirements.
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Figure 5.6. The modular design.

The modular design offers a significant advantage in terms of flexibility and
agility. We can easily incorporate changes based on feedback from the network into
the design because of their narrow focus on a specific function. This way, it is possi-
ble to quickly redesign, validate, and implement a new function. Being flexible, the
design of NFV-based networks has many choices regarding implementing different
network functions. It includes the possibility to mix and match VNFs developed
by other vendors.

In the process of NFV-based network design, capacity planning is necessary
because the focus is on software and automation support. This process is very elastic
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and implies the modification of capacity related to VNF resources on the fly with-
out affecting the network. We must consider the business needs and guarantee a
certain level of service using the elasticity of VNFs. The orchestrator should be
able to analyze the data obtained by monitoring the VNFs and apply the appro-
priate actions by sending proper instructions to the NFVI and/or VNF layers. The
orchestration layer is a network layer where logic and rules determine what changes
are needed and when.

5.1.4 The Network Design Validation

Network design validation should provide a high degree of assurance that certain
processes, methods, or components within the infrastructure will consistently pro-
duce results that conform to predefined criteria [1]. In most cases, this procedure
takes a lot of time, creates additional costs, and requires the allocation of significant
resources. The process itself is particularly complex when it comes to validating the
design of an Internet service provider’s network.

The process is much simpler and faster in NFV-based networks. The testing
environment is elastic and consists of virtualized network functions, easily deployed
by software and linked to a service chain from different network locations. During
the flexible testing process, which can even be automated, getting new insights
and improving the existing network design is possible. Testing and validation of
the proposed network design, especially in the early stages of setup, can indicate
potential problems in hardware or applied software solutions.

The ability to instantiate VNFs anytime and anywhere in the network is a signif-
icant advance as the network becomes fluid and acquires a more dynamic dimen-
sion [107]. That is the reason for performing a high-quality network design valida-
tion process and practically checking whether users in a real environment can add,
remove, or change new services whenever needed. In practice, a service designed to
provide load balancing, greater privacy, or more efficient traffic routing is impor-
tant, as it can increase QoE (Quality of Experience) for users and revenue for service
providers. Before implementation, performing a quality check of the proposed net-
work design offers is necessary. Any design must undergo some level of validation,
which is time-consuming and adds significant cost and resources. The test and val-
idation process can take a few months or even a year in a typical service provider
deployment where legacy devices and virtual infrastructure are used. Therefore, the
design must be checked and perfected as much as possible before its validation,
especially since design shortcomings could void the entire effort.

It is crucial to check the offered solutions regarding redundancy and recovery
from incident situations and those related to the upgrade and migration of virtual
entities. During testing, it is mandatory to check to what extent the upgrade of
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VNFs, hypervisors, and hosts affects the occurrence of network interruptions. Only
modern hypervisors can update resources like CPU and memory on a running
VNF. The validation process has shown that first, we must initiate a new VNF
with the necessary capabilities. After the VNF instantiation, it is possible to hand
over current tasks in the network. Only then can we upgrade the original VNF with
new capabilities.

5.1.5 Location and Time-dependent Implementation

Network optimization refers to using numerous tools and implementing various
strategies and best practices for monitoring, managing, and improving network per-
formance. In today’s very competitive and dynamic environments, the key require-
ment is to ensure reliable, fast, and secure data transfer. The existence of outdated or
poorly sized hardware and suboptimal software can limit available bandwidth and
increase latency. Also, unexpected traffic changes can significantly affect network
functions and slow response times, degrading the end-user experience.

The primary goal of network optimization is to provide the best possible net-
work design and performance at the lowest possible cost. Network architecture
must enable efficient data exchange. We can manage it only by managing delays,
traffic volume, bandwidth, and proper placement of network functions. The NFV
concept enables the implementation of VNFs independently of specific hardware.
We can move VNFs to other devices and geographical locations; their life cycle is
variable.

Proper use of location independence and strategic placement of VNFs can lead
to architecture simplification and network optimization. We can demonstrate it in
an example of packet switching in the mobile packet core [108]. Regarding the
traditional design of these networks, the Packet Data Network Gateway (PGW)
provides connectivity between User Equipment (UE) and the packet network. It is
installed in centralized locations to minimize costs. It implies that all traffic, includ-
ing device-to-device traffic, should be forwarded to the PGW, which often leads to
congestion, delays, and suboptimal bandwidth consumption (Fig. 5.7).

To eliminate this problem, implementing the NFV concept and multiple virtual
PGWs enables the creation of a more efficient mobile network design. We can
place virtual PGWs closer to base stations (eNodeB in 4G and gNodeB in 5G
networks), which is not feasible in traditional networks due to high costs. So, we
achieve the optimal network design by implementing VNFs at the right locations,
ensuring efficient bandwidth use, reducing latency and jitter, and avoiding eventual
congestion (Fig. 5.8).

With the emergence of IoT technology, the widespread adoption of IoT devices,
and high-definition video streaming, creating an optimal network design has
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become much more significant. The authors in [4] and [103] state that the data
from IoT nodes will reach 400 zettabytes. They explain that data analysis from IoT
sources has an important role in the modern data-based economy. However, there
are more efficient solutions than using cloud resources. The most optimal location
for storing, analyzing, and processing this data is the closest to the data sources.
It indicates the need to develop fog computing and implement network functions
and computing elements near the data source. Today, most data belong to mobile
devices as data sources, such as smart devices and smart cars. These devices require
network resources to be moved between different fog locations in real-time, based
on demand and according to circumstances. All this affects the importance of NFV
implementation in cloud and fog infrastructure design.

5.2 Lifecycle Management and Licensing Costs

The life cycle of VNFs must be analyzed from the aspect of each phase individu-
ally, including instantiation, monitoring, scaling, updating, and termination [110].
Certain hardware resources are allocated during each phase to create VNFs. If there
is no need for a VNF, its resources should be released and allocated to other VNFs
needing them. The rational usage of hardware resources is not the only reason to
take care of the optimal management of the VNF life cycle. Another important
reason is the licensing costs, which arise with the launch of the VNF (Fig. 5.9).
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We must emphasize that until the emergence of the NFV concept, network
equipment vendors traditionally tied their income to the sale of hardware. With
the implementation of NFV, the focus of their business has shifted to software.
It means that licensing fees become the base for generating revenue. They usually
depend on the characteristics of the virtual function, the number of instances, and
capacity. For this reason, during the network design process, we must implement
algorithms within the NFV infrastructure orchestrator that consider the optimal
number of required virtual instances, capacity, and characteristics [111].

Besides optimal lifecycle management of VNFs, we must consider a multi-
tenancy approach. It implies the possibility of grouping users, so-called tenants,
who require the same network function on one part of the infrastructure. Applying
the NFV to a shared infrastructure makes it possible to implement multiple VNFs
simultaneously, meeting different user requirements, such as service level or degree
of isolation [112].

5.2.1 Lifecycle Management and Automation

VNFs are software applications representing instances created and modified on
demand and near real-time. Each instance has a life cycle, with the ability to
dynamically change according to new requirements, e.g., in terms of quality of
service, network performance, or at the request of a superior management system.
The support for system automation, which manages the lifecycle of VNFs, is the
prerequisite for achieving most NFV benefits. Implementing automation mecha-
nisms involves pre-defined workflows and policies that determine our actions based
on certain criteria.

To automate changes in the lifecycle of VNFs, the abstraction of life cycle
functions such as a lifecycle manager (LM) is necessary. This manager’s role
is to present management functions as interfaces for application programming.
This way, enabling programmatic control via higher-order functions such as NFV
orchestrators is possible. Lifecycle APIs represent the base for automating the VNFs’
lifecycle management. Their wider application opens the way to a DevOps model
for designing, implementing, and managing services based on the NFV [113].

Today, the industry is flooded with numerous NFV orchestration solutions.
These solutions differ from each other to a greater or lesser extent, primarily because
of the lack of MANO standardization. In modern networks, there are usually two
open-source solutions for NFV orchestration: ONAP and OSM. Also, we can meet
other commercial solutions, some combining open-source and proprietary com-
ponents. At the same time, others are completely proprietary software (Huawei
Cloud Opera, HPE Network and service director, Cisco NSO, Amdocs NCSO,
and Netcracker AVP) [1, 114]. Many non-standard solutions have positive and
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negative implications for the industry, two of which are particularly important:

• Vendors face loose ETSI specifications for the VNFM northbound interface
and interpret them differently, and the path to standardization is very long.

• Many vendors offer complete solutions that include VNF, VIM (e.g.,
VMware or OpenStack), VNFM, NFVO, and a service orchestrator. These
comprehensive solutions are pre-integrated and ready for turnkey implemen-
tation. Such solutions need clearer functional demarcations between modules
such as VNFM and EM. In practice, problems often occur when components
from different manufacturers need to be connected (e.g., duplication of some
functionalities and inability to integrate).

Figure 5.10. Dedicated VNFM approach (a) and generic VNFM approach (b).

Starting from ETSI recommendations and in the context of life cycle manage-
ment of VNFs, there are two system approaches [1]:

• The vendor delivers VNFM and solutions for VNFs together (Fig. 5.10.a).
• A generic VNFM or a set of generic VNFMs with the ability to manage a set

of VNFs can be created (Fig. 5.10.b).

Each of the mentioned approaches has its advantages and shortcomings. In
both cases, the VNFM is connected to the NFVO via the northbound interface
and to the VIM via the northbound interface. Providers that opt for a dedicated
VNFM face the challenge of multiple integrations. Each VNFM must integrate
with NFVO and VIM, where individual VNFMs may even have different levels of
lifecycle management capabilities. The NFVO must compensate for these differ-
ences, and in some cases, it can be a problem. The reason is the complex nature
of NFVOs, whose primary responsibility is to manage end-to-end chains of vir-
tual network services rather than managing individual VNFs. In contrast to this
approach, a solution based on a generic VNFM is simpler from the architecture
perspective. The problem of provider dependency on the vendor can arise here.
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5.2.2 Deployment of DevOps in NFV-based Networks

The NFV concept brings significant changes in networking supported in parallel by
two main software development trends: DevOps and open software development.
DevOps compatibility with open software creates the necessary prerequisites for
adapting NFV to any new change and quickly implementing NFV in the design
and implementation phases [115]. The role of DevOps is to separate modern soft-
ware development from the traditional model, where development and operational
processes operate in tandem. Instead, DevOps encourages open communication
and simultaneous execution of all tasks.

This software development approach represents a challenge. To tackle it, VNF
software development teams must know the operating environment in which they
must implement their components. It is the only way providers can get systems
to deal with frequent VNF software changes. An important aspect of this solution
is that the requirements for managing VNFs are defined early during the design
phase. We must supplement these requirements with rules for starting management
routines automatically.

The mechanism for lifecycle management automation is driven by two key enti-
ties: the VNFD and the automation components. A VNFD is a text file contain-
ing instructions for deploying and operating a particular VNF and the policies
and instructions needed to automate its life cycle. For example, a VNFD describes
infrastructure resources, options for configuring certain VNF instances, instruc-
tions for autoscaling with parameters to monitor, rules to trigger the scaling func-
tion, and which software components to scale. Examples of VNFD modeling lan-
guages are OpenStack/Heat Orchestration Template (HOT), Ubuntu Juju, and
OASIS TOSCA. Besides VNFD, life cycle management automation requires addi-
tional automation components. Their task is to construct automation routines and
enable orderly execution, handling exceptions and outages. We introduce VNFD
into automation components to automate the life cycle functions. These automa-
tion components are responsible for the execution or orchestration of necessary
workflows. Guidelines for executing scripts and automation workflows are also
encoded in the VNFD. In practice, there are various tools for developing these
automation components. Figure 5.11 shows examples of tools, such as Ansible,
Puppet, Chef, OpenStack Mistral, SaltStack, and Yang [116, 117]. The variety of
integration tools and approaches, shown in Fig. 5.11, represents a challenge that
can introduce confusion but lead to market fragmentation. The lack of standard-
ization of modeling languages and tools affects vendors to develop solutions con-
sidering most or all options. The vendors model VNFs and define interfaces to
accelerate the automation of the industry’s VNF lifecycle and make DevOps truly
effective.
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Figure 5.11. Variety of tools to automate the VNF lifecycle [115].

5.3 VNF Performance – Throughput and Delays

From the network aspect, the key requirement related to VNFs is ensuring ade-
quate data throughput and enabling the desired data transfer speeds. With tradi-
tional hardware (Fig. 5.12), significant values of data flow can be achieved using
Application-Specific Integrated Circuits (ASICs) and fast processors. The goal is to
ensure that ASIC code handles most (and even all packets) instead of software. In
this way, it is possible to achieve a higher throughput. In exceptional cases, when
this is not possible, the software processes the packets at the cost of lower perfor-
mance.

The NFV focuses on software without deploying specialized hardware to pro-
cess packets. Data packets are inherently processed in software. The code that pro-
cesses the packets is part of VNF software that runs on a general-purpose CPU
unit on the server hardware. Introducing special software techniques into the VNFs
compensates for the lack of specialized hardware. They aim to use more advanced
packet processing algorithms to perform better than hardware-based processing
techniques. It is important to highlight the importance of delay and jitter on data
transmission performance, especially for services that require real-time transmis-
sion, such as voice and multimedia. Therefore, providing a virtual CPU unit for
each VNF is useful to avoid degradation of packet processing performance.
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We must emphasize that virtualization introduces additional overhead that can
slow down packet processing and affect data flow to a greater or lesser extent.
In the shared infrastructure, the virtualization layer acts as an intermediary inter-
face between physical and virtual hardware (Fig. 5.13). Communication between
VNFs is also important and usually occurs via the hypervisor. Then, virtual inter-
face drivers are used instead of drivers for communication with physical network
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interface cards (pNIC) [1, 118]. This communication affects the performance of
data processing speed. As an alternative solution, we can use paravirtualization,
which implies that the pNIC drivers are included in the VNF software, reducing
performance degradation and affecting the complete solution’s flexibility.

5.3.1 VNF Instantiation Time

The time required to run a physical machine, i.e., to load the operating system into
the host’s main memory or RAM, is higher than the time necessary to run a virtual
machine with the VNF or to reboot the system. Considering that VNF is running
in a virtual environment, the execution time of the mentioned actions depends on
factors such as virtualization technique and the characteristics of virtual machines
or virtual containers [119]. Different from these factors, which have a predictable
impact on VNFs, there are also factors whose influence could be more challenging
to predict, such as the physical machine CPU load, the available memory on the
hard disk, and the response time of the orchestrator. We must note that the time
required to run, reboot, or remove a running container is shorter than that required
to start or reboot virtual machines. Individual factors or combinations can seriously
affect the time required to instantiate or remove VNFs. The timely instantiation of
VNFs is crucial for NFV to achieve desired characteristics. It primarily refers to the
VNFs’ availability and deployment at a time when immediate creation or removal
of VNFs is required. In such circumstances, just a few extra seconds or milliseconds
can produce a serious problem in the network design.

5.3.2 Infrastructure Reliability

To create an effective network environment, the software vendors must demon-
strate a certain level of flexibility. The unreliability of the software components
can negatively affect the complete infrastructure. For this reason, vendors must be
ready to validate software in different environments. NFV prefers COTS hardware,
and infrastructure stability is crucial for network design, significantly influencing
software selection. In practice, more than reliable software and a robust hardware
platform, it is necessary to establish a stable multivendor hardware and software
infrastructure. We insist on integration testing and validation of implemented solu-
tions to achieve the required stability.

We can choose a solution that combines scalable hardware, a complete operating
system, and a hypervisor. The advantage of such a solution is the successful com-
patibility test and the suppliers’ support contracts. This way, it can enable the path
for a faster NFV implementation. Examples of such solutions that offer a fully inte-
grated NFVI system, including a server for virtualization, storage, and networking,
are FlexPOD (NetApp) and Vblock (VCE) [1].
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5.3.3 High Availability and Stability

High hardware and software availability in traditional networks is generally limited
to a single vendor responsible for most network errors. The NFV changes this con-
cept because it allows different vendors to deliver software and hardware. Vendors
develop solutions that implement other mechanisms to ensure high availability and
create NFV-based designs to provide a reliability level of “five 9” (99.999%). Their
task is to assess software resilience, i.e., the software’s ability to recover from unex-
pected events. Vendors must be able to change the architecture when needed to
achieve high availability and stability.

We use the term “carrier-class” hardware and services for hardware and soft-
ware components that are extremely reliable, well-tested, and with proven capabili-
ties [1, 28]. Such solutions offer high availability, fault tolerance, and low impact on
failures. It is necessary to implement redundancy in the network to achieve optimal
elasticity. For example, resolving a failure within 50 ms is required when traffic loss
occurs. Availability represents the percentage of the time when the system is active
and fully available. For example, 99.999% means that the system must experience
at most 5.256 minutes of unexpected downtime during the year.

NFV-based solutions can be multi-layered, and identifying problems can take
time because it is necessary to collect information from different systems, correlate
them, and locate errors (e.g., the hypervisor or the host operating system). The
NFV network’s stability requires examining many components, including the server
hardware, hypervisor, host operating system, and VNF software. Also, it is necessary
to consider challenges related to ensuring the system’s elasticity and moving the
VNF to another network location.

5.3.4 Security

A security benefit of applying NFVs is the possibility of improving network security
by creating security zones and implementing different protection methods. It pri-
marily refers to IDS implemented as VNFs. It usually implies the implementation
of firewalls that detect attacks or Distributed denial of service (DDoS) scrubbers.
Usually, we can deploy scrubbers near the source to protect the user’s Internet traf-
fic from DDoS attacks. The goal is that users stay online during attacks without
service loss. The traffic is the object of real-time analysis, where “traffic scrubbing”
filters remove malicious traffic and forward “clean” traffic. The protection concept
in NFV-based networks is complex. This complexity is due to network architecture
and the potential vulnerabilities, which can occur at different levels. For example,
it can be the vulnerability of hardware, hypervisors, containers, and VNFs [116]. A
weakness at any layer can lead to security threats at other layers. We must perform
security measures at every layer, and access must be granted only to authorized users.
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It is necessary to place virtual firewalls at multiple levels to provide protection
against intrusions and block the potential attacker’s access (Fig. 5.14). As in tra-
ditional networks, particular VNF instances can protect other network functions
(VNFs) from possible attacks. We must note that virtual machines on physical
hosts are also targets. The attackers can exploit open ports through the hypervisor
to gain unauthorized access. Therefore, before the hypervisor, the so-called intro-
spective virtual firewall is tasked with protecting the flow of packets to each virtual
machine. The physical infrastructure and host operating systems must be protected.
In this sense, the firewalls that work independently of introspective and VNF fire-
walls are implemented.

The host's hardware

The host's opera�ng system

Hypervisor

Guest 
opera�ng 

system

VNF 
Applica�on

Guest 
opera�ng 

system

VNF 
Applica�on

Guest 
opera�ng 

system

VNF 
Applica�on

...

VM1 VM2 VMn

The a�acker

Figure 5.14. Potential vulnerability points in NFV networks.

The previously mentioned protection methods in NFV-based networks repre-
sent best practices. They cannot solve every security issue in NFV networks. We
must implement other security measures, such as a standard interface in the ETSI
NFV architecture, allowing security VNFs to respond to potential attacks in real-
time. It is necessary to have a communication channel with orchestration modules
and to follow the appropriate instructions. Another issue concerns the secure man-
agement and VNFs monitoring and configuration during migration to another
virtual entity. Solving this issue is a challenge for the cloud environment, given
the dynamism and elasticity of VNF operations. In addition to all the above, trust
must exist between hardware and software vendors so that the final product works
reliably.

5.4 Migration From Traditional to NFV Infrastructure

The migration from traditional to NFV-based infrastructure represents a natural
path of evolution in computing. This path leads to significant changes, which
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cannot be viewed only from the perspective of technology. It is also necessary to
look at the novelties in the management procedures for operating processes and
the business model. We must begin with incremental migration and make appro-
priate changes to traditional network architecture. This approach certainly leads
to the parallel coexistence of conventional and NFV-based solutions. The overlap
is possible, and from a technical point of view, it represents a serious challenge. It
is necessary to enable the existing solutions to continue functioning normally and
to build a network environment without obstacles to NFV implementation. The
phased migration must be planned, created, managed, and operated according to
a comprehensive integration plan to avoid potential overlaps. The plan must con-
sist of precisely defined steps in replacing hardware with software-based network
functions, including a timeline and risk management, to achieve maximum benefit
from NFV implementation.

A special challenge is the management of a heterogeneous network infrastruc-
ture consisting of traditional and NFV-based environments because of their huge
differences. Users must know that transformation to a fully NFV-based network is
not instant. Management systems must continue to deal with obsolete equipment,
and the interoperability problem can become dominant. This issue indicates that
managing NFV parts of the network requires significant agility and great dynamics.
It is necessary to introduce a higher level of programmability into the network and
automate many system processes. Improving the existing or applying new manage-
ment tools is required to implement an NFV concept effectively. This way, we can
achieve the advantages of NFV-based networks, such as elasticity, dynamic resource
allocation, network reconfiguration, and service provisioning on demand.

Implementing the NFV concept in the network requires considering orchestra-
tion as another important concept strongly related to monitoring and managing
network infrastructure. [120] This concept represents a significant novelty in net-
working because we can consider the management of modern computer environ-
ments from different aspects. Orchestration is possible at different levels, such as
service orchestration, resource orchestration, technology orchestration, or customer
orchestration. In practice, we can explain the orchestration as a server’s ongoing
selection and resource allocation to satisfy client demands according to optimiza-
tion criteria. This concept is closely related to applying various artificial intelligence
algorithms (Fig. 5.15).

Virtualized networks can span many networks, software elements, and hardware
platforms, and NFV orchestration must be powerful and able to work at different
layers with many different standards. Figure 5.14 shows that orchestration software
must communicate with the data plane resources to instantiate a service, which
means it creates the virtual instance of a service on the network. This software makes
instructions for VNF interconnection in any desired order, and new VNFs can be



112 NFV-based Network Design

Access web portal OSS/BSS layer with 
applica�ons

Applica�on plane

Users, services and applica�on 
orchestrator

Resource orchestrator

Radio 
resources

Op�cal 
resources

L3 
resources

Mul�domain and 
mul�technology controller

Control 
plane

NFV layer with a virtual network model

Radio access -
network equipment

L2
network equipment

Hardware -
COTS resources

Data plane

Figure 5.15. Orchestration in NFV-based networks.

instantiated and added to the data or control traffic’s path quickly. The emergence
of more and more services requires that the orchestration software track the perfor-
mances and network resources (radio, optical, and L3 resources) to ensure service
delivery and must be able to perform multidomain and multi-technology control.
Finally, in the application plan, it is necessary to provide service, applications, and
user orchestration.

NFV networks grow, change, and evolve incredibly, representing challenges. For
this reason, we should provide a systematic approach to network design. It is a pre-
requisite to achieving all the advantages of efficient NFV implementation. Today’s
application management still needs adequate responses to all challenges, and most
tools should adapt to the vendors’ NFV solutions. The customization process is
complex and must include more than tools and software. It must consist of train-
ing employees in the network operations team. The mentioned complexity comes
from the fact that the proper functioning of the NFV system implies effective
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management and monitoring at multiple levels (i.e., various tools and employees
trained to work with hypervisor software, host operating systems, or VNFs). ETSI
framework defines several sub-blocks within the MANO system, such as virtualized
network functions manager, NFV orchestrator, and virtual infrastructure manager
(Fig. 5.16) [121]. Although the control systems in these sub-blocks function inde-
pendently, they must communicate effectively to manage the entire NFV network
infrastructure.

Figure 5.16. Monitoring and management in NFV networks.

5.5 Resource Constraints

Virtualization technology enables resource sharing and isolation between virtual
entities. In some cases, the isolation is not full, and failure on one virtual machine
can cause a resource loss, affecting all virtual machines created on that host. We call
this phenomenon the “noisy neighbor effect,” and it represents a specific deficiency
concerning the traditional architecture of computer systems [1]. This problem is
even more evident with containerization technology. Virtual containers share the
kernel of the same operating system, and their isolation is weaker than between
virtual machines. The problem must be solved by defining stronger boundaries,
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sharing resources more efficiently, and applying mechanisms to ensure high avail-
ability at the virtualization layer.

A particular challenge in NFV-based networks is fault detection and problem-
solving, which requires troubleshooting at multiple levels. Failure that occurs at one
architecture level can cause problems at other levels. For example, lower-level short-
comings, such as host CPU overload, noisy neighbor effect, or hypervisor crash, can
create higher-level problems and degrade the VNFs’ performance. Debugging only
on the VNF is insufficient, and it is necessary to identify the root cause of the prob-
lem. It is possible only if we examine the functioning of the hypervisor and the host
operating system.

VNF problems are software-based, and solving them is very complex, consider-
ing the dynamic character of VNFs and the fact that different vendors can develop
VNF software. NFV brings independence in implementing VNFs, which is a signif-
icant benefit. Implementing VNF software developed by other vendors and defin-
ing a common set of APIs and models for managing VNFs is possible. However,
besides information obtained using APIs, it may be necessary to provide additional
information to solve the problem. As a simple example, we can take the absence of
routing in the network. The basic level of problem-solving involves checking the
routing table and routing protocol implementation. It is evident that it is insuffi-
cient to identify the problem’s cause and that it is necessary to analyze the VNF
configurations. Independence from VNF vendors can represent a serious challenge
in troubleshooting since it is dynamic and developed by different vendors. It implies
the usage of operational tools that can interpret messages from other devices and
be aware of the device lifecycle state. Most operators rely on alarms, system logs,
and employees with the necessary troubleshooting skills. Standard monitoring tech-
niques, such as the Simple Network Monitoring Protocol (SNMP), can be used for
troubleshooting to a limited extent.

5.6 Virtualization of Network Infrastructure and Services

Network function virtualization has emerged as a solution, where we implement
network services as software-implemented network functions located in data cen-
ters, network nodes, or even on virtual machines. Theoretically, the NFV concept
can be applied to any network function to simplify the management of heteroge-
neous hardware platforms [15]. It is particularly important to note the advantages of
traffic routing as one of the basic network functions, where IPv4 and IPv6 can work
in parallel. NFV concept cannot benefit network devices whose primary function is
high-speed packet switching. It brings advantages primarily to network infrastruc-
ture for traffic routing, where it is necessary to ensure a rational usage of processing
power and memory.



Virtualization of Network Infrastructure and Services 115

5.6.1 Virtualization of Traffic Routing Infrastructure

Devices like top-of-the-rack (ToR) switches, routers that provide interconnection
between provider networks, or NFVI PoPs (Point of Presence) provide packet for-
warding and aggregation into the network infrastructure. These devices cannot be
candidates for NFV implementation in the initial phase [1]. Other devices, such
as BGP route reflectors, routers in operator or LAN networks, and voice and video
gateways, are required to ensure location flexibility [122]. Optimization of process-
ing power or dynamic change of available memory capacity is essential for them.
We can explain it using the example of a BGP network and the route reflector (RR)
as a key control plane functionality. BGP RR is suitable for NFV-based implemen-
tation, while CPU and memory usage have significant importance. The RR’s main
task is to support route management and avoid edge device overload. Virtualizing
RRs for each service makes it possible to respond to this task, simplifying imple-
mentation without compromising performance and providing high availability.

In networks covering large geographical areas, we implement route reflectors
on a regional basis, as close as possible to the edge routers. The increase in network
services imposes a new question: Can one route reflector be rationally and efficiently
used for all services, and can it save all routes? It cannot; therefore, one reflector per
network service is usually implemented as a solution. The provision of redundancies
is good practice, leading to an increase in the number of devices and the allocation
of significantly higher processing power and memory. Resources such as memory
or CPU performance become a bottleneck in traditional networks, and the only
choice is to replace the network device [123].

The BGP route reflector represents an excellent example of NFV implementa-
tion, which can overcome the problems mentioned. With the virtualization of each
BGP route reflector (for each network service) and the creation of the VNFs, we can
implement virtual route reflectors (vRRs) redundantly on one or different hosts. It
also implies the possibility of permanently shifting vRR to other locations closer to
the group of edge devices they serve. Figure 5.17 shows the application of vRR func-
tionality in the NFV-based network without compromising routing performances.
The complete independence and high availability of each vRR enable the required
level of flexibility and scalability in the network. This way, every time there is a
request for a new network service, it is optional (not necessary) to change hardware
or the entire platform and install new BGP vRRs. NFV concept will allow time-
saving and quick implementation of a new VNF without significantly impacting
performance.
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Figure 5.17. Transition to NFV networks with virtual BGP route reflectors.

Due to the requirements of many users, the provider edge (PE) equip-
ment is usually configured with different services and provides numerous func-
tions [31]. We install everything on one physical device, multiservice edge, to
reduce operational and capital costs. This way, we can eliminate the need for
multiple routers per service, but this approach has many limitations. For example,
adding a new function and service causes changes that can affect the equipment’s
performance. From the high-availability aspect, a PE equipment failure can simul-
taneously affect multiple users and their services, except for a dual-homed device
configuration.

NFV can eliminate potential problems by building network environments where
users and services do not share PE equipment. By implementing VNFs, we create
conditions to apply services in a virtual PE environment (vPE services). In this
way, we can perform independent VNF scaling and management and implement
it with other services offered for the same user. So, vPE services based on creat-
ing VNFs can be individually scaled, improved, tuned, managed, and upgraded.
For example, we can consider a vPE router usually located between the access and
operator’s core network. As shown in Fig. 5.18, this router handles traffic in both
directions and depending on the traffic direction, its functionality changes during
packet processing. Packets for the core network can be filtered, classified, and used
to measure quality parameters. In contrast, traffic for the access network is shaped
according to the subscription policy [1].
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Figure 5.18. Implementation of VNF at the edge of the operator’s network.

Unlike vRR, the VNF implemented in PE must take care of control traffic and
user packets. Choosing a vPE router is closely related to providing a suitable VNF.
Besides guaranteeing the quality of service, routing functions must consider other
functions that the operator must support in the multiservice edge. It is important
to emphasize that the problem with this device cannot affect all users and services.
The creation of VNFs aims to isolate the issues and resolve them faster by adding
a new VNF.

In enterprise networks, connections and all communications between branches
are mostly performed via the central office equipment (COE). Devices at branch
locations, as well as COE, are physical devices, and they provide connectivity func-
tions such as routing, NAT, and QoS provisioning. The network administrators are
responsible for any change, such as adding new functionality. In the past, replace-
ment or device upgrades have long been the only solution. It made adding new
services expensive and slow, usually resulting in a loss of time and revenue. Virtu-
alization of equipment at user locations enables the improvement of routing func-
tionality. It allows management transfer to the operator’s side (Fig. 5.19), and the
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Figure 5.19. The enterprise network transition to the NVF concept.
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operator can add new functionality and delete or modify the existing one on user
demand. [124]. This way, a double advantage can be achieved: the user gets the
desired QoE, and the operator increases revenue.

5.6.2 Virtual Load Balancer

Virtual load balancers (vLB) in NFV-based networks flexibly distribute the work-
load on multiple network servers, requiring software installation on the virtualized
infrastructure. For example, we can use the existing software running on the phys-
ical machine and move it to the virtual machine (Fig. 5.20) [125].

App client 1 App client 2 App client 3 Aplikacioni klijent 
5

App client 4

App clients

Load Balancers
Load Balancers

Load Balancers

Virtual 
load balancers

VMVMVMPhysical server

A pool of applica�on servers

Virtual machines

Figure 5.20. Virtual load balancer [125].

vLB that enables load balancing by taking the software of a physical device and
running it on a virtual machine is a short-term solution. The reasons are the archi-
tectural challenges of traditional hardware devices, such as limitations related to
scalability and automation and the need for central management. Centralized man-
agement includes separating the control and data planes in data centers. By taking
code from legacy hardware and running it on a virtual machine, we still gain a
monolithic load balancer for workload distribution with static capacity.

We can implement vLBs as VNFs, which means they can be added and config-
ured on demand [1], allowing virtualized servers to achieve full efficiency. VNFs will
enable applications on virtual machines to create a replica on any server within its
scope and redirect traffic. The vLBs do not have to be located near physical servers
(Networks, 2023) to manage packet traffic and distribute user requests (Fig. 5.21).
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Figure 5.21. Virtual load balancer based on VNF implementation [126].

5.6.3 Network Security Virtualization

Different mechanisms can be implemented in the networks to guarantee network
security. Many of them, firewalls, IDS, various methods of protection against DDoS
attacks, data scrubbing functions (procedures to modify or remove incomplete,
incorrect, incorrectly formatted, or repeated data), and DPI, can have added value
if they are virtualized [1, 127]. We can implement VNF applications that provide
these mechanisms in different and strategically important locations.

Network infrastructure protection, especially against DDoS, is important to
network security and service availability. Sending a huge number of packets
(volumetric attacks) or using protocol vulnerabilities (application attacks) can cause
enormous damage. These attacks must be detected early, and suspicious traffic must
be redirected to locations for filtration. Depending on the type of DDoS attack, the
detection and cleaning of malicious packets should occur as close to the network
boundary as possible or to the protected network device. Placing network devices to
detect and clean malicious packets in many locations generates costs and forces net-
work designers to be selective about their placement. Therefore, virtualizing these
functions eliminates limitations and enables positioning DDoS attack protection
mechanisms in VNFs implemented on peering network points, transit points, and
network devices (including firewalls, routers, and servers). These VNFs can be eas-
ily moved and added to other locations along the traffic path as needed without
disrupting the existing NFV network design.
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We can provide security in traditional networks by implementing a firewall at
the network’s edge to prevent malicious access [1]. This concept can be a bottleneck
in some cases. The firewall’s capacity, capability, and positioning are very important
when applying the NFV because the virtual firewall can be placed closer to the hosts
and not just at the network’s edge. In addition to the possibility of increasing and
decreasing the capacity of virtual firewalls depending on the traffic, it is also possible
to choose the provider that offers this VNF.

IDS and IPS are required to inspect the traffic path. They can block unwanted
content or detect suspicious actions that do not comply with the guidelines. The
NFV concept is a natural solution for these applications and can help in different
ways. It enables a simple solution through elasticity and easy upgrade to new
network requirements and thus offers better network infrastructure security (the
examples of products are Cisco Next-generation IPS - NGIPSv and IBM Security
Network IPS) [128].

5.7 Conclusion

Traditional networks use proprietary networking equipment that is expensive and
difficult to scale. It makes these networks costly and unmanageable to deploy new
technologies, manage large numbers of endpoints, or migrate to new applications.
NFV-based networks aim to change that by implementing network functions inde-
pendent of hardware and equipment vendors. With VNF implementation, network
services become software running on commodity hardware, which we can move
from one network location to another. This way creates a generic infrastructure
characterized by the scalability and elasticity of VNFs. The basic requirement for
such a shared environment is great flexibility in resource allocation for individ-
ual software applications because it is impossible to predict all hardware resource
requirements that can arise during exploitation.

In NFV-based networks, we can add, remove, and transfer VNFs in software.
Such flexibility is possible to achieve using open APIs, which provide third-party
software with a documented and publicly available way to access and download data
from the application or to pass the application parameters necessary for configura-
tion. Implementing open APIs enables various orchestration and management tools
to control the deployment and lifecycle of VNFs. In the next section, we highlight
the similarity between NFV and SDN because both technologies abstract networks
through virtualization. There are certain differences related to function separation
and resource abstraction, which will be explained.
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Chapter 6

NFV and Software-defined Networking

Most computer networks still have the traditional, three-layer, hierarchically orga-
nized architecture. Their extremely heterogeneous infrastructure consists of multi-
vendor devices, and networking is often challenging. Deficiency of interoperability
in most cases burdens their work. The reason is many proprietary protocols and
their slow standardization process. It indicates the complexity of the network man-
agement process. We must note that in a traditional network, the management
process takes place within the same physical device as the packet forwarding. It
can cause potential issues such as resource contention (both packet forwarding
and management tasks compete for resources like CPU, memory, and network
interfaces), complexity in maintenance, security risks, scalability challenges, and
isolation of control (separating management from packet forwarding). Numerous
functionalities defined in hardware make responding to increasingly multiple and
complex user requests more difficult. The lack of flexibility in traditional networks
affects the high cost of implementing new services because it is necessary to allo-
cate additional resources, and maintaining the computer infrastructure becomes
more complex. Modern societal trends, such as demographic trends, globaliza-
tion, and lifestyle changes, stimulated by the rapid development of information
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and communication technologies (ICT), represent the basic triggers for numerous
network design changes. These changes are visible in the emergence of new traffic
types, such as M2M (Machine-to-Machine) communication, requirements to build
smart environments based on IoT (Internet of Things) technology, and significant
traffic volume increases in the network.

It is necessary to introduce a significantly higher level of programmability in
network infrastructure to build a more flexible and scalable computing environ-
ment. To accomplish these requirements, we introduce SDN functionality in net-
works [129, 130], which should enable:

• reduction of network complexity and simpler administration by implement-
ing hardware with a unique software interface,

• providing optimal job scheduling between hardware and software and
decrease network latency,

• increasing infrastructure reliability and elasticity by enabling dynamic
resource allocation as a prerequisite for faster and easier service implemen-
tation,

• complete user mobility.

6.1 Software-defined Networking

The traditional computer network architecture characterizes a high degree of non-
openness and complex integration of various computer systems. A specific chal-
lenge, slower packet forwarding, occurs using specialized hardware with proprietary
routing protocols that analyze packets at each network node (Fig. 6.1).

The basic idea of the SDN is to open up computer systems. To achieve this,
SDN separates the control from the data plane and centralizes the management
process. This way, it isolates the forwarding process from the network management
and consolidates control within a software-based controller (Fig. 6.2). By central-
izing the control plane in software, the actual network devices can be less complex,
essentially becoming forwarding devices that follow instructions from the central-
ized controller.

The centralization of network intelligence in one place, in the SDN con-
troller [130], is a fundamental part of this networking concept. The aim is to build
and maintain a global network picture, significantly simplifying decision-making.
So, the SDN controller makes decisions based on the view of the complete network
infrastructure and not on its particular elements. From the application’s point of
view, the network acts as one big logical switch (Fig. 6.3).
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The implementation of SDN-based solutions introduces two important features
in computer networks:

• Higher programmability – software-based network management and open
APIs enable automatic configuration and network resource optimization,
regardless of the device vendor.

• Implementation of device-independent network applications – implies the
ability to move them from one network location to another.

6.1.1 Architecture of SDN Network

SDN-based computer networks have a three-layer architecture (Fig. 6.4) composed
of [131]:

• Application layer – contains user applications and applications for service
orchestration,

• Control layer – provides centralized control and monitoring of traffic for-
warding using OpenFlow or another protocol for communication with the
infrastructure layer and

• Infrastructure layer – consists of virtual and physical elements that forward
traffic according to instructions that the SDN controller sends via an open
communication protocol.

The SDN controller is responsible for centralized management, aiming to pro-
vide optimal network performances programmatically. The additional benefit of
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SDN technology is the possibility to perform some form of software automation.
Software automation based on artificial intelligence (AI) allows the implementation
of different solutions, including those that occur due to some kind of orchestration
in the network (e.g., orchestration of users, services, resources, and technologies).
The software control of the network represents the most significant advantage
obtained by SDN technology, considering the requirements for modern networks
(Fig. 6.5). It is especially related to requirements such as greater agility and scalabil-
ity, faster implementation of new services, and optimization of operating costs [1].
Maximizing the use of automated tools and applications has made it possible to ful-
fill the demands of users and their applications. Traditional networks, with many
specific devices and operating systems, offer limited support for deploying external
devices that could make automated decisions based on network logic.

Traditional networks are a serious obstacle to developing and deploying resource-
demanding applications and scripts that automate configuration and management
processes. The main prerequisite for removing obstacles is to open a very hetero-
geneous network infrastructure composed of different vendors’ equipment. SDN
is a technology that offers solutions based on open standards, and its goal is to
eliminate dependence on vendors’ equipment. This way, it is possible to break all
kinds of monopolies established by using proprietary protocols and the inability
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to program devices easily [132]. The key task of SDN is to dislocate the control
function from the network devices, which implicitly solves the interoperability issue
caused by vendors’ dependency on the control plane. Successful communication
between different layers of SDN architecture is possible only using two groups of
standards:

• Northbound API – standards for communication between the application
and control layer,

• Southbound API – standards for communication between the control and
infrastructure layer.

6.2 SDN Deployment Models

Several SDN deployment models exist in computer networks. Some users com-
pletely replace the traditional (physical) with a virtual infrastructure. However, the
high replacement cost significantly influences most users to opt for other methods.
It primarily refers to large computer networks, where users, in addition to imple-
mentation costs, generally think about the speed of the implementation as a key
criterion for achieving SDN technology goals. To accomplish the SDN benefits,
overcome the complexity and limitations of existing infrastructure, and satisfy spe-
cific operational needs, providers usually decide to implement a hybrid network
infrastructure or overlay networks where traditional networks overlap with SDN
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functionalities. Implementing SDN functionality via API is also used, but less fre-
quently [133].

6.2.1 Open SDN

The open SDN model represents the classical approach based on control plane
separation from the data (packet forwarding) plane. However, in practice, most
traditional network devices do not have this possibility, so users decide to replace
conventional devices with SDN devices and replace the local control plane with the
appropriate SDN control layer [134]. The task of this layer is to establish com-
munication with the data plane via the SDN protocol and to manage its processes
directly (Fig. 6.6).

Figure 6.6. Open SDN architecture.

SDN and NFV are technologies backed by the community, which propagates
open-source solutions and the deployment of open standards [135]. A better under-
standing of open-source solutions is closely related to the Open SDN model goals.
These goals are the programmability of the control plane and the abstraction of net-
work applications through the control plane separation from the packet forwarding
plane. Achieving these goals means communication independence from vendors
and establishing interoperability between physical and virtual devices. This way,
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we can enable constant visibility of network flows and create a unique and pro-
grammable framework for device management, ultimately leading to management
automation.

It is important to note that Open SDN implementation implies the deployment
of everything that determines openness, such as [136]:

• Open standards – generally available specifications for software and hardware
that are jointly developed and maintained through an open community (e.g.,
OpenFlow standard),

• Open-source software – applications that are available to everyone so that
they can be modified and improved (e.g., OpenDaylight software for the
implementation of control layer functions),

• Open hardware – design specifications of a physical object that are licensed
so it can be created, modified, and distributed by anyone and

• Open API and software development tools – such as software development
kits for program development, often define the mutual communication of
software entities and even significantly facilitate software writing.

6.2.2 Hybrid SDN

Numerous challenges of a technical and financial nature accompany the full imple-
mentation of SDN functionality in computer networks. Despite the many advan-
tages of SDN technology, in practice, we usually meet hybrid SDN architectures.
Building such infrastructures requires a strategy defining the incremental imple-
mentation of SDN functionality because companies and other organizations need
to provide the necessary financial resources to implement SDN. A hybrid SDN
network represents an intermediate solution because it implies the integration of
legacy and SDN devices that work in parallel and take advantage of both traditional
and SDN networks (Fig. 6.7) [137].

Building a hybrid SDN network implies replacing some parts of the traditional
equipment and gradually expanding the virtual network infrastructure that sup-
ports SDN (e.g., OpenFlow) protocols. The base of a hybrid SDN network archi-
tecture is the 3C model, which implies [137]:

1. Heterogeneity of the infrastructure in the data plane, control plane, or both
planes,

2. Interaction between traditional and SDN devices to enable task distribution
and functionality sharing in the data plane, control plane, or both planes and

3. Combination of different network technologies to minimize the cost, sim-
plify the transition to the SDN environment, and implement the traffic pol-
icy, achieving optimal scalability and high-level robustness.
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Figure 6.7. Hybrid SDN network [137].

In practice, we can meet four models of a hybrid SDN network (Fig. 6.8) [138]:

1. Topology-based hybrid SDN model – implies network partitioning into
zones with several devices, and each device can be a member of only one
zone (traditional or SDN zone),

2. Service-based hybrid SDN model – traditional and SDN devices provide
different services. The provision of end-to-end services can require that two
network paradigms simultaneously control a certain set of devices, while at
the same time, only one network paradigm controls other devices (e.g., SDN
controller),

3. Class-based hybrid SDN model – implies network partitioning into classes,
which can control traditional or SDN paradigms (all network devices usually
have both traditional and SDN functions),

4. Integrated hybrid SDN model – SDN is responsible for all network ser-
vices and uses traditional network protocols as an interface to the Forwarding
Information Base, which conventional devices use to forward packets.

A topology-based hybrid SDN model combines the SDN advantages, such
as SDN’s programmability and centralized control, with the insights gained
from the physical network topology. This integration enables optimizing resource
utilization, improving traffic engineering, and facilitating granular control over
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Figure 6.8. The implementation models of hybrid SDN [138, 139].

network elements. Leveraging topology-based insights within SDN allows for
greater customization and programmability and brings the possibility to adapt net-
work behaviors according to specific needs or applications based on the knowl-
edge of the network’s topology. Besides the mentioned advantages, this hybrid SDN
model also has certain drawbacks. The complexity in integration can cause man-
agement issues and increase implementation and maintenance costs, create poten-
tial security risks due to system integration, dependency on vendor support and
standards, operational hurdles in coordinating control and data planes, and limit
scalability.

A service-based hybrid SDN model integrates service-oriented architecture with
a centralized control plane, which orchestrates network services. By structuring the
network into services and enabling dynamic orchestration, it facilitates the seam-
less delivery of diverse applications, optimizes resource allocation, and allows for
incremental SDN adoption, ensuring a balance between stability and the advan-
tages of programmability and centralized management. This model has some draw-
backs that refer to integration complexities, including limited agility and scalability,
management complexity, potential performance bottlenecks, interoperability chal-
lenges, and migration complexities.

A class-based hybrid SDN model optimizes network management by catego-
rizing devices and traffic into classes managed via different SDN policies. SDN
controller uses different protocols, with the aim of integrating traditional network
devices and SDN components. Further, it implements policies for security and per-
formance based on class distinctions, facilitates dynamic resource allocation and
QoS mechanisms, and supports multi-tenancy. So, this model adopts network man-
agement to specific needs, balancing flexibility and efficiency across diverse net-
work elements and traffic types. The main drawbacks of a class-based hybrid SDN
model refer to the complexity of managing multiple classes with different protocols
and potential interoperability issues among network devices. If the network rapidly
expands, potential security challenges caused by varying access controls can occur.
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The integrated hybrid SDN model uses an SDN controller to manage both
SDN-enabled devices and legacy network devices. This approach introduces pro-
grammability and automation into existing infrastructure, with the aim of creating
an adaptable, scalable, and flexible network architecture capable of dynamic modi-
fication and efficient management across the network infrastructure. The complex-
ity of integration can lead to management challenges and operational difficulties.
It mainly refers to the usage of different protocols and standards across network
infrastructure, which can cause interoperability issues. The integration, where we
use different networking technologies, can cause potential security vulnerabilities,
significant financial investment, and ongoing resource allocation.

Building a hybrid SDN infrastructure is accompanied by certain limitations,
such as the complexity of managing a heterogeneous control plane and problems
translating traditional protocols to SDN protocols and vice versa. As a result of
these limitations, we have that the reconfiguration process causes inconsistency in
packet forwarding, which can lead to loops in packet forwarding and performance
degradation in terms of delay and packet processing time [139]. Sometimes, the
problem occurs if two or more controllers exist in a hybrid SDN infrastructure.
In this case, there can be significant delays, issues with traffic engineering, and dif-
ficulty achieving the required level of scalability and even security. Implementing
adequate traffic engineering in hybrid SDN is a challenge, especially considering
some devices cannot support flow abstraction [140].

In practice, there are different approaches to building hybrid SDN infrastruc-
ture, one of which is the Panopticon approach [141]. This approach implies net-
working of traditional and SDN devices and traffic routing through an SDN switch
controlled by an SDN controller. Another approach is building a hybrid SDN
infrastructure by adding SDN devices instead of replacing traditional ones [142].
This way, we have networking between SDN and legacy devices; both control
planes handle the traffic. The third approach introduces SDN functionality by
installing the SDN shim hardware into legacy devices [143] to enable commu-
nication between an SDN controller and a modified legacy device.

6.2.3 SDN via API

As part of SDN implementation via API, some vendors have offered a solution
that calls functions on remote devices (such as switches) using conventional meth-
ods such as SNMP protocol or CLI or through newer techniques such as Rest API.
This way, providing control points on the device, the SDN controller can manip-
ulate remote devices using APIs. SDN via API does not require special switches
that support it; e.g., the OpenFlow standard already works well with traditional
switches [144]. A big advantage of this SDN implementation method is the ability
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to build orchestration software easily. SDN via API provides increased openness and
thus eliminates the need for ownership, enabling various devices to communicate
and be controlled through standardized interfaces (Fig. 6.9).

Figure 6.9. SDN implementation model via API [141].

This implementation method represents a step forward in openness and provides
opportunities for more comprehensive collaboration instead of using a proprietary
CLI. In practice, it need not be open because there is a possibility that APIs orig-
inating from different vendors are not compatible, and the proprietary aspect still
needs to be eliminated [1]. Applications using an API-based SDN approach must
have information about the vendor equipment they should communicate with to
use the correct API. The argument in favor of those who propose this method of
implementation is the achievement of SDN goals by allowing:

• That applications continue to influence forwarding decisions, and
• API openness, meaning that anyone can create applications and use APIs.

This way, it is possible to make the network programmable but not necessarily
flexible due to the proprietary nature of the southbound API.

6.2.4 SDN Overlay Network

Today, there is another SDN implementation model, which also implies separating
the control from the data plane. The idea is to create a new, independent network
implemented on top of the existing network and overlapped with it (overlay net-
work). It does not mean the traditional network infrastructure under the network



SDN Deployment Models 133

Figure 6.10. SDN implementation via overlay network [145].

created this way remains without a control plane. On the contrary, the devices still
have a local control plane where processes traditionally occur. This implementation
model runs a virtual network on top of existing hardware infrastructure, creating
dynamic tunnels to various local and remote computing environments. A virtual
network allocates bandwidth across different channels and assigns devices to each
channel, leaving the physical network unchanged. Thus, the virtual network and
the underlying infrastructure are connected, and packets are exchanged between
them (Fig. 6.10) [145].

Figure 6.10 shows the SDN implementation via an overlay network, which
involves the creation of a virtualized networking layer atop the physical infras-
tructure. The SDN controller has a key role, and it enables the abstraction of the
underlying hardware and dynamic control over network functions. It creates poli-
cies and configurations, which implies that the overlay network defines how data
flows, ensuring efficient routing, QoS, and security measures. The controller com-
municates with network devices using southbound APIs to send high-level instruc-
tions for the physical infrastructure. From the users’ perspective, they communicate
with the overlay network and use the SDN controller to manage it without requir-
ing support for the underlying physical devices. This SDN implementation meets
the basic criteria but has one limitation. The devices under the virtual network
must support the protocol used to communicate with that network. Examples of
this implementation are VXLAN and network virtualization using generic routing
encapsulation (NVGRE) supported by Microsoft [1].
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6.3 SDN Interfaces

According to July 2023 [146] statistics, about 5.19 billion users worldwide are
connected through different autonomous systems (AS). Managing network infras-
tructure is complex, considering each network architecture’s specificity and the
presence of other applications. Using traditional network devices based on ASICs,
which require installing a specific operating system, quick reaction and quality
response to user requests is a huge challenge. Network management and config-
uration of network devices become very complex, difficult to perform in some
situations, and unable to achieve optimal resource usage. By decoupling the con-
trol plane from the data plane, SDN introduces a centralized and software-based
logic, which should simplify the management process in modern computer envi-
ronments and enable the optimal use of resources and their dynamic allocation
according to the service requests.

To properly understand communications in the SDN network, it is necessary
to create a picture of the three-layered SDN architecture consisting of the data,
control, and management plane (Fig. 6.11). The data plane contains physical and
virtual infrastructure, which creates the datapath. The SDN controller is the con-
trol plane treated as a network operating system (NOS). Its task is to enable the
implementation of rules and policies for packet forwarding created on the man-
agement plane. Communication between any two planes is performed using four
groups of APIs [147]:

Figure 6.11. SDN interface placement.
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• Northbound API – enables high network programmability and transfers rules
and policies to the control plane.

• Southbound API – provides communication between the control and data
planes; through the control plane, it receives information about devices in
the data plane and forwards instructions to traffic forwarding according to
the appropriate rules.

• Eastbound API – enables communication between controllers within a dis-
tributed control plane.

• Westbound API – provides communication with traditional devices in the
data plane.

The NFV concept is complementary to SDN but does not depend on it. It
provides a new model of network resources management that enables changes in
the implementation of network functionalities, such as firewalls, load balancers,
and others. These functions can be implemented as virtual functions and do not
depend on hardware. They can be implemented on any device and in the control
plane (SDN controller). Such a solution we can apply on the cloud and ensure that
in the case of multitenancy access, one virtual controller can manage the resources
assigned to different tenants (Fig. 6.12).

Figure 6.12. An example abstraction of SDN and NFV interfaces.
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Figure 6.12 shows an example of NFV implementation in a real environment.
The VIM plays the main role in monitoring and managing the virtualized infras-
tructure. More importantly, it stores information about mapping virtual to physical
resources. Further, VNFM manages virtual network functions using an EMS. For
each virtual function, it is necessary to enable the full availability of the required
resources, such as processor, memory, or data storage, to satisfy service requests. In
this sense, the NFVO is a key entity responsible for resource scheduling. It per-
forms scheduling through communication with VNFM or directly with VIM. The
NFV concept can also be applied by virtualizing both interfaces (Northbound and
Southbound) and creating slices on the available network infrastructure.

6.4 SDN Protocols

We separate the network control from the packet forwarding function by imple-
menting SDN technology. The intermediary role, which should ensure reliable
communication between the control plane (SDN controller) and the data plane
(infrastructure devices), has the southbound interface. This interface provides the
continuity and security of communication, which implies forwarding the controller
instructions to devices and delivering information about them to the controller. The
southbound interface enables the discovery of network topology, the definition of
network flows, and the implementation of management requirements [148]. Oth-
erwise, the forwarding elements would not be able to function.

Communication between the control and data planes occurs through south-
bound protocols (Fig. 6.13). Some provide direct communication between these
two planes, such as OpenFlow protocol, Path Computation Element Communica-
tion Protocol (PCEP), and BGP Flow Spec protocol. These protocols are also called
SDN control plane protocols. In contrast, another group of protocols indirectly
affects the data plane. These protocols use the control plane and modify parame-
ters on these devices; we call them management plane protocols. It is necessary to
note that southbound protocols can be open or proprietary. They should provide
efficient network control and enable the SDN controller to change dynamically
according to real-time demands and needs [149].
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Figure 6.13. Southbound protocols.

6.4.1 OpenFlow Protocol

The OpenFlow protocol is SDN networks’ first standardized southbound API
interface [150]. Its task is to ensure reliable communication between SDN
controller and infrastructure devices by implementing the data flow rules. The rules
are statically or dynamically defined in the SDN controller software, enabling a high
degree of granularity at the application, user, and session levels.

The SDN controller communicates with network devices via the OpenFlow pro-
tocol by sending them various instructions. The OpenFlow logical switch usually
uses a secure channel to communicate with one controller. It guarantees commu-
nication reliability by connecting with other controllers through other channels.
Through these channels, SDN controllers send instructions to define rules and
modify records in flow tables.

The records and instructions in the flow table represent the fundament for traf-
fic forwarding. For this reason, it is important to provide secure communication
via Secure Socket Layer (SSL), which guarantees reliable delivery and processing of
messages. OpenFlow cannot automatically provide confirmations or ordered mes-
sage processing. An OpenFlow logical switch typically contains one or more flow
tables, group tables, a metering table, and one or more OpenFlow channels for
communicating with external SDN controllers (Fig. 6.14).
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OpenFlow

FlowFlow

OpenFlow

Figure 6.14. Components of an OpenFlow switch.

We must note that the instructions for traffic processing exist in the flow
table [150] and that, according to them, traffic forwarding takes place in several
steps (Fig. 6.15):

• The first packet arrives at the OpenFlow switch.
• The OpenFlow switch performs a flow table lookup and checks the record

matching the field values from the packet header.
• If the match exists, packet forwarding begins according to the action defined

in the flow table.
• If the match does not exist, the OpenFlow switch forwards the packet to the

SDN controller, which creates an instruction for the new entry in the flow
table.

Switches that support the OpenFlow protocol can be OpenFlow-only and
OpenFlow-hybrid [150]. OpenFlow-only switches support only the OpenFlow
protocol and process traffic according to the above-described method. Unlike them,
there are also OpenFlow-hybrid switches, which can process traffic using the Open-
Flow protocol or in a standard way using Ethernet traffic processing. In practice,
additional management and configuration provisioning protocols exist, such as
Open vSwitch Database Management Protocol (OVSDB) and OpenFlow Con-
figuration Protocol, which complements OpenFlow.
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Figure 6.15. OpenFlow packet forwarding.

6.4.2 Open vSwitch Database Management Protocol

Open vSwitch is a software switch created in the hypervisor to enable communica-
tion between virtual and physical resources [151]. It is an open-source project sup-
ported by various virtualization platforms, such as Xen, KVM (Kernel-based Vir-
tual Machine), and VirtualBox. It can use OVSDB as a protocol for programmable
access to network devices, whose traffic forwarding model is similar to the Open-
Flow model.

Figure 6.16 shows the architecture of Open vSwitch, which consists of two
important components:

• A fast path – located in the kernel and responsible for lookup and traffic
forwarding,

• A user’s slow path – provide traffic-forwarding logic and interfaces that enable
device configuration, such as OpenFlow or NetFlow.

Like the OpenFlow protocol, the OVSDB protocol forwards packets in several
steps (Fig. 6.17) [151]:

• The first packet from the data stream arrives at the ovs-vswitchd kernel mod-
ule.

• The ovs-vswitchd kernel module forwards the packet to the datapath module,
which stores the rules for forwarding subsequent packets.

• The datapath module executes the received instructions and forwards packets
to a specific port, where packets can be modified or discarded.
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Figure 6.16. OpenFlow switch architecture.

• Suppose the datapath module does not have forwarding instructions; the
packet returns the ovs-vswitchd kernel module, which decides how to pro-
cess the packet and sends those instructions together with the packet to the
datapath module.

Figure 6.17. OVSDB packet forwarding.

6.4.3 Network Configuration Protocol

Network automation is one of the key requirements of modern networks, includ-
ing on-demand service provisioning and automatic O&M (Operation and Main-
tenance). The traditional mechanisms, such as CLI and SNMP, cannot support all
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requirements for network automation. Their limitations refer to vendor dependen-
cies of CLIs, where any change in structure and syntax causes difficulty in maintain-
ing or parsing scripts automatically. At the same time, SNMP has low configuration
efficiency because it cannot support the transaction mechanism [152].

For this reason, academic and professional communities developed Network
Configuration Protocol (NETCONF). This protocol is used in the network man-
agement system (NMS) for network devices’ configurations via standard APIs. As
a tool for configuration, NETCONF uses Extensible Markup Language (XML),
while for communication between a client (application running on an NMS) and
server (network device) uses RPC (remote procedure call). Unlike SNMP, this pro-
tocol enables a transaction mechanism that provides many benefits, such as data
classification, phase-based submission, configuration isolation, verification, and
security mechanisms to ensure message transmission security. Another advantage
is that NETCONF defines various operation interfaces and enables the implemen-
tation of new protocol operations and specific management functions.

Figure 6.18. The network architecture of NETCONF.

The key components of NETCONF architecture are the client and server, which
communicate via SSH (Fig. 6.18). The client manages network devices by sending
RPC requests to the NETCONF server to change one or more parameter values and
learn from the server’s notification (information based on the alarms and events).
The server’s role is to parse the received client’s request and respond. Also, it is
responsible for sending notifications to clients in the case of a fault or another event
that occurs on a managed device.

NETCONF has a hierarchical, four-layered architecture (Fig. 6.19), where each
layer performs specific functions and provides services for the upper layer, with min-
imal impact on other layers. The secure transport layer establishes a communication
path between the client and server, using SSH as a transport protocol to transfer
XML information. The messages layer provides a transport-independent framing,
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Figure 6.19. NETCONF protocol stack.

which must ensure message exchange between client and server. The operations
layer defines a set of protocol operations invoked as RPC methods with XML-
encoded parameters. The content layer manages data using Schema (a set of rules
defined to describe XML files) and YANG (Yet Another Next Generation – a data
modeling language designed for NETCONF) data models.

6.4.4 RESTCONF Protocol

RESTCONF is an HTTP-based protocol that uses structured data (XML or JSON)
and YANG to provide Representational State Transfer (REST) APIs. It represents
a combination of NETCONF and HTTP because it can provide core NETCONF
functions using HTTP. In this sense, RESTCONFIG uses secure HTTP to pro-
vide operations on data storage (e.g., CREATE, READ, UPDATE, and DELETE)
containing YANG-defined data. This way, an alternative to NETCONF for access-
ing configuration and operational data using YANG models is possible. The REST
architecture uses a stateless mechanism for client-server communication between
two entities (Fig. 6.20) [153].

We must note that implementing RESTCONFIG brings certain benefits, such
as building RESTful programmatic interfaces that support web development.
Its standard interfaces are compatible with multi-vendor devices, which ensures
reduced costs. Besides the previously mentioned benefits, RESTCONF also pro-
vides high extensibility (it allows various vendors to define additional NETCONF
operations), and NMS is not required.
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Figure 6.20. The network architecture of RESTCONF.

6.4.5 OpenFlow Configuration and Management Protocol

OpenFlow configuration and management protocol (OF-CONFIG) is a plat-
form that supports a vendor-neutral programmatic interface to the OpenFlow
switch [154]. The idea for its development appeared at a forum of network opera-
tors, such as Google, AT&T, and BT, where operators indicated the need to create
a new model capable of remote configuration and monitoring network devices.
This way, OF-CONFIG, which defines OpenFlow switches as abstractions called
OpenFlow logical switches, enables their remote configuration. In practice, OF-
CONFIG enables configuring crucial parameters and provides the OpenFlow con-
troller to communicate with the OpenFlow logical switch via the OpenFlow pro-
tocol (Fig. 6.21).

Figure 6.21. An OpenFlow Configuration Point communicates with an operational con-

text that can support an OpenFlow Switch using the OF-CONFIG.
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OF-CONFIG can introduce an operating context for many OpenFlow datap-
aths and create a switch equivalent to a physical or virtual switch with many dat-
apaths hosted. We can build such an architecture by partitioning, i.e., resource
assignments (e.g., ports and queues) to the hosted OpenFlow datapaths. By using
OF-CONFIG, it is possible to provide the dynamic resource association with spe-
cific OpenFlow logical switches hosted on the OpenFlow capable switch. We must
note that OF-CONFIG does not provide any report about resource partitioning.
The resources can be partitioned amongst multiple OpenFlow logical switches so
that each has full control of the assigned resources (Fig. 6.22).

Figure 6.22. Relationship between the OF-CONFIG and the OpenFlow protocol.

6.4.6 Southbound Protocols – Summary

Each of the previously mentioned southbound protocols is used for different pur-
poses and operates within other network management systems from the perspec-
tive of configuration, monitoring, management, and programmability of network
devices. Their selection often depends on the specific requirements and capabilities
desired within a network infrastructure. In Table 6.1, we give a summarized review
of the purpose, use, and features of each southbound protocol.
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Table 6.1. A summarized review of the SDN southbound protocols.

Protocol Purpose Use Features

OpenFlow
protocol

It enables a centralized
controller to manage
the network devices
(e.g., switches and
routers).

It enables the control
plane separation
from the data plane,
allowing for
centralized
management and
programmability.

Defines a standardized
way for the controller
to communicate with
network devices,
specifying packet
handling at the data
plane.

Open vSwitch
Database
Management
Protocol.

The protocol is used
to manage and
configure Open
vSwitch instances.

It provides a
management
interface for Open
vSwitches, allowing
control of their
configuration and
monitoring their
state.

It provides a
schema-based
management interface
for Open vSwitch
instances.

Network
Configuration
Protocol
(NETCONF)

The protocol is used
for configuration,
monitoring, and
device initialization.

It provides
mechanisms for
remote installation,
manipulation, and
deletion of the
network devices’
configuration.

XML-based protocol
that uses a secure
connection for
communication
between the client and
the server.

RESTCONF
protocol

HTTP-based protocol
that provides a
programmatic
interface for accessing
YANG-based data
models.

It allows for the
recovery,
manipulation, and
configuration of
network devices
using RESTful web
services.

Utilizes HTTP
methods like GET,
POST, PUT, and
DELETE to perform
CRUD (Create, Read,
Update, Delete)
operations on
resources exposed by
YANG models.

OpenFlow
Configuration
and
Management
Protocol

It is used for
configuration and
management of
OpenFlow devices.

It defines
mechanisms for the
controller to
configure and
manage OpenFlow
devices.

Provides a
standardized way to
control OpenFlow
configuration on
network devices.

6.4.7 Northbound Protocols

Northbound APIs are usually SDN RESTful APIs whose task is to ensure that
the SDN controller communicates with services and applications running at the
application layer. In some cases, these APIs are necessary for efficient orchestration
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and automation of the network according to requirements from different appli-
cations. The applications use them to send a request for resources, such as data,
storage, or bandwidth, to the SDN controller. The SDN controller responds by
resource delivering or sending messages with appropriate content.

The fact is that northbound APIs support a huge number of applications and rep-
resent the most shapeable components in an SDN environment. Via northbound
APIs, optimizing load balancers, firewalls, and security applications or implement-
ing applications for any level of orchestration is possible. Generally, many interfaces
exist in SDN architecture that can control different applications via an SDN con-
troller. These communications are not different from others between software enti-
ties. The protocols commonly used for SDN communication with applications via
northbound interface are RESTful APIs or libraries in programming languages like
Python, Ruby, Go, Java, or C++. In a real environment, we can meet northbound
APIs that integrate the SDN controller with automation stacks, such as Puppet,
Chef, SaltStack, Ansible, and CFEngine, as well as orchestration platforms, such as
OpenStack, VMware’s vCloudDirector or Apache’s open source CloudStack. Their
goal is to abstract network processes so that software developers can make changes
to adapt to the application requirements (Fig. 6.23).

Figure 6.23. The northbound interface.
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6.5 SDN Controllers

The idea of separating the control plane from the data plane has gone a develop-
ment path from 1995 to 2015 through several development phases, such as Active
Networking, Network Control Point, ForCES, and Ethane [155]. Active Network-
ing begins the development path that proposes building dynamic networks with
devices that perform packet computation and modification. The developers intro-
duced two approaches:

• Programmable switch – maintains the existing packet format and provides a
mechanism that supports the programs’ download and

• Capsule approach – active small programs replace the passive packets encap-
sulated in transmission frames and run at each node along their path.

Network Control Point is the next development phase, with a clearer picture
of the separation, but it is primarily related to telephone networks. In 2003, the
ForCES concept [156, 157] proposed a solution for decoupling the control from
the data plane at individual devices and logic’s centralization. The proposed solu-
tion represents a partial centralization because each control element interacts with
the corresponding data plane element. The Ethane architecture [158] connected
simple flow-based Ethernet switches with a centralized controller that managed
flows. Communication between users was only possible with the controller’s per-
mission because it had a global network policy. When the first packet arrived at the
controller, it performed route computation for this flow and made instructions that
enabled the path establishment along the selected route.

In today’s SDN implementations, the controller represents a key component
because it manages flows to the infrastructure devices (physical or virtual) and appli-
cations at the upper layer. Its brain is a centralized Network Operating System. It
provides functionalities like a basic operating system, such as program running,
management of I/O operation, security, topology-related functions, shortest path
forwarding, and others. Figure 6.24 shows the two types of SDN controllers, cen-
tralized and distributed, and the existing controller’s platforms that we can meet in
SDN networks. Centralized controllers represent control plane (logic) implemen-
tation at a single location. The benefit is simplicity of management as they provide a
single control point. However, scalability issues are shortcomings because they have
limited capacity for data plane devices. Unlike centralized controllers, distributed
controllers are more scalable. They provide a better performance, especially if the
number of requests to them increases [159].
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Figure 6.24. Controller’s classification.

6.5.1 Beacon

Beacon is a Java-based OpenFlow controller with a multi-threaded architecture,
as shown in Fig. 6.25. We can configure a m number of running threads, but the
controller can generate m + 1 threads. The additional thread listens to the incom-
ing switch connections, partitioning them among the worker threads. Each worker
thread is responsible for a fixed number of switches whose requests it will pro-
cess using static packet batching. The key task of Beacon is to process packets and
prepare them for sending using default mode, which implies only one write per
I/O select loop. This way, reducing the overhead of socket system calls for each
OpenFlow message is possible. Also, we can enable an immediate mode on Beacon,
whose task is to write a socket for every outgoing OpenFlow message waiting to be
written to the switch to reduce the per-packet latency [160].



SDN Controllers 149

Figure 6.25. Beacon SDN Controller.

6.5.2 Maestro

Today, the OpenFlow protocol represents a systematic choice for SDN southbound
interfaces, primarily due to the management flexibility and the direct control pos-
sibility of packet flows in various network scenarios. However, the control plane
centralization and the OpenFlow controller’s performances can be bottlenecks in
large networks. In response to potential problems, the Maestro uses parallelism
in operation to achieve near-linear performance scalability on multi-core proces-
sors [161]. Moreover, it is possible to change some control plane functionalities
by implementing simple single-threaded programs. Maestro can implement many
designs and techniques to respond to the specific OpenFlow requirements, uses par-
allelism, and achieves a huge performance improvement in operation, significantly
impacting many deployed OpenFlow networks (Fig. 6.26).

Figure 6.26. Maestro SDN Controller – overall structure.
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Figure 6.26 shows the overall structure of Maestro, which sends and receives
messages to and from OpenFlow switches via TCP. The Input Stage and Out-
put Stage components manage functionalities such as reading from and writing
to socket buffers and translating raw OpenFlow messages to and from high-level
data structures. The other functionalities, such as discovery, intradomain routing,
authentication, and route flow, can be implemented flexibly as applications and
modify their behavior according to defined goals.

6.5.3 Rosemary

The key challenge in designing an SDN controller is defining the optimal con-
cept regarding the requirements for a robust, secure, high-performance solution.
The Rosemary controller (Fig. 6.27) implies performing a NOS redesign, includ-
ing the following criteria:

• the context separation,
• resource utilization monitoring, and
• Micro-NOS permissions structure building to limit the library functionality

that enables access for network applications.

Figure 6.27. Rosemary SDN Controller concept.
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Figure 6.27 shows the overall structure of Rosemary, which consists of four com-
ponents [162]:

1. Data abstraction layer (DAL) – encapsulates underlying hardware devices
and forwards their requests to the Rosemary kernel,

2. Rosemary kernel – provides basic network services, such as resource control,
security management, and system logging,

3. System libraries – each application chooses the libraries for operations and
4. Resource monitoring – resource utilization tracking for running applications

and removing if they do not function properly.

The design principles of Rosemary are as follows:

• Network applications decoupling from the NOS,
• Resource monitoring and control for each network application,
• Resource sharing of NOS modules,
• Capabilities to access NOS resources, and
• Requirements balance regarding robustness, security, and higher

performance.

6.5.4 NOX-MT

Controller performance is the main topic of SDN development. The research and
professional community tried to discover how fast the controller can process input
requests and how many requests it can handle efficiently. The OpenFlow controller
NOX provides a high-level programmatic interface for managing and developing
network control applications (Fig. 6.28). In the beginning, it worked as a single-
threaded open-source control platform to examine the performance characteristics
of SDN architecture. In a later phase (NOX-MT), it upgraded to a multithreaded
version using I/O batching for optimization [159].

Figure 6.28. An NOX-based OpenFlow network.



152 NFV and Software-defined Networking

Figure 6.28 shows the NOX architecture, which, besides OpenFlow APIs ded-
icated to communication with OpenFlow switches, also provides network packet
processing, threading, event engine, and support for I/O operations. It is impor-
tant to note that NOX, during the packet forwarding, maps the MAC-switch tuple
and port number for each switch and stores maps in the data table. This table has
a hash structure, and each new source MAC address must be written in the table.
The number of events. i.e., MAC addresses in the hash table are limited by the
network’s total number of hosts and switches.

6.5.5 POX

Pythonic Network Operating System (POX) is an open-source SDN controller
used in SDN for research, experimentation, and development of applications. It
provides the SDN framework, where it is possible to create and manage the net-
work, including defining the network architecture, routing protocols, and traffic
handling via Python scripts [163]. It appeared as a part of the NOX project and
inherited many of its concepts and design principles. This controller communicates
with OpenFlow switches, enabling centralized network control and programma-
bility. Due to its simplicity and flexibility, it is useful for educational and research
purposes in the SDN domain. We can leverage POX to experiment with differ-
ent SDN architectures, build custom network applications, and understand SDN
principles.

6.5.6 Floodlight

A Floodlight is an open-source, Java-based SDN controller designed to manage
network devices and enable communication between them [164]. It provides a
platform for developing and deploying SDN applications and centralizing net-
work logic, implying abstracting the underlying devices and centralizing network
management and control. Floodlight uses the OpenFlow protocol to communicate
with switches and other SDN elements (Fig. 6.29), allowing for programmability
and flexibility in network management. Floodlight’s APIs and libraries are often
used to create custom applications for network monitoring, traffic engineering,
and security.



SDN Controllers 153

Figure 6.29. Floodlight-based OpenFlow network [165].

The Floodlight controller depicted in Fig. 6.29 consists of core, internal, and
utility services that include various modules. For example, it uses topology manage-
ment based on Dijsktra’s algorithm to compute the shortest path. Link Discovery
maintains the link state information using Link Layer Discovery Protocol (LLDP)
packets while the forwarding module provides flow commute through end-to-end
routing.

6.5.7 Meridian

Meridian is a centralized Cisco controller with complete insight into network
infrastructure [161]. It can provide better traffic control and the possibility of pro-
grammatic configuration, enabling more efficient and flexible network manage-
ment. Meridian supports multiple protocols and interfaces, allowing the definition
of network policies and optimization of network performance through a centralized
interface. It abstracts the underlying infrastructure, making deploying and man-
aging networks at scale easier. Meridian can achieve greater agility, automation,
and scalability in the network, allowing for easier adaptation to changing business
needs and traffic patterns. Meridian can achieve greater agility, automation, and
scalability in the network, allowing easy adaptation to business needs and traffic
patterns.

6.5.8 OpenDaylight

OpenDaylight (ODL) is a centralized, open-source controller whose basic task is
network device orchestration, enabling a dynamic and programmable approach to
network management [166]. It has a modular architecture, uses Open Service Gate-
way Interface (OSGi), and seamlessly integrates new functionalities through plug-
ins. The core part is the Model-Driven Service Abstraction Layer (MD-SAL), which
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represents a data exchange and adaptation mechanism between YANG models (net-
work devices and applications interacting within the SAL). The YANG models pro-
vide device or application descriptions about their capabilities without requiring to
know the specific implementation details of the other. Within the SAL, models
can be a producer that implements an API and provides the API’s data, while a
consumer uses the API and data (Fig. 6.30).

Figure 6.30. OpenDaylight architecture.

Figure 6.30 shows the ODL modular design, which provides a high level of flex-
ibility for users and service providers to build a controller that can fit their needs.
ODL supports many protocols, such as OpenFlow, OVSDB, NETCONF, BGP,
and others, enabling modern networks to solve different user needs. Southbound
protocols and control plane services can be individually selected or combined
according to the use case requirements. ODL is the primary place for developing
and testing different approaches to policy and purpose, such as ALTO, group-based
policy, and network intent composition.

6.5.9 Centralized SDN Controllers-summary

Centralized SDN controllers are central points for managing, routing, and orches-
trating network traffic across the whole network. These controllers enable central-
ized network intelligence, efficient network configuration, and dynamic adaptation
to evolving demands. With programmable interfaces, they support the building of
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flexible and scalable environments by implementing different policies. The usage of
open standards and provision of security measures streamline network management
and provide interoperability. These controllers allow insights through monitoring
and analytics and create the possibility for the automation of network processes. In
Table 6.2, we give a summarized review of the type, advantages, and limitations of
previously mentioned SDN controllers.

Table 6.2. A summarized review of centralized SDN controllers.

SDN
controller Type Advantages Limitations

Beacon Research-oriented,
Java-based controller.

It focuses on
extensibility and
experimentation,
allowing researchers to
implement and test new
ideas easily.

Limited adoption in
production
environments,
primarily used for
academic and
experimental purposes.

Maestro Intent-based,
policy-driven SDN
controller.

Uses intent-based
networking, enabling
translation of high-level
business policies into
network configurations.
Simplifies network
management and
automation.

Potential complexity in
defining and
implementing business
intents.

Rosemary Controller designed
for wireless SDN
environments.

Specialized in wireless
network management,
offering features for
wireless networking
protocols and
optimizations.

Offers features tailored
only for wireless
networking.

NOX-MT It is used for
flexibility and
modularity in the
network.

It provides a platform
for experimentation and
modular development.

Lower adoption in
recent years due to
advancements in other
controllers with better
scalability and features.

POX Python-based
controller, based on
NOX architecture.

Simplicity and ease of
use due to Python
language, suitable for
educational purposes
and small-scale
deployments.

Limited scalability and
performance for larger
networks or
production-grade
environments.

(Continued )



156 NFV and Software-defined Networking

Table 6.2. Continued

SDN
controller Type Advantages Limitations

Floodlight Java-based,
Apache-licensed
controller.

Strong community
support,
well-documented, and
used in various
computer
environments.
Provides stability and
robustness.

Updates might be less
frequent compared to
other controllers,
potentially slower
adoption of new
features.

Meridian Scalable,
enterprise-grade
SDN controller
based on
OpenDaylight.

Focuses on scalability,
stability, and
enterprise-level
features, suitable for
larger and more
complex network
environments.

It may require more
resources and expertise
to deploy compared to
simpler controllers.

OpenDaylight Modular,
open-source
controller with a
huge ecosystem.

Large community
support, extensive
feature set, modular
architecture allowing
customization and
integration with
various plugins.

Complexity due to its
wide range of features,
potentially requiring
more resources for
initial setup and
management.

6.5.10 Fleet

Fleet is the SDN controller that deals with problems caused by malicious decisions
of network administrators and aims to prevent the controller from malfunctioning
caused by malicious administrator configuration (Fig. 6.31). Some observations
show that human errors are responsible for 50% to 80% of interruptions in the
network [167]. Such errors negatively influence the controller’s routing, forward-
ing, and device performance and can easily degrade the system’s performance.

Figure 6.31 shows the distributed architecture of this controller, physically
located across separate machines. Fleet consists of the administrator layer, which
contains a physical machine for each administrator and shared data storage system,
and the infrastructure intelligence layer, which manages communication between
the infrastructure and the administrator layer [168]. This communication implies
creating the flow rules, verifying signed messages, and connecting to a different
administrator machine in case of failure on one of them. The administrators upload
network configurations on the physically separated machines and use out-of-band
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Figure 6.31. Fleet SDN controller [168].

channels to communicate with each other. Shared data storage has the role of pro-
viding a consistent network view for all administrators. Fleet does not require one-
to-one correspondence between administrators and machines with uploaded con-
figurations and provides separation, which should prevent the failure that occurs
on a single machine from affecting other machines.

6.5.11 HyperFlow

The main issue during SDN controller design was the trend of an increased number
of switches. This trend increases traffic toward the centralized controller, which can
become a bottleneck. The scientific community proposed making a few replicas
physically distributed in different locations [169]. HyperFlow represents the first
SDN solution with a distributed control plane designed for OpenFlow protocol.
It acts as a logically centralized environment despite distributed architecture with
different controllers. SDN network with implemented HyperFlow uses OpenFlow
switches as forwarding elements, NOX controllers as decision elements, and an
event propagation system for cross-controller communication (Fig. 6.32).
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Figure 6.32. HyperFlow network [169].

Each controller has the same network view and runs the same software. It is
responsible for a group of OpenFlow switches and directly manages their traffic.
Indirectly, it can program or query the rest of the switches through communica-
tion with other controllers. In case of the controller’s failure, the connected switches
must be reconfigured to connect to the nearby controller. We must note that differ-
ent controllers have different orders of events. For this reason, HyperFlow defines
the authoritative controller as one responsible for ensuring the correct operation in
disputed cases.

6.5.12 SMaRtLight

SMaRtLight is designed as a Floodlight controller extension to solve the network’s
fault tolerance issues and to enable changes such as one-to-one mapping between
the OpenFlow switch and data store connection and the possibility of data store
caching. This controller deals with failures on switches, controllers, or links in
the data path or between the controller and OpenFlow switch. The primary con-
troller is responsible for fault tolerance, while other controllers are backups. It stores
application-related data in shared storage, implemented through a Replicated State
Machine (RSM) [159]. In case of a failure on the primary controller, a new pri-
mary controller takes over and gets a complete data update from shared storage
(Fig. 6.33).
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Figure 6.33. SmaRtLight SDN network [159].

Figure 6.33 shows the architecture of the SMaRtLight SDN network with Open-
Flow switches directly connected to a controller but not to shared storage. Con-
trollers are located between the data plane and shared data storage. For the system
to function correctly, the following must be fulfilled:

• Switches are connected to both controllers and have not crashed; they work
properly.

• The controller is connected to the database server and has not crashed; it
works properly.

• Shared data storage is connected to each database server and runs recovery
protocols.

6.5.13 Onix

Building a common control plane, which could provide different control func-
tions, such as access control, routing, or traffic engineering, is one of the goals
of SDN. Creating such a platform is accompanied by challenges, such as provid-
ing various functionalities for management in different contexts [159]. The Onix
controller represents an open-source platform developed to provide a flexible and
scalable environment capable of controlling network behavior through centralized
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software-based controllers. The prerequisite for that is a high level of programma-
bility, which this platform provides using programmable interfaces, allowing the
creation of custom applications and control for the network behavior. Its modular
architecture can be customized and extended based on specific networking require-
ments, such as reliability, to handle system failure and simplify the structure for
building management applications. Onix instances can be written in multiple lan-
guages like C++, Python, and Java.

6.5.14 ONOS

The Open Network Operating System (ONOS) represents an open-source SDN
controller that provides centralized management and network control. Its goal is
to provide high availability, scalability, and performance while introducing new
applications and services to the network. The key characteristics are decoupling
the control plane from the data plane and allowing centralized management and
dynamic network configuration. Besides the OpenFlow protocol, it can use other
southbound APIs to communicate with network switches and routers, enabling
programmability and automatic network management (Fig. 6.34). We must note
that ONOS is used in various network environments, including data centers, carrier
networks, and enterprise networks [170].

Figure 6.34. ONOS architecture [170].



SDN Controllers 161

Figure 6.34 shows the logically centralized but physically distributed controller
architecture, which has implemented the following two configurations:

• Prototype 1 focuses on building architecture with a global network view and
providing fault tolerance and scalability,

• Prototype 2 focuses on improving the system performance with the desired
number of remote operations and the time required to process them. The
aim is to allow agility and adaptability in network operations.

6.5.15 PANE

The Policy-based Architecture for Networked Environments (PANE) controller
aims to provide greater visibility and control over the network to make a required
resource reservation. It implements API between the user and the control plane
to simplify network control and visibility and enable conflict resolution among
users and their requests [159]. In this sense, the PANE controller assigns privileges
to users while the request conflict is solved using the conflict resolution operator
and the hierarchical flow table. It introduces the principal role in the network,
which is assigned to end users or, more specifically, their applications. The princi-
pal exchanges the request, query, and hint messages to control resources, such as
bandwidth or access, acquire information about the network states, and indicate
the future demands of the system. Its authority is limited, so PANE introduces the
concept of the share, representing a combination of principals, privileges, and flow
groups. This concept implies building the tree of shares, where each share indicates
which principal can publish which message for which flow. The tree’s creation does
not mean defining any new policy while combining them; creating a policy tree in
hierarchical flow tables is possible.

6.5.16 Distributed Controllers-summary

Distributed SDN controllers provide scalability and resilience by decentralizing the
control plane and consist of multiple controllers that function together to man-
age and enhance network scalability. These controllers also improve fault toler-
ance because if one controller fails, others can seamlessly take over its responsibili-
ties, ensuring network service continuity. Reduced latency, efficient load balancing,
and optimized performance result from controllers’ locations, which are closer to
the managed network segments. Table 6.3 gives a summarized review of the type,
advantages, and limitations of distributed SDN controllers.
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Table 6.3. A summarized review of distributed SDN controllers.

SDN controller Type Advantages Limitations

Fleet It focuses on
scalability and
fault
tolerance.

Scalable architecture
distributing control
tasks across nodes,
fault-tolerant design,
and high availability
suitable for large-scale
networks.

It may require more
resources due to its
distributed nature,
potentially complex to
set up and manage.

Onix It focuses on
scalability and
flexibility.

Scalable architecture
supporting distributed
control, designed for
high performance and
extensibility, enabling
fine-grained control over
network behavior.

It may have a steeper
learning curve and is
more suited for
advanced users or
specific use cases
requiring detailed
network control.

SMaRtLight Intent-based
distributed
SDN
controller.

Focuses on translating
high-level intents into
network policies,
providing abstraction
and simplification of
network management
based on business
objectives.

Complexity in defining
intents and policies,
potentially challenging
to align high-level
objectives with detailed
network configurations.

Onos Open-source
controller
with a focus
on
performance
and scalability.

Strong community
support, scalability
across distributed nodes,
features designed for
carrier-grade networks,
and support for diverse
use cases.

It may require more
expertise for deployment
and management
compared to simpler
controllers.

HyperFlow High-
performance
controller
optimized for
large-scale
networks.

Focusing on scalability
and performance, suited
for managing extensive
network environments
efficiently and
supporting diverse
applications.

Complexity and
potential resource
requirements, due to its
focus on high
performance, might be
less straightforward for
smaller deployments.

Pane It focuses on
network
virtualization
and isolation.

Specialized in network
virtualization, offering
features for creating and
managing isolated
virtual networks within
a larger infrastructure.

Specific use case focus
might not be as versatile
for general SDN
deployments without a
strong emphasis on
network virtualization.
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6.6 SDN Implementations

SDN has numerous practical implementations across different network domains
because it centralizes network intelligence and enables greater programmability,
which implies building a more flexible and scalable environment. Cloud providers
have recognized the advantages of SDN and widely use this technology despite
the proprietary character of their platforms and components [171]. Large network
operators have also begun implementing SDN in their access networks. Further-
more, they proceed with implementation cautiously, primarily using hybrid solu-
tions. Today, SDN is increasingly being applied in enterprises as well. Besides tech-
nical challenges, enterprises’ financial capabilities dictate the SDN adoption speed.
For these reasons, enterprises implement SDN via managed edge services from the
cloud. They connect on-premises clusters running edge workloads with clouds run-
ning scalable data center workloads.

6.6.1 Network Virtualization

The idea of using SDN to create virtual networks came after detailed insight into
modern cloud networks. Scientists and professionals identified the need to create,
manage, and modify computer environments without the administrator’s actions.
The key principle of SDN based on separating the control from the data plane
brings the possibility of exposing a single API entry point to create, modify, and
delete virtual networks. This way, using the same automation systems to provide
computing and storage capacity and build virtual networks in the cloud is possi-
ble. The development and widespread implementation of network virtualization
is strongly associated with developing different resource virtualization techniques
and represents a process that is impossible to separate. The cloud providers have
understood this process correctly and recognized the need to automate network pro-
visioning, especially in data centers. Deployment in data centers initiated further
development and emergence of container-based technology and software solutions
such as Dockers and Kubernetes.

Network virtualization technology aims to programmatically provide network
services so that virtual networks become lightweight objects (the objects that have
less data or process less data), created and modified on demand, with a full set
of services (Fig. 6.35). This approach opens further advances in networking and
brings the possibility of creating virtual networks without limitations. This way,
it is possible to create fine-grained, isolated microsegments according to specific
requirements, such as distributed clusters, and to implement a new strategy for
security. This strategy implies implementing security measures as an inherent part of
the network and preventing the attack from spreading beyond the micro-segment.
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Figure 6.35. An example network virtualization system.

Figure 6.35 shows a network with the SDN controller as a central point respon-
sible for network virtualization. It exposes a northbound API to create and modify
virtual networks. Further, its role is to create and send instructions to program the
flow table of virtual switches. Virtual switches run in hypervisors installed at hosts.
They perform packet forwarding according to rules from flow tables. We can inte-
grate controller and virtual switches using proprietary signaling methods or open
interfaces. Integration focuses on connecting virtual machines and containers, usu-
ally implemented as an overlay among the servers.

6.6.2 Switching Fabrics

SDN has the predominant use case in data centers, where cost reduction and
improving feature velocity play an important role. The providers aim to move from
proprietary to bare-metal switches built using silicon chips. They want to perform
software control of the switching fabric as the architecture that interconnects their
servers and redirects the data coming in on one of the ports out to another of its
ports. Switching fabric represents a two-tier design built according to the leaf-spine
network topology. Providers use this topology to overcome the limitations of the
traditional (three-tier) networks and improve performance (Fig. 6.36).

In traditional networks, providers usually establish redundant paths to avoid
traffic loss in case of network failure. They implement the Spanning Tree Protocol
(STP), which always has two or more potential traffic routes, which implies that
if the primary route fails, STP will use a backup route. The STP is not an ade-
quate solution for data centers because its mechanism can result in heavy loads.
To overcome this limitation, providers implemented a two-tier leaf-spine topology
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Figure 6.36. The example of traditional (three-tier) and leaf-spine network architecture.

consisting of leaf and spine switches, as shown in Fig. 6.36. The leaf switches rep-
resent the access layer and provide end points’ connections to the data center. In
practice, leaf switches are located in racks (two per rack) and have connections to
each server in the rack. On the other side, these ToR switches are connected to
multiple spine switches to provide redundancy, where the number of connections
varies from used switch models. Spine switches should not have a mutual connec-
tion because leaf switches have connections with each spine switch. Today, leaf-spin
topology represents a common architecture used in data centers because it provides
scalability, high bandwidth, and low latency.

SDN can be implemented in a leaf-spine topology to introduce higher pro-
grammability, which implies more efficient management, flexibility, and automa-
tion. SDN controller has a key role because it simplifies the implementation of any
changes in data centers. It enables building more efficient policy-based manage-
ment, allowing granular control and policy deployment across the network (e.g.,
to provide security and QoS). Further, with centralized control, optimizing traf-
fic flows, enabling traffic rerouting, and optimizing network paths based on real-
time conditions is possible within data centers. SDN can enable the automation of
many data center functionalities. It is an important goal for providers because of
automatic resource provisioning, device self-configuration, and dynamic resource
allocation. Finally, a higher level of programmability is a prerequisite for imple-
menting custom applications that can interact with the data center infrastructure
and solve specific data center requirements. In some SDN implementations, a leaf-
spine switching fabric based on SDN with implemented a collection of control
applications is often called SD-Fabric.
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6.6.3 Traffic Engineering for WANs

Implementing advanced technologies, such as IoT, cloud computing, and Industry
4.0, creates many issues in traditional networks. More efficient traffic engineering is
one of them, where solving two tasks is very important. The first refers to measure-
ment and real-time traffic analysis, and the second concerns defining mechanisms
for traffic routing, which should improve resource utilization and provide desired
QoS requirements [172]. The existing mechanisms propose IP-based and MPLS-
based traffic engineering. IP-based traffic engineering solves the multipath traffic
load balance problem by optimizing the IP routing (e.g., a neighborhood search
algorithm) to avoid network congestion [173]. However, this mechanism has two
potential drawbacks:

1. Using link weights for routing algorithms (e.g., OSPF protocol) cannot split
traffic equally, which implies the inability to use network resources fully.

2. Any change in the network requires a particular time to build the new net-
work topology, which can cause congestion and degradation of network per-
formance.

Sometimes, providers use Multiprotocol Label Switching (MPLS) to solve these
two problems despite MPLS complexity and high-performance overhead, which
is undesirable in data centers [174]. The deployment of MPLS in data centers is
complex primarily due to the configuration of Label Distribution Protocol (LDP)
sessions, the creation of label-switched paths (LSPs), and the management of routers
and switches. Also, MPLS adds overhead by encapsulating packets with labels,
increasing packet size, and requiring additional processing power, memory, and
network bandwidth. This way, many challenges can occur related to troubleshoot-
ing, operational maintenance, and scaling in larger computer environments.

SDN functionality changes traffic engineering in the network from the foun-
dation because it centralizes control and enables dynamic, programmable traffic
management. The key point is the SDN controller, which makes it possible to
route packets in real time, perform traffic prioritization, and build policy-based
management. This way, it is possible to optimize resource utilization by imple-
menting adaptive traffic routing and policies that ensure critical applications get
the required priority. With programmatic management, SDN enables the automa-
tion and orchestration of network tasks and allows granular control over WAN
infrastructure, significantly improving its efficiency, flexibility, and responsiveness
(Fig. 6.37).
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Figure 6.37. Dynamic SDN traffic engineering system.

Figure 6.37 shows a dynamic mechanism for traffic engineering in SDN-based
networks, where a central algorithm looks at all three flows simultaneously and
tries to place them optimally. For this purpose, the SDN controller monitors and
analyzes traffic in real time and collects network status information to make traffic
routing decisions. It provides global consideration of traffic applications, and in this
way, granular traffic scheduling is possible. The SDN controller generates instruc-
tions sent to OpenFlow switches, which can have multiple flow table pipelines,
making flow management more flexible and efficient.

6.6.4 Software-defined Wide Area Network (SD-WAN)

Traditional WANs’ static, insufficiently flexible architecture cannot respond to
modern, increasingly dynamic networking trends and meet user QoE requirements.
It is necessary to simplify networking operations, optimize management, and intro-
duce more programmability in WANs. For this reason, scientists and profession-
als implement SDN functionality into WANs and change their architectures to
improve management and optimize performance. By introducing the key princi-
ples of SDN, WANs gain centralized control and visibility over the complete WAN,
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creating prerequisites to significantly increase reliability, scalability, and security. For
example, traditional WANs use MPLS, wireless, broadband, and VPNs to enable
secure access to enterprise applications, services, and resources. With implemented
SDN technology, they can create and update security rules and routing policies in
real time as network requirements change.

SD-WAN technology allows enterprise networks to extend over large geograph-
ical distances, efficiently monitor WAN connections’ performance, and manage
traffic to maintain high rates and optimize connectivity. Each device is centrally
managed, with routing based on application policies. Combining this with zero-
touch provisioning (the automated process of device configuration without inter-
action with a user, except for physical device connection to the network) makes
it possible to perform deployment and configuration automation, reducing com-
plexity, resource utilization, and costs [175]. Network management is simplified
because the control is detached from the hardware to the centralized software. This
way, there is no need to manage the device individually (Fig. 6.38) [176].

Figure 6.38. Logical and physical architecture of SD-WAN.

Figure 6.38 shows the three-layered logical and physical architecture of SD-
WAN, which includes the data, control, and application layer. Bandwidth
virtualization and packet forwarding are functions performed at the data layer.
Bandwidth virtualization based on the abstraction of network links at one location
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aims to provide efficient resource utilization. The result of virtualization is a pool
of resources that are available for each application and service. OpenFlow switches
forward data according to the control layer instructions. We must note that many
functions are implemented and managed at the control layer independently. It is
possible to connect or chain these functions and, in this way, create complex ser-
vices and increase the SD-WAN flexibility. The application layer enables providers
to define their specific requirements through network and application expression,
which can translate high-level requirements into compliant network configurations.

6.6.5 Access Networks

In traditional networks, the access layer (network) consists of special-purpose hard-
ware devices, such as passive optical networks (PONs) or radio access networks
(RANs). Therefore, the real challenge is transforming them into their merchant
silicon/bare-metal counterparts so the software can control them. In practice, the
academic community and large network operators invest huge resources and efforts
to develop and implement software-defined PON or RAN networks, sometimes
called CORD (Central Office Re-architected as a data center) initiative. The main
idea is to isolate the packet forwarding engine from the control plane and imple-
ment control as software on commodity hardware. For example, we have an SDN-
Enabled Broadband Access (SEBA) solution, depicted in Fig. 6.39.

Figure 6.39. SDN-Enabled Broadband Access [171].

The cluster shown in Fig. 6.39 represents a combination of servers and access
devices connected by a switching fabric (built using OpenFlow switches) and con-
trolled by an SDN controller. In this architecture, functionality, such as a broad-
band network gateway originally provided by the legacy hardware, can be pro-
grammed into the switches instead of as VNF. This solution represents an example
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of VNF off-loading, where it is possible to move packet processing from the servers
into the switches.

6.6.6 Network Telemetry

Traditional monitoring performs reading different fixed counters, such as received
or transmitted packets or sampling subsets of packets. SDN goes further and intro-
duces an In-band Network Telemetry (INT) solution. This solution’s base is the for-
warding pipeline’s programming, aiming to collect network state during packet pro-
cessing. INT implies encoding instructions from the controller into packet header
fields and then processing them by OpenFlow switches through the forwarding
pipeline. These instructions explain to the device what state to collect and how to
write it into the packet, and they can be embedded either in regular data packets
or in special probe packets. The INT also implements traffic sinks, whose task is
to retrieve and report the collected information, which are the results of previously
mentioned instructions.

6.7 SDN and NFV Integrations

SDN and NFV are complementary technologies that can enhance network man-
agement, flexibility, and efficiency. There are many use cases with a strong demand
to provide network flexibility, scalability, efficiency, and service delivery in various
domains and scenarios. We would like to point out the following use cases where
it is useful to implement SDN/NFV architecture:

• on-demand and Application-specific Traffic Steering,
• middleboxes virtualization,
• virtualized customer’s premises equipment,
• wireless, and
• mobile networks.

6.7.1 On-demand and Application-specific Traffic Steering

Traffic steering represents the possibility of directing users’ requests to the appropri-
ate service/content sources in accordance with the available networking resources
and capabilities on the client and server side, user permissions, and location. Users
can have different requests, such as a video streaming service that requires strict
performance. In these cases, it is necessary to enable on-demand and application-
specific traffic steering, which could ensure more efficient resource usage and bet-
ter QoE for the user. In the SDN/NFV architecture, the role of SDN is to enable
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Figure 6.40. NFV/SDN architecture for application-specific traffic steering [177].

efficient traffic steering between VNFs, providing dynamic service chaining. By
decoupling control from the data plane, SDN enables the exchange of information
between the application and network layers, allowing traffic routing through vir-
tualized network functions (like firewalls or load balancers) flexibly, as shown in
Fig. 6.40 [177].

The SDN/NFV architecture presented in Fig. 6.40 contains a cross-layer inter-
face between the application and network layer [178]. This interface enables the
deployment of network services with on-demand and application-specific traffic
steering. The key component is the Cross-Layer Orchestrator, which serves as an
NFVO and VNFM to manage the lifecycle of services in the OpenStack cloud envi-
ronment and WAN domains based on OpenFlow. In a production environment,
this component can be implemented over the OpenSDNCore orchestrator using
Java programming language.

6.7.2 Middleboxes Virtualization

Today, we often encounter middleboxes in enterprise networks whose deployment
aims to improve performance (e.g., traffic shaping or load balancing), provide
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security functionalities, and deep packet inspection for incoming and outgoing traf-
fic. However, hardware-based middleboxes have certain limitations, such as high
operational costs caused by management complexity (proprietary solutions need to
be deployed, configured, and managed individually) and significant capital costs
(CAPEX). Practically, to implement new network functions, one or more middle-
boxes must be bought. The reason is the inflexibility of proprietary hardware, which
creates vendor lock-in and limits innovation.

By implementing SDN/NFV architectures, we can significantly reduce costs
and expedite the delivery of network functions. This approach offers elasticity
and dynamic service chaining, paving the way for a more efficient and adaptable
network infrastructure. NFV efficiently manages virtual middleboxes, while SDN
facilitates the interconnection between VNFs, enabling the delivery of network ser-
vices through Service Function Chaining (SFC). Among the various solutions avail-
able, the one that stands out is Glasgow Network Functions (GNF). GNF excels
in deploying and managing container-based network services across diverse cloud
environments, as illustrated in Fig. 6.41 [179].

Figure 6.41. The GNF platform [177].
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Figure 6.41 provides a comprehensive view of the Glasgow Network Functions
(GNF), which is composed of four distinct planes. The first plane, the infrastruc-
ture plane, contains all the physical resources of the network and computations. It
incorporates NFV centralized cloud infrastructures with edge devices such as CPEs,
virtual routers, and IoT gateways. The subsequent planes, VIM, and orchestration
are responsible for resource orchestration. At the VIM plane, the GNF agent is
deployed on all cloud servers and edge devices, enabling local VNF instantiation
using the Docker engine for rapid deployments and low resource utilization. It also
facilitates local traffic steering management through virtual switches and OpenFlow
rules. GNF leverages the SDN controller for network connectivity in the NFVI. At
the orchestration plane, the GNF manager receives NFV service requests and per-
forms the necessary operations using the SDN controller and GNF agent instances.

6.7.3 Virtualized Customer Premises Equipment

In many cases, customer premises equipment (CPE) can present a problem for
providers due to maintenance costs, management difficulties, and the impossibility
of performing remote upgrades. As a solution, we can see the virtualization of func-
tions associated with CPE, where creating virtual CPE (vCPE) is challenging due
to problems related to network services instantiation in distributed infrastructures
(e.g., using multiple NFVI-PoPs). In this case, it is a rational solution to implement
VNFs in the service provider’s cloud platform (cloud CPE) or the on-premise CPE,
depending on latency and available resources. Such a scenario implies implement-
ing SDN for communication management on the cloud, CPE, and WAN [180].

Figure 6.42 presents a service-oriented SDN/NFV architecture for provider net-
works, offering a range of generic network services that can be selected by providers
(DHCP and NAT) or end users. The benefits of this architecture lie in its flexi-
bility. Network services can be implemented in a distributed manner, either in the
provider data center or the CPE, and both solutions are based on a three-layer archi-
tecture [180]. The service layer application (SLApp) empowers different providers
and end users to choose their network services, providing a mechanism for authen-
tication and a high-level data model for defining flexible network services known
as the Service Graph (SG). The key component at the orchestration layer is the
Global Orchestrator (GO), which manages the Forwarding Graph (FG) received
from SLApp. In this way, it is possible to deploy network services according to
the VNF requirements and infrastructure capabilities. The key component at the
orchestration layer is the Global Orchestrator (GO), which manages the Forward-
ing Graph (FG) received from SLApp. In this way, we can deploy network services
according to VNF requirements and infrastructure capabilities. By using GO, it is
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Figure 6.42. An SDN/NFV architecture design for vCPE [177].

possible to implement multiple control adaptors and coordinate different infras-
tructures (e.g., OpenStack and integrated node).

In network service deployment, the integrated node and the OpenStack node
play distinct roles. The integrated node, which represents the CPE, receives a For-
warding Graph (FG) from the Global Orchestrator (GO) via the node resource
manager (NRM) using REST API. The NRM’s task is to instantiate all VNFs,
which can be done using Docker containers, DPDK process, or hypervisor. It uses
an extensible Data-Path daemon (xDPd) to create an OpenFlow switch and its
corresponding controller for each FG. On the other hand, the OpenStack node
represents the provider data center, with OpenStack or other cloud platforms for
network service deployment. In this setup, a hypervisor is responsible for VNF cre-
ation, while the controller and virtual switches handle the traffic steering.

6.7.4 Wireless Network

The surge in wireless communications’ popularity reflects new demands, including
mobility support, programmability, rapid network service delivery, performance,
and security. However, the management and configuration of today’s large WiFi
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networks often prove complex and inflexible in solving application requirements or
user needs. As a real production solution, OpenSDWN, a software-defined wireless
networking architecture, emerges to address these challenges efficiently. OpenS-
DWN combines the advantages of SDN, NFV, and wireless, offering a robust
NFV/SDN approach through the implementation of per-client access points (Aps)
and virtual middleboxes [181].

Figure 6.43. SDN/NFV architecture for WiFi networks [177].

Figure 6.43 presents a comprehensive view of the proposed architecture, fea-
turing the creation of a Light Virtual Access Point (LVAP). This LVAP leverages
SDN applications to abstract certain functions of the 802.11 AP, such as authen-
tication, handoff, and client associations. In this setup, a physical AP supports the
establishment of multiple LVAPs, one for each client. Each LVAP serves as a dedi-
cated link between its client and infrastructure. The architecture also allows for the
implementation of a firewall as a virtual middlebox, either on a middlebox server
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or at the access point. Integration with LVAPs is facilitated through virtual net-
works. A service differentiation mechanism (DPI-based) endeavors to identify and
classify flows, redirecting traffic to the appropriate virtual middleboxes (vMB). The
OpenSDWN controller orchestrates all these functions, enabling seamless mobility
with the migration of both LVAPs and vMBs among APs.

6.7.5 Mobile Networks

In mobile networks, mobile edge computing (MEC) or multi-access edge comput-
ing provides IT and cloud computing within the Radio Access Network (RAN).
ETSI performs standardization through Group Specification (GS) MEC [182,
183]. Operators deploy a set of computer and storage resources (e.g., data cen-
ters, clusters, etc.) at the edges of mobile networks to assist the core data center in
supporting computing and communication (Fig. 6.44) [184].

Figure 6.44. SDN/NFV architecture for Mobile edge computing [177].

Figure 6.44 shows the SDN/NFV solution for MEC, which is important to
enable 5G networks according to 5G-PPP. The focus of this solution is to deliver
services closest to the users and to fulfill certain requirements (bandwidth, delay,
jitter, context awareness, and mobility) of critical applications, such as IoT or aug-
mented reality. In practice, we see the implementation of such a solution in the
EU H2020 SELFNET project [185], a significant initiative in the field of MEC
and 5G networks. The SELFNET project proposes the design and implementation
of an autonomic management framework for 5G networks, incorporating cloud
computing and artificial intelligence. The goal is to reduce operational costs and
improve the QoE of the end users. This way, it is possible to solve issues related
to self-protection against distributed attacks, self-healing in case of network errors,
and self-optimization of the network traffic.
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The approach proposed in a SELFNET project implies building a federated
cloud infrastructure. This infrastructure consists of multiple edge NFVI-PoP and
a core NFVI-PoP that provide the resources needed for VNFs’ execution (VNFs
support some management elements and network services). In such architecture,
SDN controllers are responsible for connectivity between edge NFVI-PoPs and the
core NFVI-PoP through the creation of virtual networks.

6.8 Conclusion

SDN and NFV are technologies that implement and manage network services more
efficiently. We should implement these technologies together to utilize their bene-
fits. NFV provides portable virtual network functions, while SDN enables more
efficient resource management and orchestration, and together, they ensure the
building of flexible, scalable, and agile infrastructures. These two technologies suit
various network environments, such as enterprise networks, data centers, campus
networks, and service provider networks. Their implementation can help reduce
the time required to implement new services, simplify the implementation process,
and reduce costs.

From the perspective of data centers, the issue of managing a heterogeneous com-
puter infrastructure consisting of a large number of servers and virtual machines
is very important. With SDN and NFV, it is possible to simplify the virtualiza-
tion process, enable greater mobility by automatically migrating virtual machines,
and increase the utilization of available hardware and bandwidth. Higher energy
efficiency is an important indicator of their implementation because it can reduce
electricity consumption, especially in the data center, and significantly reduce main-
tenance costs.

The possibility of SDN, NFV, and cloud integration significantly benefits LAN
and WAN environments. This integration is particularly interesting for service
providers with increasingly complex user demands. It is useful for services that
must meet different Service Level Agreements (SLAs) regarding availability, scal-
ability, and security. For example, it is possible to provide a minimum recovery
time and enable optimal traffic redirection without affecting user services. More
details about the mentioned integration will be presented in the next section.
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Chapter 7

NFV Implementation in the Cloud

Cloud computing is a modern computing concept that combines utility comput-
ing, on-demand services, grid computing, and software-as-a-service. It brings busi-
ness models used to deliver IT capabilities (software, platforms, hardware) as a ser-
vice request, scalable and elastic. This new trend in computing enables the exposure
of IT resources as a service on the Internet with the supply of new mechanisms that
allow providers to give users access to a virtually unlimited number of resources.
Cloud providers offer billing mechanisms to use these resources based on their con-
sumption.

NFV implementation is of great importance for cloud computing because it
allows the creation of networks that are more agile and responsive. It is a pro-
cess that enables the transition from traditional hardware-based to software-based
(virtualized) network functions. This process begins with the identification of net-
work functions that are suitable for virtualization, continues with the selection of
an appropriate cloud provider, and completes with the design and deployment of
VNFs on the cloud infrastructure. The crucial tasks in this process are building
the virtual environment, orchestrating VNFs, providing strong security measures,
and dynamic resource allocation. NFV implementation brings many advantages to
the cloud, such as improved flexibility, scalability, and cost-effectiveness. Its life-
cycle consists of testing, incremental deployment, and continuous improvements
in cloud performance. This section aims to highlight the importance of cloud
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technologies in modern computing and point out the advantages obtained by the
implementation of the NFV concept.

The integration of these technologies is of great benefit to society as a whole. It
helps to overcome numerous issues in a fast and efficient way, even in crises. As an
example, we can mention the COVID-19 pandemic, where the implementation
of such solutions enabled educational institutions to respond quickly and ensure
the continuity of the educational processes [186]. Generally, in these cases, it is
necessary to redesign the network architecture to provide optimal network resource
utilization as fast as possible. It is necessary to examine the capabilities of existing IT
infrastructure and examine the possibilities to connect cloud platforms and support
work in virtual space. Implementations of cloud and NFV technologies imply the
transition of information anytime, anywhere, through networks.

7.1 Introduction to Cloud

IT infrastructure represents the basis of every modern system, whose crucial task
is to support various services and applications in heterogeneous environments. It
can be defined in different ways, so for network administrators, it represents a set
of network devices, while for developers, IT infrastructure represents a platform
for application development. In essence, IT infrastructure means a combination of
hardware and software that should enable the realization of various business pro-
cesses. For this reason, providers and enterprises pay special attention to its design.

The development and implementation of solutions related to the availability,
scalability, efficiency, and security of the IT infrastructure are a priority for a
provider or a company infrastructure design. Traditional computer networks based
on hierarchical organization can only respond to increasingly complex user require-
ments to a specific extent [187]. Figure 7.1. shows a design of traditional net-
work infrastructure and its basic characteristics – hierarchy and redundancy. How-
ever, the static nature and insufficient level of programmability greatly complicate
infrastructure management and make it more complex [188]. Further network soft-
warization has been imposed as a logical solution to overcome these shortcomings.

Many definitions of cloud computing exist in the literature. Scientists and pro-
fessionals often use the definition of the USA National Institute of Standards and
Technology (NIST), which defines the cloud as a computing model that allows
users ubiquitous and appropriate access to shared infrastructure on demand, with
minimal interaction with the service provider [189]. This definition includes five
basic cloud characteristics:

• on-demand self-servicing – users can get resources without direct interaction
with the service provider,
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Figure 7.1. Traditional network infrastructure.

• broad network access – users can access resources using standard computer
networks’ mechanisms,

• resource pooling – all available resources are pooled and assigned to users
according to requirements; while users are not aware of the exact resource
location,

• rapid elasticity – high level of scalability, given that resources are elastically
provided following user requirements and

• service measurement – monitoring and reporting on used resources.

There are many definitions of cloud computing, which indicates that it is a new
concept of computing. This concept, based on advanced technologies, such as vir-
tualization and clustering, came to market parallel with the global economic crisis
when enterprises focused on core activities and cost reduction. The pay-as-you-go
service pricing principle was applied to respond to the technological and financial
requirements, which means paying only for the resources and period they used.
This way, cloud users do not have to invest in infrastructure to be able to imple-
ment their services or offer them to other users. The ability to quickly allocate the
necessary resources at the user’s request makes this process very simple and scalable.
The fact that services in the cloud are mostly web-oriented means that access can
be achieved through different user devices, such as desktop and laptop computers
or mobile phones [130].
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7.2 The Fundamentals of Cloud Computing

The traditional business concept implies the delivery of finished products to users.
In cloud computing, providers build appropriate services and deliver them accord-
ing to specific user requirements. Besides the service, the access method is also
important to users. Cloud computing provides users with the required resources
at the right time without knowledge of resource location. Users do not need to be
familiar with the concepts of cloud computing or have additional expertise in the
field of computing to be able to use this technology (Fig. 7.2) [130].

Figure 7.2. The concept of cloud computing.

It is necessary to ensure a high level of abstraction of physical resources to achieve
flexibility, efficiency, and scalability within the network infrastructure. Creating a
shared, dynamic, and highly scalable virtual environment makes it possible to host
many different, resource-demanding applications and their data. To create such
an environment, implementing technologies such as virtualization, which sepa-
rates software from hardware, and clustering, which enables the grouping of servers
into a unified physical resource, is of the greatest importance. Further, it is possi-
ble to implement multitenancy, allowing multiple users to use one instance of an
application (tenants are logically separated). Resource and cost-sharing represent a
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completely different principle compared to the traditional approach, where build-
ing a separate application or service instance for each user is necessary.

The cloud computing concept brings benefits related to cost reduction. It enables
efficient resource usage by implementing the following rules:

• users can access resources at any time and from any location,
• only the required resources can be used,
• only a minimal presence of network devices at the user’s location is possible,

and
• rapid response to new resource demands.

7.3 Cloud Architecture

Knowledge of cloud architecture is a key element of its deployment, and combin-
ing all the components and technologies required for cloud computing is essential.
Well-designed cloud architecture is a prerequisite for achieving many benefits. For
this reason, organizations usually start migration to the cloud with a lift-and-shift
approach, where on-premises applications shift to the cloud with minimal mod-
ifications. Applications’ final deployment and running depend mainly on cloud
architecture, which defines the integration of the components and resource pool
creation, sharing, and scaling.

The following components represent the foundation of cloud architecture:

• A frontend platform – contains the user devices (laptop or desktop com-
puter, mobile phone, web browser, and others) that enable interaction with
the cloud and access to appropriate services.

• A backend platform – consists of many components that build the cloud, such
as computing resources, storage, security mechanisms, and management.

• A cloud-based delivery model – implies three types of cloud delivery
models: Software-as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS), and
Platform-as-a-Service (PaaS).

• A network (internet, intranet, or intercloud) – connects the frontend and
backend cloud architecture components and enables data transfer between
them.

As mentioned, backend platform components are important in creating cloud
architecture. The backend software has the task of providing access and fulfilling
users’ requirements. These requirements usually refer to accessing cloud resources
such as storage, applications, and development environments. An efficient ser-
vice that takes care of resources and applications running on them requires a
suitable running environment. The cloud runtime uses virtualization technology
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and hypervisors to create this environment (hypervisors represent all user services,
servers, and networking), including data storage. Data storage is of great impor-
tance for the cloud because the operation of applications depends on it. For this
reason, flexible, scalable storage services that can store and manage vast amounts of
data in the cloud represent an imperative.

The most important backend component is infrastructure. It contains the hard-
ware and software components required for systems to run smoothly and implies
real-time service and data management according to user requirements. Efficient
communication between the backend and frontend cloud architecture components
is a prerequisite for dynamic resource allocation. Finally, the wider deployment of
cloud computing brings security challenges. It is very important to implement secu-
rity solutions and provide service visibility, prevent data loss and downtime, and
ensure redundancy (perform backups, debugging, and implement virtual firewalls).

A simple way to understand cloud architecture is to group cloud components at
various layers (Fig. 7.3).

Cloud computing architecture has a hierarchical organization consisting of three
layers:

• The hardware layer is the lowest and is responsible for managing physical
resources. This layer is implemented first and represents the basis of the data
center’s functioning.

• The virtualization layer is the middle layer, containing two sublayers: infras-
tructure and platform. Different virtualization techniques implemented at
the infrastructure sublayer (e.g., virtualization of the network, storage, server,

Figure 7.3. The cloud architecture.
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and others) provide dynamic resource allocation, which is the base of cloud
computing architecture. The platform sublayer is above the infrastructure
layer and includes operating systems and suitable environments for applica-
tion development.

• The application layer is the highest in the architecture and includes the appli-
cations available to users and network services.

It is very simple to conclude that cloud computing architecture is modular. Each
layer is separated from the layers above and below, ensuring each operates indepen-
dently. Also, a similarity with the Open Systems Interconnection (OSI) network
model can be observed (not a strict dependence on it). The architecture modularity
enables support for different application requirements while reducing management
and maintenance costs [130].

7.4 A Cloud-based Delivery Model

Cloud computing has changed businesses’ usage of technology in many enterprises.
The enterprises gain the capability to implement remote work efficiently and scale
infrastructure on the click, which represents significant improvements in infras-
tructure and its management. The first step in choosing a solution for a cloud is
understanding the differences between the three common types of cloud delivery
models. According to the network resource usage method, it is possible to identify
the following models of service delivery [190]:

• Software as a Service (SaaS),
• Platform as a Service (PaaS) and
• Infrastructure as a Service (IaaS).

Figure 7.4 shows the relationship between services, applications, and cloud mod-
els. Infrastructure and platform resources are delivered based on user requirements.
Each layer of the architecture can be implemented as a service of the layer above it.
Similarly, each layer can be viewed as a user of the layer below it.



A Cloud-based Delivery Model 185

Figure 7.4. The relation between services, applications, and the cloud models.

7.4.1 Software as a Service

The SaaS model enables the use of finished applications, where the provision of
complete hardware and software infrastructure is the cloud provider’s responsibil-
ity [191]. The user leases certain software from the provider and pays according
to resource and service consumption (pay-per-use principle). Users can access the
services using any device, a simple interface such as a web browser, and the internet.

This way, users do not possess, manage, or maintain the infrastructure (servers,
routers, switches, storage, and others) required to use the software, but that is the
responsibility of the cloud providers (Fig. 7.5). Since the user does not have to own
or maintain network equipment, this model represents a suitable solution for small
and medium-sized enterprises. They can achieve large savings related to equipment
but also get licensed software necessary for business processes.
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Figure 7.5. The jurisdictions in the traditional approach and SaaS model.

Figure 7.5 shows a comparative presentation of the conventional approach
and the SaaS model. The advantages of applying the SaaS model are the follow-
ing [130]:

• Optimal utilization of resources.
• Much faster access to new technologies and applications.
• More efficient debugging process.
• Possibility to expand and adapt applications to new business conditions easily.
• Improving the security, performance, and availability of applications.
• There are low initial costs and cost reductions since maintenance is the

provider’s responsibility.

Business processes are a good example of SaaS model implementation. In prac-
tice, the following business applications are often used:

• Customer Relationship Management (CRM),
• Enterprise Resource Planning (ERP) and
• Human Resources Management (HRM).

Today, there are many commercial solutions based on the SaaS model, such as
Google Apps, Cisco WebEx, Microsoft Office 365, and Dropbox.

7.4.2 Platform as a Service

The PaaS model enables the creation, running, and management of applications
using different development tools on the provider’s platform. Users manage the
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applications and have a certain level of access privileges but do not have full rights
to administer the hardware, network, or operating system [191]. They can deploy
the applications without having to deal with the licensing costs and complexity
of deploying and maintaining the underlying hardware and software infrastructure
(e.g., servers, storage, and networking).

PaaS is a comprehensive environment that provides both the development
platform and the infrastructure for running the application. It includes ser-
vices and tools that should provide development, testing, implementation, host-
ing, and maintenance of the applications, all using a web interface for access.
By implementing the multitenancy principle, PaaS allows multiple users to use
applications at the same time. Also, PaaS provides scalability, allowing applications
to scale up or down easily based on demand. A standard set of tools in the PaaS
model consists of:

• operating system,
• program environment,
• database and
• application or web server.

A comparative presentation of the traditional approach and the PaaS model of
service provisioning is shown in Fig. 7.6.

Figure 7.6. The jurisdictions in the traditional approach and PaaS model.
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The benefits of PaaS deployment are:

• cost reduction as the users lease the platform (and not just the hardware),
• ability to implement own applications and complete control over them and
• simple integration with other systems.

Today, there are many commercial solutions based on the PaaS model, including
Microsoft Azure (formerly known as Windows Azure), AWS Elastic Beanstalk, and
Google App Engine.

7.4.3 Infrastructure as a Service

The IaaS model provides a virtualized infrastructure over the internet at the users’
requests [192]. Users can manage data processing and storage, network, and other
resources, whereby the user can create and use arbitrary software (operating systems
and applications). They cannot manage the underlying cloud infrastructure but
have full control over the operating system, data stores, and applications. In the
IaaS model, payment for the service is made based on the consumption achieved,
which is measured based on the time spent and the specific resources used. This
cloud service model brings advantages, primarily to new users who are not obliged
to invest in a complete network infrastructure.

A comparative presentation of the traditional approach and the IaaS model of
service provisioning is shown in Fig. 7.7.

Figure 7.7. The jurisdictions in the traditional approach and IaaS model.
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The advantages of IaaS deployment are:

• delivery of resources (e.g., CPU, network equipment, and data storage) as a
service,

• full control over virtual machines,
• the multitenancy approach allows multiple users to coexist and use the same

infrastructure resources,
• dynamic resource scaling according to requirements,
• costs based on the actual use of resources and
• focus on business development.

Today, there are many commercial solutions based on the IaaS model, such as
Elastic Compute Cloud (EC2) and Rackspace.

7.5 Cloud Types

Today, cloud technologies are an integral part of computing in every enterprise.
The reason is that clouds provide various services and secure data storage for cus-
tomers with minimal costs. Each enterprise has specific needs that cloud services
should fulfill. Despite many similarities, which primarily refer to the usage of vir-
tualization and clusterization technologies, operating systems, management plat-
forms, and APIs, we cannot see two identical cloud infrastructures in practice. Dif-
ferences between them are primarily related to clouds’ location and ownership. The
main cloud computing types are private clouds, public clouds, hybrid clouds, and
multi-clouds.

7.5.1 Public Cloud

A public cloud is a model of publicly available infrastructure with services (e.g., stor-
age, computing power, and applications) that are hosted and managed on remote
servers in data centers. Cloud services are delivered over the internet by network
providers (Fig. 7.8). It is the widely used service delivery model for many reasons.
From a financial perspective, enterprises do not have to invest in the infrastructure,
and payment for services is made based on resource usage. Further, from a technical
standpoint, the cloud providers manage the entire infrastructure, and the mainte-
nance and building of new capacities are under their jurisdiction. Users can access
the cloud infrastructure and use services on a pay-as-you-go model whereby they
believe that the cloud possesses an unlimited set of resources. Essentially, that is not
true because users acquire this interpretation through implementing the fast elas-
ticity mechanism (after the termination of use, resources are returned to the pool
and assigned to another user if necessary).
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Figure 7.8. Public cloud.

As previously stated, the complete cloud infrastructure is under the provider’s
jurisdiction. In many cases, providers can decide to distribute their infrastructure
over several locations due to redundancy. So, cloud providers are responsible for
making different decisions, such as service delivery policies, prices, and billing
models. Despite the many advantages of the public cloud, there is a potential
problem with data and network security, which, in some cases, could affect the
efficiency of the business model [124]. Amazon EC2, Google AppEngine, Sales-
Force, and IBM BlueCloud are examples of public clouds.

7.5.2 Private Cloud

A private (internal) cloud (Fig. 7.9) is a model that refers to a dedicated computer
environment exclusively used by one user, such as an enterprise or some organiza-
tion. It operates within the private (enterprise) data center, whereby the enterprise
manages the entire infrastructure, as well as the applications that exist in the pri-
vate cloud [126]. Sometimes, private clouds can also be at a special location, for
example, in the computing centers that are responsible for them.
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Figure 7.9. Private cloud.

Unlike public clouds that serve multiple organizations, the owners of private
clouds have complete control over data, security, reliability, and quality of services.
This way, private clouds can provide greater control, security, and customization
because they allow enterprises to have more control over their data, infrastruc-
ture, and applications while leveraging cloud computing benefits such as scalabil-
ity and flexibility. Private clouds represent the ideal solutions for users with spe-
cific security or performance requirements that public cloud services are unable to
provide. However, such a solution still brings significant costs for enterprises since
it is necessary to build and maintain the entire infrastructure. Besides enterprises,
the private cloud model finds application in academic and research environments.
There are many companies, such as Microsoft, Cisco, IBM, Amazon, and VMware,
that provide private cloud services.

7.5.3 Hybrid Cloud

Hybrid clouds (Fig. 7.10) represent a unique architecture that is a result of a com-
bination of private and public clouds, which remain separate entities. Mutual con-
nections between them allow data and applications to be shared. Enterprises often
decide on a hybrid cloud approach to leverage the benefits of both types of clouds
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while addressing specific business needs, security concerns, and regulatory require-
ments. The key motives are the need to provide strictly confidential data that does
not leave the enterprise’s location and the requirement to avoid costs by using a
large number of resources (e.g., for data processing or storage) for non-confidential
data [130].

Figure 7.10. Hybrid cloud.

Figure 7.10 shows that confidential data and applications are hosted in a pri-
vate cloud environment, which provides more control, security, and customization.
Other data and applications are hosted in a public cloud, offering scalability, cost-
effectiveness, and accessibility. The hybrid cloud design requires special attention,
with careful separation of public and private parts and the definition of different
privilege levels for other services. The integration between private and public clouds
often requires the implementation of specialized technologies that ensure secure
communication and data movement between them. API-driven architectures, vir-
tual private networks (VPNs), and orchestration tools are commonly used to man-
age hybrid cloud configurations. We must note that orchestration is essential for
managing and optimizing hybrid cloud environments, where organizations use a
combination of on-premises infrastructure and cloud services.

7.5.4 Multi-clouds

Multi-cloud (Fig. 7.11) refers to using services from different cloud providers at
the same time. This way, a multi-cloud environment enables the building of a
flexible environment for each workload, which can be private, public, or a com-
bination of both cloud environments [175]. The creation of resource and service
policies independently of vendors offers the possibility of implementing solutions
that best suit specific enterprises’ needs and minimize vendor lock-in. In practice,
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multi-cloud solutions can use technologies like Dockers, Kubernetes, Terraform,
or Pulumi with the aim of providing a greater level of flexibility and portability
to migrate, build, and optimize applications across multiple clouds and comput-
ing environments. However, the management of multiple clouds can be complex
from the integration, security, and data management aspects. Users should track,
secure, and manage their workloads consistently across all environments from a sin-
gle interface. It is not a simple task because each provider uses different tools and
APIs for cloud service management. To provide more efficient management, cloud
providers must incorporate appropriate solutions directly into their products to
enable the required level of visibility and efficient cost and configuration monitor-
ing. We must emphasize the maintenance complexity that arises from the demand
to navigate various service offerings, pricing models, and management tools offered
by each cloud provider. Also, the coordination of updates, patches, and compliance
measures across multiple platforms can be complicated. Generally, the complexity
level depends on many factors, such as the scale of deployment, the diversity of ser-
vices utilized, and the specific requirements of the organization. Some enterprises
opt for automation and adopt standardized practices to mitigate complexities.

Figure 7.11. Hybrid cloud.
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7.5.5 Cloud – Summary

We must emphasize that each cloud type has its advantages and weaknesses, and
the choice depends on the enterprise’s specific requirements and long-term goals.
Table 7.1 shows a comparative view of the benefits, limitations, and use cases of
previously mentioned types of clouds.

Table 7.1. Benefits, limitations, and use cases of different cloud types.

Cloud
type Benefits Limitations Use cases

Public
cloud

Cost-effective – the
pay-as-you-go model
reduces upfront
infrastructure costs.
Scalability – easily scale
resources up or down based
on demand.
Accessibility – accessible
from any location with an
internet connection.
Reliability – is provided
redundancy and high
availability.

Security – data
security can be a
concern due to
shared infrastructure.
Dependency – relies
on the provider’s
infrastructure and
service availability.
Compliance
challenges with
specific regulations.

Ideal for temporary
workloads.
Easily deploy and
scale web apps.
Collaboration tools –
shared documents,
emails, and
collaboration suites.

Private
cloud

Offers more control and
security over data.
It is tailored to specific
organizational needs.
Easier adaptation to specific
compliance regulations.

Higher upfront
investment and
maintenance costs.
It is not as flexible in
scaling compared to
public clouds.
Requires skilled
personnel for
management.

Industries like
healthcare or finance
have strict data and
privacy requirements.
Hosting applications
with specialized
requirements.

Hybrid
cloud

A blend of public and
private clouds offers
flexibility in workload
placement.
Scale resources by
leveraging both cloud
environments.
Use public cloud for less
sensitive data and private
for critical workloads.

Management and
integration can be
complex.
Data movement
between public and
private clouds can
introduce security
risks.

Disaster recovery –
utilize the public
cloud for backup and
recovery.
Seasonal workloads –
scale into the public
cloud during peak
times.

(Continued )
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Table 7.1. Continued

Cloud
type Benefits Limitations Use cases

Multi-
cloud

Reduces vendor lock-in and
enhances flexibility.
Avoids reliance on a single
provider’s capabilities or
outages.
Leveraging different
providers for unique
services.

Different cloud
platforms might not
seamlessly integrate.
Requires robust
management and
monitoring tools.

Ensuring high
availability by
distributing across
multiple providers.
Utilizing different
providers to meet
specific compliance
standards in other
regions.

Issues such as high costs, security and compliance concerns, and vendor lock-in
can cause enterprises to give up on moving entirely to the public cloud. In these
cases, some enterprises even repatriate their workloads back to on-premises infras-
tructure. However, it is a real rarity because enterprises typically choose to build
their cloud using open-source platforms. For them, open-source cloud platforms are
a better choice than a proprietary cloud platform, primarily considering the costs
that arise due to license payments. Further, by implementing open-source plat-
forms, enterprises gain the possibility to choose between many frameworks, tools,
and services. Besides openness, the open-source platforms should deliver advantages
such as guarantees in terms of SLA, testing, and integration offered by proprietary
solutions. In practice, there are many open-source platforms, such as OpenStack,
OpenNebula, CloudStack, and Eucalyptus.

7.6 OpenStack

OpenStack is an open-source platform that emerged on the market in July 2010
as an initiative launched by NASA and Rackspace [193]. This platform is a col-
lection of various software tools used for the creation and management of both
public and private clouds, with the aim of providing users access to remote comput-
ing resources and applications run as services on reliable virtual servers. OpenStack
provides IaaS through a set of interrelated services, such as computing, storage, net-
working, identity, and others. Users can choose to install part or all services, where
each service has an API to enable overall integration. Generally, OpenStack has a
highly modular architecture, which allows the integration of different components
based on users’ needs. Many virtualization solutions can be implemented, such as
ESX, Hyper-V, KVM, LXC, QEMU, UML, Xen, and XenServer; components can
be integrated based on users’ needs. This way, it is possible to build a flexible envi-
ronment adaptable to various applications (the entire code can be modified and
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adapted as needed). Besides flexibility, scalability for different infrastructure sizes is
the next characteristic of OpenStack, which implies the deployment of up to 1 mil-
lion physical machines, up to 60 million virtual machines, and billions of stored
objects [194]. It provides horizontal scaling very easily, which means that some tasks
can run concurrently and serve different numbers of users by just spinning up more
instances [195]. We must emphasize that OpenStack is often used for a validation
testbed in case it is necessary to adopt and develop the new standards.

OpenStack deployment consists of many services (components) whose goal is
to provide an API to access infrastructure resources (Fig. 7.12). It is the following
services [193]:

• Shared services,
• Compute services,
• Hardware lifecycle services,
• Storage services,
• Networking services,
• Workload provisioning services,
• Application lifecycle services,
• API proxy services,
• Web frontend services and
• Orchestration services.

Figure 7.12. The relationships among the OpenStack services.
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Figure 7.12 shows the conceptual architecture, which includes OpenStack ser-
vices as independent parts authenticated through a shared Identity service. The
services communicate through public APIs, except in cases where it is necessary
to use privileged administrator commands. Each service can use at least one API
process, which is responsible for listening to the API requests, preprocessing them,
and passing them to other service parts. Communication between processes takes
place through an Advanced Message Queuing Protocol (AMQP) message broker
(e.g., RabbitMQ, MySQL, MariaDB, and SQLite), and any change of service state
is stored in a database. Users can access OpenStack via the web interface imple-
mented by the Horizon dashboard or via command-line clients and by issuing API
requests through tools like browser plug-ins [193].

7.6.1 Shared Services

Shared services in OpenStack represent components that different tenants can use.
Their role is to provide centralized functionalities for them. This service group
contains identity service, placement service, image service, and key management.

Identity service (Keystone) must be installed within an OpenStack environment
first because it provides authentication and management of user accounts and role
information [193]. It means that this service enables users to access other Open-
Stack services based on their assigned roles and permissions and integrate with exist-
ing backend directory services like LDAP.

The Placement service provides a list of available resources across the cloud, such
as CPU, memory, or storage, providing a complete insight into the available capac-
ity and utilization of computing resources. It assists in the process of resource alloca-
tion (e.g., for a new virtual machine) and determines the appropriate host with the
required resources. This service interacts with the Nova compute service by expos-
ing RESTful API and aims to provide information about available resources before
Nova makes decisions about where to place workloads [193]. The placement service
matches resource requirements with the available resources on the compute nodes
and provides the information needed for optimal resource allocation and efficient
infrastructure utilization.

The Image service (Glance) provides a catalog and repository for disk images,
including operating system images and snapshots [193]. Its primary task is discov-
ering, registering, and retrieving VM images by exposing RESTful API. This way,
it is possible to analyze VM image metadata and retrieve the actual image, which
later can be used as a template for deploying new virtual machines.

The key management service (Barbican) provides a centralized system for the
storage, provisioning, and management of encryption keys, certificates, passwords,
and other sensitive data used in cloud applications. It focuses on security and
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compliance and ensures confidentiality and appropriate, sensitive data management
by offering a set of functionalities, including secret storage, key generation, certifi-
cate management, and a RESTful API for seamless interaction. In this way, other
OpenStack services can securely access and utilize cryptographic keys and sensitive
data, supporting the overall security of the cloud infrastructure.

7.6.2 Compute Services

The Compute (Nova) and Container (Zun) services are the next group of Open-
Stack services. Nova service represents the core of this platform [193]. It is respon-
sible for the lifecycle management of virtual instances (virtual machines) because
it handles the provisioning and management of computing resources within cloud
infrastructure. This service aims to provide a scalable and flexible environment for
the creation and management of virtual machines according to user requirements
(e.g., launching, scheduling, or terminating virtual machines). It runs on top of
existing Linux servers as a set of daemons whose task is to provide appropriate ser-
vice. Sometimes, in literature, OpenStack Compute (Nova) is defined as a cloud
computing fabric controller used for the deployment and management of virtual
instances. Communication with other OpenStack services is required for the estab-
lishment of basic functions. For example, the interactions with services such as
Glance (for accessing and managing images), Neutron (a service for networking),
and Cinder (a service for storage resources) enable the efficient orchestration of
many processes (e.g., resource allocation according to user demands). The efficient
management of computing resources as a prerequisite for IaaS service is provided by
Nova’s modular architecture and robust APIs. However, Nova has limited support
for containers.

For this reason, OpenStack includes Zun service as a component focused on con-
tainer management. Zun provides APIs that enable users to create, manage, and
delete containers within cloud infrastructure. It means that Zun service provides
orchestration and management of containerized workloads, like Nova’s service for
virtual machines. So, users can interact with containers without directly interacting
with the container runtime. Like Nova, Zun communicates with other OpenStack
services like Keystone for authentication, Neutron for networking, and Cinder for
persistent storage, offering a seamless experience for deploying and managing con-
tainers alongside traditional virtual machine workloads.

7.6.3 Hardware Lifecycle Services

The Hardware lifecycle group of OpenStack services consists of bare metal provi-
sioning service (Ironic) and lifecycle management of accelerators (Cyborg) [193].
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Ironic is designed to provide and manage physical bare-metal servers instead of
virtual machines and is used in cases when users require direct access to the under-
lying hardware resources without the virtualization layer. Ironic uses Preboot Exe-
cution Environment client-server interface (PXE), Parallel method invocation com-
putational concept (PMI), or some vendor-specific remote management protocols
to create a unified interface for a heterogeneous set of servers. At the same time,
Ironic establishes an interface for Nova service that allows physical servers to be
managed as virtual machines. This way, it supports various deployment methods,
including local disk images, network-based deployment, and integration with hard-
ware management interfaces. In some cloud environments, hardware accelerators
such as Field-Programmable Gate Arrays (FPGAs), GPUs, or Data Processing Units
(DPUs) are utilized to boost the performance of specialized workloads.

Cyborg represents an OpenStack service focused on providing a framework for
managing them within an OpenStack environment. Also, it allows users to allocate
accelerators to instances managed by Nova to improve the performance of specific
workloads. So, Cyborg provides APIs for requesting, provisioning, attaching, and
disconnecting accelerators to instances, making it easier for users to utilize these
resources as needed.

7.6.4 Storage Services

The next OpenStack service group is a storage service, which consists of the object
(Swift) and block (Cinder) storage services and a Manila-shared file system. Swift
provides highly available, scalable, and redundant object storage, which is suitable
for the cost-effective storing of large amounts of unstructured data [193]. It has
a distributed architecture composed of commodity hard drives without a central
control point, where objects can be written to many storage devices. For data repli-
cation and integrity across the cluster, the OpenStack software is responsible (if one
node fails, OpenStack software replicates data from other nodes). Swift is usually
used for backups, archives, and content distribution, where objects and metadata
are created or modified by using the Object Storage API. This API, implemented
as a set of REST web services, supports the standard (non-serialized), JSON, and
XML serialized response formats.

Unlike Swift, Cinder is a block storage service that provides persistent storage to
Nova virtual machines, Ironic bare metal hosts, and containers in OpenStack [193].
Cinder supports a range of storage backends like Ceph and LVM (Logical Volume
Manager), providing flexibility in storage choices. Cinder has component-based
architecture, which is highly available because it can scale to very serious workloads.
Also, Cinder provides support for process isolation to avoid cascading failures, and
failures should be easy to diagnose, debug, and repair. End users use this service to
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create and manage storage using the Horizon user interface and command line tools
or directly by using the REST APIs. Further, Open Stack uses a shared file system
service (Manila), which allows multiple users and applications to access shared file
storage concurrently by using the Network File System (NFS) or Common Internet
File System (CIFS) protocol. It is useful, especially for applications that require
shared access to files as needed, enabling features like snapshots for backup, cloning,
and scaling storage resources.

7.6.5 Networking Services

In OpenStack, the networking service (Neutron) is responsible for providing net-
work connectivity as a service within a virtual infrastructure consisting of networks,
subnets, routers, switches, and all cloud components and services managed by the
Nova service [193]. The key task of Neutron is to implement an API that will
allow providers to deploy different networking technologies with the aim of pro-
viding network connectivity and addressing in the cloud. This way, providers can
configure and manage a variety of network services, such as firewalls, NAT, or VPNs
(Fig. 7.13).

Figure 7.13. The OpenStack Networking components [193].

Figure 7.13 shows the OpenStack Networking diagram consisting of the follow-
ing components [193]:

• Neutron API server – supports L2 networking and management of IP
addresses and enables routing between L2 networks and gateways to exter-
nal networks.
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• Networking plug-ins and agents – they run on each compute node with
the aim of accommodating different network devices and software, and
this provides flexibility to OpenStack architecture and deployment. Also, it
includes integration with various OpenStack components, such as Keystone
(for authentication and authorization of API requests), Nova (to plug each
virtual NIC on the VM into a particular network), and Horizon (the web-
based graphical interface used for creation and management of network ser-
vices).

• Messaging queue – used for API operations completion by managing RPC
requests between the Neutron server and Neutron agents that run on each
hypervisor.

• DHCP agent – provides DHCP services to tenant networks.
• L3 agent – enables L3/NAT forwarding for external network access of VMs

on tenant networks and requires message queue access.
• SDN services – provides additional networking services to tenant networks.

By implementing Neutron, it is possible to configure different network topolo-
gies and instruct other OpenStack services like Compute to attach virtual devices
to these networks’ ports. This way, Neutron provides flexibility in networking by
enabling the creation of different network types, including:

• Provider networks – leverage the existing physical infrastructure and are typ-
ically used for connecting instances to external networks or the internet.

• Self-service networks – the creation of virtual networks aims to provide more
isolation and flexibility within OpenStack.

Load balancing is an important feature for OpenStack networking because
it is necessary to provide scalable and on-demand load-balancing functionality.
Octavia is the OpenStack component that provides load balancing as a service
(LBaaS), allowing users to manage and distribute incoming application traffic
across multiple virtual machines, containers, or bare metal servers [193]. This
component is suitable for applications that require high availability and scalabil-
ity. It can analyze the state of backend servers and ensure that incoming requests
come to operational instances (Octavia monitors the application’s state and can
remove or add servers automatically). Users can define listeners and pools to man-
age incoming traffic and distribute it to backend servers based on criteria such
as protocols, ports, and load-balancing algorithms. Octavia can be deployed as a
standalone instance or integrated with other OpenStack services like Nova and
Neutron.

OpenStack can enable DNS-as-a-service functionality within the cloud using
the Designate component [193]. It implies a programmatic approach, which
gives users the possibility to provision and manage DNS domains and records
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programmatically. This way, users can create, manage, or delete DNS domains
along with various record types like A, AAAA, CNAME, and more, enabling the
association of domain names with corresponding resources. Integrated with Open-
Stack services (e.g., Nova or Neutron), Designate supports multi-tenancy, provid-
ing secure DNS management. It is achieved through DNS management segrega-
tion, which has a key role in effective and secure DNS design in large environments.
It means that DNS servers within the OpenStack deployment have distinct roles,
with each server dedicated to a single role. With its RESTful API and high avail-
ability configurations, Designate streamlines DNS management, enabling automa-
tion and integration and ensuring the reliability of DNS services in an OpenStack
environment.

7.6.6 Workload Provisioning Services

Magnum is the OpenStack service that is responsible for the deployment and man-
agement of container orchestration engines, such as Kubernetes, Docker Swarm,
and Apache Mesos [193]. Its goal is to simplify their deployment and operation,
allowing users to manage containerized applications efficiently. Magnum enables
users to choose the COE that best suits their application requirements. For exam-
ple, Magnum can orchestrate an image of an operating system that contains Docker
and COE and run it in either virtual machines or bare metal in a cluster config-
uration. Moreover, it is able to manage complete container orchestration engine
life-cycle management, integrated with other OpenStack services.

We must note that Magnum is integrated with other OpenStack components,
such as Keystone (for users’ authentication and authorization) and the OpenStack
dashboard (providing a graphical user interface). Only authorized users and ser-
vices can interact with the Magnum service via RESTful API in a programmatic
way. Users can create, update, and delete container clusters and perform various
operations related to container orchestration. They use cluster templates and spec-
ify configuration parameters that can be relevant to the cluster infrastructure or
the particular COE (e.g., the orchestrator type, number of nodes, node flavors,
networking options, and others). Another important feature of Magnum is sup-
port for multi-tenancy, which implies that different OpenStack components can
create and manage container clusters independently. This way, each component
has its own set of resources for running containerized workloads. Magnum inte-
grates with Neutron to provide network connectivity for container clusters, which
includes configuring network connectivity within the cluster and exposing services
externally.

Many enterprises that use OpenStack have the requirements to simplify the
deployment and management of data processing frameworks, such as Hadoop,
Apache Spark, or Apache Storm. Sahara is an OpenStack service that can complete
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these requirements by defining configuration parameters such as the framework
version, cluster topology, node hardware details, and others [193]. Secure access
to Sahara resources and operations is very important. Sahara integrates with Key-
stone for user authentication and authorization. Only users with permissions can
define cluster configurations using templates and specifying parameters such as
the Hadoop version, node count, and others. It is possible to scale clusters up or
down based on workload demands dynamically (users can add or remove nodes to
adjust the size of the cluster). Also, it is possible to integrate Sahara with another
OpenStack service and allow different OpenStack services to create and manage
their Hadoop clusters independently. This way, providing multi-tenancy Sahara
ensures that OpenStack services have their own set of resources for running big
data processing workloads. It is possible to integrate Sahara with other OpenStack
services like Cinder or Swift, which aims to provide users with additional storage
options for their data processing needs.

Trove is a service that relies entirely on OpenStack and provides Database as
a Service. Its task is to simplify the provisioning, management, and scaling of
relational and non-relational databases, allowing users to deploy their database
instances easily without the need for great database administration skills [193].
Trove supports various database engines, including MySQL, PostgreSQL, Mon-
goDB, Cassandra, and Couchbase, and exposes a RESTful API for programmatic
interaction with users. Users choose the database engine that best suits their appli-
cation requirements.

Database service allows resource isolation and automates complex administra-
tive tasks such as deployment, configuration, patching, backups, restorations, and
monitoring. Users can provision and manage database instances using a self-service
approach. It implies that they can create, modify, and delete database instances
through the Trove API or the OpenStack dashboard (Fig. 7.14).

Figure 7.14. Trove architecture.
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Figure 7.14 shows integration with OpenStack services for orchestration that
enables users to define and manage complex database deployments using appro-
priate templates, which provide the uniform creation and management of database
instances. These database instances are possible to create and manage independently
because Trove supports a multi-tenancy approach and allows different OpenStack
services to create and manage their database instances. Besides integration with
Keystone, which performs users’ authentication and authorization, Trove integrates
with OpenStack services for monitoring and logging because users must have
insights into the performance and health of their database instances and with Neu-
tron for networking.

7.6.7 Application Lifecycle Service

The Application lifecycle management service represents a non-standard Open-
Stack component, which consists of different tools that together enable the man-
agement of various stages of an application’s lifecycle within an OpenStack envi-
ronment. Masakari is an OpenStack service that focuses on ensuring the high avail-
ability of instances and applications running on hosts in the OpenStack cloud. Its
primary goal is to automate the recovery process in case of failures, minimizing
downtime for applications running on the cloud. By automating the recovery pro-
cess, Masakari reduces the impact of potential failures and ensures continuity of
service (Fig. 7.15) [193].

Figure 7.15. The key components of a typical Masakari deployment [193].
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Figure 7.15 shows the Masakari architecture, which is composed of an engine
and two API servers, each performing different functions. To interface with users,
Masakari exposes a REST API, while internally, Masakari communicates via an
RPC message-passing mechanism. The task of API servers is to process REST
requests (it typically refers to reading/writing in the database) and send RPC
messages to the Masakari engine. The engine runs on the same host where the
Masakari API is running and has a manager that is listening for RPC messages.
This engine is responsible for making responses to the REST calls. Generally, the
Masakari continuously monitors the instances or VMs by listening for failure events
(e.g., hardware failures, hypervisor failures, or any other critical issues affecting the
instance’s availability). When a failure event is detected, the role of Masakari is to
identify the affected instances and to notify the suitable recovery method to perform
the necessary actions for failover or recovery. It implies actions such as restarting the
VM on another host, migrating it to a different host, or performing other recovery
operations to restore service.

The next component of the Application lifecycle management service is
Murano [193], which enables the application’s deployment and management in an
OpenStack environment to be simplified. It offers an application catalog, tools, and
APIs to facilitate the packaging, deployment, and lifecycle management of applica-
tions on an OpenStack cloud. The key features of Murano include:

• Application Catalog – contains metadata and deployment instructions, mak-
ing it easier to deploy complex applications with their necessary components
and configurations.

• Application Catalog management – users can create and define application
topologies and configurations through a visual environment or YAML-based
templates. This way, it is possible to make a description of multi-tier appli-
cations and their relationships, specifying components, dependencies, and
configurations.

• Lifecycle management – supports application lifecycle management opera-
tions such as applications scaling (vertically or horizontally based on changing
resource needs), updating (configuration and integration), and monitoring
their state and performance.

The Murano architecture consists of the Murano command-line client, Murano
dashboard, Murano API, Murano engine, and Murano agent (Fig. 7.16).
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Figure 7.16. Interaction between Murano components.

Figure 7.16 shows the interaction between Murano components. Operations,
such as software installation and configuration, can be executed remotely on users’
servers through an AMQP queue to the Murano agent. The communication can
be configured on a separate AMQP instance to ensure that the servers are isolated.
Murano enables integration with various OpenStack services and supports exten-
sibility through custom plugins and components. Murano interacts with these ser-
vices using their REST API through their Python clients, with the aim of preventing
the reimplementation of the existing functionality. Further, Murano automates the
deployment process of applications by utilizing Heat, OpenStack’s orchestration
service. It leverages Heat templates to define and deploy the necessary resources,
integrating with other OpenStack services like Nova (compute), Neutron (network-
ing), and Cinder (block storage) as needed for the application.

The next service within this service group is Solum [193], which is responsible
for providing easier cloud service consumption and integration with the applica-
tion development by automating the source-to-image process and simplifying app-
centric deployment. It is dedicated to integration with various OpenStack services,
like Heat (for orchestration) and Nova (for computing), to facilitate the deployment
and management of applications. The goal of Solum implementation is to auto-
mate the deployment process by abstracting the complexity of infrastructure setup
and application deployment, streamlining the process for developers. Moreover, it
supports multiple programming languages and application frameworks, providing
a flexible platform for different types of applications.

Freezer is a component of the application lifecycle management service group
focused on backup, restoration, and disaster recovery services within OpenStack
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(Fig. 7.17) [193]. Its goal is to protect various resources such as virtual machines,
volumes, images, shared file systems, and databases. It means that the Freezer pos-
sesses the following features:

• Agentless architecture – operates in an agentless mode, utilizing existing
OpenStack services and APIs to perform backup and restore operations with-
out requiring additional software on the target resources.

• Incremental backups – optimizes backup operations by only storing changes
made since the last backup, thus reducing storage requirements and backup
time.

• Multiple backup levels – enables users to perform full, incremental, and dif-
ferential backups based on their specific requirements.

• Support for various workloads – supports different OpenStack services and
resources, including Nova instances, Cinder volumes, Glance images, Swift
objects, Manila shares, and databases like MySQL, PostgreSQL, and Mon-
goDB.

• Backup destinations – allows backups to different locations such as local file
systems, Swift object storage, NFS, or other compatible storage systems.

• Disaster recovery – provides the means to restore resources and data from
backups in case of system failures, data corruption, or other undesirable
events.

Figure 7.17. Freezer architecture [193].
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Figure 7.17 shows the key components of Freezer architecture and the interac-
tion between them [193]. The web interface is used to interact with the Freezer
API for configuration. Its task is to provide features from Agent CLI and scheduler
configurations, such as multi-node backup synchronization, metrics, and report-
ing. The Freezer scheduler represents a client-side component running on the data
backup node. It has daemons for data retrieval from the Freezer API and jobs execu-
tion (e.g., backups, restore, admin, and other actions). These actions are performed
by running the Freezer agent as multiprocessing Python software on the client side.
It has a wide range of options to execute optimized backups according to the avail-
able resources. The Freezer API stores and provides metadata to the Freezer web
UI and the scheduler. Also, it is used to store session information for multi-node
backup synchronization. The Freezer API uses a backend database to store and
retrieve metrics, metadata session information, and job status.

7.6.8 API Proxy Services

Sometimes, users can be required to use an EC2-compatible API within an Open-
Stack environment. For this purpose, OpenStack provides an EC2 API compat-
ibility layer through the nova-api-ec2 service (EC2 API proxy) and allows users
to interact with the OpenStack cloud using the EC2 API, which is the same API
used by Amazon EC2. It is possible to provide a similar interface for instances and
other resources, and users can use standard EC2 command-line tools, SDKs, or
libraries to interact with OpenStack. The main benefit represents the easy migra-
tion of workloads between OpenStack and Amazon EC2.

Even though the EC2 API compatibility layer allows the use of EC2-compatible
tools, there exist some differences or limitations compared to using native Open-
Stack APIs. The native OpenStack APIs use Keystone and provide consistent
and comprehensive access to each OpenStack service for users, which can use
OpenStack-specific resource naming and identifiers. The EC2-compatible API in
OpenStack is a compatibility layer that can facilitate work in the OpenStack envi-
ronment for users familiar with the Amazon EC2 API. The differences exist in
resource naming, functionality, and documentation compared to the native Open-
Stack APIs.

7.6.9 Web Frontend Services

Horizon is the web-based dashboard interface, which is a standard part of the Open-
Stack ecosystem. It provides a visual interface that complements the command-line
tools and APIs available for managing resources. Its goal is to simplify resource
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deployment and management and to provide an overview of various OpenStack
services (Fig. 7.18).

Figure 7.18. Horizon relations with basic OpenStack services [196].

As depicted in Fig. 7.18, by using the Horizon dashboard, it is possible to manage
services, including adding users and setting up role-based access controls. This dash-
board enables users to launch and manage virtual machine instances, view images
available in the cloud, and perform actions such as starting, stopping, and delet-
ing instances. It represents a convenient tool that helps users manage networks,
routers, subnets, and security groups through the Neutron service (e.g., to config-
ure network components, mutual communications between instances, and between
instances and external networks). Generally, Neutron is created to support the NFV
concept and can deploy virtual machines that provide common network services.
OpenStack seeks to support plugin implementations of the virtual machines for
network services and allow cloud users to request a VM and configure parameters,
such as desired hardware and others, to choose a VM image from a list of options
in the Glance repository, and to monitor all VMs [196].

Further, Horizon allows users to manage block storage volumes (Cinder) and
object storage containers (Swift), which includes creating, attaching, and detaching
volumes and managing object storage resources. Finally, Horizon provides necessary
information about resource usage and enables monitoring and other OpenStack
services typically manage metrics. Finally, Horizon provides essential information
about resource usage and enables other OpenStack services to manage metrics and
perform resource monitoring. It can be customized to fit the specific needs of an
OpenStack deployment.
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Skyline is an OpenStack dashboard optimized by UI and user equipment, which
has a modern technology stack and ecology. It is easier for developers to maintain
and operate by users and has higher concurrency performance. This component is
under development.

7.6.10 Orchestration Services

The main component of OpenStack’s orchestration services is the Heat component,
which is responsible for resource orchestration. It uses declarative template formats
through an OpenStack-native REST API to define the design and automate the
deployment and scaling of resources. Heat orchestration templates (HOTs) describe
cloud applications in text files to be readable and writable by humans and managed
by control tools. This way, Heat establishes the relationships between particular
resources, whereby it gains the possibility to call out to the OpenStack APIs to cre-
ate all desired infrastructure in the correct order to launch applications completely
(Fig. 7.19). It implies the creation of most OpenStack resource types (e.g., virtual
instances, volumes, security groups, and other resources) as well as the implemen-
tation of some more advanced functionalities, such as high instance availability and
autoscaling.

[197] 

Figure 7.19. Heat architecture [197].

Despite the primary role of managing infrastructure, HOTs can be used for inte-
gration with software configuration management tools such as Puppet and Ansible.
Operators can customize Heat’s capabilities by installing plugins. For template pro-
cessing, templates are responsible for the Heat engine, which interacts with other
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OpenStack services and aims to create and configure resources and manage the
overall orchestration process. The ceilometer is the telemetry and metering service
in OpenStack, which can be used to collect and store data about the resources and
usage during the orchestration process.

Senlin is an OpenStack service that is responsible for cluster orchestration and
management, providing a framework for creating, scaling, and maintaining groups
of interconnected resources (clusters). The core component is Senlin Engine, which
receives users’ requests from the Senlin API (RESTful API) and interacts with the
underlying OpenStack services to create, scale, update, and delete clusters. Users
make requests that contain profiles and policies. For example, a profile in Senlin
defines the properties and configurations of an individual resource (virtual instance)
within a cluster, such as nodes or storage volumes. We must note that a cluster is
a group of interconnected nodes managed by Senlin, which can be scaled dynami-
cally. The cluster’s behavior is defined using policies, where users define conditions
for scaling actions.

Mistral is an OpenStack service that is responsible for workflow automation. It
implies the definition, execution, and management of workflows, allowing users to
automate complex tasks and processes. Mistral supports the creation of workflows
through a domain-specific language and provides integration with other OpenStack
services. This way, it is possible to establish seamless coordination and execution
of tasks across different cloud resources. It is particularly useful for orchestrating
multi-step processes, handling dependencies between tasks, and automating repet-
itive operations in OpenStack environments. Those steps often represent interac-
tions with components distributed across different machines (e.g., real machines,
virtual machines, or containers). Mistral provides capabilities to automate such pro-
cesses, where users can design, execute, and monitor workflows, enhancing the effi-
ciency and consistency of cloud operations within an OpenStack infrastructure.

Zaqar is an OpenStack service whose main task is to enable messaging and noti-
fication for cloud applications. In practice, Zaqar serves as a multi-tenant messag-
ing service, which enables communication between OpenStack components and
services. It supports the publish-subscribe and message queue patterns and allows
applications to send and receive messages asynchronously. The architecture is scal-
able and reliable, and it can be integrated with other OpenStack services (e.g., ova,
Neutron, and Swift) to facilitate communication between different cloud applica-
tions. Further, it can simplify the development of distributed and loosely coupled
open-stack applications, creating a unified messaging platform that is able to pro-
vide efficient interaction between different cloud services.

Blazar is an OpenStack service that enables efficient resource management
through reservation-based leasing. It allows the reservation of hosts, storage, and
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network resources for a certain time, ensuring dedicated access and predictabil-
ity in a multi-tenant OpenStack environment. Users can define leases with spe-
cific resource requirements, and it automates resource allocation. The system sup-
ports event triggers, enabling automated actions based on specific conditions during
the lease period. This reservation mechanism is useful in cases where users require
dedicated resources, enhancing planning and predictability in resource utilization
within OpenStack.

AODH is an OpenStack service that provides alarming and metering services
for cloud environments (Alarm Orchestration as a Service). In combination with
the Ceilometer, it provides telemetry and metering service, which can be used in
OpenStack for alarm creation based on collected metrics. Users can define rules
and thresholds based on these metrics, generating alarms when certain conditions
are fulfilled. These alarms can trigger automatic actions or notifications, enabling
users to respond proactively to potential issues in their environment. AODH helps
to monitor resource state and performance, supporting a more responsive and auto-
mated approach to managing cloud infrastructure.

7.7 OpenStack Design

Designing an OpenStack infrastructure implies scheduling and configuring differ-
ent components in a private or public cloud. The goal is to create a scalable and
efficient environment with a range of other services. However, before providers
decide on a certain type of cloud, they must analyze financial aspects because,
with the increase in cloud infrastructure complexity, the costs of cloud building
and maintenance get more significant. They must estimate costs increasing as their
cloud scales and opt for solutions that minimize capital expenditure at all layers
of the stack. The usage of cloud brokerage tools should allow the deployment of
the workloads to the most cost-effective platform, and the utilization of depend-
able commodity hardware and freely available open-source software components
can decrease overall costs.

Besides the financial aspects, designing an OpenStack cloud requires a proper
understanding of the user’s requirements, such as providing computing power, stor-
age capacity, and network capabilities. It requires determining the best possible con-
figuration (e.g., private, public, hybrid, or multi-cloud) that suits business objec-
tives. So, if we want to make an appropriate design, we must understand the logical
architecture and implement the following OpenStack modules:

• daemons – usually run as background processes except on Linux platforms
where they run as a service,
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• scripts – they are used for virtual environments installation and tests running,
and

• command-line interface – enables users to submit API calls to OpenStack
services through commands.

Based on users’ requirements, providers choose the OpenStack deployment
model, which includes single-node, multi-node, and high-availability configura-
tions. The deployment quality implies planning the cloud infrastructure carefully.
It is necessary to plan the physical or virtual infrastructure, consider factors like
server hardware, storage capacity, power equipment, and network requirements,
and decide on the number and type of nodes for computing, storage, and network-
ing services. Generally, providers are responsible for designing adequate network
architecture, which can consist of storage, backend, and computing resources, and
therefore must consider factors like high availability and scalability. They must pro-
vide a networking service that can allow full control over the creation of virtual
network resources to tenants. To accomplish this goal, OpenStack uses tunneling
protocols that establish encapsulated communication paths over existing network
infrastructure to segment tenant traffic (e.g., tunneling over GRE or encapsulating
with VXLAN and VLAN tags).

Further important considerations for the design of OpenStack are how to imple-
ment secure identity and access management. In this sense, the implementation
of Keystone can support the configuration of user interfaces and API access and
guarantee high availability for critical components. Security is an important chal-
lenge for OpenStack design because providers must implement robust solutions
for key areas. Besides functions provided by Keystone, security measures should
include network (e.g., firewall rules and encryption for data in transit) and hyper-
visor security. For these reasons, designers must consider how to include the best
practices and possibilities in OpenStack design and secure virtual machine images
by scanning for potential vulnerabilities. It is necessary to implement a proactive
approach to patch management, consistently updating OpenStack components and
dependencies to mitigate potential vulnerabilities and improve overall security. As
a further measure, it is necessary to implement monitoring and logging tools for
prompt incident detection, secure API access through authentication mechanisms,
and regularly audit configurations. Ensure documentation is comprehensive, con-
duct thorough testing, and prioritize security best practices. By managing these
concerns, providers can create a robust and scalable OpenStack environment tai-
lored to users’ requirements.
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7.8 NFV Implementation in OpenStack

NFV, a technology designed to virtualize and consolidate network services in stan-
dard servers, switches, and storage, offers a significant gain in agility, scalability, and
cost-effectiveness compared to traditional networks. OpenStack, an open-source
cloud computing platform, serves as a good infrastructure for implementing NFV
use cases. Typical NFV implementation use cases in OpenStack are:

• VNF deployment – involves implementing networking functions such as fire-
walls, load balancers, routers, and switches as virtual machines or containers
within the OpenStack environment.

• Chaining multiple VNFs to create complex network services – OpenStack’s
Neutron networking service allows users to define service chains by connect-
ing VNF instances in a specific order to process network traffic flows.

• Dynamic scaling – OpenStack’s orchestration service, Heat, can automati-
cally scale VNF instances up or down in response to changes in network
traffic or performance metrics.

• Resource orchestration – OpenStack’s resource orchestration capabilities
enable the automated provisioning, configuration, and management of VNF
instances, including auto-scaling, auto-recovery, and lifecycle management of
VNFs.

• Integration with SDN – OpenStack integrates with SDN controllers such as
OpenDaylight to provide SDN capabilities within the NFV environment.

• Support for virtual tenant networks (VTNs) – OpenStack provides sup-
port, allowing NFV operators to securely isolate and manage multiple VNF
instances for different tenants or customers within the same infrastructure.

• Performance optimization – provides features for optimizing the perfor-
mance of VNFs, such as CPU pinning, NUMA (Non-uniform memory
access) awareness, and DPDK integration, to ensure high throughput and
low latency for network traffic.

• Service assurance and monitoring – OpenStack offers a range of monitoring
and logging services, such as Ceilometer and Aodh, that provide real-time
insights into the performance and availability of VNF instances.

OpenStack, a versatile and scalable platform, empowers operators to efficiently
deploy, orchestrate, and manage virtualized network services. It’s a tool that puts
users in control of their NFV implementation, allowing them to adapt and scale as
needed.
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7.8.1 VNFs Deployment in OpenStack

Deploying VNFs in OpenStack involves several steps to create, configure, and man-
age the virtual instances of network functions [198]. This process begins with the
preparation of an OpenStack environment. It implies ensuring that the OpenStack
environment is properly configured with the necessary computing, networking,
and storage resources. Practically, we must set up compute nodes (hypervisors),
configure Neutron networking for tenant isolation and connectivity, and provi-
sion appropriate storage for VM images and data. The next step is to create a VM
image, which contains the software stack for the desired VNF. This image typi-
cally includes the operating system, required dependencies, and the specific VNF
application software.

Further, it is necessary to define a flavor in OpenStack that specifies the compute,
memory, and disk resources for the VNF instance. Flavors allow the definition of
different resource profiles to serve the requirements of different VNFs. To launch a
VM instance based on the VM image and prepared flavor, we should use the Open-
Stack dashboard or CLI. It means specifying the required network connectivity,
such as the Neutron network and subnet to which to attach the instance. The next
step is to configure networking for the VNF instance according to users’ require-
ments (assigning IP addresses, configuring VLANs or VXLANs, setting up routing,
and configuring security groups to control traffic access). If the VM instance is up
and running, it is necessary to install and configure the VNF software inside the
VM. This step may involve running scripts or configuration files provided by the
VNF vendor to set up the required services and parameters.

By following these steps, we can deploy VNFs in an OpenStack environment and
leverage NFV’s flexibility and scalability to deliver network services efficiently. Life-
cycle management of the deployed VNF instances, including scaling up or down
based on demand, upgrading or patching software versions, and decommissioning
instances when they are no longer needed, is also possible. OpenStack’s orchestra-
tion service, Heat, can be used to automate lifecycle management tasks through
templates and workflows.

7.8.2 The OpenStack Integration with SDN

NFV is used with cloud networks and combined with SDN to provide suffi-
cient power for virtualization and control over network functions. This integra-
tion increases the reliability and security of cloud networks and provides features
like resiliency, load balancing, and QoS in cloud services. From the OpenStack
perspective, it is possible to integrate SDN and improve network services. It is pos-
sible to manage Nova services with a separate Neutron service for networking and
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virtualize the Neutron service by integrating SDN into OpenStack. SDN provides
several novel applications such as resiliency, load balancing, and QoS in cloud ser-
vices to improve the user experience, make it better and more flexible, and enhance
cloud service.

An OpenStack multinode environment can be created with one controller node
and compute nodes with Neutron-Nova services, which combine control and data
plane. After that, it is possible to implement a separate private network with
an interface and subnets to load instances with it. For SDN integration with
OpenStack, it is necessary to use an SDN framework, such as OpenDaylight
(Fig. 7.20) [199].

Figure 7.20. SDN and OpenDaylight integration with OpenStack [199].

Figure 7.20 shows the implementation of ODL with SDN, which includes the
following techniques:

• Neutron ML2 plugins – a framework in OpenStack neutron service for work
with open vSwitch, Linux Bridge, and L2 agents (L2 devices work with Neu-
tron ML2 driver in OpenStack for package forwarding and routing policy),

• OVS – switch designed for massive network automation through program-
matic extension, still supporting network interface protocols (e.g., NetFlow,
CLI, LACP, and others),

• ODL driver – it acts as an interface between OVSDB and ML2 plugins and
uses the OpenFlow protocol for network communication.
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In the context of cloud networking, NFV brings significant advantages. It
enhances network services by integrating SDN and OpenStack cloud. For instance,
we can integrate NFV in OpenContrail distribution [199]. NFV plugins with Neu-
tron ML2 successfully install all Contrail packages in the cloud controller node and
configure them with the SDN controller. It is important to note that OpenCon-
trail consists of an OpenContrail virtual router and an OpenContrail controller.
The virtual router acts as a forwarding plane run on a hypervisor of the virtual
server. At the same time, the controller serves as an interface between northbound
APIs, which have a virtualized server used as a virtual router and connected with
one central gateway router. The integration with OpenStack multinode environ-
ment and SDN with Contrail release involves downloading Contrail distribution
and extracting it on the controller, then installing the dependency of contrail release
and setting up with Neutron to use NFV. Finally, it is necessary to modify the plu-
gin file and activate NFV in Neutron services.

SDN with a decoupled control plane and the use of the OpenFlow protocol
makes it possible to manage a network dynamically with implemented NFV [200].
Cloud orchestrators have the OpenStack application, which can be managed by an
SDN controller using the OpenFlow protocol with SSL. All the network devices
are connected to a central controller to provide double-link resiliency and security
using the NFV and firewall. Network devices connected with virtual routers man-
age dynamic traffic forwarding using a virtual NFV hypervisor router and isolated
network called switch stack (Fig. 7.21) [199].

Figure 7.21. Open Stack architecture with implemented SDN and OpenDaylight [199].

Figure 7.21 shows the cloud network directly connected with switching devices
on the data plane that can manage network routing and cloud network traffic
forwarding. Virtual switching is created using NFV, and the whole network
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function is isolated using OpenContrail. The SDN controller is useful because it
has an OpenFlow mechanism for cloud flow control of service and load balancing
using dynamic request management. So, complete network traffic is managed using
the central SDN controller, which is more stable, secure, resilient, and efficient than
the previous networking techniques.

7.8.3 Support to VTNs

NFV implementation in OpenStack brings many benefits, such as customization of
logical networks according to service requirements, on-demand provisioning allow-
ing resource scaling up or down as conditions change, and network resource isola-
tion for improved reliability and security. A use case that implies the implementa-
tion of NFV/SDN functionalities in OpenStack environments aims at the creation
of SDN-enabled VTNs. VTNs are virtual networks deployed to different tenants
in an isolated way, independently of underlying physical network resources. This
way, it is possible to support specific QoS and SLA requirements, which represent
a trend for SDN usage in the creation of virtual networks (Fig. 7.22) [201].

Figure 7.22. An NFV/SDN architecture design for SDN-enabled VTNs [201].

Figure 7.22 shows that infrastructure SDN controllers are used to create VTNs,
while a new tenant SDN controller is responsible for their management. When an
SDN-enabled VTN deployment takes place, the respective tenant SDN controller
should be manually installed and configured on a dedicated server. This way, NFV
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and SDN integration can enable the virtualization of tenant SDN controllers and
provide fast and dynamic VTN provisioning. Further, we can deploy SDN-enabled
VTNs over multiple data centers and WAN domains, and the goal is to provide geo-
graphically distributed cloud services with specific QoS and SLAs. In this context,
NFV is used to virtualize tenant SDN controllers (e.g., OpenDaylight) [201], con-
trol the underlying SDN-enabled VTNs, and provide fast and dynamic VTN pro-
visioning. OpenStack serves as the VIM for each data center, and an OpenDaylight
controller is used to connect a virtual tenant SDN controller to its respective VTN.
The multidomain SDN orchestrator (MSO) mechanism is needed to create the
VTNs. The MSO creates an abstraction over multiple domains, including different
transport network technologies, thus enabling the composition of end-to-end ser-
vices over heterogeneous WAN networks. Also, the multidomain network hypervi-
sor can be used for the creation of end-to-end SDN-enabled VTNs over the abstrac-
tion provided by MSO. Using the global cloud and network orchestrator, a VIM
mechanism, this architecture integrates geographically distributed data centers and
multiple WAN domains, providing a unified cloud and network operating system
for the creation of end-to-end NFV services over VTNs.

7.9 Conclusion

NFV represents a technology that enables the implementation of network functions
on virtual infrastructure instead of traditionally on dedicated hardware appliances.
Its role in OpenStack is to enable the virtualization of network functions using the
compute (Nova) and networking (Neutron) services. Nova is responsible for the
management and orchestration of virtual machines, and from an NFV perspective,
this component ensures the deployment and management of virtualized resources
for running VNFs. Neutron enables the creation and management of virtual net-
works and connecting VMs and has a crucial role in providing network services
by connecting VNFs. Deployment of VNFs in OpenStack is simplified by using
an orchestration service (Heat), which can automate the resource provisioning. A
higher level of programmability in OpenStack is provided by integration with SDN,
where the SDN controller has a key role. Its task is to improve programmability
and OpenStack’s compatibility with existing NFV-MANO frameworks. The Open-
Stack platform provides interoperability, adhering to open standards and APIs that
facilitate interoperability between different VNFs and NFV infrastructure compo-
nents. This way, it is possible to optimize performance (such as low latency and
high throughput) by implementing specific NFV solutions. Overall, OpenStack
serves as a flexible and scalable foundation for building and managing virtualized
network infrastructures.
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Chapter 8

Service Chaining in Modern
Computer Environments

In the previous sections, we explained the fundamentals of NFV technology and
its role in creating a new network design. We especially emphasized the importance
of service and resource orchestration for the automation of numerous activities
in modern computing environments. The benefits of NFV have been considered
through its implementation in modern network architectures, which have already
become a standard in computing. The benefits of NFV implementation are con-
sidered through the implementation of modern networking techniques that have
already become a standard in computing. This section aims to combine all the fun-
damentals mentioned above and expose integration between NFV technology and
service chaining in modern computer environments. This integration is the instru-
ment of modernizing and optimizing network infrastructure because it allows the
dynamic creation of service paths and the virtualization of network functions. Its
results are improved flexibility, scalability, and resource efficiency in the network
services delivery. The crucial considerations refer to the possibility of introducing a
significantly higher level of network programmability, which should enable virtu-
alized network functions to work together on network service implementation and
improve performance in a virtualized environment.
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8.1 Service Chaining Strategies

Service chaining in a traditional network refers to the process of traffic forwarding
through a predefined sequence of services or functions in a specific order. It is a stan-
dard concept implemented using physical and logical interconnections of network
devices such as firewalls, load balancers, proxies, and others. The goal of service
chaining is to ensure that the network traffic passes through the necessary services
sequentially to achieve objectives such as security, optimization, or monitoring.

In practice, numerous challenges arise from the rigid nature of traditional net-
works, where each change to the path based on traffic classification or any addition
or removal of new network functional blocks requires chain modification or even
complete altering. For example, adding a new function requires the implementa-
tion of new hardware, which represents a time and resource-demanding process.
Sometimes, it is possible to use overlay networks and solve some physical networks’
limitations regarding service chaining. The required hardware already exists, and it
is necessary to perform traffic path rerouting. This solution brings configuration
complexity and depends on the underlying infrastructure (Fig. 8.1).

Figure 8.1. Service chaining in the traditional network [202].

In Fig. 8.1, we show an example of service chaining in a traditional network,
where traffic from a typical web server should reach the Internet. Packets pass
through a gateway (typically providing NAT services) towards a firewall and then
to the server farm. Typically, each link in the chain is a logically separated path,
e.g., a VLAN. Lack of application-level granularity, support for different transport
mediums, or the interconnection between other overlays is another challenge for
efficient service chaining in traditional networks. The existing overlay techniques
are not able to facilitate the transmission of the application-level information along
the data path and its utilization by the intermediate or end nodes (these nodes
cannot influence the packet processing decisions).

The existence of large-scale data centers in networks requires the dynamic cre-
ation of service chains. This way, it is possible to reduce the management and con-
figuration costs of service deployment as well as the connection complexities of a
huge number of network devices. By implementing NFV and SDN technologies in
networks, middleboxes are replaced with VMs, enabling dynamic service chaining.
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New and innovative services can be implemented in a flexible and fast manner and
allow traffic forwarding in accordance with specific flow requirements only through
desired network functions (Fig. 8.2) [202].

Figure 8.2. Dynamic service chaining [204].

As shown in Fig. 8.2, the first request aims to provide access to critical data
from the server and needs only a firewall and load balancer. The SDN controller
is responsible for creating an adequate service function chain in which traffic will
pass through only the firewall and load balancer. The second request aims to enable
access to a web application that might have a gateway for secure communication
between on-premises and cloud environments and a load balancer to distribute
incoming web traffic across multiple servers for improved reliability and perfor-
mance. The SDN controller will create a separate service function chain (SFC) in
which traffic will pass through the gateway and load balancer. The third request will
pass through the firewall and NAT to provide a comprehensive security solution
while efficiently managing IP address utilization. Firewalls handle security policies,
while NAT handles the translation of IP addresses.

Dynamic service chaining brings many advantages, mainly related to the suited
utilization of available resources. These advantages are [202]:

• A high level of flexibility regarding end-to-end service provisioning because
the SDN controller can configure the different service chains for a new cus-
tomer by implementing a new policy.

• Decreasing capital and operational costs – the SDN controller forwards pack-
ets to essential network functions and eliminates network over-provisioning.
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• A better experience for users (individuals, businesses, or any entities that
utilize the network services) – by implementing NFV and SDN, it is possible
to provide scalable, dynamic, flexible, and automatic service function chain-
ing in accordance with users’ requirements.

• A selective increase of capacity (elasticity) – if traffic requirements increase
only for a particular chain, it dynamically leads to an increase in the capacity
of network functions presented in this chain.

8.2 Standardized Architecture for SFC Deployment

The goal of contemporary communications is to create a flexible and efficient net-
work architecture that can adapt to different workloads while ensuring the cor-
rect deployment order of the required services. These services must be inserted
dynamically, with minimum or no disruption to the existing network. By combin-
ing SFC with dynamic cloud scaling, it is possible to achieve an agile and flexible
network architecture that can respond dynamically to new business requirements
and customers’ requests. In this sense, SFC techniques should carry information
from applications and be able to interpret that information.

To solve the requirements for cloud scaling, the Internet Engineering Task Force
(IETF) makes great efforts to propose an architecture for service chaining. Its key
task is to define a methodology that can provide the uniform implementation of
service chaining across the network. Fig. 8.3 shows the precise insight of the pro-
posed SDN-based SFC architecture and its components grouped into control and
data plane [203].

Before describing the interaction between control and data plane components,
it is necessary to explain their roles and particular terms as follows:

• An SFC-enabled domain represents a network or its region that implements
SFC.

• Service Function (SF) – represents a network function, such as firewall, NAT,
DPI, IDS, and others, that is able to provide a value-added service to traffic
flows.

• SFC Classifier – an entity that classifies traffic flows according to classification
rules defined in an SFC Policy Table. It runs as an application on an inde-
pendent (physical or virtual) platform placed on a data path or on top of a
network controller.

• SFC Policy Table – contains classification rules, where each rule consists
of traffic parameters (e.g., MAC addresses) for matching and appropriate
actions identifying the SFC and the service functions that should apply to the
traffic.
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Figure 8.3. A typical SFC architecture [203].

• SFC Header – a header embedded into a packet by the SFC Classifier aims
to facilitate packet forwarding along the SFC path.

• SF Node is any node within an SFC-enabled domain that contains one or
multiple SFs.

• Service Function Instance (SFI) – indicates a service instance on a service node,
such as a firewall, a load balancer, and others.

• Service Function Forwarder (SFF) – responsible for providing service layer for-
warding in such a way that it receives packets carrying the SFC header and
forwards them to the associated SF instances according to the information
contained in the SFC header.

• SF Proxy – represents a network element used when the network service can-
not process the SFC information and is placed before a legacy SF node in
the traffic path to and from this SF. Its role is to facilitate the operation of
legacy SF nodes by removing the SF header and sending de-encapsulated traf-
fic to the SF based on information from the SFC header. Once the service
is processed and the packet is sent back to the SF proxy, then it reinserts the
SF header and path information and forwards the packet to the SFF for the
subsequent steps.

• SFC encapsulation – represents a method for insertion of additional header
information in the data frame after the classifier identifies the traffic to be
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forwarded to the service chain path. There are multiple possible encapsula-
tion headers and existing overlay techniques, such as Layer 3 Virtual Private
Network (VPN) or segment routing (SR) [1].

• Network Service Header (NSH) – an IETF standard for SFC encapsula-
tion [204, 205], which provides a protocol-agnostic mechanism for describ-
ing and implementing service paths within a network by appending a header
to packets. This header consists of information about the service path and
the payload in the form of metadata. The metadata is used in the design-
making process for the service path selection and any other special handling
the packet may need [1].

The control plane has a key role regarding the management of SFC and SF
instances, mapping SFC to a service function path (SFP), configuring forwarding
rules at the data plane components, and adjusting the SFP according to the status
of SF instances and overlay links. It has four interfaces [203] for communication
with the data plane components, which are used as follows:

• C1 interface – enables communication between the SFC control plane and
the SFC classifier. It allows the implementation of SFC classification rules
in classifiers, which are responsible for binding incoming traffic to service
function chains and SFPs according to these rules.

• C2 interface – provides transmission of SFF reports (containing the connec-
tivity status of attached SFs) to the SFC control plane.

• C3 interface – ensures transmission of collected packet-processing statistics
from the Network Service Header (NSH)-aware SFs to control plane, which
uses these statistics to adjust the SFPs dynamically.

• C4 interface – ensures transmission of statistics collected from NSH-unaware
SFs via SFC proxy to the control plane, which uses these statistics to adjust
the SFPs dynamically.

SFC classifier, SFF, SF, and SFC proxy are the main components of the data
plane. The SFC classifier differentiates incoming traffic into flows by using the
target application and other predefined requirements. It tags each flow by adding
an SFC header (which contains the SFP ID) to each flow packet header. The SFP
is the real path whose ID is related to an SFC and identifies the ordered set of
conceptual SFs that must be implemented to the particular flow.

Performing a set of actions (e.g., load balancing) on incoming packets that may
belong to one or a certain number of SFPs is the task of the SF (each SF may consist
of multiple distributed instances). The role of SFF is to send incoming packets to
SFs according to the defined SFPs. It uses and inserts SFP-specific information in
an additional packet header (SFP packet encapsulation). The largest number of
SFs are not capable of recognizing the SFC packet headers (NSH), and therefore,
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it is necessary to implement an SFC proxy between SFF and SFs. SFC proxy is
responsible for stripping off the SFC header from the packet and forwarding it to
the SFI running on the legacy SF node. When the legacy SF node returns the packet
to the proxy, the proxy shall correlate the packet with the SF Chain and add back
the SFC header.

8.3 SDN/NFV-based Architecture for SFC Deployment

In modern computer networks, the emergence of new technologies and communi-
cation types (e.g., IoT and M2M) causes an increasing demand for Internet services.
The static service chaining model in traditional networks requires to be optimized
to provide internet services in terms of reducing CAPEX and OPEX. For this rea-
son, adding new functionality to conventional networks is a very complex task. It
is necessary to combine technologies such as NFV and SDN to overcome the limi-
tations of the static SFC model. NFV is a paradigm for network service provision-
ing that separates the network functions from the physical infrastructure, enabling
VNF implementations as modular software on commercial servers. This way, SFC
builds an application-specific network overlay that determines the placement and
ordering of network functions in a specific service chain. We must note that differ-
ent solutions for VNF placement at physical infrastructure, VNF instances schedul-
ing to run on the servers, and optimal chaining mechanisms for traffic steering in
the network have direct influences on the QoS.

The network architecture based on the NFV and SDN technologies contains
orchestration, control, and data plane (Fig. 8.4). The orchestration plane is respon-
sible for creating SFC strategies, which should enable the control of the global net-
work according to different traffic types and user requests. So, it is responsible for
the end-to-end management and network service orchestration in the administra-
tive domain. Each domain has a network-level manager called the SDN controller,
responsible for network connectivity management. This controller adds flow rules
into the switches’ OpenFlow tables with the aim of orchestrating different VNFs.
According to an adopted SFC strategy, the SDN controller performs the mapping
of VNFs and virtual links onto a substrate network and creates an SFP [202].

Figure 8.4 shows the extended ETSI NFV architecture for SFC deployment. The
SFC orchestrator is a key component integrated with the existing network architec-
ture, whose task is to provide SFC deployment in cloud environments effectively
and flexibly. It means that the SFC orchestrator is responsible for the coordina-
tion, configuration, and management of the SFC processes. Its primary role is to
enable network traffic to span a specified sequence of service functions in the correct
order to satisfy service requirements. For this reason, the SFC orchestrator must
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Figure 8.4. Extended ETSI NFV Architecture for SFC [202].

communicate with the NFVO, which manages operations such as instantiation,
deletion, and scalability of network functions using VIM. It provides the NFVO
with the necessary information to instantiate and manage the service functions in
the correct order.

Practically, the SFC orchestrator manages interconnections of various VNFs to
fulfill specific service requirements. It often works together with policy engines
to implement policies that are designed for classifiers and SFFs and dictate the
behavior of the service chain. SFC orchestrator supports the dynamic adaptation
of service chains based on network conditions, service requirements, or policy
updates and ensures flexibility and responsiveness to evolving network require-
ments. For this purpose, it must include monitoring and analytics to track the
performance of the service chain, detect anomalies, and collect data for reporting
and optimization.

In networks with implemented SDN functionality, it is necessary to establish
interaction between the SFC orchestrator and SDN controller to program the
underlying network infrastructure. The SDN controller provides flow rules in the
flow table of switches for efficient traffic steering through the service functions.
For communication with the NFVO and SDN controller, the SFC orchestrator
uses the new Sco-Nfvo and Sfco-Sdnc components (interfaces), respectively. The key
functional blocks of the SFC orchestrator are the SFC manager and SFC catalog.
The SFC manager is responsible for communication with the SDN controller and
NFVO, and it significantly affects SFC deployment and its management. Also, it
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enables the addition, deletion, and update of the SFC operations and the creation
of a new SFP on top of the SDN controller. The SFC catalog is a database that
stores all information regarding SFP, SFC, and SFC classifier rules [202].

The successful SFC deployment mainly depends upon activities such as:

• instantiation and deletion of operation and
• scaling input/output operations.

One of the important tasks that all components of ETSI NFV architecture (such
as NFVO, VNFM, and SDN controller) should fulfill is to provide the dynamic
deployment of SFC. NFVO should extract and launch VNFGG and provide vari-
ous SFPs that define the specific order of SFs. It sends the request to the VNFM to
initiate and delete the VNFs according to a particular SFC request. After execut-
ing the request, the VNFM is responsible for sending an acknowledgment back to
the NFVO. NFVO receives the acknowledgment and creates a Name Server (NS)
record. NFVO sends this record to the SFC orchestrator and informs it about addi-
tion and deletion operations. The SFC orchestrator parses the VNFFGs received
from NFVO in the NS record and consequently creates flow rules of SFP for the
SDN controller. The SDN controller adds flow rules to the flow table and reports
to the SFC orchestrator about the successful operation of the SFC [202].

For scaling, there is a set of autoscale policies defined at the VNF level. The com-
ponent responsible for monitoring uses a threshold value defined in these policies to
identify changes when parameters (e.g., the average amount of CPU load or mem-
ory utilization) increase/decrease regarding threshold value and generate alarms.
The task of NFVO is to check the scale input/output of action and then request
VNFM to instantiate or delete the VNFs. After execution, the VNFM sends an
acknowledgment back to NFVO. When NFVO receives the acknowledgment, it
creates an NS record for the SFC orchestrator. This record is required for the SFC
orchestrator because it must update the SFP and SFC in accordance with the scaling
operation. Further, the SFC orchestrator must calculate the effective SFP and create
flow rules for the SDN controller. The SDN controller uses these rules to program
flow tables at switches and reports to the SFC orchestrator about successful scaling
operations.

8.4 Virtual Network Embedding (VNE)

Network virtualization is a transformative technology for modern networks, whose
primary entities are virtual networks. SFCs, like any other virtual network, are the
result of combining active and passive network elements (network nodes and net-
work links) on a substrate network. By virtualizing the node and link resources
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of a substrate network, we unlock the potential to create multiple virtual network
topologies. Despite their diverse characteristics, we can co-host them on the same
physical infrastructure. This flexibility, enabled by different methods of resource
virtualization, allows for the management and modification of networks in a highly
dynamic and adaptable manner. Moreover, by introducing network virtualiza-
tion, we divide the management and business roles of service providers into three
groups:

• The virtual network providers, which collect virtual resources from one or
more infrastructure providers,

• The virtual network operators are responsible for installing, managing, and
operating the virtual networks according to the needs of the service providers
and

• The service providers are free of management and concentrate on business by
using virtual networks to offer customized services.

The main resource allocation challenge is embedding virtual networks in the sub-
strate network [206]. The idea is to perform dynamic mapping of virtual resources
onto physical hardware, with the aim of achieving the maximal benefit from exist-
ing hardware. This approach leads to the self-configuration and organization of net-
works, which is necessary for the customization of end-to-end services. The optimal
resource allocation, crucial for various objectives from QoS, economic benefits, or
survivability over energy efficiency to the security of the networks, is ensured by
the embedding algorithms [207]. Implementing network virtualization makes it
possible to use these algorithms to allocate virtual resources optimally on a physical
infrastructure. The virtual network operator uses embedding algorithms to decide
which virtual resources to request from the virtual network provider. The virtual
network provider then instantiates them using the substrate resources of infrastruc-
ture providers (Fig. 8.5).

Figure 8.5 shows that virtual network embedding deals with the allocation of
virtual resources in nodes and links. Thus, it is necessary to solve the virtual node
mapping, allocate virtual nodes to physical nodes, and perform virtual link map-
ping to paths connecting the corresponding nodes in the substrate network. In vir-
tual network embedding, the optimization goals and constraints are crucial for the
quality of the embedding solution. We must emphasize that common optimization
goals are:

• efficient resource utilization (e.g., CPU, memory, bandwidth, and storage)
and reduction of operational costs,

• latency minimization by placing virtual network elements closer to each other
in the physical network,
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Figure 8.5. Virtual network embedding.

• bandwidth optimization by ensuring sufficient bandwidth availability for
each virtual link,

• energy efficiency by consolidating virtual resources onto a smaller number of
physical nodes and dynamically adjusting resource allocation based on work-
load demand,

• implementation of redundancy, backup paths, and failover mechanisms to
mitigate the impact of node or link failures and increase fault tolerance and
reliability,

• load balancing through network traffic distribution evenly across physical
resources to prevent overloading of individual nodes or links.

Ensuring that the physical infrastructure has sufficient resources (CPU, mem-
ory, bandwidth) is not easy because resource constraints may vary based on the type
of virtual network functions and services [207]. Further, it is crucial to emphasize
that the embedding solution must respect the underlying physical network topol-
ogy, as this is a significant requirement. The solution should also satisfy virtual
network connectivity requirements. Meeting the QoS requirements specified by
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the virtual network, including latency, jitter, packet loss, and throughput, is very
important because any failure can lead to degraded performance and user dissatis-
faction. Security and isolation also introduce some constraints because the provider
hosts multiple virtual networks belonging to different tenants on the same phys-
ical infrastructure. Each tenant may have distinct security requirements and may
be running applications with sensitive data. In such a multi-tenant environment,
it is crucial to ensure that the resources allocated to one tenant’s virtual network
are isolated from those of other tenants to prevent potential security breaches or
data leaks. Finally, design embedding algorithms and techniques that can be able
to adapt dynamic changes in network conditions (e.g., workload fluctuations, net-
work failures, and resource additions/removals) must be flexible and scalable to
support large-scale virtualized environments.

The problem of virtual network embedding is challenging, and there is a wide
range of approaches and techniques aimed at finding efficient solutions under var-
ious optimization goals and constraints [208]. Some of them include:

• Greedy algorithms – these algorithms make locally optimal decisions at each
step, leading to an overall solution [209]. For example, the first fit algorithm,
which assigns virtual nodes to physical nodes iteratively based on resource
availability, and the shortest path algorithm, which maps virtual links onto
physical links with the shortest path length, are prime instances of the suc-
cessful implementation of Greedy algorithms.

• Integer linear programming – treats VNE as an optimization problem with
binary decision variables representing the mapping of virtual nodes and
links [210]. Objective functions and constraints are defined to optimize vari-
ous objectives and satisfy resource constraints. However, these approaches are
computationally expensive for large-scale instances.

• Heuristic algorithms – these algorithms, such as genetic algorithms, simu-
lated annealing, and particle swarm optimization, offer efficient solutions by
exploring the solution space using iterative search procedures [211]. They are
particularly valuable in their ability to find near-optimal solutions in large-
scale virtual network embedding instances, providing a sense of reassurance
in their practicality.

• Machine learning – can be used to predict optimal VNE mappings based on
historical data, network characteristics, and performance metrics [212].

8.5 Challenges for Service Function Chaining

The implementation of dynamic service chaining brings several benefits, but it
also comes with many challenges. One of the challenges is related to dedicated
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topology. For the implementation of network functions, the network topol-
ogy represents a core component. The dependency between the implementation
of network functions and network topology limits redundancy, scalability, and
resource utilization. Also, dedicated network topology impacts the complexity of
network configuration required for SFC deployment. Any change in service chains
(service addition or deletion) causes a modification in the chain’s order and network
topology. Accordingly, it is necessary to change the chain’s configuration, which
produces additional complexity. As the number of services and the complexity of
service chains increase, maintaining scalability becomes crucial. Providing that the
system can handle a growing number of service instances and adapt to changes
in network scale without compromising performance is challenging. That is the
reason why the provider wants to keep network topology the same once they have
installed, configured, and deployed the network.

The next challenge is related to the dynamic ordering of service functions. The
number of services in each SFC is independent of others, but currently, SFCs are
rigid because they are built based on manual configuration. In traditional networks
with implemented static chains, packets pass through the chain, even though some
requests require only a subset of services. It is the reason for implementing dynamic
service chaining using NFV and SDN technologies. The replacement of traditional
middle-boxes with VMs enables packet forwarding through desired network func-
tions according to specific requirements. Adapting service chains dynamically based
on changing network conditions, user requirements, or service policies can be com-
plex. In this sense, the SDN controller has a key role in creating chains dynamically
and forwarding traffic intelligently to a particular network function based on the
label, such as VLAN, source MAC address, or network service header (NSH) [202].
Ensuring that the network can quickly and seamlessly reconfigure service chains in
real-time is a challenge.

The task of placing Service Function Chains (SFCs) with survivability con-
straints is complex. It involves ensuring that the mapped SFCs remain functional
and operational even in the presence of failures or network disruptions. This chal-
lenge is particularly crucial in critical network environments where uninterrupted
service delivery is essential (e.g., in fog networks) [212]. We want to emphasize the
following several aspects of this challenge:

• Survivability constraints specify the level of resilience required for the SFCs.
It includes ensuring that backup resources or paths are available to reroute
traffic in case of failures, maintaining certain levels of service availability, and
minimizing service disruptions during failure recovery.

• Failure scenarios include link failures, node failures, and even multiple simul-
taneous failures. Each of them may require different survivability mechanisms
and placement strategies to ensure continued service operation.
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• Resource redundancy involves provisioning backup resources or redundant
SFC instances to handle failures. However, it increases the costs of resource
utilization and the complexity of managing redundant resources.

• Failure detection and recovery enable the identification and beginning of
recovery procedures. Usually, it includes traffic rerouting along backup paths,
activating standby resources, or dynamically reconfiguring the SFC place-
ment to bypass the failed components.

• Dynamic adaptation provides answers to changing network conditions and
traffic patterns. These mechanisms can continuously monitor the network
and adjust the placement of SFCs accordingly to optimize resource utilization
while meeting survivability requirements.

• Optimization trade-offs ensure a trade-off between survivability and other
optimization objectives, such as minimizing resource usage or reducing
latency. Balancing these incompatible objectives requires sophisticated opti-
mization algorithms that consider multiple factors and constraints simulta-
neously.

• Standardization and best practices define guidelines for designing survivable
network architectures and services. These standards can ensure interoperabil-
ity and compatibility with existing networking technologies.

Solving the challenge of placing SFCs with survivability constraints requires a
comprehensive understanding of network architecture, resilience mechanisms, and
optimization techniques. The focus, in this case, is on developing efficient algo-
rithms, protocols, and architectures to ensure reliable and resilient service delivery
in dynamic and heterogeneous network environments.

Different vendors may implement various service functions or orchestrators.
Ensuring interoperability between diverse components is crucial to avoid vendor
lock-in and promote flexibility in choosing network equipment. However, intro-
ducing service functions and their chaining can create security challenges, espe-
cially if multiple service functions process sensitive data. VNFs can be vulnerable
to security attacks, and the whole service function chain can fail. For this reason,
it is necessary to provide a stable and robust SFC architecture. Providing integrity,
confidentiality, and secure communication between service functions is crucial for
protecting network traffic.

In certain scenarios, the deployment of SFCs extends across infrastructure man-
aged by distinct providers [213]. This expansion introduces a significant level of
complexity and a multitude of challenges, primarily due to the following factors:

• Different infrastructure providers have strict policies regarding the disclosure
of confidential information about their network architecture, performance
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metrics, and resource availability. It limits the visibility and information shar-
ing necessary for effective SFC placement and management.

• Each provider has its proprietary network technologies, management systems,
and APIs, which lead to interoperability challenges when integrating SFCs
across heterogeneous environments.

• Coordinating resource allocation and sharing across multiple provider
domains while respecting each provider’s policies and constraints requires
implementing mechanisms for negotiating resource requirements, enforcing
service level agreements, and managing resource contention in multi-domain
environments.

• Different providers may have divergent policies and governance models
regarding network access, traffic management, and service delivery. For this
reason, it is necessary to harmonize these policies and ensure compliance with
regulatory requirements.

• In the event of failures or disruptions, ensuring quick detection, isolation,
and recovery while spanning multiple provider domains requires robust fault
management mechanisms and coordination between providers.

• Billing and settlement processes across multiple providers for SFC usage add
complexity. It involves accurately measuring resource consumption, aggregat-
ing usage data across provider domains, and facilitating fair and transparent
settlement mechanisms.

Overcoming these challenges necessitates a high degree of collaboration among
various stakeholders, including service providers, network operators, regulatory
bodies, and standardization organizations. The importance of standardization
efforts, such as IETF documents and industry consortia, cannot be overstated.
These initiatives aim to develop common frameworks, protocols, and interfaces
for inter-provider SFC deployment. Furthermore, the potential of innovative tech-
nologies like blockchain and federated learning to provide secure and decentral-
ized coordination in multi-provider SFC environments should be a topic of future
research.

The optimal mapping of SFC to the substrate network also represents a chal-
lenge because it is necessary to strategically implement service functions in the net-
works to achieve optimal performance, efficiency, and resource utilization [214].
The reason for VNF placement or SFC resource allocation problems is that defin-
ing, managing, and enforcing policies that control traffic, load balancing, and
other aspects of service chaining can be complex. Ensuring consistency and coher-
ence in policy management across different services and network segments is
challenging. We must note that service chaining introduces additional process-
ing steps, potentially impacting network performance and introducing latency.
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Optimizing the performance of individual service functions and ensuring that
the overall service chain meets performance requirements are also important
challenges.

8.5.1 Optimal Placement of SFC – Use Cases

Models of SFC optimal placement are mechanisms for optimizing various network
parameters, such as allocated bandwidth, end-to-end delays, or deployment cost.
It’s important to note that the SFC is important for more than just network ser-
vices. Its architecture is also crucial for transport services, multimedia services, and
application services. The goal of optimal SFC placement is to bring significant
benefits, including reduced delays, minimized network capacity requirements, effi-
cient allocation of user demands to service functions, and effective routing of traffic
through different service functions, all with a strategic focus on resource allocation.
Scattered and multiple instances of service functions direct user requests to move
through various service functions, forming dynamic service chains [215]. The SFC
model must be flexible to accommodate the dynamic user demands and service
policies (e.g., users sometimes change their position rapidly, and the service pol-
icy can vary based on latency). In this sense, the placement of SFC should per-
form automatically, saving significant time and reducing operational costs. How-
ever, automation includes the implementation of different optimization strategies
to choose the optimal parameter values and improve end-to-end performances. In
some cases, the optimization models are not scalable to larger networks, so it is
important to develop approximation algorithms for better scaling. This approach
results in a reliable carrier-grade SFC model, enabling high availability and fault
tolerance.

So, one reason for the SFC placement optimization is to achieve savings in net-
work link capacities (Fig. 8.6) [214].

Figure 8.6 shows a regional office for a hypothetical application service provider,
with its service accessible to users via the Internet. The service is composed of three
virtual functions (e.g., firewall, proxy server, and business logic) in a specific order.
Depending on the deployment locations of these virtual functions, the packets
traverse different links and, finally, different paths. It represents a common sce-
nario in today’s networks, given the distributed nature of physical resources and
end users. The path (indicated by the dashed red line in Figure 8.6) represents
the optimal solution, demonstrating how SFC placement optimization can save
link capacities and reduce delays. Errors in service placement can lead to addi-
tional delays, complex reconfigurations, and increased OPEX and CAPEX. This
fact highlights the urgency and necessity of implementing SFC placement opti-
mization strategies.
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Figure 8.6. Savings in network link capacities with optimal placement of SFC [214].

In certain cases, a cloud service provider may choose to offer distributed micro-
datacenter (micro-cloud) capabilities to its mobile users. These micro-clouds,
strategically located at the edges, are equipped with web servers for fast updates to
the users, representing a concept already in use at the cellular base stations in 5G/6G
networks [216]. This approach has some challenges. For example, the database
servers and resource-intensive computing servers remain in the core cloud loca-
tions, causing user requests to traverse to multiple clouds for fulfillment (Fig. 8.7).

Figure 8.7 shows that a user from user base 1 must follow the path represented by
the solid black line (as it requires access to the database or the computing servers).
In contrast, a user from user base 2 has to follow the path represented by the dotted
line (as it only needs a fast response from the web server). The selection of these
paths is crucial and depends on the type of services offered to the end users. Proper
service chains must be formed and operated across multiple clouds at the appli-
cation level. This scenario is particularly relevant in the case of technologies like
IoT, which handle massive amounts of data where packets traverse through mul-
tiple applications or services [217]. The use of SFC as a dynamic steering tool for
IoT-related big data underscores its importance.
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Figure 8.7. SFC use case at the application level across multiple clouds [214].

8.6 Conclusion

The SFC implies packet forwarding along a predetermined sequence chain of VNFs
and represents a common service in networks with implemented NFV and SDN.
Since there are multiple VNF instances, it is necessary to select and place the
required VNF instances in the correct order to fulfill the routing of SFC flows.
So, in modern networks, NFV provides the virtualized infrastructure. At the same
time, SFC should be installed as a dynamic path for traffic flow through virtualized
network functions, creating a customizable and efficient service delivery framework.

It is necessary to provide an appropriate framework for NFVO to design effi-
cient NFV management and orchestration. This framework should allow the cre-
ation of the sequential forwarding of network traffic through a predefined set of
service functions to fulfill specific service requirements. Generally, SFC orchestra-
tion is a component of a larger network architecture that includes NFV and SDN
functionality. Its focus is to solve tasks such as defining and managing VNFFGs,
which represent the order and connection points of different VNFs. Interaction
between SFC and NFV orchestrators has the goal of ensuring the correct instan-
tiation and lifecycle management of VNFs. SFC orchestration also involves policy
enforcement, dynamic adaptation to changing conditions, and coordination with
SDN controllers for efficient traffic steering. This way, it is possible to optimize
service delivery, improve network efficiency, and provide flexibility in defining and
adapting service chains based on growing requirements.
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Chapter 9

NFV and Network Slicing

The network slicing concept has occurred because of advancements in comput-
ing and the emergence of NFV technology. It enables the partition of a physical
network into many logical networks, where each one provides tailored services for
a certain application scenario. Such logically isolated networks represent flexible
network entities, which can be customized for different use cases using the same
physical infrastructure simultaneously. The main challenge in the slicing is related
to the separation of the existing large monolithic network functions implemented
on legacy hardware into multiple software-based modular network functionalities
with variable granularity [218]. Legacy hardware is designed as cohesive devices
and does not possess the flexibility required for network slicing. For this reason, it
is necessary to provide solutions that can enable the seamless separation of network
functions, such as the integration of virtualized instances into existing hardware.
The successful transition to a sliced network architecture means allowing dynamic
and efficient allocation of resources while preserving the functionality of legacy
systems.

Today, NFV and network slicing represent key technologies in the field of mod-
ern networking that have significant roles in the development and optimization
of advanced networks. In essence, they are complementary technologies that con-
tribute to the evolution of flexible, efficient, and customizable networks, espe-
cially in the context of emerging 5G/6G networks and the increasing variety of
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services and applications. By implementing these technologies, operators get the
opportunity to create customized service chains and deploy, scale, and interconnect
network functions dynamically in response to varying service demands. Further,
the idea of 5G/6G networks is to provide flexible chaining of cloud-native func-
tionalities on demand in the form of different network slices supporting various
requirements. The integration of NFV and network slicing brings numerous ben-
efits, such as resource optimization, service customization, faster deployment of
new services, the opportunity to build scalable infrastructure according to different
demands, and cost efficiency.

9.1 Network Softwarization

Network softwarization represents a leading trend in networking that aims to trans-
form networks by introducing more programmability into networks. This trend
implies the deployment of software-based solutions and wider implementations of
NFV and SDN technologies, which provide the appropriate level of flexibility and
modularity required for the creation of slices as logical (virtual) networks on one
physical infrastructure. In essence, network slices represent E2E logical networks
created on-demand that are mutually isolated [219]. Slices have independent con-
trol and management, and they are flexible in responding to specific requirements
that refer to appropriate use cases. The 3GPP (3rd Generation Partnership Project)
defines network slicing as a technology that allows the operator to create networks
customized to deliver optimized solutions for various scenarios that require differ-
ent requirements. (Fig. 9.1) [220].

The goal of network softwarization is to create a new design and implement more
programmability in different network segments, such as RANs, transport networks,
mobile-edge networks, and network cores. It is not an easy task because each net-
work segment has different requirements and technical characteristics, so the levels
of softwarization are different [221].

Network slicing emerges because of the need to manage different verticals with
different applications, going from broadband services to critical applications such as
industrial networks. In any of these scenarios, it is necessary to implement custom-
designed solutions and perform network slicing. The next-generation mobile net-
works (NGMN) alliance recognizes the core network as the first step of network
slicing. It sees the core network as a collection of 5G/6G network functions com-
bined to fulfill specific use cases and avoid all unnecessary functionalities. In prac-
tice, with network slicing implementation, providers introduce more flexibility in
their networks, and each service has a different dedicated core network slice cre-
ated to guarantee QoS accomplishment. Further, network slicing implies having
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Figure 9.1. Network slicing.

ad-hoc U/C (user/control) plane functionalities for each use case, which increases
the scalability and reduces the signaling overhead and latency by means of avoiding
all unnecessary functionalities. Each network slice, corresponding to a specific use
case, incorporates unique functionalities in the user and control planes to fulfill the
specific requirements of that use case (e.g., a network slice designed for intelligent
cars requires ultra-low latency communication to support real-time data exchange
for features like autonomous driving).

Network slicing represents a solution that provides network softwarization and
enables the robust management of multiple verticals simultaneously. The central
place has the core network design using VNFs and following the SDN/NFV archi-
tectural principles [221]. We must note that VNFs run in virtual machines on
standard servers deployed at different network sites based on specific service require-
ments. For example, network slices can use core network and service VNFs based
on the required storage capacity and latency of the requested service.

Network softwarization is only possible with the deployment of software-based
solutions in transport networks. In practice, there is a clearly stated requirement
to respond to 5G/6G RANs needs. For this reason, it is necessary to implement
transport networks as a platform where different user and network services can
be accommodated. Such transport networks imply using appropriate interfaces
in SDN/NFV infrastructures that should enable easy implementation of resource
discovery and optimization mechanisms in the control plane. The main task of such
programmable transport networks is to provide tightly coupled interactions with
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the RAN. It is a prerequisite for efficient coordination of functions such as mobility
and load balancing.

One of the important requirements for modern networks is to move applications
and network functions closer to the end-user. It means extending data centers to
the network edge and network edge virtualization that should leverage SDN, NFV,
and information-centric networking (ICN). The main idea is to create a smart
and content-oriented edge that can fulfill high-demanding requirements such as
throughput and an improved QoE. Such softwarized network edge includes high
bandwidth, low latency, location awareness, and real-time insight into radio net-
work information. Further, the implementation of software-based solutions into
the network edge aims to collect information in real-time and make efficient use of
available resources by reducing the traffic volume directed to the network core.

Network softwarization implemented using NFV and SDN technologies is fun-
damental for programmable networks. They enable the decoupling and abstraction
of network functions and provide the required level of network efficiency, reliability,
and service flexibility. New management and network services require more than
the utilization of open APIs and numerous Software Development Kits (SDKs).
It is necessary to make further progress in network softwarization, which mainly
leads to building a more flexible core infrastructure that can fulfill more complex
QoS requirements. In practice, it is necessary to follow modern trends in network-
ing, such as network cloudification manifested in specifications for SDN and 5G
mobile edge or multi-access edge computing. When the network runs on the cloud,
operators can be innovative and offer new, cost-effective, and dynamic QoS man-
agement. Customization and optimization of network slices is one of the solutions
that defines a new slice organization by grouping similar services in a single slice
(Fig. 9.2) [24].

Figure 9.2. 5G/6G multi-slice environment [24].
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In Fig. 9.2, we show the previously mentioned service group organization of
network slices. Different providers that offer the same service are grouped into a
single slice. For isolation between them, it is necessary to use the existing network
segmentation mechanisms, such as VLAN or VXLAN. This way, it is possible to
provide a high level of scalability since the number of slices is not limited. The
proposed solution uses VXLANs that ensure separate providers that offer the same
service group (each slice can contain up to 224 different providers belonging to a
single service group) [24]. Users can access other slices and choose technical and
cost-effective solutions and service providers that offer the desired services.

Virtualization and deployment of its different techniques have special impor-
tance when it comes to smart environments that should be created in 5G/6G
networks. These environments require uninterrupted connections when users
dynamically change location and move from one network to another [222]. It rep-
resents a great challenge, which can be accomplished at the L3 layer by establishing
full interoperability and integration of heterogeneous networks, which is necessary
for the continuity of communication sessions. Although SDN technology with the
utilization of virtual IP addresses solves the problem, there is an issue related to the
implementation of its homogeneous environment. The reason is cost, given the
enormous investments in existing networks. Slicing and deployment of the opti-
mal set of SDN features is a solution that provides full L3 mobility and includes a
common controller to manage the IP address translations.

9.2 Network Slicing Concept and Key Principles

The NGMN (next-generation mobile network) alliance is a forum founded by
world-leading mobile network operators that first introduced the term network
slicing [223]. Its main goal is to perform changes within next-generation network
infrastructure, service platforms, and devices with the intention to satisfy end-user
demand and expectations. This forum defined network slices as E2E logical net-
works that can run on a physical or virtual infrastructure, mutually isolated, with
independent control and management that is possible to create on demand. Each
slice can span multiple domains, including radio access networks, core networks
running on distributed cloud infrastructure, and transport networks supporting
flexible allocation of VNFs. As a self-contained and programmable logical struc-
ture, the slice can adapt to changing requirements and provides a multi-service and
multi-tenant approach. So, each slice can fulfill the specific requirements of dif-
ferent services, applications, or user groups. It is necessary to emphasize that slice
as a virtualized end-to-end environment can be opened for third parties, which
differentiates network slicing from network sharing (Fig. 9.3) [221, 224].
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Figure 9.3. The NGMN network slicing concept [224].

Figure 9.3 shows that NGMN slice capabilities consist of the following three
layers:

• Service Instance Layer (SIL) – represents each service (e.g., end-user service
or business service) provided by the network operator or by third parties.

• Network Slice Instance (NSI) – provides the network features that the ser-
vice instance requires. NSI may be composed of one or more sub-network
instances, which another NSI may share.

• Resource Layer (RL) – provides all virtual or physical resources and network
functions that are necessary to be used for NSI creation.

Besides 3GPP, the ITU, like other standardization bodies, defines network slic-
ing from its perspective. The ITU sees network slicing as the key concept in network
softwarization, whose task is to enable the creation of logically isolated network par-
titions (LINP) by combining multiple virtual resources, isolated and equipped with
a programmable control and data plane. It means that ITU observes network slicing
as a mechanism that allows network operators to customize each slice based on the
specific needs of the services or applications it serves. Further, ITU treats slice isola-
tion as a method to ensure that the performance, security, and other characteristics
of one slice do not affect others.
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Network slicing is also necessary to observe from a business perspective. Each
slice represents a particular combination of network resources, functions, and tools
required to satisfy a specific business case (service), including OSS, BSS, and
DevOps operations. In practice, it is possible to identify two types of slices:

• Internal slices – network partitions used for internal providers’ services, where
providers retain full control and management of them and

• External slices – network partitions used for customer service hosting. They
appear to the customer as dedicated networks/clouds/data centers.

The goal of network slicing is to design a logical entity that can offer end-to-
end service characteristics containing RAN, core network, and transport network
components. It implies that each slice has its set of parameters, such as latency,
bandwidth, reliability, and security features, to fulfill the different service require-
ments. Basic principles that describe network slicing and its operation on 5G/6G
networks are the following:

• Orchestration and automation – these are necessary to provide efficient man-
agement and control of the slice creation, modification, and deletion. In this
sense, the orchestration systems should enable the coordination of resources
across the network to deliver the desired slice features.

• High reliability, scalability, and isolation – the main goal is to ensure per-
formance guarantees and security for each tenant. The efficient scaling of
resources is provided to fulfill the requirements of new use cases or increased
user demand. The isolation mechanism ensures that the traffic of one slice
remains separate and secure from other slices.

• Programmability – simplifies the provisioning of services, manageability of
networks, and integration and operational challenges, especially for support-
ing communication services. Dynamic resource allocation allows efficient
use of network resources and ensures that each slice receives the necessary
resources when needed.

• Slice customization – network slicing enables each network operator to cus-
tomize each slice based on the specific needs of the services or applications it
serves.

• Network resources elasticity – it is possible to implement an effective
and non-disruptive reprovisioning mechanism and scale up/down allocated
resources. This way, providers offer users the desired SLA regardless of their
location.

• Hierarchical abstraction – involves the organization of different abstrac-
tion levels within a network infrastructure, with the aim of providing effi-
cient management of virtualized network slices tailored to specific service
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requirements. At the top level, there is a high-level abstraction representing
overall service needs, followed by individual network slices that encapsulate
specific use case characteristics, and finally, the lowest level dealing with the
physical and virtual resources.

9.3 ONF Network Slicing Architecture

Open Networking Foundation (ONF) defines the SDN architecture as dynamic,
manageable, cost-effective, and adaptable for the high-bandwidth, dynamic nature
of modern applications. By decoupling control from the data plane, SDN enables
the creation of a programmable control plane and the abstraction of the underlying
infrastructure for applications and network services. Such an approach is in accor-
dance with the key principles of the 5G/6G network slicing, which should provide
the fast and cost-effective deployment and adaptation of services to changing mar-
ket demands. Therefore, the SDN technology can be observed as a tool that allows
providers to achieve the key principles of network slicing.

Besides the SDN controller, the key components of SDN architecture are infras-
tructure resources and network functions that enable the fulfillment of service
requirements. The main component is the SDN controller, which performs an
intermediary role between clients and resources, acting as a server and client simul-
taneously. In practice, the SDN controller operates via client and server contexts,
respectively, to enable server-client communications [219]. The term client context
refers to information required for a controller to perform its tasks successfully. For
example, the resource group is information that the controller uses to provide the
resources required for successful service delivery to customers. Further, customer
support comprises information that the controller requires to provide appropriate
support for customer operations, including different policies that regulate customer
rights and their interactions with the controller. The server context comprises infor-
mation required for the controller’s interaction with resources specified in a resource
group (Fig. 9.4).

Figure 9.4 shows the process by which the set of resource groups accessed through
server contexts transforms to those defined in separate client contexts. As a key
component, the SDN controller is responsible for the virtualization (abstraction
and aggregation/partitioning) of the underlying resources. The goal is to provide a
specific resource group for client needs according to the information contained in its
client context. Further, the SDN controller performs orchestration and optimally
delivers the selected resources to different resource groups. The administrator is
responsible for the controller’s configuration, which includes the creation of server
and client contexts and the implementation of their associated policies. So, it is easy
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Figure 9.4. ONF SDN network slicing architecture [219].

to conclude from this figure that SDN supports slicing because the client context
provides the required virtual resource group and control logic that forms a slice.

9.4 Management and Orchestration

Increasing the number of slices affects the complexity of network management.
Therefore, it is important to implement a solution for 5G/6G slice management
and orchestration based on the usage of the enhanced existing NFV MANO frame-
work (Fig. 9.5).

Figure 9.5 shows a solution for 5G/6G slice management and orchestration
based on the enhanced NFV MANO framework. MANO orchestrates the alloca-
tion of physical and virtual resources (e.g., computing, storage, radio, and network
resources) to satisfy the specific requirements of each network slice. It ensures iso-
lation between different network slices to maintain the security and performance
of each slice. Moreover, it provides dynamic scaling of resources to adapt to chang-
ing demand and traffic patterns in real-time. We must emphasize the importance
of inter-slice coordination, where MANO has the task of managing dependencies
and interactions between different network slices that represent E2E logical struc-
tures consisting of 5G/6G RAN slices, 5G/6G TN (transport network) slices, and
5G/6G CN (core network) slice subnets [24]. Each of these subnets may consist of
further subnets; for example, the RAN subnet decomposed further into fronthaul,
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Figure 9.5. Slice management and orchestration architecture [218].

midhaul, and RAN network functions. So, it is necessary to ensure that changes or
issues in one slice do not adversely affect others.

The MANO system is responsible for creating, modifying, and deleting network
slices based on the service providers’ and users’ requirements. It can be performed
by defining the slice parameters, resource allocation, and associated policies. Also,
MANO manages the configuration of VNFs and physical resources to ensure that
each slice achieves its performance objectives. The MANO system manages the
activation and deactivation of network slices dynamically based on demand, traffic
patterns, and service-level agreements. It is easy to notice the enhancement of the
existing OSS/BSS system with the slice MANO functionality, which uses the capa-
bility exposed by NFV orchestration for network service and VNF lifecycle man-
agement. Policy management, monitoring, and analytics are capabilities of network
slice instances (NSIs) whose implementation is also in charge of MANO. Efficient
policy management implies implementing QoS policies for each network slice to
guarantee performances such as low latency, high throughput, or reliability. Moni-
toring these performances for each network slice and collecting data on key metrics
is necessary to enable the slices to fulfill their defined KPIs. The enhanced NFV
MANO framework also includes slice template management and NSI life cycle
management divided into four phases (Fig. 9.6).

Designing is the first phase in Fig. 9.6 and includes the abstraction of network
capabilities into modular network function components (NFC) and the creation
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Figure 9.6. Lifecycle management of network slices [218].

of network templates. This phase implies creating a catalog of NFCs, which must
contain the building blocks of network slices. A network template is created from
one of the available NFCs and must consider functional and performance require-
ments from users or tenants. Finally, the forwarding graph must be created based
on the appropriate NFC and associated relationships [218].

Orchestration and activation are integral processes in the network slicing imple-
mentation, which represent the next phase. The main task is to map service and
performance requirements to a slice template using users’ or tenants’ requirements.
The template also must contain parameters that closely describe the specific deploy-
ment to achieve the required performances (e.g., capacity and QoS). It is possible
to chain related NFCs via virtual connections defined in the forwarding graph.

Run-time assurance is the third phase, which comprises continuous monitoring
and analytics. These processes include real-time tracking of slice-specific metrics,
fault detection, and resolution, providing end-to-end visibility into virtualized and
physical components. By monitoring resource utilization, security events, and user
experience, it is possible to optimize network slices and proactively manage poten-
tial issues through predictive analytics and closed-loop automation.
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Decommissioning is the last phase, which refers to the process of retreating or
shutting down a specific network slice, temporarily or permanently. This activity
enables the management of resources efficiently, adapting to changing demands,
and optimizing the overall performance of the 5G/6G infrastructure. The decom-
missioning process involves several key steps, including identifying the network
slice for decommissioning, notifying relevant stakeholders, ensuring a smooth tran-
sition of services to other slices or parts of the network, releasing allocated resources,
updating orchestration systems, and validating that the decommissioning does not
adversely impact other slices or services.

9.5 Network Slicing Use Case in Network with
Implemented NFV and SDN

The network slicing concept allows many slices to run on a common NFVI. This
deployment includes multiple tenants who can manage a set of slices. Figure 9.7
shows a single level of recursion, where tenants directly serve the end users. Each
slice consists of VNFs created and chained in the appropriate order to provide the
particular network service that the slice should deliver to users. Network slicing
deployment includes, as previously mentioned, the slice creation and a run-time
phase, which comprises the connection of different functional blocks within each
slice.

Figure 9.7 shows the tenant’s access to NFVI resources from different infras-
tructure providers. The first provider has the task of providing resources for two
NFVI-PoPs, while other providers are responsible for SDN-based WAN transport
networks used to communicate these NFVI-PoPs. Further, VIMs manage virtual
machines in NFVI-PoPs and underlying hardware. The infrastructure controllers
interact with the SDN and NFV components (VIM and the WAN infrastructure
manager) to dynamically allocate, configure, and control the physical and virtual
resources required for each network slice. VIMs and WAN infrastructure man-
agers are SDN applications that delegate tasks related to network management to
their underlying infrastructure controllers. The tenants can manage a set of network
slices independently, where each slice comprises an OSS, a tenant controller, and
a network service orchestrator. The OSS applications instruct tenant controllers to
manage VNFs placed in appropriate slices.

It is necessary to note that from the ETSI perspective, two functions perform
resource (the RO) and network service orchestration (NSO) [219]. The task of
ROs is to manage NFVI resources through VIMs, while NSO performs the lifecy-
cle management of network services using the capabilities provided by the RO and
the VNFMs. The NFVI resources provided by different infrastructure providers are
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Figure 9.7. Network slicing deployment in a common framework, integrating both SDN

and NFV [219].

available for all tenants. Tenants lease virtual resources from infrastructure providers
according to previously signed business agreements. Access and resource reservation
are the tasks of ROs that interact with VIMs and WAN infrastructure managers
(WIMs) through their exposed interfaces. Interaction is also possible between dif-
ferent WIMs. This way, it is possible to establish communication between RO and
a particular WIM through another WIM. It is necessary to emphasize that compo-
nents such as VIM, RO, NSO, or controllers are independent software applications
that need separate access, configuration, and management. Their relationships can
be established by using the APIs that each of them provides.

Network slicing allows the creation of isolated and customized slices tailored
to the service requirements, such as enhanced mobile broadband (eMBB), mas-
sive machine type communication (mMTC), or ultra-reliable low latency commu-
nication (URLLC). In this sense, resource management is important for efficient
allocation and resource utilization within each network slice. Its dynamic character
enables it to fulfill the specific requirements of different slices and perform activity
at the infrastructure and tenant levels. From the infrastructure perspective, slice-
agnostic VIMs and WIMs provide virtual resources for tenants, while ROs should
deliver these resources to the corresponding slices at the tenant level. VIMs and
WIMs must have precise information about the availability of the resources (i.e.,
their current usage) from the domain of their jurisdiction. Their decisions are based
on real-time demand and variable requirements of different slices and tenants. This
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way, it is possible to ensure that slices and tenants receive all the necessary resources
when needed.

Network slicing allows the creation of slices on a shared physical infrastructure.
Ensuring the security and privacy of each slice is crucial to prevent unauthorized
access, data integrity violations, and other potential threats. For these reasons, each
functional block and manageable resource (e.g., VNF) has its security mechanisms,
ensuring operation within desired parameters and controlling access to unautho-
rized entities. Strong authentication mechanisms are necessary to verify the identity
of users and devices within a network slice. Data in transit and at rest within net-
work slices should be encrypted to protect against unauthorized access and remain
confidential and secure as it travels through the network. Ensuring the security of
VNFs is also essential to prevent the exploitation of vulnerabilities and attacks. Net-
work slicing implementations must comply with relevant privacy and security reg-
ulations and other local data protection laws. Compliance ensures that user rights
and privacy are respected. Privacy protection measures, such as data anonymization
and compliance with privacy regulations, are required to safeguard user privacy.

9.6 Conclusion

NFV represents an architectural framework that transforms traditional, hardware-
based network functions into software running on standard servers, enhancing flex-
ibility and reducing costs. On the other hand, SDN complements NFV by provid-
ing a programmable and centralized approach to network management. It separates
the control plane from the data plane, allowing dynamic and centralized control
over network resources. SDN facilitates efficient resource utilization, network pro-
grammability, and adaptation to changing traffic patterns.

Network slicing enables customization, efficient resource allocation, and
improved service quality by tailoring virtual networks to specific use cases. NFV
includes the underlying technology that facilitates the dynamic deployment and
management of these VNFs, contributing to the development and optimization
of modern networks. Together, NFV, SDN, and network slicing enable the tran-
sition to more flexible, adaptive, and efficient network architectures that can meet
the diverse and evolving demands of 5G and beyond. They contribute to faster
deployment, improved resource utilization, and enhanced service quality in the
increasingly complex and dynamic nature of modern networks.
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2021.

[10] M. K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J. Y. Choi, “Verifi-
cation for NFV-enabled network services,” in 2015 International Conference

252

https://pcpress.rs/i-mreza-se-virtuelizuje/
https://www.techtarget.com/searchnetworking/definition/load-balancing
https://www.techtarget.com/searchnetworking/definition/load-balancing


References 253

on Information and Communication Technology Convergence (ICTC), IEEE,
Oct. 2015, pp. 810–815.
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