
SOCIAL LEARNING
Opinion Formation and Decision-Making over Graphs

Vincenzo Matta
Virginia Bordignon

Ali H. Sayed

EURASIP–Now Publishers Open Access Book Series
on Information and Learning Sciences
Editor-in-chief
Ali H. Sayed (EPFL, Switzerland)

Editors
Helmut Bölcskei (ETH Zurich, Switzerland)
Alfred O. Hero (University of Michigan, USA)
Angelia Nedich (Arizona State University, USA)
H. Vincent Poor (Princeton University, USA)
Sergios Theodoridis (University of Athens, Greece)
Abdelhak Zoubir (Technical University Darmstadt, Germany)

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

EURASIP–Now Publishers Open Access Book Series on Information and
Learning Sciences

ISBN: 978-1-63828-472-7
E-ISBN: 978-1-63828-473-4
DOI: 10.1561/9781638284734

Copyright © 2025 Vincenzo Matta, Virginia Bordignon, and Ali H. Sayed

Suggested citation: Vincenzo Matta, Virginia Bordignon, and Ali H. Sayed
(2025). Social Learning: Opinion Formation and Decision-Making over
Graphs. Boston–Delft: Now Publishers.

Dedication

To Chiara and Sara, for their smiling eyes that inspire me. To my mother,
and in memory of my father, for the sacrifices I will never repay (V. Matta)

To Cláudia, Inete, and in memory of Assis Bordignon (V. Bordignon)

To Thomas Kailath, for his unwavering guidance and support (A. H. Sayed)

Contents

Dedication v

Preface xi

1 Introduction 1
1.1 Examples of Social Learning 2
1.2 Building Opinions . 6
1.3 Book Organization . 10
1.4 Notation, Symbols, and Conventions 13

2 Bayesian Learning 17
2.1 The Bayesian Way . 18
2.2 Properties of Bayes’ Rule . 22
2.3 Information-Theoretic Interpretations 31
2.4 Stochastic-Optimization Interpretation 34

3 From Single-Agent to Social Learning 41
3.1 Bayesian versus Non-Bayesian Learning 42
3.2 Non-Bayesian Social Learning 45
3.3 Information-Theoretic Viewpoint 47
3.4 Behavioral Viewpoint . 52
3.5 Unifying Framework . 63

4 Network Models 67
4.1 Network Graphs . 67
4.2 Combination Matrices . 73
4.3 Strong and Primitive Graphs 77
4.4 Stochastic Combination Matrices 80
4.5 Weak Graphs . 82
4.6 Combination Policies . 91

5 Social Learning with Geometric Averaging 95
5.1 Belief Convergence . 96
5.2 Learning over Connected Graphs 101

5.3 Objective Evidence . 104
5.4 Subjective Evidence . 108
5.5 Fake Evidence . 112
5.6 Learning over Weak Graphs 114

6 Error Probability Performance 121
6.1 Useful Statistical Descriptors 122
6.2 Normal Approximation for Large t 127
6.3 Large Deviations for Large t 134

7 Social Learning with Arithmetic Averaging 145
7.1 Modeling Assumptions . 146
7.2 Belief Convergence . 147

8 Adaptive Social Learning 157
8.1 Stubbornness of Agents . 157
8.2 Adaptive Update . 159
8.3 Learning versus Adaptation 164
8.4 Adaptive Setting . 166
8.5 Variation on ASL . 168

9 Learning Accuracy under ASL 171
9.1 Steady-State Analysis . 172
9.2 Small-δ Regime . 178
9.3 Consistency of Adaptive Social Learning 180
9.4 Normal Approximation for Small δ 187
9.5 Large Deviations for Small δ 192
9.6 Main Performance Characteristics 202

10 Adaptation under ASL 205
10.1 Qualitative Description of the Transient Phase 205
10.2 Quantitative Transient Analysis 210
10.3 Adaptation Time . 216
10.4 Summary: Learning and Adaptation under ASL 232

11 Partial Information Sharing 235
11.1 Partial Information Framework 236
11.2 Decoding Strategies . 237
11.3 Asymptotic Learning Objectives 241

11.4 Memoryless Strategy . 242
11.5 Memory in Partial Information 257
11.6 Comparing Strategies . 270
11.A Appendix: Preliminary Results 274
11.B Appendix: Proof of Theorem 11.2 286
11.C Appendix: Proof of Theorem 11.3 290

12 Social Machine Learning 297
12.1 Social Machine Learning Model 299
12.2 General Decision Statistics 302
12.3 Training Phase . 306
12.4 Performance Guarantees . 312
12.5 Sample Complexity . 318
12.6 Illustrative Examples . 321
12.A Appendix: Notation for Binary Decision Problems 328
12.B Appendix: Bounds for Consistent Learning 330
12.C Appendix: Proof of Theorem 12.1 338
12.D Appendix: Proof of Theorem 12.2 341
12.E Appendix: Auxiliary Results 342

13 Extensions and Conclusions 347
13.1 Non-Bayesian Updates . 347
13.2 Censored Beliefs . 361
13.3 Learning the Social Graph . 368

Appendices 373

A Convex Functions 375

B Entropy and KL Divergence 377

C Probabilistic Inequalities 381

D Stochastic Convergence 385
D.1 Types of Stochastic Convergence 385
D.2 Fundamental Asymptotic Results 388
D.3 Convergence of Sums and Recursions 394
D.4 Martingales . 397

E Large Deviations 401
E.1 Empirical Averages . 401
E.2 Large Deviation Principle . 427

F Random Sums and Series 431
F.1 Convergent Random Series 431
F.2 Random Sums Relevant to Adaptive Social Learning 432
F.3 Vector Case for Network Behavior 436

G Rademacher Complexity 451
G.1 General Case . 451
G.2 Multilayer Perceptrons . 454

References 459

About the Authors 469

Preface

Social learning is a timely and highly relevant topic that addresses themes
such as the study of opinion formation and propagation over networks,
or how cooperating agents (e.g., humans, robots, or sensors) affect one
another and make decisions based on decentralized observations.

Many complex cognitive systems are made up of individual agents
whose activities are the result of sophisticated “social” interactions with
other agents. Consider how people build their opinions about a particular
phenomenon. The opinions form through repeated interactions with other
people, whether in person or virtually (e.g., over a social network). A
diffusion mechanism occurs, by which ideas, information, and even false
news spread throughout the network. Nature provides many other examples
of cooperative learning in the form of biological networks.

Social learning occurs in man-made systems as well, in the form of
multi-agent decision-making procedures. One example is a robotic swarm
deployed over a hazardous area for a rescue operation. Multi-agent decision-
making can be critical in this scenario, as some robots operating in adverse
conditions (e.g., with limited visibility or partial information) would only
be able to complete their task by cooperating with other robots that have
better access to critical information.

The primary focus of this text is on techniques for information diffusion
and decision-making over graphs, as well as the examination of how agents’
decisions evolve dynamically in response to interactions with neighbors
and the environment. There are at least two reasons why research on
social learning is important. On one hand, it provides for a more in-depth
explanation of the fundamental cognitive mechanisms that enable opinion
formation and the dissemination of knowledge (or disinformation) across
graphs. On the other hand, the study of social learning is important for the
design of reliable distributed decision-making strategies, which encounter
applications in a range of settings involving highly dynamic environments,
nonstationary data and uncertain models, untrustworthy or malicious
agents, sparsely connected graphs, and restricted communication.

The text provides a unifying framework and a comprehensive presen-
tation for understanding and developing social learning strategies. The
treatment starts from the theory of optimal single-agent learning, to ar-
rive gradually at the foundations of social learning by multiple agents
connected through a graph, whose structure can induce interesting and
diversified phenomena. For example, we will see how connected graphs
enable agreement across the agents, whereas a “mind control” mechanism
emerges over weakly connected graphs, where the network is split into
influencers and influenced agents.

After a detailed illustration of the traditional techniques, the focus
is shifted to recent advances and trends in social learning. For example,
we will show that traditional strategies produce stubborn agents, which
oppose new states of information and are reluctant to respond to changes
in the environment. We then explain how to endow social networks with
adaptation and learning capabilities to detect these drifting situations.
We also present methodologies to deal with the sharing of incomplete or
partial information, and we explain how to design social machine learning
solutions where the agents rely exclusively on data.

The text relies on various powerful tools, such as stochastic convergence,
large deviation analysis, martingales, and the Rademacher complexity. The
necessary elements to understand and use these tools are collected in the
appendices.

Acknowledgments

We are indebted to many Ph.D. students and post-doctoral associates
for their contributions to social learning, as well as for their input at
various stages of this project, either through feedback on earlier drafts or
through conversations that deepened our understanding of the topics. In
particular, we are grateful to (in alphabetical order): Marco Carpentiero,
Michele Cirillo, Ping Hu, Mert Kayaalp, Malek Khammassi, Kostas Ntemos,
Hawraa Salami, Augusto Santos, Valentina Shumovskaia, Stefan Vlaski,
Bicheng Ying, and Xiaochuan Zhao.

Vincenzo Matta, Salerno, Italy.
Virginia Bordignon, Lausanne, Switzerland.
Ali H. Sayed, Lausanne, Switzerland.

April 2025

Chapter 1

Introduction

By social learning, in this book we refer to an ensemble of mathematical
models and inferential strategies for opinion formation and decision-making
over graphs [27].

To motivate the use of the term “learning,” let us consider a situation
where there exist some possible choices, called the hypotheses or classes.
These choices could correspond to the weather condition (such as sunny
or rainy), to the outcome of a soccer match (such as a victory, draw, or
loss), or to the type of restaurant that a group of friends would like to
book. Some agents collect data related to the phenomenon of interest and
their learning objective is to assign probability scores, called beliefs, to all
possible hypotheses. These scores would quantify the levels of confidence
or “opinions” of each agent about each of the potential hypotheses. For
example, in the weather forecasting problem, the data sensed by the agents
can be measurements of humidity, atmospheric pressure, or temperature,
and the opinions formed by one agent in relation to the sunny or rainy
condition could be in the form: “Tomorrow will likely be sunny with 90%
confidence and rainy with 10% confidence.” In other words, each agent
will form a belief vector, which happens to be a probability vector with
nonnegative entries adding up to 1. Each entry of this vector will represent
the credit that the agent assigns to the corresponding hypothesis being
the truth. This process of belief formation enables automatic decision-
making, since an agent can select as the most plausible hypothesis the one
corresponding to the highest belief. When the agents continuously collect
streams of data supporting increasing evidence in favor of one particular
hypothesis, it is expected that they will ultimately place all the probability
mass on that hypothesis.

2 Introduction

The qualification “social,” on the other hand, refers to the networked or
graphical structure (i.e., the graph) that links multiple agents together, as
happens in the context of social networks, biological networks, or robotic
swarms. These networks (also referred to as multi-agent networks [151,
152]) consist of multiple communicating agents, equipped with sensing and
cognitive abilities that allow them to cooperate and extract meaningful
information from measurements. Nature itself provides numerous examples
of cooperative learning through sophisticated dynamics arising, e.g., over
biological networks [11, 39, 98], in animal behavior [5, 39, 51, 64, 138, 156],
and in brain science [15, 38, 162].

In social learning, the decentralized interaction between dispersed agents
takes place through repeated local consultation steps, where neighboring
agents, i.e., agents linked by edges over a graph, are allowed to exchange
their beliefs over these edges. Consider, for instance, the manner in which
humans form their opinions about a certain phenomenon of interest. In this
case, the opinions of an individual take shape via repeated interactions with
other people they can consult with (i.e., their neighbors), whether through
direct contact or virtually over a social platform. A diffusion mechanism
emerges through which opinions, information, or even fake news propagate.
Social learning strategies also arise over man-made systems, e.g., over
distributed networks of sensors that collect measurements and exchange
information to solve a decision-making problem. Compared with standalone
learning strategies, social (i.e., networked or decentralized) strategies yield
improved performance and robustness. They also enable agents to overcome
their individual limitations by leveraging collaboration during the learning
process.

1.1 Examples of Social Learning

The social learning problem is encountered across a range of disciplines
and applications, including cognitive sciences (e.g., psychology), social sci-
ences (e.g., economics), statistics, biology, engineering design, and others.
Depending on the context, the term “social learning” might emphasize
different aspects. For example, in [10] the topic of social learning is ad-
dressed from the perspective of psychology, whereas in [43] the focus is
on learning dynamics that arise in economics. In our treatment, social
learning will be useful to examine how the beliefs assigned to some hypothe-
ses of interest evolve through interactions over a graph. It will also be a

1.1. Examples of Social Learning 3

driver to enable decision-making by networked agents. In other words, the
framework adopted herein is general enough to allow applications across
different fields, such as the study of opinion formation over graphs, the
dissemination of misinformation over these same topologies, as well as
the ability to perform decision-making by robotic swarms, meteorological
stations, or by communication and control networks in engineering design.

The manner in which a group of individuals is able to aggregate dispersed
information has been the subject of several studies before. As early as the
18th century [48], scientists have been studying how multiple individuals
can combine their information to learn some underlying truth. In [76], the
following social experiment was described. People at a fair were asked to
guess the weight of an ox, and 787 guesses were collected. The interesting
result was that, while the individual guesses varied, their median value
approached the true weight of the animal. The success of aggregating
estimates in this experiment reinforces the idea of the “wisdom of the
crowd,” according to which a collective of agents could combine opinions
to improve the reliability of the conclusions reached by a single individual.

Example 1.1 (Brazil-Italy soccer match). Assume the World Cup final is between Brazil
and Italy. Three friends want to predict the winner of the match. Friend 1 is Italian,
friends 2 and 3 are Brazilian. Figure 1.1 shows four possible scenarios arising from the
opinion formation process, with focus on the belief of friend 1.

In cases (a) and (b) the three friends do not communicate with each other (in the
graph shown in the top part of the figure, we see each node connected only to itself),
i.e., they form their individual opinions only based on their own private information.
In case (a) the data collected by friend 1 and the model they use to interpret the data
support victory by Brazil. The belief of friend 1 accordingly places more mass on that
hypothesis. In contrast, in case (b) friend 1 is biased by being a supporter of the Italian
team, resulting in an opinion favoring their victory.

Let us now consider how the situation changes if friend 1 interacts with their Brazil-
ian friends, according to the communication graph displayed in the bottom part of the
figure. We assume the data and models of friends 2 and 3 always support the hypothesis
of a Brazilian victory. In case (c) the belief of friend 1 in favor of Brazil is reinforced
by the interaction with friends 2 and 3, thus leading to a higher mass concentration
on that hypothesis. The most interesting situation occurs in case (d). Here, owing to
cooperation and the sharing of information, friend 1 ends up changing their mind and is
driven to believe that Brazil will win.1

Despite its simplicity, the previous example illustrates the fundamental
interplay that arises between data, models, and network, and how this

1The perspective given in this particular example might be biased by the birth nationality
of the authors, especially by the fact that one of the authors is a minority.

4 Introduction

data of friend 1
support victory by Brazil

<latexit sha1_base64="9pUG3OGNMCh5C+EEZOR5Fa/LUvU=">AAACOXicbVBNSyNBEO3xe6PrZvXopTEInsJMdmH3KHrZYwSjQiaEmp6a2NjTPXTXBMbBv+XFf7G3BS8eFPHqH7ATs+DXg4bHe1XVVS8plHQUhv+CufmFxaXllS+N1bWv69+a3zeOnSmtwJ4wytjTBBwqqbFHkhSeFhYhTxSeJOcHE/9kjNZJo4+oKnCQw0jLTAogLw2b3TjBkdS1QE1oLxtxkvEUCLjJeGYl6pRHcTyVXVkUxhIfS0HGVjyp+L6FC6kasS/7P2HYbIXtcAr+kUQz0mIzdIfNv3FqRJn7dqHAuX4UFjSowZIUCv1GpcMCxDmMsO+phhzdoJ5efsl3vJLyzFj/NPGp+rqjhty5Kk98ZQ505t57E/Ezr19S9ntQS12UhFq8fJSVipPhkxh5Ki0KUpUnIKz0u3JxBhaEz8A1fAjR+5M/kuNOO/rR7hx2Wns/Z3GssC22zXZZxH6xPfaHdVmPCXbFbtgduw+ug9vgIXh8KZ0LZj2b7A2Cp2dtpK1H</latexit>

data of friend 1
support victory by Italy

<latexit sha1_base64="/n8KdmQv/24vnUfHtvw35OJbAWc=">AAACOHicbVBNSyNBEO3R9WPjV9Y97qXZsOApzERBj4KX9bQubDSQCaGmpyZp7OkeumuEYfBnefFneBMve1DEq7/ATszCbrIPGh7vVVVXvaRQ0lEY3gdLyx9WVtfWPzY2Nre2d5qfds+dKa3ArjDK2F4CDpXU2CVJCnuFRcgThRfJ5cnEv7hC66TRv6gqcJDDSMtMCiAvDZs/4gRHUtcCNaG9bsRJxlMg4CbjmZWoUx7F8VR2ZVEYS/xKCjK24knFTwlU1Yh91Z8Bw2YrbIdT8EUSzUiLzXA2bN7FqRFl7tuFAuf6UVjQoAZLUij0C5UOCxCXMMK+pxpydIN6evg1/+aVlGfG+qeJT9W/O2rInavyxFfmQGM3703E/3n9krKjQS11URJq8f5RVipOhk9S5Km0KEhVnoCw0u/KxRgsCJ+Ba/gQovmTF8l5px3ttzs/O63jg1kc6+wL+8r2WMQO2TH7zs5Ylwl2wx7YI3sKboPfwXPw8l66FMx6PrN/ELy+AZgTrNw=</latexit>

no communication
<latexit sha1_base64="XJn/UsIKjU7cnPLs+e7+CN1joM0=">AAACGXicbVDLSgMxFM34rPU16tJNsAiuykwVdFlw47KCfUBbSia904bmMSQZoQz9DTf+ihsXirjUlX9j2o6grQcCh3PO5eaeKOHM2CD48lZW19Y3Ngtbxe2d3b19/+CwYVSqKdSp4kq3ImKAMwl1yyyHVqKBiIhDMxpdT/3mPWjDlLyz4wS6ggwkixkl1kk9P+hEMGAyoyAt6EmxE8VYKkyVEKnMU8UOyP5PoueXgnIwA14mYU5KKEet5390+oqmwo1TToxph0FiuxnRllEObmNqICF0RAbQdlQSAaabzS6b4FOn9HGstHvS4pn6eyIjwpixiFxSEDs0i95U/M9rpza+6mZMJqkFSeeL4pRjq/C0JtxnGqjlY0cI1cz9FdMh0YS6DkzRlRAunrxMGpVyeF6u3FZK1Yu8jgI6RifoDIXoElXRDaqhOqLoAT2hF/TqPXrP3pv3Po+uePnMEfoD7/MbfyuhMA==</latexit>

communication
<latexit sha1_base64="W8+6chBsi1wnleSXv0u0NTpCqBE=">AAACFnicbVDLSgMxFM3UVx1fVZdugkVwY5mpgi4LblxWsA9oS8lk7rShSWZIMkIZ+hVu/BU3LhRxK+78G9N2BG09EDiccy439wQJZ9p43pdTWFldW98obrpb2zu7e6X9g6aOU0WhQWMeq3ZANHAmoWGY4dBOFBARcGgFo+up37oHpVks78w4gZ4gA8kiRomxUr901g1gwGRGQRpQE7cbRJjGQqQyj7hdkOGP3S+VvYo3A14mfk7KKEe9X/rshjFNhR2nnGjd8b3E9DKiDKMc7LpUQ0LoiAygY6kkAnQvm501wSdWCXEUK/ukwTP190RGhNZjEdikIGaoF72p+J/XSU101cuYTFIDks4XRSnHJsbTjnDIFFDDx5YQqpj9K6ZDogi1HWjXluAvnrxMmtWKf16p3lbLtYu8jiI6QsfoFPnoEtXQDaqjBqLoAT2hF/TqPDrPzpvzPo8WnHzmEP2B8/ENXw2gFQ==</latexit>

belief of friend 1
<latexit sha1_base64="ckY6RXBgFTe//BP7wfGt7khg02E=">AAACFnicbVDLSgMxFM3UVx1foy7dBIvgxjJTBV0W3LisYB/QDiWTudOGZjJDkhHK0K9w46+4caGIW3Hn35i2I2jrhYTDOffc5J4g5Uxp1/2ySiura+sb5U17a3tnd8/ZP2ipJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHQ91dv3IBVLxJ0ep+DHZCBYxCjRhuo7Z70ABkzkFIQGObEDMwkinEQ4kgxEiL2euX/kvlNxq+6s8DLwClBBRTX6zmcvTGgWGzvlRKmu56baz4nUjHKY2L1MQUroiAyga6AgMSg/n601wSeGCXGUSHOExjP2tyMnsVLjODCdMdFDtahNyf+0bqajKz9nIs00CDp/KMo41gmeZoRDJoFqPjaAUMnMXzEdEkmoyUDZJgRvceVl0KpVvfNq7bZWqV8UcZTRETpGp8hDl6iOblADNRFFD+gJvaBX69F6tt6s93lrySo8h+hPWR/fltSflg==</latexit>

belief of friend 1
<latexit sha1_base64="ckY6RXBgFTe//BP7wfGt7khg02E=">AAACFnicbVDLSgMxFM3UVx1foy7dBIvgxjJTBV0W3LisYB/QDiWTudOGZjJDkhHK0K9w46+4caGIW3Hn35i2I2jrhYTDOffc5J4g5Uxp1/2ySiura+sb5U17a3tnd8/ZP2ipJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHQ91dv3IBVLxJ0ep+DHZCBYxCjRhuo7Z70ABkzkFIQGObEDMwkinEQ4kgxEiL2euX/kvlNxq+6s8DLwClBBRTX6zmcvTGgWGzvlRKmu56baz4nUjHKY2L1MQUroiAyga6AgMSg/n601wSeGCXGUSHOExjP2tyMnsVLjODCdMdFDtahNyf+0bqajKz9nIs00CDp/KMo41gmeZoRDJoFqPjaAUMnMXzEdEkmoyUDZJgRvceVl0KpVvfNq7bZWqV8UcZTRETpGp8hDl6iOblADNRFFD+gJvaBX69F6tt6s93lrySo8h+hPWR/fltSflg==</latexit>

belief of friend 1
<latexit sha1_base64="ckY6RXBgFTe//BP7wfGt7khg02E=">AAACFnicbVDLSgMxFM3UVx1foy7dBIvgxjJTBV0W3LisYB/QDiWTudOGZjJDkhHK0K9w46+4caGIW3Hn35i2I2jrhYTDOffc5J4g5Uxp1/2ySiura+sb5U17a3tnd8/ZP2ipJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHQ91dv3IBVLxJ0ep+DHZCBYxCjRhuo7Z70ABkzkFIQGObEDMwkinEQ4kgxEiL2euX/kvlNxq+6s8DLwClBBRTX6zmcvTGgWGzvlRKmu56baz4nUjHKY2L1MQUroiAyga6AgMSg/n601wSeGCXGUSHOExjP2tyMnsVLjODCdMdFDtahNyf+0bqajKz9nIs00CDp/KMo41gmeZoRDJoFqPjaAUMnMXzEdEkmoyUDZJgRvceVl0KpVvfNq7bZWqV8UcZTRETpGp8hDl6iOblADNRFFD+gJvaBX69F6tt6s93lrySo8h+hPWR/fltSflg==</latexit>

belief of friend 1
<latexit sha1_base64="ckY6RXBgFTe//BP7wfGt7khg02E=">AAACFnicbVDLSgMxFM3UVx1foy7dBIvgxjJTBV0W3LisYB/QDiWTudOGZjJDkhHK0K9w46+4caGIW3Hn35i2I2jrhYTDOffc5J4g5Uxp1/2ySiura+sb5U17a3tnd8/ZP2ipJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHQ91dv3IBVLxJ0ep+DHZCBYxCjRhuo7Z70ABkzkFIQGObEDMwkinEQ4kgxEiL2euX/kvlNxq+6s8DLwClBBRTX6zmcvTGgWGzvlRKmu56baz4nUjHKY2L1MQUroiAyga6AgMSg/n601wSeGCXGUSHOExjP2tyMnsVLjODCdMdFDtahNyf+0bqajKz9nIs00CDp/KMo41gmeZoRDJoFqPjaAUMnMXzEdEkmoyUDZJgRvceVl0KpVvfNq7bZWqV8UcZTRETpGp8hDl6iOblADNRFFD+gJvaBX69F6tt6s93lrySo8h+hPWR/fltSflg==</latexit>

hypothesis
<latexit sha1_base64="txcK/gzCg8PMMYBaGW7712h62MI=">AAACDnicbVDLSsNAFJ3UV42vqEs3wVJwVZIq6LLgxmUF+4AmlMn0phk6mYSZiRBCv8CNv+LGhSJuXbvzb5y2EbT1wMDhnHu4c0+QMiqV43wZlbX1jc2t6ra5s7u3f2AdHnVlkgkCHZKwRPQDLIFRDh1FFYN+KgDHAYNeMLme+b17EJIm/E7lKfgxHnMaUoKVloZW3QtgTHlBgCsQUzPK00RFIKn0gI9+5KFVcxrOHPYqcUtSQyXaQ+vTGyUki3WcMCzlwHVS5RdYKEoYTE0vk5BiMsFjGGjKcQzSL+bnTO26VkZ2mAj9uLLn6u9EgWMp8zjQkzFWkVz2ZuJ/3iBT4ZVfUJ5mCjhZLAozZqvEnnVjj6gAoliuCSaC6r/aJMICE92BNHUJ7vLJq6TbbLjnjeZts9a6KOuoohN0is6Qiy5RC92gNuoggh7QE3pBr8aj8Wy8Ge+L0YpRZo7RHxgf3wkynVE=</latexit>

hypothesis
<latexit sha1_base64="txcK/gzCg8PMMYBaGW7712h62MI=">AAACDnicbVDLSsNAFJ3UV42vqEs3wVJwVZIq6LLgxmUF+4AmlMn0phk6mYSZiRBCv8CNv+LGhSJuXbvzb5y2EbT1wMDhnHu4c0+QMiqV43wZlbX1jc2t6ra5s7u3f2AdHnVlkgkCHZKwRPQDLIFRDh1FFYN+KgDHAYNeMLme+b17EJIm/E7lKfgxHnMaUoKVloZW3QtgTHlBgCsQUzPK00RFIKn0gI9+5KFVcxrOHPYqcUtSQyXaQ+vTGyUki3WcMCzlwHVS5RdYKEoYTE0vk5BiMsFjGGjKcQzSL+bnTO26VkZ2mAj9uLLn6u9EgWMp8zjQkzFWkVz2ZuJ/3iBT4ZVfUJ5mCjhZLAozZqvEnnVjj6gAoliuCSaC6r/aJMICE92BNHUJ7vLJq6TbbLjnjeZts9a6KOuoohN0is6Qiy5RC92gNuoggh7QE3pBr8aj8Wy8Ge+L0YpRZo7RHxgf3wkynVE=</latexit>

hypothesis
<latexit sha1_base64="txcK/gzCg8PMMYBaGW7712h62MI=">AAACDnicbVDLSsNAFJ3UV42vqEs3wVJwVZIq6LLgxmUF+4AmlMn0phk6mYSZiRBCv8CNv+LGhSJuXbvzb5y2EbT1wMDhnHu4c0+QMiqV43wZlbX1jc2t6ra5s7u3f2AdHnVlkgkCHZKwRPQDLIFRDh1FFYN+KgDHAYNeMLme+b17EJIm/E7lKfgxHnMaUoKVloZW3QtgTHlBgCsQUzPK00RFIKn0gI9+5KFVcxrOHPYqcUtSQyXaQ+vTGyUki3WcMCzlwHVS5RdYKEoYTE0vk5BiMsFjGGjKcQzSL+bnTO26VkZ2mAj9uLLn6u9EgWMp8zjQkzFWkVz2ZuJ/3iBT4ZVfUJ5mCjhZLAozZqvEnnVjj6gAoliuCSaC6r/aJMICE92BNHUJ7vLJq6TbbLjnjeZts9a6KOuoohN0is6Qiy5RC92gNuoggh7QE3pBr8aj8Wy8Ge+L0YpRZo7RHxgf3wkynVE=</latexit>

hypothesis
<latexit sha1_base64="txcK/gzCg8PMMYBaGW7712h62MI=">AAACDnicbVDLSsNAFJ3UV42vqEs3wVJwVZIq6LLgxmUF+4AmlMn0phk6mYSZiRBCv8CNv+LGhSJuXbvzb5y2EbT1wMDhnHu4c0+QMiqV43wZlbX1jc2t6ra5s7u3f2AdHnVlkgkCHZKwRPQDLIFRDh1FFYN+KgDHAYNeMLme+b17EJIm/E7lKfgxHnMaUoKVloZW3QtgTHlBgCsQUzPK00RFIKn0gI9+5KFVcxrOHPYqcUtSQyXaQ+vTGyUki3WcMCzlwHVS5RdYKEoYTE0vk5BiMsFjGGjKcQzSL+bnTO26VkZ2mAj9uLLn6u9EgWMp8zjQkzFWkVz2ZuJ/3iBT4ZVfUJ5mCjhZLAozZqvEnnVjj6gAoliuCSaC6r/aJMICE92BNHUJ7vLJq6TbbLjnjeZts9a6KOuoohN0is6Qiy5RC92gNuoggh7QE3pBr8aj8Wy8Ge+L0YpRZo7RHxgf3wkynVE=</latexit>

Figure 1.1: Illustration of belief formation for Example 1.1.

interplay can influence the final beliefs. This type of behavior is observed in
real opinion formation processes, and it will be well captured by the social
learning strategies derived in the forthcoming chapters. Specific instances
will be discussed in some detail in Chapter 5.

In recent years, there have been many useful works devoted to the study
of the social learning problem, such as [1, 2, 25, 42, 83, 96, 106, 118, 132,
135, 147, 175]. These studies have two main ramifications. From a behavioral
perspective, the focus is on proposing and examining mathematical models
for social learning that are able to capture the collective behavior of groups
of cognitive agents. From a design-oriented or engineering perspective,
the focus is on devising powerful social learning algorithms to accomplish
specific tasks, and on assessing their quality, for example, their capacity
to infer the right hypothesis from the evolving beliefs or the speed of
convergence of the decision process.

Example 1.2 (Distributed sensing and decision-making). An example of an engineering
system whose design is inspired by social learning is a collection of sensors recording data
from a common region. These could be, for example, meteorological stations measuring
different attributes such as air humidity, atmospheric pressure, or temperature. The goal
of the network is to predict the state of the weather in the region under observation.
Fusing information from multiple sensors can be useful to deliver superior learning
performance. This is particularly relevant since in many situations the information at
each individual sensor can be insufficient to allow it to make a correct weather forecast

1.1. Examples of Social Learning 5

on its own. For instance, some sensors might be able to collect only humidity data, while
others collect only pressure data. However, through mutual interactions, all sensors
could be able to arrive at more informed predictions.

Another example is a robotic swarm deployed over a hazardous area for a rescue
operation. Assume the robots patrol different portions of the area under control. Only
neighboring robots can communicate with each other. All robots must make a decision
and consequently take a coordinated action. Some robots operating under disadvanta-
geous conditions (e.g., with limited visibility or partial information) would only be able
to perform their assigned task (such as saving a life during the rescue operation) by
leveraging cooperation with other robots that have better access to critical information.
For example, the more informed robots might be closer to the origin of a fire. In this
case, cooperation is critical since some robots might be “blind” to the fire event or detect
it with some great delay.

We will discover in future chapters that several interesting phenomena
arise in the context of social learning. It is often the case that the data
observed by the agents are ruled by some common truth (i.e., one and
the same hypothesis), giving rise to a scenario that we will refer to as
objective evidence. Under this model, we will identify meaningful situations
where the agents are able to learn the common hypothesis. However, other
cases are encountered over real-world networks. For example, we can have
multiple individual truths (leading to a subjective evidence scenario), where
the observations of distinct agents in the network are ruled by distinct
hypotheses; fake news, where some agents purposely inject artificial data
to steer the agents’ opinions toward some wrong hypothesis; or situations
where the data distributions do not match perfectly any of the hypotheses
postulated by the agents. We will identify situations where the agents are
subject to manipulation, can become stubborn and be slow in accepting new
truths, and can even end up following a herding behavior. Understanding
the learning mechanisms arising under these different possibilities is useful
to dissect the social learning dynamics and to answer interesting questions,
such as: Do the agents agree on some hypothesis? If so, which one? Can
some agents influence other agents in their choice?

Example 1.3 (Find the best restaurant). There are cases where it is difficult to define a
common truth for all agents. For example, consider a group of friends that exchange
opinions to choose an Italian restaurant in New York City. Some of the friends mostly
care about food quality, while others care about price. The data available to the friends
interested in quality relate to information such as ingredients or recipes, and the learning
models they use to interpret the data enable them to pinpoint restaurants with higher
food quality. In contrast, the data available to the remaining friends relate to prices,

6 Introduction

and their learning models give priority to restaurants with lower prices. This situation
is one instance of the subjective evidence model treated in Chapter 5.

Depending on the relative number of friends interested in quality over price, on the
data types and models used, and on the graph of interactions that describes who talks
to whom, diversified outcomes are possible, as we will discover later in Chapter 5. For
instance, if the graph is sufficiently connected, then all friends will be able to agree on
one and the same restaurant, which would somehow optimize the quality-price ratio.
However, the choice would be more or less unbalanced in favor of quality or price depend-
ing on different factors, such as the number of friends interested in quality over price,
and the graph dictating the friends’ interactions. If these interactions are sparse (i.e., if
the communication graph is not sufficiently connected) we can also have disagreement,
with different restaurants chosen by different friends.

1.2 Building Opinions

Several factors drive the process of opinion formation over graphs. These
factors will be quantified in future chapters, and their roles will appear
explicitly in the expressions defining the social learning strategies. Here
we provide a brief overview. We identify seven main elements, which are
described below.

Prior convictions. At any given time epoch, each cognitive agent will
have its own personal opinion regarding the plausible states of nature,
summarized in a probability vector that constitutes the prior belief. This
opinion arises from different mechanisms, also depending on the particular
application or context. For example, the prior belief can be completely
flat (i.e., equal mass is assigned to all hypotheses) because the agent is
completely ignorant about the hypotheses, or it can be biased because
the agent has some preferences, or it can also originate from the agent’s
experience accumulated as the outcome of a previous learning process.
The aim of the social learning process is to update these prior convictions
by exploiting: i) new information or knowledge coming from private data
observed by the agent; and ii) interaction with other (neighboring) agents.

Data. The effect of the world on the agents occurs through the private
observations or measurements arriving from the environment at the in-
dividual agents. The quality of these measurements, the way they are
distributed across the agents and over time are of utmost importance for
the learning outcome.

1.2. Building Opinions 7

Likelihood models. In order to update the prior convictions with the new
information contained in the data, each agent will need to quantify how
the data are related to the possible hypotheses. To do so, the agent will
employ a likelihood model that describes the probabilistic mechanism by
which the data are generated given a particular hypothesis. For example,
the model would describe which humidity values are more likely to occur
if the state of nature happens to be “rainy.” In Figure 1.2 we show an
example with three models (namely, three probability density functions)
associated with the possible hypotheses.

Figure 1.2: Example of probabilistic mechanisms linking the data to the hypotheses. Here we
have three hypotheses corresponding to three probability density functions.

The agents will adopt some likelihood models depending on their knowl-
edge about the specific learning task. For example, consider a decision-
making network deployed to detect which symbol has been transmitted
over a communication channel. The measurements would correspond to
received signals corrupted by Gaussian noise. The statistical models linking
the received measurement to the transmitted symbol will take the form of
Gaussian distributions with different means corresponding to the different
symbols. In other examples, the agents will need to learn their models
directly from data during a training phase, by using some clues available
to describe the relations between the hypotheses and the data. We will see
specific examples of this training process in Chapter 12, in the context of
social machine learning.

Update rule. In order to update the prior convictions using the knowledge
extracted from the observed data and the assumed likelihood models, each
agent will implement an update rule, whose general flow diagram is shown

8 Introduction

in Figure 1.3. The agent computes an updated belief by blending the prior
belief with the data, whose information content is evaluated through the
available likelihood models. In our treatment, the update rule will often be
Bayes’ rule, but other choices are useful, as we will see in Chapters 8 and 13.

Figure 1.3: Schematic illustration of the belief update process.

Belief diffusion. The exchange of information between neighbors enables
agents to solve the inference problem collaboratively, which might bring
significant improvements over the noncooperative case. Through proper
cooperation, the agents exploit the knowledge distributed across the entire
network to deliver superior performance and to overcome the limitations
that might exist in their individual data or models. Due to various physical
constraints, the agents are not generally allowed to exchange their raw
data. One such constraint is usually privacy; another one is complexity.
For example, over a distributed cloud storage system it is seldom the case
that one can share the (huge) datasets. It is more likely to share summary
information, such as beliefs in a social learning context. Also in human
learning, usually we would not share with our friends the entire set of
information (i.e., the data) that led us to form our personal opinions, but
we would rather share opinions or impressions.

Moreover, it is often the case that we share only part of our opinions.
For instance, assume two friends are interested in ranking some commercial
brands. In many cases, they talk specifically of a single commercial brand
and then automatically update their opinions regarding other commercial
brands. This particular learning mechanism will be examined in Chapter 11,

1.2. Building Opinions 9

in the context of social learning under partial information.

Network. When the agents exchange information, they do it according
to some communication graph, i.e., over a network. The network struc-
ture determines the communication paths and the flow of the exchanged
information across the agents, as well as the weights given by each agent
to the information received from its neighbors. Different connectivity and
weight patterns give rise to influence dynamics and rich belief formation
scenarios.

Pooling. Once an agent receives the beliefs from its neighbors, it has to
blend them suitably. In other words, it is necessary to devise a pooling rule
to construct the final belief arising from the social learning mechanism.
Popular pooling rules are the geometric and arithmetic averaging rules —
see Chapter 3.

Figure 1.4: Schematic illustration of social learning.

The combined interaction of the seven elements described here is repre-
sented in Figure 1.4, where we show the behavior of two agents, denoted by
1 and 2. In a self-learning step, the agents implement a local rule to update
their prior convictions using the knowledge extracted from the new data,
based on the assumed likelihood models. In the considered example, we

10 Introduction

see that agent 1 starts with a flat belief, while agent 2 starts from a belief
biased in favor of the red hypothesis. Interestingly, after incorporating
evidence from the data, agent 1 departs from its initial agnostic assignment
and gains confidence in favor of the green hypothesis. In contrast, agent 2
abandons its initial bias toward the red hypothesis in favor of the blue one.

During the belief-diffusion stage, each agent shares over the network
(i.e., with its neighbors) the intermediate beliefs produced during the self-
learning stage. Then, each agent processes the received beliefs through a
suitable pooling rule. In the considered example, the beliefs of agents 1
and 2 after pooling become more similar to each other. This is a direct
effect of incorporating the opinions from other agents in the network.

1.3 Book Organization

Social learning is a timely research topic with applications in several
domains, and there are of course several works on the subject. It is therefore
useful to describe the main distinguishing features of the present work.

We bring together into a unifying treatment the fundamentals of social
learning and the most recent advances in the field. In particular, these
advances consider important features encountered in many applications,
such as adaptation under nonstationary conditions, the exchange of incom-
plete information, or the necessity for agents to build their private models
from scratch relying on some clues available before social learning takes
place. We derive a number of versatile social learning strategies that are
well-suited to highly dynamic and uncertain environments where real-world
networks usually operate.

The theoretical analysis of these social learning methodologies relies
on advanced probability and mathematical tools, such as convergence of
random series, unconventional central limit theorems, large deviation anal-
ysis, and advanced statistical learning tools. These tools are different from
those traditionally used in similar contexts, e.g., in multi-agent distributed
optimization or regression problems. For this reason, one added value of
the book is to present these tools in an organic manner (with the help
of some appendices) to introduce the reader gradually to the necessary
background. In broad outline, the work is organized as follows:

Bayesian learning. One pillar of belief formation is Bayes’ rule, which
solves optimally the single-agent learning problem. Behavioral studies also

1.3. Book Organization 11

reveal that standalone agents form their opinions in a “Bayesian way,” i.e.,
their beliefs evolve according to Bayes’ rule when they learn in isolation. We
explain in Chapter 2 how belief vectors can be updated by means of Bayes’
rule, especially in response to streaming observations. We examine the
convergence behavior of this rule and provide useful information-theoretic
interpretations for its optimality.

Non-Bayesian learning. In contrast to the single-agent case, when
distributed agents are organized into a network structure, they aggregate
their individual beliefs in a non-Bayesian way dictated by the physical
constraints that the network imposes. In Chapter 3 we introduce these
fundamental constraints, and derive the corresponding pooling policies
that combine the agents’ opinions and activate a belief diffusion mechanism
over the network graph.

Graphs and network models. Chapter 4 illustrates the network models
relevant to the treatment, emphasizing the role of network descriptors
that are useful for the learning process, such as graphs, nodes, edges,
neighborhoods, combination policies, and connectedness regimes.

Opinion formation over graphs. After having introduced, in the first
chapters, the background on the necessary statistical and graph tools, in
Chapters 5, 6, and 7 we examine carefully the behavior of the derived social
learning strategies. The analysis provides a detailed characterization of the
opinion formation mechanism and reveals how interesting and diversified
phenomena emerge, depending on the data, models, and network structure.
For example, under subjective evidence when different agents promote
different hypotheses (say, hypotheses a or b), a “truth-is-somewhere-in-
between” effect can arise, where all agents end up choosing a third option
c. We will also see that a “mind-control” effect can arise over weakly
connected graphs, where some agents can exert a domineering role over
other agents, with the network split into influencers and influenced agents.

Adaptive social learning. We will explain that traditional social learning
implementations cause the agents to become stubborn and to react slowly
to drifts in the environment conditions. These traditional strategies are
inherently nonadaptive and, hence, not suited to applications where contin-
ual learning must be guaranteed in the midst of nonstationary phenomena.

12 Introduction

Adaptation in social learning is critical because in most situations the
agents must be ready to change their mind and adapt their opinions. In
order to address this issue, we introduce an adaptive social learning (ASL)
strategy in Chapter 8 by showing how to modify the Bayesian update
to embed into it the ability for continuous adaptation and learning. We
introduce advanced mathematical tools in Chapters 9 and 10 to provide
an accurate performance assessment of adaptive social learning and to
ascertain the fundamental laws governing it (e.g., the weak law of small
adaptation parameters, asymptotic normality, and large deviations).

Partial information sharing. We examine social learning under partial
information sharing in Chapter 11, which arises when the agents exchange
only a subset of their opinions about the hypotheses under consideration.
For example, the agents may be interested in forming opinions about the
candidates in an election process, but they would limit their interactions
to discussing only one of the candidates. We will explain how the opinion
formation process is affected by such partial information sharing mecha-
nism.

Social machine learning. In most studies, social learning algorithms
rely on predefined likelihood models that are assumed to be perfectly
known beforehand. However, this is not always the case. In Chapter 12
we develop a social machine learning framework, where we examine the
process governing the formation of the individual agent’s memory, i.e., we
focus on how the agents build their private models from some empirical
clues observed prior to the social learning phase. The models obtained
during this preliminary phase of training are then deployed to run the
social learning algorithms. We show that the resulting fully data-driven
strategy achieves consistent learning despite the challenges introduced by
the lack of exact likelihood models.

Extensions and future directions. Chapter 13 is devoted to the pre-
sentation of possible research lines, extensions, and open questions. In
particular, we discuss the effect of non-Bayesian updates, alternative adap-
tive rules based on censored beliefs, and the inverse problem where an
inferential engine estimates the graph structure after monitoring the agents’
beliefs.

1.4. Notation, Symbols, and Conventions 13

1.4 Notation, Symbols, and Conventions

Table 1.1 collects the main conventions used in our exposition. More local
definitions will be introduced in the individual chapters at the necessary
moment.

In our treatment we often work with vectors and matrices. Vectors are
denoted by small letters. The notation

x = [a, b, c] (1.1)

defines a vector with entries a, b, c. When we need to perform linear algebra
operations, we must specify if we deal with row or column vectors. Unless
otherwise indicated, all vectors will be column vectors. Therefore, when
we write x ∈ Rd, we implicitly imply that x is a d× 1 vector. Matrices are
denoted by capital letters, and their entries by the corresponding small
letter, to which we append two subscripts to pinpoint the particular matrix
entry. The notation A = [ajk] specifies that the matrix A collects entries
denoted by ajk, where j is the row index and k the column index. Likewise,
the notation x = [xk] indicates that the vector x collects entries denoted
by xk, where k is the entry index. Sometimes we employ the alternative
notation [A]jk to extract the (j, k) entry of a matrix. This is particularly
convenient when we work with products or powers of matrices. For example,
[A2]jk denotes the (j, k) entry of the matrix A2. A matrix or vector with
all null entries will be denoted by 0.

For infinite sequences of the form

x1, x2, . . . (1.2)

we use the notation {xt}t∈N, {xt}∞t=1, or simply {xt} when the indexing is
clear from the context. This notation is also used for finite collections of
objects. Moreover, for objects with multiple indices, the notation {xk,t}Kk=1
refers to the collection of K values x1,t, x2,t, . . . , xK,t for a fixed t.

Several arguments employed in this text rely on probability theory. The
exposition is not focused on a measure-theoretic approach, so that readers
will be able to follow most of the arguments without a background in
measure theory. We use bold font for random quantities and normal font
for their realizations or for deterministic quantities.

When we introduce random quantities that describe a particular setting
(e.g., the agents’ data in a social learning problem) we implicitly assume
that they live in a common probability space (Ω,F ,P), where Ω is the

14 Introduction

Table 1.1: List of the main notational conventions used in this book.

R Field of real numbers
C Field of complex numbers
N Set of natural numbers 1, 2, . . .
1 Column vector with all its entries equal to 1
1d d× 1 vector with all its entries equal to 1
I Identity matrix
Id d× d identity matrix
I[C] Indicator function

I[C] =
{

1 if condition C is true,
0 if condition C is false.

x Bold font denotes random quantities
x Normal font denotes deterministic quantities

or realizations of random quantities
Ex Expected value of x

VAR[x] Variance of x
P[E] Probability of event E

A Matrices are denoted by capital letters
AT Transpose of matrix A

col{a1, a2, . . . , aN} Column vector obtained by stacking
the entries (or vectors) a1, a2, . . . , aN

xk,t Vector quantity relative to agent k at time t
xk,t(θ) θth entry of vector xk,t

∥x∥ Euclidean norm of x
f(x) = o(g(x)) as x→ x0 f(x)/g(x) → 0 as x → x0

f(x) = O(g(x)) as x→ x0 f(x)/g(x) remains bounded as x → x0

xn
a.s.−−−−→
n→∞

x xn converges to x almost surely as n → ∞

xn
p−−−−→

n→∞
x xn converges to x in probability as n → ∞

xn
d−−−−→

n→∞
x xn converges to x in distribution as n → ∞

1.4. Notation, Symbols, and Conventions 15

sample space, F (also called the event space) is a σ-field of subsets of Ω,
and P a probability measure on F . When we refer to sets and functions, we
implicitly assume that they are measurable. Likewise, to avoid measurability
issues, we assume that the probability spaces are complete.2

We reserve the term “random variable” to scalar real-valued quantities
and use “random vector” to denote vectors whose entries are random
variables. Discrete, a.k.a. categorical random variables, belong to discrete
alphabets, such as a discrete random variable x taking on values in the set
X = {a, b, c}. These variables are described in terms of a probability mass
function (pmf), e.g.,

P[x = a] = p(a). (1.3)
A pmf can be equivalently regarded as a probability vector p ∈ ∆|X |, where
|X | is the cardinality of X , and ∆|X | denotes the probability simplex in
R|X |. For example, if x ∈ X = {a, b, c}, we can write

p = [p(a), p(b), p(c)]. (1.4)

A continuous random vector x is defined on X = Rd, for some d ∈ N. If
the random vector admits a probability density function (pdf) p(x) with
respect to the Lebesgue measure on Rd, for a set S ⊆ Rd we have

P[x ∈ S] =
∫
S
p(x)dx. (1.5)

As done for pmfs, we write p in place of p(x) to refer to the entire pdf, not
to a particular value x. When, for two pdfs p(x) and q(x), we write p = q

or p(x) = q(x), we imply that the equality p(x) = q(x) holds for all x ∈ X ,
possibly excluding a set of zero Lebesgue measure. When for two random
vectors x and y we write x = y, the equality is intended to hold with
probability 1. Likewise, when we say that a random variable x is positive
or write x > 0, we mean that the inequality holds with probability 1.

The expectation of a random variable x is denoted by Ex. The same
symbol is used for vectors, where expectation is meant to be computed
for each entry of the vector. When we evaluate the expectation of more
involved functions, we use parentheses, e.g., E[(x − 3)2]. Sometimes we
write Epx to emphasize that the expectation is computed by assuming
that the random variable x is distributed according to some pmf or pdf p.
When we write E (and P) without subscripts, the underlying distribution
should be clear from the context.

2In a complete probability space, all subsets of zero-measure sets are measurable, and it is
known that every measure can be completed [145].

16 Introduction

With reference to equalities, inequalities, and more general relations,
the acronyms LHS (left-hand side) and RHS (right-hand side) will be used
to indicate a specific side of the relation. For example, the LHS of

a→ b (1.6)

is a. When a formula contains multiple relations, the LHS (resp., RHS)
will indicate the leftmost (resp., rightmost) side. For example, in

a = b = c, (1.7)

c is the RHS.

Chapter 2

Bayesian Learning

A central quantity in this book is the belief vector, a probability vector
whose entries quantify the credibility that a cognitive agent assigns to
different hypotheses of interest. For example, assume we are interested in
predicting the outcome of a soccer match, which can be represented by a
hypothesis θ ∈ {victory, draw, loss}. We start from some prior convictions
arising from personal impressions or previous evidence, such as statistics on
the recent performance of the involved teams. Then, we can progressively
update our initial opinion about the possible outcome by collecting new
pieces of information, which can originate from different sources. We can
access this information both individually (e.g., by hearing the latest news
about players’ conditions) or socially (e.g., from discussions with friends).
The ultimate belief arising from this process can be represented by a
probability vector µ, such as

µ = [µ(victory), µ(draw), µ(loss)] = [0.6, 0.3, 0.1]. (2.1)

Establishing how the belief is formed is a problem of paramount importance,
with applications in several disciplines. From a design-oriented perspective,
belief formation is a critical tool to solve a number of inference and learning
tasks. For example, a classification problem can be solved by choosing
the most credited hypothesis. From a behavioral perspective, there is
enormous interest across various communities in establishing formal rules
that govern the mechanism of belief formation within many cognitive
systems, such as biological systems, the brain, self-organizing systems,
and social networks. For instance, interesting studies [74] have shown
that inference and learning processes in the brain evolve in a “Bayesian”
way, according to a free-energy minimization principle — see Section 2.3.

18 Bayesian Learning

Remarkably, the design-oriented and behavioral perspectives enjoy fruitful
cross-fertilization: Methods established for design inspire behavioral models
and, conversely, understanding of human cognition improves design by
creating or perfecting tools in several fields, such as signal processing, data
analysis, machine learning, or artificial intelligence.

The mechanism of opinion formation becomes even more interesting
in distributed systems, where it becomes important to understand how
spatially separated agents should blend their own private information and
the beliefs of their neighbors to construct opinions. For various reasons,
the belief vector emerges as a key player in the theory of social learning.

From a more technical perspective, it is worth noting that the opinion
formation process lies somewhere in between estimation and classification
problems [90, 155]. It is not simply a classification problem, since in
classification we are often mainly interested in the final decision. For
example, a belief vector equal to [0.55, 0.45] would yield the same decision
as [0.99, 0.01], but the meaning and reliability of the two decisions are
different. The “analog” value of the belief, namely, the mass assigned to
each hypothesis is important and helps explain decisions. Likewise, opinion
formation is not simply an estimation problem, since, as we will see, the
peculiarities of the belief (e.g., it defines a probability distribution over a
discrete set) require specific mathematical tools and lead to results that
are different from those traditionally employed in estimation theory.

2.1 The Bayesian Way

In order to introduce the concept of belief it is convenient to start with
the single-agent setting. Let Θ be a set of cardinality H, which collects
the hypotheses the agent is interested in. The particular elements con-
tained in Θ depend on the application. Without loss of generality, we take
Θ = {1, 2, . . . ,H} unless otherwise specified. Before starting the learning
process, the agent has some convictions as regards each hypothesis θ ∈ Θ,
which are summarized in the prior belief π(θ):

π(θ) ≥ 0,
∑
θ∈Θ

π(θ) = 1. (2.2)

Let x ∈ X represent the data available for learning. The term “learn-
ing” means that the agent aims at updating its prior belief based on the

2.1. The Bayesian Way 19

observation x, thus building the posterior belief µ(θ|x):

µ(θ|x) ≥ 0,
∑
θ∈Θ

µ(θ|x) = 1. (2.3)

In order to build the posterior belief, the agent relies on generative models
linking the data to the hypotheses, and encoded in the likelihood models1

ℓ(x|θ). As a function of x for a given θ, ℓ(x|θ) is a probability function. For
example, the observations can be modeled as continuous random vectors
in the space X = Rd, with ℓ(x|θ) being a probability density function; or
by random variables in a discrete space X = {a, b, c}, with ℓ(x|θ) being a
probability mass function. The nature of the likelihood models is assumed
to be the same for all hypotheses, i.e., the functions ℓ(x|θ) correspond
either to pdfs or pmfs for all θ ∈ Θ. They are accordingly subject to the
following normalization conditions:

∫
X
ℓ(x|θ)dx = 1 ∀θ ∈ Θ (for pdf),

∑
x∈X

ℓ(x|θ) = 1 ∀θ ∈ Θ (for pmf).
(2.4)

In some applications, it is useful to deal with mixed-type data, i.e., data
that are not represented only by continuous or discrete random variables.
For example, we might represent x as a vector with different entries having
different characteristics. Some entries in x can be described by continuous
variables, e.g., the price of a commercial product, while other entries are
better described by categorical attributes, e.g., the product brand. To avoid
added complexity in the presentation, in our treatment we will mostly
focus on the case where ℓ(x|θ) is a pdf or a pmf. However, we remark
that the results presented in this text apply to more heterogeneous cases,
provided that ℓ(x|θ) can be meaningfully defined in terms of the so-called
Radon-Nikodym derivative [21].

2.1.1 From Priors and Likelihoods to Beliefs

The product π(θ)ℓ(x|θ) identifies a joint probability distribution for the
hypothesis/data pair (θ, x). Under this distribution, the posterior belief
can be computed as the conditional probability that θ is true given x,

1In this text we call “likelihood model” or simply “likelihood” the pdf/pmf ℓ(x|θ) for a given
θ ∈ Θ. We remark that, in statistics, it is more frequent to use the terms “likelihood function”
and “likelihood” when ℓ(x|θ) is regarded as a function of θ for a given x [110, 155].

20 Bayesian Learning

through Bayes’ rule:2

µ(θ|x) = π(θ)ℓ(x|θ)
m(x) , m(x) =

∑
θ∈Θ

π(θ)ℓ(x|θ), (2.5)

where m(x) is the marginal pdf or pmf of x, a.k.a. evidence in Bayesian
theory [20]. As is typical in the Bayesian framework, expressions like (2.5)
are often conveniently abbreviated as

µ(θ|x) ∝ π(θ)ℓ(x|θ). (2.6)

The proportionality sign ∝ is used because we regard the belief µ(θ|x)
as a function of θ, while the normalization term m(x) that makes µ(θ|x)
a probability vector depends only on x, and, hence, is a proportionality
constant that is independent of θ.

Bayes’ rule is reassuring under several viewpoints. First of all, if the
postulated joint model π(θ)ℓ(x|θ) is true, Bayes’ rule computes exactly
the conditional probability of hypothesis θ given data x, which identifies
naturally the best candidate to quantify the agent’s credibility on the
different hypotheses, and is therefore the building block to solve many
inference problems. For example, if we want to maximize the probability
of guessing the hypothesis correctly, we should seek the value of θ that
yields the maximum a posteriori probability (MAP), namely,

θ̂MAP = arg max
θ∈Θ

µ(θ|x). (2.7)

Notably, Bayes’ rule works well even under mismatched models, i.e., when
the observed data are not obeying the postulated likelihood models em-
ployed to perform the belief update. As we will see in Lemma 2.3, under
this more challenging setting, Bayes’ rule is able to provide the best fit to
the true underlying data model.

Example 2.1 (Bayes’ rule with Bernoulli likelihoods). Consider a data sample x ∈ {0, 1}
and a Bernoulli likelihood model

ℓ(x|θ) = qθ I[x = 0] + (1 − qθ) I[x = 1], (2.8)

for certain probabilities qθ, parametrized by θ ∈ Θ. We recall from Table 1.1 that I is
the indicator function, which assumes the value 1 when the condition identified by its

2µ(θ|x) is defined only when m(x) ̸= 0. When the data are distributed according to m(x), this
is immaterial since the set {x : m(x) = 0} has zero probability under m(x) [7]. More generally,
the set {x : m(x) = 0} has zero probability when the support of the true data distribution is
contained in the support of the distribution identified by m(x) — see Definition E.1. We will
find instances of the latter case in our analysis.

2.1. The Bayesian Way 21

0 1

x

0.0

0.2

0.4

0.6

0.8

1.0

`(
x
|θ)

θ = 1 θ = 2 θ = 3

1 2 3

θ

0.0

0.2

0.4

0.6

µ
(θ
|x

)

x = 0 x = 1

Figure 2.1: (Left) Bernoulli likelihood models in Example 2.1, with hypotheses θ = 1, 2, 3
displayed with different colors. (Right) Posterior beliefs given the observation of x = 0 (in dotted
hatching), or x = 1 (in parallel hatching).

argument is true and the value 0 otherwise. Starting from the prior belief π(θ), we are
interested in evaluating the posterior belief µ(θ|x) following Bayes’ rule seen in (2.6),
which yields

µ(θ|x) ∝ π(θ)ℓ(x|θ) = π(θ)
(
qθ I[x = 0] + (1 − qθ) I[x = 1]

)
. (2.9)

Accounting for the normalization term, we obtain

µ(θ|x) = π(θ)qθ∑
θ′∈Θ

π(θ′)qθ′
I[x = 0] + π(θ)(1 − qθ)∑

θ′∈Θ
π(θ′)(1 − qθ′)

I[x = 1]. (2.10)

Note that a likelihood can sometimes be uninformative about the hypotheses, which in
this example happens when we have a uniform Bernoulli likelihood. In fact, if qθ = 1/2
for a certain hypothesis θ, from (2.8) we have ℓ(x|θ) = 1/2 for all x ∈ {0, 1}, which
means that the data sample x bears no information about θ. Accordingly, for θ such that
qθ = 1/2, Eq. (2.10) reveals that the Bayesian update remains equal to the prior belief,
namely we get µ(θ|x) = π(θ), corroborating the absence of information in the likelihood.

Let us now consider a numerical example, with a set of three hypotheses Θ = {1, 2, 3},
a flat prior belief, i.e., π(θ) = 1/3 for θ = 1, 2, 3, and the following likelihood (see the
left panel of Figure 2.1):

ℓ(x|1) = 0.4 I[x = 0] + 0.6 I[x = 1],
ℓ(x|2) = 0.7 I[x = 0] + 0.3 I[x = 1],
ℓ(x|3) = 0.2 I[x = 0] + 0.8 I[x = 1].

(2.11)

We evaluate the posterior belief µ(θ|x) using (2.10):

µ(1|x) = 0.4
0.4 + 0.7 + 0.2 I[x = 0] + 0.6

0.6 + 0.3 + 0.8 I[x = 1],

µ(2|x) = 0.7
0.4 + 0.7 + 0.2 I[x = 0] + 0.3

0.6 + 0.3 + 0.8 I[x = 1],

µ(3|x) = 0.2
0.4 + 0.7 + 0.2 I[x = 0] + 0.8

0.6 + 0.3 + 0.8 I[x = 1].

(2.12)

In the right panel of Figure 2.1, we see the posterior belief µ(θ|x) given the observation
of x = 0 or x = 1. Note that the case x = 0 results in a belief vector whose largest entry

22 Bayesian Learning

is θ = 2, that is, x = 0 is perceived as a relatively strong evidence supporting hypothesis
θ = 2. On the other hand, the case x = 1 reinforces hypothesis θ = 3.

2.2 Properties of Bayes’ Rule

In many inference and learning problems, it is necessary to deal with
streams of data:

x1, x2, . . . , xt, (2.13)

with each data sample belonging to some space X . The “time” index t need
not correspond to a physical time instant. Depending on the application,
it might denote a time instant, but also the amount of observed data, or
the number of iterations of an algorithm. Applying (2.6) to the product
space X t, we can write

µ(θ|x1, x2, . . . , xt) ∝ π(θ) ℓ(x1, x2, . . . , xt|θ). (2.14)

It is convenient to introduce a more compact notation to work with
streaming data. The belief about hypothesis θ at time t will be denoted by

µt(θ) ≜ µ(θ|x1, x2, . . . , xt), (2.15)

yielding the belief vector

µt ≜ [µt(1), µt(2), . . . , µt(H)]. (2.16)

We adopt the convention that index t = 0 corresponds to the prior belief
vector, namely, the initial belief vector is µ0 = π. Note that in (2.15) and
(2.16), the subscript t denotes dependence on a stream with t samples, while
the explicit dependence on the data {x1, x2, . . . , xt} has been suppressed.
When the belief is evaluated on random data, we will write more explicitly

µt(θ) = µ(θ|x1,x2, . . . ,xt), (2.17)

where the belief vector is written in bold to reflect the randomness of the
data. In order to facilitate the reading, we make an important remark as
regards notation. Throughout the treatment, we will use bold font when
the stochastic nature of the pertinent variables is important (e.g., when
we deal with stochastic convergence). Otherwise, we will stick to normal
font whenever randomness is not relevant to illustrate the results.

2.2. Properties of Bayes’ Rule 23

If the joint likelihood needed in (2.14) is built assuming that the
streaming data are independent and identically distributed (iid) conditioned
on θ, then it can be written in product form as

ℓ(x1, x2, . . . , xt|θ) =
t∏

τ=1
ℓ(xτ |θ). (2.18)

One fundamental property of the Bayesian update (2.14) is that, under
(2.18), it can be implemented sequentially,3 meaning that the overall rule
that updates the prior belief µ0 to a posterior belief based on the entire
stream of data x1, x2, . . . , xt, can be equivalently obtained in an online
manner as follows. First, perform a Bayesian update of the prior belief µ0
by using data x1, yielding the posterior belief µ1. Then, take µ1 as the
prior and perform a Bayesian update through x2 obtaining the posterior
µ2, and so on. The belief µt obtained through this sequential procedure is
equivalent to the Bayesian posterior with prior µ0 and data x1, x2, . . . , xt.

Lemma 2.1 (Sequential Bayesian updates). Let µ0(θ) be the prior belief and
consider, for t ∈ N, a joint likelihood in the form

ℓ(x1, x2, . . . , xt|θ) =
t∏

τ=1

ℓ(xτ |θ). (2.19)

Assume that ∑
θ∈Θ

µ0(θ)
t∏

τ=1

ℓ(xτ |θ) > 0. (2.20)

Then,
µt(θ) ∝ µt−1(θ) ℓ(xt|θ), (2.21)

where µt(θ) and µt−1(θ) are the Bayesian updates until time instants t and t− 1,
respectively.

Proof. Using (2.14), we can write (observe that in the following applications of Bayes’
rule, the denominator hidden by the proportionality sign is always nonzero in view of
(2.20))

µt(θ) = µ(θ|x1, x2, . . . , xt) ∝ µ0(θ)ℓ(x1, x2, . . . , xt|θ), (2.22)
µt−1(θ) = µ(θ|x1, x2, . . . , xt−1) ∝ µ0(θ)ℓ(x1, x2, . . . , xt−1|θ). (2.23)

3The sequential nature of the Bayesian update is preserved if we relax the condition of
identical distribution over time, namely, even if at time τ we have ℓ(τ)(xτ |θ).

24 Bayesian Learning

Substituting (2.19) into (2.22) yields

µt(θ) ∝ π(θ)
t∏

τ=1

ℓ(xτ |θ)

= µ0(θ)

(
t−1∏
τ=1

ℓ(xτ |θ)

)
ℓ(xt|θ)

= µ0(θ)ℓ(x1, x2, . . . , xt−1|θ)ℓ(xt|θ)
∝ µt−1(θ)ℓ(xt|θ), (2.24)

where in the last step we used (2.23), thus concluding the proof.
■

Lemma 2.1 ensures that, given an additional piece of information xt, we
can update the knowledge summarized in the previous-step belief µt−1(θ)
by taking into account the knowledge contained in the likelihood ℓ(xt|θ)
corresponding to time t. Notably, this update gives the same result that
we would have obtained by updating the initial belief µ0(θ) through the
overall likelihood ∏t

τ=1 ℓ(xτ |θ).
The sequential nature of the Bayesian update (2.21) is a compelling

property, both from a theoretical and practical perspective. From the
practical standpoint, it is critical for online applications where processing
the entire bulk of data in a single shot is unfeasible, or when it is necessary
to incorporate streaming pieces of information as soon as they arrive. From
the theoretical standpoint, the sequential construction confirms that the
Bayesian update is logically coherent. In fact, we see that at a certain
epoch t− 1 all knowledge relative to previous epochs is summarized in the
belief vector µt−1. According to Lemma 2.1, this summary is all we need
to incorporate future data.

Example 2.2 (Bayes’ rule with streaming data and Gaussian likelihoods). Consider the
joint likelihood in (2.18) evaluated when the single-sample likelihood is Gaussian:

ℓ(x|θ) = 1√
2πσ2

exp
{

− (x− νθ)2

2σ2

}
, (2.25)

with θ−dependent means νθ, and variance σ2 common to all hypotheses. Starting from
the initial belief vector µ0, we are interested in evaluating the posterior belief vector µt
corresponding to the stream of t data samples.

From (2.14) and (2.25) we can write

µt(θ) ∝ µ0(θ) ℓ(x1, x2, . . . , xt|θ) ∝ µ0(θ)
t∏

τ=1

exp
{

− (xτ − νθ)2

2σ2

}
. (2.26)

2.2. Properties of Bayes’ Rule 25

1 2 3

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ
0
(θ

)

1 2 3

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ
1
(θ

)

1 2 3

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ
10

(θ
)

Figure 2.2: Belief evolution over a Gaussian data stream under the setting described in
Example 2.2. The data are generated according to the likelihood model corresponding to θ = 1.
(Left) Prior belief. (Center) Belief given the first sample (t = 1). (Right) Belief given the first
10 samples (t = 10).

Accounting for the normalization term, we obtain

µt(θ) =

µ0(θ) exp

{
−

t∑
τ=1

(xτ − νθ)2

2σ2

}
∑
θ′∈Θ

µ0(θ′) exp

{
−

t∑
τ=1

(xτ − νθ′)2

2σ2

} . (2.27)

It is also useful to notice that, by splitting the product appearing in (2.26), we can write

µt(θ) ∝ µ0(θ)
t−1∏
τ=1

exp
{

− (xτ − νθ)2

2σ2

}
︸ ︷︷ ︸

∝µt−1(θ)

exp
{

− (xt − νθ)2

2σ2

}
︸ ︷︷ ︸

∝ℓ(xt|θ)

, (2.28)

which is in agreement with Lemma 2.1. Exploiting (2.28) and accounting for the normal-
ization term, we obtain the following formula, which is suited to a sequential evaluation
of the belief under Gaussian likelihoods:

µt(θ) =
µt−1(θ) exp

{
− (xt − νθ)2

2σ2

}
∑
θ′∈Θ

µt−1(θ′) exp
{

− (xt − νθ′)2

2σ2

} . (2.29)

Let us now illustrate the numerical example considered in Figure 2.2. We generate a
random data stream

x1,x2, . . . ,xt, (2.30)
made of independent samples drawn from the Gaussian model ℓ(x|1). Then, we evaluate
the sequence of beliefs µt(θ) starting from flat prior beliefs. In Figure 2.2 we display
the prior beliefs and the beliefs µt(θ) corresponding to 1 and 10 samples. We see how,
starting from an initial state of ignorance (flat prior), the increase of information from
t = 1 to t = 10 leads the belief vector to place most of the mass on θ = 1, namely, on
the model from which the stream is actually generated.

26 Bayesian Learning

Another useful property of Bayes’ rule is consistency, i.e., the ability
to guess the right model as the number of collected samples increases [71,
72]. Specifically, assuming that an infinite stream of iid data x1,x2, . . .

arising from the same model ℓ(x|ϑo) is observed, then the sequence of
belief vectors µt converges to a probability vector that places all its mass
on the correct hypothesis ϑo ∈ Θ.

Before stating the result in a formal way, we need to introduce the
Kullback-Leibler (KL) divergence between two pdfs or two pmfs f(x) and
g(x) [52] — see Definition B.4:

D(f ||g) = Ef log f(x)
g(x) , (2.31)

where we recall that the symbol Ef means that x is distributed according
to f(x). As explained in Section 1.4, we drop the argument x in f(x) and
g(x) and write simply f and g to globally denote the pertinent pdf or pmf.
Similarly, we will write ℓθ to denote the pdf or pmf ℓ(x|θ) (regarded as a
function of x for a fixed θ), where we add the subscript θ to emphasize the
dependence on θ.

Lemma 2.2 (Consistency of Bayes’ rule under correct models). Let {ℓθ} be
likelihood models fulfilling the following conditions:

0 < D(ℓθ||ℓθ′) < ∞ ∀θ, θ′ ∈ Θ, θ ̸= θ′, (2.32)

namely, the pdfs or pmfs ℓθ corresponding to different hypotheses are all distinct
and with finite KL divergences. Consider an infinite stream of iid data samples
x1,x2, . . ., each one distributed according to ℓϑo , with ϑo ∈ Θ, and let µt be the
belief vector obtained through Bayes’ rule (2.21), based on models {ℓθ} and on
a prior µ0 placing nonzero mass on all θ ∈ Θ. Then, for any choice of ϑo ∈ Θ,

µt(ϑ
o) a.s.−−−→

t→∞
1. (2.33)

Proof. We observe preliminarily that ℓ(xt|θ) > 0 almost surely. This condition holds for
θ = ϑo since the true model of the data samples is ℓ(x|ϑo), and it holds for all θ ̸= ϑo

since in view of (2.32) we have

D(ℓϑo ||ℓθ) < ∞. (2.34)

Since ℓ(xt|θ) > 0 almost surely, from Lemma 2.1 we can write the belief about any
θ ∈ Θ as

µt(θ) =
µt−1(θ)ℓ(xt|θ)∑

θ′∈Θ µt−1(θ′)ℓ(xt|θ′)
, (2.35)

but for an ensemble of realizations with zero probability.

2.2. Properties of Bayes’ Rule 27

Next, we show that µt(θ) > 0 almost surely, for all t and θ. This property can be
established by induction. First, we observe that the property µt(θ) > 0 is true for t = 0,
since the prior belief vector µ0 is assumed to have positive entries. Second, we consider
the induction step, and show that the property holds for t if it holds for t− 1. To this
end, it suffices to use (2.35), along with the fact that ℓ(xt|θ) > 0 almost surely.

We can now focus on establishing the claim of the theorem. To this end, we work in
terms of belief ratios, which are well defined since µt(θ) > 0 almost surely. Let θ ≠ ϑo.
In view of (2.35), the belief ratio µt(ϑo)/µt(θ) is given by

µt(ϑo)
µt(θ)

=
µt−1(ϑo)ℓ(xt|ϑo)
µt−1(θ)ℓ(xt|θ)

. (2.36)

Taking the logarithm we obtain

log µt(ϑ
o)

µt(θ)
= log

µt−1(ϑo)
µt−1(θ) + log ℓ(xt|ϑ

o)
ℓ(xt|θ)

. (2.37)

Developing the recursion over time and dividing by t gives

1
t

log µt(ϑ
o)

µt(θ)
= 1
t

log µ0(ϑo)
µ0(θ) + 1

t

t∑
τ=1

log ℓ(xτ |ϑo)
ℓ(xτ |θ) . (2.38)

The iid property of x1,x2, . . . and the finiteness condition in (2.32) allow us to use the
strong law of large numbers (Theorem D.7) to establish the convergence of the second
term on the RHS of (2.38) in the following manner:

1
t

t∑
τ=1

log ℓ(xτ |ϑo)
ℓ(xτ |θ)

a.s.−−−→
t→∞

Eℓϑo log ℓ(xτ |ϑo)
ℓ(xτ |θ) = D(ℓϑo ||ℓθ). (2.39)

Since the first term on the RHS of (2.38) tends to 0, from (2.38) we conclude that, for
all θ ̸= ϑo,

1
t

log µt(ϑ
o)

µt(θ)
a.s.−−−→
t→∞

D(ℓϑo ||ℓθ) > 0, (2.40)

where we also used the positivity condition in (2.32). Equation (2.40) implies that

log µt(ϑ
o)

µt(θ)
a.s.−−−→
t→∞

∞ ∀θ ̸= ϑo. (2.41)

Since the entries of the belief vector are bounded, Eq. (2.41) is equivalent to

µt(θ)
a.s.−−−→
t→∞

0 ∀θ ̸= ϑo. (2.42)

Moreover, since the entries of the belief vector add up to 1, Eq. (2.42) is equivalent to
stating that µt(ϑo) converges almost surely to 1, thus establishing the claim.

■

Note that if we want the claim in (2.33) to hold for a particular ϑo,
then it is not necessary to require condition (2.32) to hold for any pair
(θ, θ′), but only the following relaxed condition would suffice:

0 < D(ℓϑo ||ℓθ) <∞, ∀θ ̸= ϑo. (2.43)

28 Bayesian Learning

However, since ϑo is unknown, we enforce condition (2.32) because we
want to ensure that the claim holds for any possible choice of ϑo.

It is useful to illustrate Lemma 2.2 by means of an example.

Example 2.3 (Consistency under Gaussian likelihoods). Consider a problem with 3
hypotheses, namely Θ = {1, 2, 3}, and a family of Gaussian likelihoods, as introduced in
Example 2.2, with variance σ2 = 1 and means

ν1 = 0.5, ν2 = 1, ν3 = 1.5. (2.44)

Let x1,x2, . . . be a stream of samples independently drawn from the same model ℓ(x|1),
that is, the true underlying hypothesis is ϑo = 1. In the left panel of Figure 2.3, we see
the shape of the Gaussian likelihoods ℓ(x|θ).

From Lemma 2.2 we expect that, as t grows, the belief vector µt places all its mass
on hypothesis ϑo, as long as condition (2.32) is satisfied. In order to verify this condition,
it is useful to evaluate the KL divergence between two Gaussian distributions (with the
same variance σ2):

D(ℓθ||ℓθ′) = Eℓθ log ℓ(x|θ)
ℓ(x|θ′)

= 1
2σ2 Eℓθ

[
(x− νθ′)2 − (x− νθ)2

]
= 1

2σ2

[
2(νθ − νθ′)Eℓθx︸︷︷︸

=νθ

+ν2
θ′ − ν2

θ

]
= (νθ − νθ′)2

2σ2 . (2.45)

Using (2.44) and (2.45), we can see that (2.32) is satisfied.
We illustrate the result of Lemma 2.2 by simulating the evolution of the belief vector

µt, updated according to the recursion in (2.29), over 100 iterations. The prior belief
vector has uniform entries. The resulting behavior is reported in the right panel of
Figure 2.3. We see that, as t grows, all the belief mass tends to be concentrated on the
true underlying hypothesis, ϑo = 1.

In practice, it is seldom the case that the true distribution that generated
the observations is exactly equal to one of the postulated likelihood models.
What one can hope for is to have some reasonable approximation for
the true distribution through one of the likelihood models. This problem
was originally addressed in [19], with reference to a more general setting
involving also a continuous parameter θ. Specifically, assuming that an
infinite stream of iid data x1,x2, . . . arising from a certain pdf or pmf f
is observed, if there exists a model ℓϑ⋆ that is the closest (in terms of KL
divergence) to f , then the sequence of belief vectors µt will converge to a
probability vector that places all its mass on hypothesis ϑ⋆. This means

2.2. Properties of Bayes’ Rule 29

−2 0 2 4

x

0.0

0.2

0.4

`(
x
|θ)

θ = 1 θ = 2 θ = 3

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

µ
t(
θ)

Figure 2.3: (Left) Gaussian likelihood models in Example 2.3. (Right) Belief evolution over
100 iterations. We see that, as t grows, all the belief mass is concentrated on the true underlying
hypothesis, ϑo = 1.

that the Bayesian learning approach is able to indicate which model fits
best the true underlying distribution.

Lemma 2.3 (Convergence of Bayes’ rule under mismatched models). Consider
an infinite stream of iid data samples x1,x2, . . ., each one distributed according
to a probability (density or mass) function f . Let {ℓθ} be likelihood models of
the same nature as f (namely, for all θ ∈ Θ, ℓθ is a pdf if f is a pdf, and a pmf
otherwise) and let µt be the belief vector obtained through Bayes’ rule (2.21),
based on models {ℓθ} and on a prior µ0 placing nonzero mass on all θ ∈ Θ. If

D(f ||ℓθ) < ∞ ∀θ ∈ Θ (2.46)

and if the minimization problem

min
θ∈Θ

D(f ||ℓθ) (2.47)

admits a unique minimizer ϑ⋆, then

µt(ϑ
⋆) a.s.−−−→

t→∞
1. (2.48)

Proof. We reuse the arguments of Lemma 2.2 until (2.38) with ϑ⋆ ̸= θ in place of ϑo to
write

1
t

log µt(ϑ
⋆)

µt(θ)
= 1
t

log µ0(ϑ⋆)
µ0(θ) + 1

t

t∑
τ=1

log ℓ(xτ |ϑ⋆)
ℓ(xτ |θ) . (2.49)

Again, the first term on the RHS of (2.49) tends to 0, while the second term can be
rewritten as

1
t

t∑
τ=1

log ℓ(xτ |ϑ⋆)
ℓ(xτ |θ) = 1

t

t∑
τ=1

log f(xτ)
ℓ(xτ |θ) − 1

t

t∑
τ=1

log f(xτ)
ℓ(xτ |ϑ⋆) . (2.50)

Given the iid property of x1,x2, . . . and the finiteness condition in (2.46), we can once

30 Bayesian Learning

more appeal to the strong law of large numbers (Theorem D.7) to note that

1
t

t∑
τ=1

log ℓ(xτ |ϑ⋆)
ℓ(xτ |θ)

a.s.−−−→
t→∞

Ef log f(xτ)
ℓ(xτ |θ) − Ef log f(xτ)

ℓ(xτ |ϑ⋆)

= D(f ||ℓθ) −D(f ||ℓϑ⋆). (2.51)

Since ϑ⋆ is the unique minimizer of (2.47), it follows that, for all θ ̸= ϑ⋆,

D(f ||ℓθ) −D(f ||ℓϑ⋆) > 0. (2.52)

From (2.52) and (2.51) we conclude that

log µt(ϑ
⋆)

µt(θ)
a.s.−−−→
t→∞

∞ ∀θ ̸= ϑ⋆, (2.53)

which, since the beliefs are bounded, implies that

µt(θ)
a.s.−−−→
t→∞

0 ∀θ ̸= ϑ⋆. (2.54)

This is equivalent to (2.48) because the entries of the belief vector must add up to 1,
and the proof is complete.

■

We remark that Lemma 2.2 can be regarded as a special case of
Lemma 2.3 corresponding to f = ℓϑo . In fact, with this particular choice
we have

ϑ⋆ = arg min
θ∈Θ

D(f ||ℓθ) = arg min
θ∈Θ

D(ℓϑo ||ℓθ) = ϑo, (2.55)

since D(ℓϑo ||ℓϑo) = 0 and, in view of (2.32), the KL divergences corre-
sponding to θ ̸= ϑo are all positive.

Example 2.4 (Convergence under mismatched Gaussian likelihoods). Consider a problem
with 3 hypotheses, namely, Θ = {1, 2, 3}, and a family of Gaussian likelihoods with unit
variance and means

ν1 = 0.5, ν2 = 1, ν3 = 1.5. (2.56)
Let x1,x2, . . . be a stream of samples independently drawn from a Gaussian distribution
that does not belong to the family of models {ℓ(x|θ)}θ∈Θ. We denote by f(x) the true
Gaussian pdf of the data samples, with mean νf = 0.6 and unit variance. In the left
panel of Figure 2.4, we display the true pdf f(x) and the mismatched pdfs ℓ(x|θ) for
θ = 1, 2, 3.

From Lemma 2.3 we expect that, as t grows, the belief vector µt places all its mass
on hypothesis ϑ⋆, which is the unique minimizer of D(f ||ℓθ). As seen in Example 2.3,
we can compute D(f ||ℓθ) as

D(f ||ℓθ) = Ef log f(x)
ℓ(x|θ) = (νf − νθ)2

2 , (2.57)

2.3. Information-Theoretic Interpretations 31

−2 0 2 4

x

0.0

0.2

0.4

`(
x
|θ)

an
d
f

(x
) f(x)

θ = 1 θ = 2 θ = 3

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

µ
t(
θ)

Figure 2.4: (Left) Mismatched Gaussian models ℓ(x|θ) (solid line) and true Gaussian model
f(x) (dashed line) corresponding to Example 2.4. (Right) Belief evolution over 100 iterations.
We see that, as t grows, all the belief mass is concentrated on the unique minimizer ϑ⋆ = 1,
namely, on the hypothesis that provides the best fit to the true model (see the left panel).

resulting in the KL divergence values

D(f ||ℓ1) = 0.005, D(f ||ℓ2) = 0.080, D(f ||ℓ3) = 0.405. (2.58)

In this example, the minimizer of D(f ||ℓθ) is given by ϑ⋆ = 1. As a matter of fact, in the
left panel of Figure 2.4 we see that the likelihood providing the best fit to the true model
(dashed line) corresponds to hypothesis 1 (blue solid line). In addition, we simulate the
evolution of the belief vector µt, updated according to the recursion in (2.29), over 100
iterations. The resulting behavior is displayed in the right panel of Figure 2.4. We see
that, as t grows, the belief mass becomes progressively concentrated on the unique mini-
mizer ϑ⋆ = 1, corresponding to the hypothesis that provides the best fit to the true model.

2.3 Information-Theoretic Interpretations

An interesting problem in Bayesian theory is to determine the optimal
belief update rule relative to a suitable criterion. In other words, the
posterior belief is no longer treated as a fait accompli forced by the rules
of conditional probability, but should arise instead as the solution to a
meaningful optimization problem. A relevant class of optimization problems
emerging in this context addresses the following question. Given the prior
knowledge embodied in π(θ), and the likelihood model ℓ(x|θ), which is the
posterior belief µ(θ) that provides the best rule to process the available
information? In order to find an optimized rule, it is necessary to define a
suitable function to measure the cost associated with a particular posterior
belief. We will see that typical cost functions involve information-theoretic
quantities.

32 Bayesian Learning

One of the earliest works following this path is [174], where an informa-
tion conservation principle is formulated to construct the cost function, and
the corresponding minimization problem is shown to lead to the Bayesian
posterior as the optimal solution. This study stimulated new formula-
tions and led to a debate on the interpretation of Bayes’ rule in terms of
information-theoretic quantities [105]. Since then, the cost function has
been remastered and modified in different guises. A commonly accepted
formulation is the free-energy minimization criterion. This optimization
principle, originally enunciated at the end of the 19th century, can explain
several inference and learning techniques, including Bayesian inference,
maximum likelihood learning with latent variables, variational approximate
Bayesian theory, mirror descent optimization, maximum entropy methods,
as well as brain modeling and cognition in self-organizing systems [97, 155].
We illustrate the free-energy minimization principle applied to the learning
problem of our interest.

Let ∆H be the probability simplex of dimension H. Denoting by p ∈ ∆H

the (unknown) belief vector we must optimize over, the free-energy function
pertinent to our problem is defined as [74, 97, 155]:4

F (p) =
∑
θ∈Θ

p(θ) log 1
π(θ)ℓ(x|θ) −H(p), (2.59)

where
H(p) =

∑
θ∈Θ

p(θ) log 1
p(θ) (2.60)

is the entropy of the pmf p [52, 158] — see Definition B.1. The first term on
the RHS of (2.59) can be interpreted as a cost value for selecting p based
on the available information reflected by the joint model π(θ)ℓ(x|θ), while
the entropy serves as a measure for the complexity of p. The free-energy
function is usually rearranged in the following form:

F (p) = D(p||π)−
∑
θ∈Θ

p(θ) log ℓ(x|θ), (2.61)

where
D(p||π) =

∑
θ∈Θ

p(θ) log p(θ)
π(θ) (2.62)

is the KL divergence between pmfs p and π [52] — see Definition B.4.

4We should have written p(θ|x), since we are actually evaluating a posterior belief. We omit
the explicit dependence on x for notational simplicity.

2.3. Information-Theoretic Interpretations 33

Using (2.62) and the marginal pdf or pmf m(x) defined in (2.5), Eq.
(2.61) can be manipulated as follows:

F (p) =
∑
θ∈Θ

p(θ) log p(θ)
π(θ) +

∑
θ∈Θ

p(θ) log 1
ℓ(x|θ) (2.63a)

=
∑
θ∈Θ

p(θ) log p(θ)
π(θ)ℓ(x|θ)
m(x)

− logm(x) (2.63b)

= D(p||µBu)− logm(x), (2.63c)

where we denote by µBu the belief arising from the Bayesian update (2.5),
namely,

µBu(θ|x) = π(θ)ℓ(x|θ)
m(x) , m(x) =

∑
θ∈Θ

π(θ)ℓ(x|θ). (2.64)

Since D(p||µBu) ≥ 0, with equality if, and only if, p = µBu, we obtain the
following remarkable result:

µBu = arg min
p∈∆H

F (p), (2.65)

namely, free energy is minimized by the Bayesian posterior µBu. It is
worth mentioning that, in the context of variational Bayesian inference,
the negative free energy is also known as ELBO (evidence lower bound),
because in view of (2.63c) we have [155]

logm(x) = D(p||µBu)− F (p) ≥ −F (p), (2.66)

showing that the negative free energy is a lower bound on the logarithm of
the evidence m(x).

We next describe another useful information-theoretic interpretation
of Bayes’ rule. We start by constructing a belief vector µlik that uses
only the information contained in the likelihood ℓ(x|θ) and disregards the
information contained in the prior π. This construction can be done by
scaling the likelihood to transform it into a probability (i.e., belief) vector

µlik(θ|x) ≜ ℓ(x|θ)∑
θ′∈Θ

ℓ(x|θ′) . (2.67)

We refer to µlik as the “likelihood” posterior. Observe that (2.67) can be
interpreted as a Bayesian update with likelihood ℓ(x|θ) and uniform prior
(π(θ) = 1/H for all θ ∈ Θ), namely,

µlik(θ|x) = (1/H)ℓ(x|θ)
mu(x) , mu(x) = 1

H

∑
θ∈Θ

ℓ(x|θ). (2.68)

34 Bayesian Learning

Using (2.68) in (2.61), the free energy can be rewritten as

F (p) = D(p||π) +
∑
θ∈Θ

p(θ) log 1
µlik(θ|x)︸ ︷︷ ︸

cross-entropy H(p, µlik)

− log

∑
θ′∈Θ

ℓ(x|θ′)

︸ ︷︷ ︸
independent of p

, (2.69)

where we see the appearance of the cross-entropy between the target belief
p and the “likelihood” posterior µlik — see Definition B.2. Since the last
term in (2.69) does not contain the target belief p, minimizing the free
energy is tantamount to minimizing the following modified cost function:

F̃ (p) ≜ D(p||π) +H(p, µlik). (2.70)

We see that the cost function in (2.70) adds to the KL divergence between
p and the prior the cross-entropy between p and the “likelihood” posterior.
Moreover, by writing explicitly the KL divergence and the cross-entropy,
we see that

F̃ (p) =
∑
θ∈Θ

p(θ) log p(θ)
π(θ) +

∑
θ∈Θ

p(θ) log 1
µlik(θ)

=
∑
θ∈Θ

p(θ) log 1
π(θ) +

∑
θ∈Θ

p(θ) log p(θ)
µlik(θ) , (2.71)

and we conclude that the cost function F̃ (p) can be equivalently written as

F̃ (p) = H(p, π) +D(p||µlik). (2.72)

That is, the roles of the KL divergence and the cross-entropy in (2.70)
and (2.72) can be interchanged without altering the cost function. In
summary, we find that the Bayesian posterior µBu minimizes the free energy
F (p). Since we showed that minimizing F (p) is equivalent to minimizing
F̃ (p), from (2.70) and (2.72) we conclude that the Bayesian posterior also
minimizes the sum of a KL divergence term and a cross-entropy term
involving the prior π and the “likelihood” posterior µlik.

2.4 Stochastic-Optimization Interpretation

In this section we provide a third interpretation and show how Bayes’
rule can arise from a stochastic-optimization problem solved by means of
a stochastic mirror descent (SMD) algorithm [17, 36, 136, 155]. Assume
that we observe a stream of iid data x1,x2, . . . drawn from an unknown

2.4. Stochastic-Optimization Interpretation 35

probability (density or mass) function f . As usual, a prior belief vector
π and the likelihood models {ℓθ} are available. The goal is to learn from
the data stream which model ℓϑ⋆ provides the best fit to the true model f ,
a question that can be formulated in terms of the following optimization
problem:

ϑ⋆ = arg min
θ∈Θ

D(f ||ℓθ). (2.73)

We work under the same assumptions used in Lemma 2.3 and, in particular,
we are assuming in (2.73) that D(f ||ℓθ) is minimized at a unique value ϑ⋆.
Problem (2.73) can be reformulated in terms of belief vectors p, namely, we
can solve the following equivalent problem over p belonging to the simplex
∆H :

eϑ⋆ = arg min
p∈∆H

∑
θ∈Θ

p(θ)D(f ||ℓθ). (2.74)

In (2.74), we are denoting by eϑ⋆ ∈ RH the basis vector that has all zero
entries, except for the ϑ⋆th entry that is equal to 1. In order to justify
why (2.74) is equivalent to (2.73), we observe that, assuming a unique
minimizer ϑ⋆, we can write∑

θ∈Θ
p(θ)D(f ||ℓθ)−D(f ||ℓϑ⋆) =

∑
θ∈Θ

p(θ)
(
D(f ||ℓθ)−D(f ||ℓϑ⋆)

)
=
∑
θ ̸=ϑ⋆

p(θ)
(
D(f ||ℓθ)−D(f ||ℓϑ⋆)

)
︸ ︷︷ ︸

>0

≥ 0.

(2.75)

Accordingly, the LHS of (2.75) is minimized if we set p(θ) = 0 for all
θ ≠ ϑ⋆. Thus, the minimum of the cost function in (2.74) is D(f ||ℓϑ⋆),
and the unique minimizer is a probability vector placing unit mass on ϑ⋆,
namely, the vector eϑ⋆ . Expanding the cost function in (2.74) we can write

∑
θ∈Θ

p(θ)D(f ||ℓθ) = Ef

∑
θ∈Θ

p(θ) log 1
ℓ(x|θ) + log f(x)

 , (2.76)

which, since the term log f(x) does not depend on p, can be replaced by
the cost function

Ef

∑
θ∈Θ

p(θ) log 1
ℓ(x|θ)

 . (2.77)

Actually, the function f(x) relative to which the expectation is evaluated
is unknown. Therefore, the cost function in (2.77) cannot be computed. In

36 Bayesian Learning

the theory of optimization, one way to circumvent this type of difficulty is
to implement a stochastic gradient descent (SGD) algorithm, where the
gradient of (2.77) is replaced by a stochastic instantaneous approximation,
yielding, for t = 1, 2, . . . (with p0 being the initial or prior belief),

pt = pt−1 − γ∇Qt(pt−1)
= arg min

p∈RH
∥pt−1 − γ∇Qt(pt−1)− p∥2, (2.78)

where γ > 0 is the step-size or learning rate parameter, and where we
introduced the instantaneous loss function

Qt(p) ≜
∑
θ∈Θ

p(θ) log 1
ℓ(xt|θ)

. (2.79)

The first equality in (2.78) is the standard SGD formulation, whereas the
second equality is a straightforward identity that will be useful soon [155].
Unfortunately, algorithm (2.78) does not account for the fact that p must
belong to the probability simplex (i.e., its entries must be nonnegative and
add up to 1). In order to incorporate this constraint, we can resort to a
projected stochastic gradient algorithm, by restricting to ∆H the search
space appearing in the second formulation of (2.78):

pt = arg min
p∈∆H

∥pt−1 − γ∇Qt(pt−1)− p∥2

= arg min
p∈∆H

{(
∇Qt(pt−1)

)T
p+ 1

2γ ∥p− pt−1∥2
}
, (2.80)

where the last equality follows by expanding the squared norm and ignoring
terms that are independent of p. Exploiting the form of the loss function
Qt(p) in (2.79), we observe that

∂Qt(p)
∂p(θ) = log 1

ℓ(xt|θ)
, (2.81)

which implies(
∇Qt(pt−1)

)T
p =

∑
θ∈Θ

p(θ) log 1
ℓ(xt|θ)

= Qt(p). (2.82)

Accordingly, Eq. (2.80) can be rewritten as

pt = arg min
p∈∆H

{
Qt(p) + 1

2γ ∥p− pt−1∥2
}
. (2.83)

2.4. Stochastic-Optimization Interpretation 37

The update in (2.83) can be interpreted as minimizing Qt(p) while keeping
under control the Euclidean distance of p from the previous iterate pt−1. The
mirror descent method replaces the Euclidean distance term appearing in
(2.83) with a more general similarity measure [17, 36, 136, 155]. Specifically,
this measure is chosen from the family of Bregman divergences [34]. A
Bregman divergence Bg(p, p′) is constructed as follows [36, 155]:

Bg(p, p′) ≜ g(p)− g(p′) +
(
∇g(p′)

)T
(p′ − p), p, p′ ∈ ∆H , (2.84)

where g : ∆H 7→ R is a continuously differentiable and strictly convex
function (see Definition A.2),5 a.k.a. mirror function in the context of
mirror descent methods. Replacing the term (1/2)∥p−pt−1∥2 in (2.83) with
a Bregman divergence results in the stochastic mirror descent algorithm [17,
36, 136, 155]

pt = arg min
p∈∆H

{
Qt(p) + 1

γ
Bg(p, pt−1)

}
. (2.85)

One choice of the Bregman divergence that fits our problem where we
need to compare probability distributions is the KL divergence, which is
obtained when the mirror function is chosen as the negative entropy

g(p) =
∑
θ∈Θ

p(θ) log p(θ) = −H(p). (2.86)

With this choice, Eq. (2.85) becomes

pt = arg min
p∈∆H

{
Qt(p) + 1

γ
D(p||pt−1)

}

= arg min
p∈∆H

∑
θ∈Θ

p(θ) log 1
ℓ(xt|θ)

+ 1
γ
D(p||pt−1)

 , (2.87)

where in the last equality we used (2.79). Notably, for the case γ = 1,
the representation in (2.87) coincides with the minimization of the free
energy in the form (2.61), with π replaced by pt−1. This is a remarkable
conclusion, since it implies that, with γ = 1, the individual iterate of the
SMD algorithm is nothing but a Bayesian update rule!

To solve (2.87) for general values of γ, we multiply the quantity within
brackets by γ and write the KL divergence explicitly, obtaining

pt = arg min
p∈∆H

∑
θ∈Θ

p(θ) log p(θ)
pt−1(θ)ℓγ(xt|θ)

 . (2.88)

5In general, to define a Bregman divergence, the domain of g must be a closed convex set
(see Definition A.1), not necessarily a probability simplex.

38 Bayesian Learning

Note that the function pt−1(θ)ℓγ(xt|θ) can be turned into a pmf by nor-
malization, namely,

p′(θ) = pt−1(θ)ℓγ(xt|θ)∑
θ′∈Θ

pt−1(θ′)ℓγ(xt|θ′)
. (2.89)

Since the normalization term does not depend on p, the minimization
problem in (2.88) can be turned into minimization of the KL divergence
between p and p′, yielding the solution

pt(θ) ∝ pt−1(θ)ℓγ(xt|θ). (2.90)

Observe now that the goal of the considered stochastic-optimization frame-
work is to approximate, for a sufficiently large number of iterations, the
solution eϑ⋆ to problem (2.74). It is therefore useful to examine the asymp-
totic behavior, over an infinite stream of random data x1,x2, . . ., of the
belief generated by (2.90). By inspecting the proof of Lemma 2.3, it is
easily seen that the parameter γ does not affect the conclusion of the
lemma. Accordingly, if the prior belief p0 places nonzero mass on all θ ∈ Θ,
we have that

pt(ϑ⋆)
a.s.−−−→
t→∞

1, (2.91)

where the bold notation pt is now necessary since, as done in Lemma 2.3,
we are focusing on the limiting, almost-sure behavior of the belief when
evaluated over an infinite stream of random data. Since pt is a probability
vector, we conclude from (2.91) that the sequence of SMD iterates converges
almost surely to eϑ⋆ , a belief vector that places all its mass on hypothesis
ϑ⋆ in (2.73).

In principle, the fact that the algorithm converges does not reveal
anything special as regards the instantaneous beliefs pt, which carry in-
formation about how the agent is progressively learning to reach the final
conclusion. These running beliefs are critical for the learning process, since
ideally we would like to guarantee that the agent is able to make the best
possible choice at any time instant, in a manner that is compatible with the
data observed up to that time. The remarkable conclusion stemming from
the above analysis is that the stochastic mirror descent algorithm with the
similarity measure equal to the KL divergence and the step-size γ equal
to 1, actually provides the best instantaneous belief, corresponding to the
Bayesian update. This conclusion is not obvious, since the rationale behind
the stochastic-optimization approach is to solve (2.73) or (2.74) using a

2.4. Stochastic-Optimization Interpretation 39

sufficiently large number of iterations, with no guarantees of optimized
solutions for the individual iteration t.

Before concluding this section, there are two useful observations regard-
ing the choice of the step-size γ in (2.85). First, in the general theory of
SMD (and SGD), it is common to select a step-size that vanishes (with
suitable decay rate) as t→∞ to guarantee convergence to the true solu-
tion. In our particular case, constant step-sizes are sufficient to guarantee
convergence.

Second, we see that in the modified posterior (2.90), the step-size γ can
be used to tune the relative importance of the likelihood. The modified
posterior arose from the cost function in (2.87) which, for γ ̸= 1, is a
modification of the free energy where the KL divergence term is weighted
by 1/γ. This is only one possibility for deriving posterior beliefs based
on specific constraints [174]. One could consider variations of the cost
functions in (2.61), (2.70), or (2.72) by weighting the individual terms in a
different way, so as to unbalance the relative importance of past information
(encoded in the prior) and fresh data (encoded in the likelihood). We will
revisit this approach in Chapter 8 when we introduce adaptive social
learning and when we show the advantages of having non-Bayesian updates
in Chapter 13.

Chapter 3

From Single-Agent to Social Learning

We are now ready to formulate the social learning problem, namely, the
multi-agent, decentralized version of the single-agent problem addressed in
the previous chapter. Differently from what was assumed there, now we
allow each agent to exploit information received from some other agents,
called neighbors. We denote by Nk the set of agents whose information
is exploited by agent k. This set can include agent k, but this is not
mandatory in our model. Technically, Nk represents the in-neighborhood
of agent k, as explained later in Chapter 4.

The total number of agents in the graph will be denoted by K. Each
agent k = 1, 2, . . . ,K observes a stream of data

xk,1, xk,2, . . . , xk,t (3.1)

belonging to a space Xk, where the subscript k highlights that the observa-
tion spaces are allowed to be heterogeneous across the agents. Each agent
k attempts to construct a belief vector µk,t, relying on a prior µk,0 and on
private likelihood models {ℓk(x|θ)}θ∈Θ. The nature of ℓk(x|θ), regarded as
a function of x, may vary across the agents as well. For example, it can
be a pdf for certain agents, and a pmf for other agents. However, and as
was also assumed in the single-agent setting, the nature of ℓk(x|θ) does
not vary across θ.

Moreover, note that each likelihood model ℓk(x|θ) describes a marginal
distribution for the data of agent k, which means that no joint model
encompassing the dependence across the agents’ data (i.e., over space)
is used. This is because, as we will discuss more thoroughly in the next
section, we will focus on non-Bayesian social learning, where the inter-agent
dependence is not known or too complex to be accounted for.

42 From Single-Agent to Social Learning

3.1 Bayesian versus Non-Bayesian Learning

In Chapter 2 we saw that Bayes’ rule is optimal under several paradigms.
Therefore, an agent acting rationally should perform Bayesian learning,
which means that its belief should be the Bayesian posterior. We showed
in Lemma 2.1 that a standalone agent can perform Bayesian learning by
using an online algorithm where the belief at each iteration t, updated
sequentially by taking the previous belief and the likelihood of the new
data, corresponds exactly to the Bayesian posterior computed over the
amount of data available up to t.

The scenario changes dramatically when we move from single-agent to
social learning. Under the latter setting, spatially distributed agents are
linked by a graph, introducing nontrivial communication dynamics and
spatial dependence into the learning process. To see why, let us focus on the
perspective of a single agent from the group of agents. In order to be fully
rational (i.e., fully Bayesian) this agent would need to know a joint model
encompassing all agents, and should use it to compute a posterior based
on the entirety of data observed across the network. These requirements
are far from being satisfied in practice. First, each agent usually possesses
only local (i.e., marginal) generative models of the form ℓk(x|θ) to link
its private data to the hypotheses, while it has no information about
the generative models of the other agents. And even if an agent had full
knowledge of the marginal models of the other agents, such knowledge
would be generally insufficient to determine the joint model. Second, the
data xk,t at each agent is usually private, and cannot be shared with other
agents. More commonly, the agents are only allowed (or inclined) to share
summary information, such as opinions or decisions, rather than their raw
data.

In other words, in a distributed setting, the agents possess limited
resources to deliberate, and they have access to incomplete information
about their environment. The only information available to an agent is
contained in its private data, its local likelihood model, and also in the
opinions received from its immediate neighbors. This sharing of opinions
also results in some redundancy and nontrivial correlations among different
information sources over the graph. In addition, the agents face the chal-
lenge of not having knowledge of the full graph structure. Even when the
agents have global knowledge of the network topology and the agents’ data
structure, retrieving fully Bayesian knowledge from summary information

3.1. Bayesian versus Non-Bayesian Learning 43

collected from neighboring agents is in general NP-hard [91]. The next
example illustrates one simple scenario that shows the complexity of a
fully Bayesian solution in the decentralized setting.

Example 3.1 (Multi-Agent Bayesian processing). Consider 4 agents organized into a
network. Agent k, for k = 1, 2, 3, 4, observes a data sample ξk.1 Specifically, the agents
observe iid Bernoulli data, which are related to a hypothesis θ ∈ Θ = {θ1, θ2}. The
likelihood model of agent k is, for ξ ∈ {0, 1},

ℓk(ξ|θ) = q
(k)
θ I[ξ = 0] +

(
1 − q

(k)
θ

)
I[ξ = 1], (3.2)

with q
(k)
θ1

̸= q
(k)
θ2

. All agents assume uniform prior beliefs, so that the exact Bayesian
posterior (2.64) given all data samples {ξ1, ξ2, ξ3, ξ4} is

µBu(θ|ξ1, ξ2, ξ3, ξ4) ∝ ℓ1(ξ1|θ) ℓ2(ξ2|θ) ℓ3(ξ3|θ) ℓ4(ξ4|θ). (3.3)

We want to illustrate the complexity associated with the decentralized computation of
(3.3) when the agents cannot share the data. The agents are instead allowed to share the
beliefs with their neighbors, according to the directed graph in Figure 3.1. We describe
next a procedure that will enable agent 4 to obtain (3.3).

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

1 2 3 4 (1)

⇠1 ⇠2 ⇠3 ⇠4 (2)

p(✓|⇠1) (3)

p(✓|⇠1, ⇠2), p(✓|⇠1, ⇠3) (4)

p(✓|⇠1, ⇠2, ⇠3) (5)

1

50

From Single-
Agent

to Social
Learnin

g

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1

2

3

4

(1
)

� 1

� 2

� 3

� 4

(2
)

p(
�|� 1

)

(3
)

p(
�|� 1

, � 2
),

p(
�|� 1

, � 3
)

(4
)

p(
�|� 1

, � 2
, � 3

)

(5
)

1

1 2 3 4 (1)

�1 �2 �3 �4 (2)

p(�|�1) (3)

p(�|�1, �2), p(�|�1, �3) (4)

p(�|�1, �2, �3) (5)

1

1

2

3

4

(1
)

� 1

� 2

� 3

� 4

(2
)

p(
�|� 1

)

(3
)

p(
�|� 1

, � 2
),

p(
�|� 1

, � 3
)

(4
)

p(
�|� 1

, � 2
, � 3

)

(5
)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3)

(5)

1

1 2 3 4 (1)

�1 �2 �3 �4 (2)

p(�|�1) (3)

p(�|�1, �2), p(�|�1, �3) (4)

p(�|�1, �2, �3) (5)

1

1
2

3
4

(1)

�1

�2

�3

�4

(2)

p(�|�1)

(3)

p(�|�1, �2),
p(�|�1, �3)

(4)

p(�|�1, �2, �3, �4)

(5)

1

Figure 3.1:
Diagra

m showing the flow of inform
ation

acros
s the network of four

agent
s in Example 3.1.

Agent
1 then sends the updated

belief
vecto

r to its neighb
ors 2 and 3.

Agent
s 2 and 3 update their beliefs

. We first focus on agent
2 and show

that, fr
om its data ›2 and the belief (3.4)

receiv
ed from

agent
1, it can compute

the exact
Bayesi

an poster
ior corre

sponding to the subset of data {›1, ›2}. In

fact,
agent

2 can perform
a Bayesi

an update by using (3.4)
as prior,

yield
ing

µ
Bu (◊|›1, ›2) Ã µ

Bu (◊|›1) ¸(›2|◊)
(3.4)Ã ¸1(›1|◊) ¸2(›2|◊),

(3.5)

which is the exact
Bayesi

an poster
ior based

on {›1, ›2}. Agent
3 could perform

a similar proced
ure and get

µ
Bu (◊|›1, ›3) Ã ¸1(›1|◊) ¸3(›3|◊).

(3.6)

Agents
2 and 3 send the beliefs

in (3.5)
and (3.6)

to their common neighb
or 4.

Agent
4 updates

its belief.
Note that the beliefs

receiv
ed by agent

4 conta
in

redundant information
about the observa

tion ›1. In
order to compute the exact

Bayesi
an poster

ior (3.3),
agent

4 needs to disenta
ngle the observa

tions ›1, ›2,

and ›3 from
the receiv

ed beliefs
. To this end, agent

4 uses the beliefs
(3.5)

and

(3.6)
(rece

ived
from

agent
s 2 and 3, respective

ly) to compute the quantity

a
�=

µ
Bu (◊1|›1, ›2)

µBu (◊2|›1, ›2)
=

¸1(›1|◊1) ¸2(›2|◊1)

¸1(›1|◊2) ¸2(›2|◊2)
.

(3.7)

If agent
4 knows the likelih

ood models of agent
s 2 and 3, it can recov

er ›1 and

50

From Single-Agent to Social Learning

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1 2 3 4 (1)

�1 �2 �3 �4 (2)

p(�|�1) (3)

p(�|�1, �2), p(�|�1, �3) (4)

p(�|�1, �2, �3) (5)

1

1

2

3

4

(1)

�
1

�
2

�
3

�
4

(2)

p(�|�
1)

(3)

p(�|�
1 , �

2),

p(�|�
1 , �

3)

(4)

p(�|�
1 , �

2 , �
3)

(5)

1

1 2 3 4 (1)

�1 �2 �3 �4 (2)

p(�|�1) (3)

p(�|�1, �2), p(�|�1, �3) (4)

p(�|�1, �2, �3) (5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3)

(5)

1

1

2

3

4

(1)

�
1

�
2

�
3

�
4

(2)

p(�|�
1)

(3)

p(�|�
1 , �

2),

p(�|�
1 , �

3)

(4)

p(�|�
1 , �

2 , �
3)

(5)

1

1
2

3
4

(1)

�1
�2

�3
�4

(2)

p(�|�1)

(3)

p(�|�1 , �2),
p(�|�1 , �3)

(4)

p(�|�1 , �2 , �3 , �4)

(5)

1

Figure 3.1: Diagram showing the flow of information across the network of four

agents in Example 3.1.Agent 1 then sends the updated belief vector to its neighbors 2 and 3.

Agents 2 and 3 update their beliefs. We first focus on agent 2 and show

that, from its data ›2 and the belief (3.4) received from agent 1, it can compute

the exact Bayesian posterior corresponding to the subset of data {›1 , ›2}. In

fact, agent 2 can perform a Bayesian update by using (3.4) as prior, yielding

µ Bu(◊|›1 , ›2) Ã µ Bu(◊|›1) ¸(›2 |◊) (3.4)Ã
¸1(›1 |◊) ¸2(›2 |◊),

(3.5)

which is the exact Bayesian posterior based on {›1 , ›2}. Agent 3 could perform

a similar procedure and get
µ Bu(◊|›1 , ›3) Ã ¸1(›1 |◊) ¸3(›3 |◊).

(3.6)

Agents 2 and 3 send the beliefs in (3.5) and (3.6) to their common neighbor 4.

Agent 4 updates its belief. Note that the beliefs received by agent 4 contain

redundant information about the observation ›1 . In order to compute the exact

Bayesian posterior (3.3), agent 4 needs to disentangle the observations ›1 , ›2 ,

and ›3 from the received beliefs. To this end, agent 4 uses the beliefs (3.5) and

(3.6) (received from agents 2 and 3, respectively) to compute the quantity

a �= µBu(◊1 |›1 , ›2)µBu(◊2 |›1 , ›2) = ¸1(›1 |◊1) ¸2(›2 |◊1)
¸1(›1 |◊2) ¸2(›2 |◊2) .

(3.7)

If agent 4 knows the likelihood models of agents 2 and 3, it can recover ›1 and

3.1. Bayesian versus Non-Bayesian Learning

49

agents are only allowed (or inclined) to share summary information,

such as opinions or decisions, rather than their raw data.

In other words, in a distributed setting, agents possess limited re-

sources to deliberate, and they have access to incomplete information

about their environment. The only information available to an agent

is contained in its private data, its local likelihood model, and also in

the opinions received from its immediate neighbors. This sharing of in-

formation also results in some redundancy and nontrivial correlations

among di�erent information sources over the graph. In addition, agents

face the challenge of not having knowledge of the full graph structure.

Even when agents have full global knowledge of the topology and the

agents’ data structure, retrieving fully Bayesian knowledge from sum-

mary information collected from neighboring agents is in general NP-

hard [87]. The next example o�ers one simple example illustrating the

complexity of a fully Bayesian solution in the decentralized setting.

Example 3.1 (Multi-Agent Bayesian processing). Consider 4 agents orga-

nized into a network. Agent k, for k = 1, 2, 3, 4, observes a data sample ›k . 1

Specifically, the agents observe iid Bernoulli data, which are related to a hy-

pothesis ◊ œ � = {◊1 , ◊2}. The likelihood model of agent k is, for › œ {0, 1},

¸k (›|◊) = q (k)
◊ I[› = 0] + (1 ≠ q (k)

◊) I[› = 1],

(3.2)

with q (k)
◊1 ”= q (k)

◊2 . All agents assume uniform prior beliefs, so that the exact

Bayesian posterior (2.61) corresponding to the entire set of data {›1 , ›2 , ›3 , ›4}

is

µ Bu(◊|›1 , ›2 , ›3 , ›4) Ã ¸1(›1 |◊) ¸2(›2 |◊) ¸3(›3 |◊) ¸4(›4 |◊).
(3.3)

We want to illustrate the complexity associated with the decentralized

computation of (3.3) when the agents cannot share the data. The agents are

instead allowed to share the beliefs with their neighbors, according to the

directed graph in Figure 3.1. We describe next a procedure that will enable

agent 4 to obtain (3.3).
Agent 1 updates its belief. When agent 1 receives observation ›1 , it per-

forms a Bayesian update yielding the beliefµ Bu(◊|›1) Ã ¸1(›1 |◊).

(3.4)

1In this example we use ›k in place of xk since in the previous chapter the

subscript on x referred to time, whereas here it refers to the agent.

3.1.
Bayesia

n versu
s Non-Bayesia

n Learnin
g

49

agent
s are only allow

ed (or inclined) to share summary information
,

such as opinions or decisio
ns, rather than their raw data.

In other words, in a distrib
uted settin

g, agent
s posses

s limited re-

sources to deliberate
, and they have acces

s to incomplete information

about their envir
onment. The only information

availa
ble to an agent

is conta
ined in its private

data, its local
likelih

ood model, and also in

the opinions receiv
ed from

its immediate neighb
ors. This sharing of in-

formation
also results in some redundancy and nontri

vial corre
lation

s

among di�erent
information

sources over
the graph. In addition, agent

s

face the challenge of not having knowledge of the full graph structure.

Even when agent
s have full global knowledge of the topology

and the

agent
s’ data structure, retrie

ving fully Bayesi
an knowledge from

sum-

mary information
collec

ted from
neighb

oring agent
s is in general NP-

hard [87].
The next exam

ple o�ers one simple exam
ple illustrati

ng the

complexity
of a fully Bayesi

an solution in the decent
ralize

d settin
g.

Example 3.1 (Multi-A
gent

Bayesi
an proce

ssing
). Consider 4 agent

s orga-

nized
into a network. Agent

k, for k = 1, 2, 3
, 4, observe

s a data sample ›k.
1

Specifically,
the agent

s observe
iid Bernoulli data, which are relate

d to a hy-

pothesis ◊ œ � = {◊1, ◊2}. The likelih
ood model of agent

k is, for › œ {0, 1}
,

¸k(›|◊
) = q

(k)
◊

I[› = 0] + (1 ≠ q
(k)
◊

) I[› = 1],

(3.2)

with q
(k)
◊1

”= q
(k)
◊2

. All agent
s assume uniform

prior beliefs
, so that the exact

Bayesi
an poster

ior (2.61
) corre

sponding to the entire
set of data {›1, ›2, ›3, ›4}

is µ
Bu (◊|›1, ›2, ›3, ›4) Ã ¸1(›1|◊) ¸2(›2|◊) ¸3(›3|◊) ¸4(›4|◊).

(3.3)

We want to illustrate
the complexity

assoc
iated

with the decent
ralize

d

computation
of (3.3)

when the agent
s cannot share the data. The agent

s are

instead
allow

ed to share the beliefs
with their neighb

ors, accor
ding to the

directe
d graph in Figure 3.1. We describ

e next a proced
ure that will enable

agent
4 to obtain (3.3).

Agent
1 updates

its belief.
When agent

1 receiv
es observa

tion
›1, it per-

forms a Bayesi
an update yield

ing the belief

µ
Bu (◊|›1) Ã ¸1(›1|◊).

(3.4)

1 In this exam
ple we use ›k

in place
of xk

since in the previo
us chapter the

subscrip
t on x referr

ed to time, whereas
here it refers

to the agent
.

3.1. Bayesian versus Non-Bayesian Learning 49

agents are only allowed (or inclined) to share summary information,
such as opinions or decisions, rather than their raw data.

In other words, in a distributed setting, agents possess limited re-
sources to deliberate, and they have access to incomplete information
about their environment. The only information available to an agent
is contained in its private data, its local likelihood model, and also in
the opinions received from its immediate neighbors. This sharing of in-
formation also results in some redundancy and nontrivial correlations
among di�erent information sources over the graph. In addition, agents
face the challenge of not having knowledge of the full graph structure.
Even when agents have full global knowledge of the topology and the
agents’ data structure, retrieving fully Bayesian knowledge from sum-
mary information collected from neighboring agents is in general NP-
hard [87]. The next example o�ers one simple example illustrating the
complexity of a fully Bayesian solution in the decentralized setting.

Example 3.1 (Multi-Agent Bayesian processing). Consider 4 agents orga-
nized into a network. Agent k, for k = 1, 2, 3, 4, observes a data sample ›k.1
Specifically, the agents observe iid Bernoulli data, which are related to a hy-
pothesis ◊ œ � = {◊1, ◊2}. The likelihood model of agent k is, for › œ {0, 1},

¸k(›|◊) = q
(k)
◊ I[› = 0] + (1 ≠ q

(k)
◊) I[› = 1], (3.2)

with q
(k)
◊1

”= q
(k)
◊2

. All agents assume uniform prior beliefs, so that the exact
Bayesian posterior (2.61) corresponding to the entire set of data {›1, ›2, ›3, ›4}
is

µBu(◊|›1, ›2, ›3, ›4) Ã ¸1(›1|◊) ¸2(›2|◊) ¸3(›3|◊) ¸4(›4|◊). (3.3)
We want to illustrate the complexity associated with the decentralized
computation of (3.3) when the agents cannot share the data. The agents are
instead allowed to share the beliefs with their neighbors, according to the
directed graph in Figure 3.1. We describe next a procedure that will enable
agent 4 to obtain (3.3).

Agent 1 updates its belief. When agent 1 receives observation ›1, it per-
forms a Bayesian update yielding the belief

µBu(◊|›1) Ã ¸1(›1|◊). (3.4)
1In this example we use ›k in place of xk since in the previous chapter the

subscript on x referred to time, whereas here it refers to the agent.

Figure 3.1: Diagram showing the flow of information across the network of four agents in
Example 3.1.

Agent 1 updates its belief. When agent 1 receives observation ξ1, it performs a
Bayesian update yielding the belief

µBu(θ|ξ1) ∝ ℓ1(ξ1|θ). (3.4)

1In this example we denote the data by ξk in place of xk. This is done to avoid confusion,
since in the previous chapter the subscript on x referred to time, whereas here it refers to the
agent.

44 From Single-Agent to Social Learning

Agent 1 then sends the updated belief vector to agents 2 and 3.

Agents 2 and 3 update their beliefs. We first focus on agent 2 and show that, from
its data ξ2 and the belief (3.4) received from agent 1, it can compute the exact Bayesian
posterior corresponding to the subset of data {ξ1, ξ2}. In fact, agent 2 can perform a
Bayesian update by using (3.4) as the prior, yielding

µBu(θ|ξ1, ξ2) ∝ µBu(θ|ξ1) ℓ(ξ2|θ)
(3.4)
∝ ℓ1(ξ1|θ) ℓ2(ξ2|θ), (3.5)

which is the exact Bayesian posterior given {ξ1, ξ2}. Agent 3 could perform a similar
procedure and get

µBu(θ|ξ1, ξ3) ∝ ℓ1(ξ1|θ) ℓ3(ξ3|θ). (3.6)
Agents 2 and 3 send to agent 4 beliefs (3.5) and (3.6), respectively.

Agent 4 updates its belief. Note that the beliefs received by agent 4 contain redundant
information about observation ξ1. In order to compute the exact Bayesian posterior
(3.3), agent 4 needs to disentangle the observations ξ1, ξ2, and ξ3 from the received
beliefs. To this end, agent 4 uses beliefs (3.5) and (3.6) (received from agents 2 and 3,
respectively) to compute the quantity

a ≜
µBu(θ1|ξ1, ξ2)
µBu(θ2|ξ1, ξ2) = ℓ1(ξ1|θ1) ℓ2(ξ2|θ1)

ℓ1(ξ1|θ2) ℓ2(ξ2|θ2) . (3.7)

If agent 4 knows the likelihood models of agents 2 and 3, it can recover ξ1 and ξ2 by
checking the possible values of a as follows:

ξ1 = 0, ξ2 = 0 if a =
q

(1)
θ1

q
(1)
θ2

q
(2)
θ1

q
(2)
θ2

,

ξ1 = 0, ξ2 = 1 if a =
q

(1)
θ1

q
(1)
θ2

1 − q
(2)
θ1

1 − q
(2)
θ2

,

ξ1 = 1, ξ2 = 0 if a =
1 − q

(1)
θ1

1 − q
(1)
θ2

q
(2)
θ1

q
(2)
θ2

,

ξ1 = 1, ξ2 = 1 if a =
1 − q

(1)
θ1

1 − q
(1)
θ2

1 − q
(2)
θ1

1 − q
(2)
θ2

,

(3.8)

assuming that the parameters of the Bernoulli distributions are such that the above four
values of a are distinct. A similar procedure, with four different comparisons, can be
applied to the beliefs received from agent 3 to recover ξ3. Upon recovery of ξ1, ξ2, and
ξ3, agent 4 can finally compute (3.3).

The analysis in this example explains why obtaining a fully Bayesian solution in
a decentralized setting becomes soon unfeasible as the number of time steps increases.
Moreover, the complexity also increases when the observation model is less simple (e.g.,
discrete random variables with more than two values or continuous random variables)
or when we have more hypotheses to classify. In addition, note that we made the as-
sumption that agent 4 knows the likelihood models of agents 2 and 3, while in typical
applications each agent knows only its own private models. Note also that, as we will see
later, in traditional social learning all agents update and share their beliefs in parallel,

3.2. Non-Bayesian Social Learning 45

which introduces additional complexity with respect to the simplified sequential scheme
considered in this example.

The issues encountered in the distributed setting motivated many
investigators to move away from insisting on the fully Bayesian perspective.
The departure from Bayesian thinking is endorsed by the theory of bounded
rationality. The qualification “bounded” highlights the fact that, due to
cognitive and knowledge constraints, the agents are unable to implement
fully rational rules and must implement instead non-Bayesian rules [43,
161]. Under sophisticated learning tasks, psychological experiments have
supported the theory that non-Bayesian decision-making can take place.
It has been observed that the subjects of these experiments were not
fully rational in the face of new information and deviated from a fully
Bayesian approach toward some more attainable decision heuristics [49].
This behavior can be justified in terms of a trade-off between decision
accuracy and cognitive effort. The subject is not only seeking a learning
strategy that yields good performance, but also keeps deliberation cost
under control.

3.2 Non-Bayesian Social Learning

The experimental evidence of bounded rationality in humans and the
intractability of Bayesian computation within groups motivate the develop-
ment of non-Bayesian social learning. Within this paradigm, several useful
methods have been proposed [3, 25, 84, 96, 106, 131, 135, 157, 175]. All
these methods share the following common structure, in a manner similar
to strategies used for optimization and learning over graphs [151, 152, 155]:
i) a self-learning step, where each agent learns individually from its private
data; followed by a ii) cooperation step, where the individual knowledge is
shared among agents according to a communication structure dictated by
the network graph.2 In summary, we arrive at the “equation”

social learning = self-learning + cooperation (3.9)

In the self-learning step we assume each agent acts individually in a
canonical Bayesian way. That is, each agent k at time t performs locally a
Bayesian update by blending its prior belief vector µk,t−1 and the likelihood

2We opt to focus on the adapt-then-combine form, where the cooperation step comes after
the self-learning step. It is also possible to consider the combine-then-adapt form, where the
order is reversed [131, 135, 152].

46 From Single-Agent to Social Learning

Bayesian
update

<latexit sha1_base64="DG030ayIajcMK+STvKjYADWh+Ww=">AAACGHicbVBNS8NAFNz4WeNX1aOXxSJ4qkk96LHUi8cKVgtNKS+b13bpZhN2N0IJ/Rle/CtePCjitTf/jdsaRK0DC8PMG96+CVPBtfG8D2dpeWV1bb204W5ube/slvf2b3WSKYYtlohEtUPQKLjEluFGYDtVCHEo8C4cXc78u3tUmifyxoxT7MYwkLzPGRgr9cqnQYgDLnOG0qCauA0Yo+YgaRC4WRqBQTdAGX37vXLFq3pz0EXiF6RCCjR75WkQJSyLbZ4J0Lrje6np5qAMZwInbpBpTIGNYIAdSyXEqLv5/LAJPbZKRPuJsk8aOld/JnKItR7HoZ2MwQz1X28m/ud1MtO/6OZcpplByb4W9TNBTUJnLdGIK2RGjC0Bprj9K2VDUMBsCXpWgv/35EVyW6v6Z9Xada1SbxR1lMghOSInxCfnpE6uSJO0CCMP5Im8kFfn0Xl23pz3r9Elp8gckF9wpp+Ya6AY</latexit>

<latexit sha1_base64="ENLbElQSzFnMytTJZuqRaoDZgWI=">AAACC3icbVDLSsNAFL3xWesr6tJNaBFcSEmkqMuiG1dSwT6gCWEynbZjJ5MwMxFKyN6Nv+LGhSJu/QF3/o2TNgttPTDM4Zx7ufeeIGZUKtv+NpaWV1bX1ksb5c2t7Z1dc2+/LaNEYNLCEYtEN0CSMMpJS1HFSDcWBIUBI51gfJX7nQciJI34nZrExAvRkNMBxUhpyTcrburGkvrp/YnK3Ez/LuVuiNQII5beZP44882qXbOnsBaJU5AqFGj65pfbj3ASEq4wQ1L2HDtWXoqEopiRrOwmksQIj9GQ9DTlKCTSS6e3ZNaRVvrWIBL6cWVN1d8dKQqlnISBrsy3lPNeLv7n9RI1uPBSyuNEEY5ngwYJs1Rk5cFYfSoIVmyiCcKC6l0tPEICYaXjK+sQnPmTF0n7tOac1eq39WrjsoijBIdQgWNw4BwacA1NaAGGR3iGV3gznowX4934mJUuGUXPAfyB8fkDfXmb+w==</latexit>{ j,t}j2Nk
<latexit sha1_base64="kZae5RVbwye8zvbkhDPJkxGTqAc=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9pQ9lsN+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGSxHxBgqUvJ1oTlUgeSsY3U791hPXRsTRA44T7is6iEQoGEUrPXZV2stG5zjplcpuxZ2BLBMvJ2XIUe+Vvrr9mKWKR8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y2lEFTd+Njt4Qk6t0idhrG1FSGbq74mMKmPGKrCdiuLQLHpT8T+vk2J47WciSlLkEZsvClNJMCbT70lfaM5Qji2hTAt7K2FDqilDm1HRhuAtvrxMmhcV77JSva+Wazd5HAU4hhM4Aw+uoAZ3UIcGMFDwDK/w5mjnxXl3PuatK04+cwR/4Hz+AOfmkH0=</latexit>µk,t

<latexit sha1_base64="B8jOydWT2UYvHL1eHbmY5YjxWIs=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8aNiVoB6DXjxGMA/YLGF2MkmGzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KE8Et+P63t7K6tr6xWdgqbu/s7u2XDg6bVqeGsgbVQpt2TCwTXLEGcBCsnRhGZCxYKx7dTf3WEzOWa/UI44RFkgwU73NKwElhR6bdbHQOF8GkWyr7FX8GvEyCnJRRjnq39NXpaZpKpoAKYm0Y+AlEGTHAqWCTYie1LCF0RAYsdFQRyWyUzU6e4FOn9HBfG1cK8Ez9PZERae1Yxq5TEhjaRW8q/ueFKfRvooyrJAWm6HxRPxUYNJ7+j3vcMApi7AihhrtbMR0SQyi4lIouhGDx5WXSvKwEV5XqQ7Vcu83jKKBjdILOUICuUQ3dozpqIIo0ekav6M0D78V79z7mrStePnOE/sD7/AHHKJDv</latexit>µk,t�1
<latexit sha1_base64="YE+upPI67fd2xQCRTv5vzbrv8PI=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVHruJEb1sdI6TXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR8S4r1ftquXaTx1GAYziBM/DgCmpwB3VoAAMFz/AKb45xXpx352PeuuLkM0fwB87nD7FPkPE=</latexit>

 k,t

<latexit sha1_base64="g/+KAc4jFarqjh3SukdCueRka18=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgQZbdTUziLejFYwTzgGQJs5PZZMjsg5lZMSz5CC8eFPHq93jzb5xNIqhoQUNR1U13lxdzJpVlfRi5ldW19Y38ZmFre2d3r7h/0JZRIghtkYhHouthSTkLaUsxxWk3FhQHHqcdb3KV+Z07KiSLwls1jakb4FHIfEaw0lLnfpBOztRsUCxZ5kW96pw7yDItq+aUqxlxahWnjGytZCjBEs1B8b0/jEgS0FARjqXs2Vas3BQLxQins0I/kTTGZIJHtKdpiAMq3XR+7gydaGWI/EjoChWaq98nUhxIOQ083RlgNZa/vUz8y+slyq+7KQvjRNGQLBb5CUcqQtnvaMgEJYpPNcFEMH0rImMsMFE6oYIO4etT9D9pO6ZdNSs3lVLjchlHHo7gGE7Bhho04Bqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0Czv2P5w==</latexit>xk,t

<latexit sha1_base64="+dmAlJyi6JT3XYftdiHMBYLLKVU=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieLEkRdRj0YvHCvYD2lI220m7dLMJuxOxxB78K148KOLVv+HNf+O2zUFbHww83pvZnXl+LLhG1/22ckvLK6tr+fXCxubW9o69u1fXUaIY1FgkItX0qQbBJdSQo4BmrICGvoCGP7ye+I17UJpH8g5HMXRC2pc84Iyikbr2QRvhAf0gNU8EpwKoklz2x1276JbcKZxF4mWkSDJUu/ZXuxexJASJTFCtW54bYyelCjkTMC60Ew0xZUPah5ahkoagO+l0/7FzbJSeE0TKlERnqv6eSGmo9Sj0TWdIcaDnvYn4n9dKMLjspFzGCYJks4+CRDgYOZMwnB5XwFCMDKFMcbOrwwZUUYYmsoIJwZs/eZHUyyXvvHR2Wy5WrrI48uSQHJET4pELUiE3pEpqhJFH8kxeyZv1ZL1Y79bHrDVnZTP75A+szx/DYJaW</latexit>

self-learning
<latexit sha1_base64="QXE9Tq0DCOIR4qsICjW36tJcbGY=">AAAB/XicbVBNS8NAEN34WetX/Lh5CRbBU0mKqMeiF48V7Ae0pWy2k3bpJht2J2INxb/ixYMiXv0f3vw3btMctPXBwOO9GWbm+bHgGl3321paXlldWy9sFDe3tnd27b39hpaJYlBnUkjV8qkGwSOoI0cBrVgBDX0BTX90PfWb96A0l9EdjmPohnQQ8YAzikbq2YcdhAf0g5RJGYPK1EnPLrllN4OzSLyclEiOWs/+6vQlS0KIkAmqddtzY+ymVCFnAibFTqIhpmxEB9A2NKIh6G6aXT9xTozSdwKpTEXoZOrviZSGWo9D33SGFId63puK/3ntBIPLbsqjOEGI2GxRkAgHpTONwulzBQzF2BDKFDe3OmxIFWVoAiuaELz5lxdJo1L2zstnt5VS9SqPo0COyDE5JR65IFVyQ2qkThh5JM/klbxZT9aL9W59zFqXrHzmgPyB9fkDoi2V/g==</latexit>

cooperation

pooling
rule

<latexit sha1_base64="ULdcrks5fayPBbnJdKEXcZafDYs=">AAACEnicbVC7TsMwFHXKq4RXgZElokKCpUrKAGMFC2OR6ENqospxblKrjh3ZDlIV9RtY+BUWBhBiZWLjb3AfSNByJEtH59xj+54wY1Rp1/2ySiura+sb5U17a3tnd6+yf9BWIpcEWkQwIbshVsAoh5ammkE3k4DTkEEnHF5P/M49SEUFv9OjDIIUJ5zGlGBtpH7lzA8hobwgwDXIsZ0JYa5KfN+WOQMfePRj9StVt+ZO4SwTb06qaI5mv/LpR4LkqYkThpXqeW6mgwJLTQmDse3nCjJMhjiBnqEcp6CCYrrS2DkxSuTEQprDtTNVfycKnCo1SkMzmWI9UIveRPzP6+U6vgwKyrNcAyezh+KcOVo4k36ciEogmo0MwURS81eHDLDExHSgbFOCt7jyMmnXa955rX5brzau5nWU0RE6RqfIQxeogW5QE7UQQQ/oCb2gV+vRerberPfZaMmaZw7RH1gf35CNnqk=</latexit>

Figure 3.2: Non-Bayesian social learning. In the self-learning step, each agent k performs
individually a Bayesian update given the prior belief vector µk,t−1 and the private data xk,t. The
resulting intermediate belief vector ψk,t is then diffused across the network. In the cooperation
step, agent k aggregates the intermediate beliefs {ψj,t}j∈Nk

received from neighbors by using a
pooling rule.

ℓk(xk,t|θ) computed from the locally available data xk,t. The output of the
Bayesian update is an intermediate belief vector ψk,t to be shared with
neighboring agents.

Then, during the cooperation step, agent k forms its final belief vector
µk,t by using a certain pooling rule Ck to combine the intermediate belief
vectors {ψj,t}j∈Nk received from its neighbors. These steps can be formally
written according to the following recursion:

ψk,t(θ) ∝ µk,t−1(θ)ℓk(xk,t|θ) (self-learning), (3.10a)

µk,t = Ck
(
{ψj,t}j∈Nk

)
(cooperation). (3.10b)

Figure 3.2 summarizes the essential features of non-Bayesian social learning.
While time-varying combination rules can be considered, in our pre-

sentation it is sufficient to focus on time-invariant rules, Ck. Note also
that the pooling operator in (3.10b) aggregates only the current updated
belief vectors {ψj,t}j∈Nk , and does not account for the entire history of
beliefs received up to time t. This property, sometimes referred to as
“imperfect recall,” is an instance of the principle of bounded rationality,
aimed at reducing computational and memory complexity [131]. In this
connection, we observe that the intermediate belief vector ψj,t depends on
the previous-lag belief vector µj,t−1. In view of the sequential nature of
Bayes’ rule (see Lemma 2.1), previous-lag beliefs are sufficient to build the
optimal posterior in the single-agent case. This property is in general lost
in the distributed setting due to the reasons mentioned in the previous
section.

We see from (3.10a) and (3.10b) that the structure of the self-learning
step is determined by Bayes’ rule. Therefore, the critical part is to select a
combination rule, i.e., how the intermediate neighboring beliefs should be

3.3. Information-Theoretic Viewpoint 47

processed. To this end, we will go through the following path. First, in the
next section we introduce an approach that derives the combination rule
from the optimization of suitable information-theoretic measures. We will
see how the two most popular social learning strategies will arise naturally
from this approach. Later, in Section 3.4, the very same strategies will
arise as the unique solutions to a formulation with meaningful physical
constraints placed on the agents’ behavior.

3.3 Information-Theoretic Viewpoint

A general principle to build an aggregate belief vector µk,t from the ensemble
of belief vectors {ψj,t}j∈Nk is to minimize some measure of discrepancy
between the new belief and the ensemble of beliefs. The purpose is to make
the aggregate belief as close as possible to all beliefs in the ensemble, i.e.,
to fuse the different viewpoints brought by the different agents. In the next
two sections we illustrate two choices for the discrepancy measures. Similar
choices are considered in [101], albeit for probability density functions as
opposed to probability mass functions.

For the sake of simplicity, the derivations in the forthcoming Sec-
tions 3.3.1 and 3.3.2 are carried out under the assumption that all the
entries of the belief vectors ψj,t are nonzero. The case where some of them
are zero can be obtained from continuity arguments — see the expressions
in (B.1).

3.3.1 Geometric-Averaging Rule

One meaningful way to quantify the discrepancy between a candidate
belief vector p at agent k and the received belief vectors {ψj,t}j∈Nk , is a
convex combination of the KL divergences between p and the received
belief vectors, namely, ∑

j∈Nk

ajkD(p||ψj,t), (3.11)

where the scalars ajk are defined for j ∈ Nk and obey the following
convexity conditions:

ajk > 0,
∑
j∈Nk

ajk = 1. (3.12)

48 From Single-Agent to Social Learning

We now want to compute the aggregate belief vector µk,t as the one that
minimizes the combination of KL divergences in (3.11), namely,

µk,t = arg min
p∈∆H

∑
j∈Nk

ajkD(p||ψj,t)
 . (3.13)

Note that the condition ∑
j∈Nk ajk = 1 is not a limitation, since if we

formulate (3.13) with a generic set of positive weights, we can always scale
these weights to reduce the problem to one with convex weights, without
altering the solution. The objective function in (3.13) can be manipulated
as follows:

∑
j∈Nk

ajkD(p||ψj,t) =
∑
j∈Nk

ajk
∑
θ∈Θ

p(θ) log p(θ)
ψj,t(θ)

=
∑
θ∈Θ

p(θ) log p(θ)∏
j∈Nk

[ψj,t(θ)]ajk
. (3.14)

Proceeding as done to manage (2.88), we see that the denominator on the
RHS of (3.14) is equivalent to a pmf up to a scaling term independent of p
(i.e., the RHS is equivalent to a KL divergence up to an additive constant),
implying that the solution to (3.13) is

µk,t(θ) ∝
∏
j∈Nk

[ψj,t(θ)]ajk . (3.15)

In summary, the pooling rule in (3.15), resulting from the optimization
problem in (3.13), prescribes that each agent computes a weighted geometric
average of the Bayesian updates gathered from its own neighborhood, up
to a normalization factor necessary to yield a vector belonging to the
probability simplex ∆H . The overall social learning strategy obtained
by using the Bayesian update (in the self-learning step) followed by the
geometric-average pooling rule (in the cooperation step) is summarized in
listing (3.16).

3.3. Information-Theoretic Viewpoint 49

Social learning with geometric averaging
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
for t = 1, 2, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣

agent k observes xk,t
for θ = 1, 2, . . . , H∣∣∣∣∣ ψk,t(θ) = µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µk,t−1(θ′)ℓk(xk,t|θ′)

end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣
for θ = 1, 2, . . . , H∣∣∣∣∣ µk,t(θ) =

∏
j∈Nk

[ψj,t(θ)]ajk∑
θ′∈Θ

∏
j∈Nk

[ψj,t(θ′)]ajk

end

(cooperation)

end
end

(3.16)

Equation (3.15) implies that

logµk,t(θ) =
∑
j∈Nk

ajk logψj,t(θ) + const., (3.17)

which explains why the geometric-average rule is also referred to as log-
linear or logarithmic pooling.

Examining (3.16), we see that the social learning algorithm with geomet-
ric averaging involves two normalization operations. The first normalization
is implemented by each agent k during the self-learning stage, to compute
the intermediate belief vector ψk,t that must be shared over the network.
The second normalization is implemented by each agent during the coop-
eration stage to compute the final belief vector µk,t. It is clear that we can
combine both steps into a single update written as

µk,t(θ) ∝
∏
j∈Nk

[
µj,t−1(θ)ℓj(xj,t|θ)

]ajk
. (3.18)

This form does not require double normalization and is appealing in
situations where the intermediate beliefs are not required.

50 From Single-Agent to Social Learning

3.3.2 Arithmetic-Averaging Rule

A second way to quantify the discrepancy between a belief vector p at
agent k and the received belief vectors is the following:∑

j∈Nk

ajkD(ψj,t||p), (3.19)

where the roles of p and ψj,t are reversed in comparison with (3.11). We
again impose the conditions

ajk > 0,
∑
j∈Nk

ajk = 1. (3.20)

The aggregate belief vector µk,t is then obtained as

µk,t = arg min
p∈∆H

∑
j∈Nk

ajkD(ψj,t||p)
 . (3.21)

The objective function in (3.21) can be manipulated as follows:
∑
j∈Nk

ajkD(ψj,t||p) =
∑
j∈Nk

ajk
∑
θ∈Θ

ψj,t(θ) log ψj,t(θ)
p(θ)

=
∑
θ∈Θ

∑
j∈Nk

ajkψj,t(θ) log ψj,t(θ)
p(θ)

=
∑
θ∈Θ

∑
j∈Nk

ajkψj,t(θ) log
∑
j∈Nk ajkψj,t(θ)

p(θ)

+
∑
θ∈Θ

∑
j∈Nk

ajkψj,t(θ) log ψj,t(θ)∑
j∈Nk ajkψj,t(θ)︸ ︷︷ ︸

independent of p

= D

(∑
j∈Nk

ajkψj,t
∣∣∣∣∣∣p)+ const. (3.22)

Therefore, we see that the objective function in (3.21) is minimized when
the KL divergence on the last line in (3.22) is equal to 0, which occurs for
the choice

µk,t(θ) =
∑
j∈Nk

ajkψj,t(θ), (3.23)

namely, a weighted arithmetic average of the intermediate beliefs. Such lin-
ear rule is among the first combination policies used in social learning [175].

3.3. Information-Theoretic Viewpoint 51

One of the earliest appearances of arithmetic averaging is in the context
of the consensus algorithm [58], which dealt with a static case without
streaming data. The objective there was to pool different beliefs belonging
to spatially distributed agents, so that they can agree on a common belief.
In more recent years, arithmetic averaging has been successfully applied in
the context of diffusion strategies used for optimization and learning over
graphs [151, 152, 155]. The overall social learning strategy corresponding
to the linear combination rule is summarized in listing (3.24).

Social learning with arithmetic averaging
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
for t = 1, 2, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣

agent k observes xk,t
for θ = 1, 2, . . . , H∣∣∣∣∣ ψk,t(θ) = µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µk,t−1(θ′)ℓk(xk,t|θ′)

end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣
for θ = 1, 2, . . . , H∣∣∣∣ µk,t(θ) =

∑
j∈Nk

ajkψj,t(θ)

end

(cooperation)

end
end

(3.24)

Comparing (3.13) against (3.21), an interesting interpretation emerges.
Recall that the KL divergence is not symmetric, and that the distribution
appearing as the first argument is the one under which the expectation
is evaluated — see Definition B.4. In other words, the first argument is
taken as the true underlying distribution. In (3.13), the KL divergences are
computed by assuming that the true underlying pmf is p, which is the belief
obtained by aggregating all beliefs received from neighboring agents. In
contrast, in (3.21), each individual KL divergence corresponding to agent j
is computed by assuming a different underlying truth, which is represented
by the intermediate belief vector ψj,t. This difference ultimately results in
two different pooling rules, the geometric and arithmetic averaging rules,
respectively.

52 From Single-Agent to Social Learning

3.4 Behavioral Viewpoint

In the previous section we obtained two possible forms for the pooling
operator Ck in (3.10b) (namely, the geometric and arithmetic averaging
rules) by optimizing suitable information-theoretic metrics. A completely
different route is followed in [131], where the pooling rule is derived from
a set of axioms that represent relevant behavioral attributes of the agents.
We now illustrate this alternative construction.

In preparation for the forthcoming technical analysis, it is convenient
to simplify the notation (we will omit the dependence on time and agent
indices) and formulate the problem in the following general manner. Given
a collection of input belief vectors q1, q2, . . . , qK , we want to aggregate them
into an output belief vector q through a continuous mapping C : ∆K

H 7→ ∆H ,
namely,

q = C(q1, q2, . . . , qK). (3.25)
We will now introduce a set of behavioral assumptions that the pooling
operator C should fulfill.

The first assumption is label neutrality, which ensures that the way the
input beliefs are processed cannot depend on the particular labeling chosen
for the hypotheses.

Assumption 3.1 (Label neutrality). Let Π : Θ 7→ Θ be a permutation. For any
p ∈ ∆H , the symbol p(Π) denotes a permuted vector whose θth entry is

p(Π)(θ) = p
(

Π(θ)
)
. (3.26)

A pooling operator C fulfills label neutrality when permuting the output belief
vector is equivalent to applying C to the permuted input vectors. Formally, label
neutrality holds when, for any Π : Θ 7→ Θ and any collection {q1, q2, . . . , qK} of
input belief vectors,

q(Π) = C
(
q

(Π)
1 , q

(Π)
2 , . . . , q

(Π)
K

)
, (3.27)

with the output belief vector q being defined by (3.25).

Second, consider the case where all input beliefs are equal, namely,

q1 = q2 = . . . = qK = p. (3.28)

It is natural to request that the pooling operator should return p. The
second assumption, called unanimity, summarizes this requirement.

3.4. Behavioral Viewpoint 53

Assumption 3.2 (Unanimity). The pooling operator C is unanimous when
C(p, p, . . . , p) = p for all p ∈ ∆H .

Third, consider a collection of belief vectors q1, q2, . . . , qK having all
positive entries, and a belief vector q formed by using (3.25). Assume that
a single belief vector qi changes into another belief q′i with an increase
in confidence about some hypothesis θ̄ and a decrease for the remaining
hypotheses, namely,

q′i(θ̄) > qi(θ̄), q′i(θ) ≤ qi(θ) ∀θ ̸= θ̄. (3.29)

It would be natural to expect that also the pooling operator reflects the
increase in confidence. This is formalized by the next assumption.

Assumption 3.3 (Monotonicity). Consider two collections of input belief vectors,
{q1, q2, . . . , qK} and {q′1, q′2, . . . , q′K}, both placing nonzero3 mass on all θ ∈ Θ
and fulfilling, for some i ∈ {1, 2, . . . ,K}, the conditions

i) qj = q′j ∀j ∈ {1, 2, . . . ,K}\{i}, (3.30)

ii)
{
q′i(θ̄) > qi(θ̄),
q′i(θ) ≤ qi(θ) ∀θ ̸= θ̄.

(3.31)

Let
q = C(q1, q2, . . . , qK), q′ = C(q′1, q′2, . . . , q′K). (3.32)

Monotonicity holds when
q′(θ̄) > q(θ̄). (3.33)

The previous assumptions (label neutrality, unanimity, and monotonic-
ity) are basic requirements that a meaningful combination rule is expected
to fulfill. We now complete the set of behavioral axioms by specifying
how each entry of the output belief vector is influenced by the various
entries of the input belief vectors. We present two possibilities, namely, the
assumption of independence of irrelevant alternatives, and the assumption
of separability. We will see later how these different assumptions lead to
different pooling rules.

3Actually, one might want to impose monotonicity even when some entries of the input
belief vectors are zero. However, this extended notion of monotonicity would not be fulfilled
simultaneously with the other behavioral assumptions considered later in Theorem 3.1.

54 From Single-Agent to Social Learning

Independence of irrelevant alternatives is based on the following ratio-
nale. Assume we know that the hypothesis of interest belongs to a subset
S ⊂ Θ of all possible hypotheses, and assume we want to construct from
the available input belief vectors {qj}, a conditional belief vector given
that θ ∈ S. In performing this pooling, one meaningful criterion is to
take into account only the input beliefs conditioned on the same subset
S. In this sense, when focusing on a conditional belief given a specific
subset S, the hypotheses that do not belong to S are deemed as irrelevant
alternatives. The assumption of independence of irrelevant alternatives
prescribes that the pooling operator C does automatically guarantee this
type of construction for any subset S, namely, that the output q of the
pooling rule, conditioned on a subset S of the hypotheses, is equivalent to
the output of the same pooling operator applied only to the input belief
vectors {qj} conditioned on S.

Assumption 3.4 (Independence of irrelevant alternatives). For any belief vector
p ∈ ∆H that places nonzero mass on a subset of hypotheses S ⊂ Θ, we introduce
the belief conditioned on S:

p|S(θ) =

p(θ)∑

θ′∈S
p(θ′)

for θ ∈ S,

0 otherwise.
(3.34)

Let q = C(q1, q2, . . . , qK). Independence of irrelevant alternatives holds when,
for any subset S ⊂ Θ and any collection {q1, q2, . . . , qK} of input belief vectors
that place nonzero mass in S,

q|S = C
(
q
|S
1 , q

|S
2 , . . . , q

|S
K

)
. (3.35)

In Assumptions 3.4, since the belief vectors {qj} have nonzero mass
in S (i.e., each qj has at least one nonzero entry in S), each conditional
belief vector q|Sj is well-posed. Therefore, in (3.35) it is legitimate to apply
the combination rule to the conditional belief vectors

{
q
|S
j

}
. As a result,

under Assumptions 3.4 also the (conditional) output belief vector q|S is
well-posed, which means that the (unconditional) output belief vector q
has automatically nonzero mass in S. In particular, taking S = {θ}, we
conclude that if qj(θ) > 0 for all j, then q(θ) > 0.

Another possibility to complete the set of behavioral assumptions is
separability, which establishes that the θth entry of the output belief vector

3.4. Behavioral Viewpoint 55

depends solely on the θth entry of the input belief vectors.

Assumption 3.5 (Separability). Let q = C(q1, q2, . . . , qK). Separability holds
when q(θ) does not depend on q1(θ′), q2(θ′), . . . , qK(θ′) for θ′ ̸= θ.

3.4.1 Geometric-Averaging Rule, Revisited

The next theorem, proved in [131], reveals the unique form that the pooling
operator can take under label neutrality, unanimity, monotonicity, and
independence of irrelevant alternatives.

Theorem 3.1 (Geometric averaging). Let Assumptions 3.1, 3.2, 3.3, and 3.4 be
satisfied, and let q = C(q1, q2, . . . , qK). If |Θ| > 2, we must have, for all θ ∈ Θ,

q(θ) ∝
K∏
j=1

[qj(θ)]aj , (3.36)

with aj > 0 and
∑K

j=1 aj = 1.

Proof. It suffices to examine the case where qj(θ) > 0 for j = 1, 2, . . . ,K and for all
θ ∈ Θ. The case where some entries of the belief vector are zero will follow automatically
from the continuity of the pooling operator. Consider two arbitrary hypotheses θ′, θ′′,
and the set S = {θ′, θ′′}. We focus on the logarithmic ratio log(q(θ′)/q(θ′′)), which is
well-posed since the belief vectors {qj} have all positive entries and the same holds for q
in view of the observation following Assumption 3.4. We can write (the notation [v]θ
extracts the θth entry of the vector v)

log q(θ′)
q(θ′′)

(a)= log q|S(θ′)
q|S(θ′′)

(b)= log

[
C
(
q
|S
1 , q

|S
2 , . . . , q

|S
K

)]
θ′[

C
(
q
|S
1 , q

|S
2 , . . . , q

|S
K

)]
θ′′

, (3.37)

where (a) follows from definition (3.34), and (b) from the independence of irrelevant
alternatives. The jth conditional belief vector can be represented as

q
|S
j =

[
0, . . . , 0, qj(θ′)

qj(θ′) + qj(θ′′)︸ ︷︷ ︸
label θ′

, 0, . . . , 0, qj(θ′′)
qj(θ′) + qj(θ′′)︸ ︷︷ ︸

label θ′′

, 0, . . . , 0

]

=

[
0, . . . , 0, qj(θ′)/qj(θ′′)

1 + qj(θ′)/qj(θ′′)︸ ︷︷ ︸
label θ′

, 0, . . . , 0, 1
1 + qj(θ′)/qj(θ′′)︸ ︷︷ ︸

label θ′′

, 0, . . . , 0

]
.

(3.38)

56 From Single-Agent to Social Learning

Let us denote by zj the value of the ratio qj(θ′)/qj(θ′′), namely,
qj(θ′)
qj(θ′′)

= zj for j = 1, 2, . . . ,K. (3.39)

The RHS of (3.37) is in principle a function of the values {zj} and of the labels θ′,
θ′′. However, we now show that label neutrality implies that the dependence on the
particular labels disappears. From (3.38) and (3.39) we have (for the sake of presentation
we consider a vector of length H = 8)

q
|S
j =

[
0, 0, 0, zj

1 + zj︸ ︷︷ ︸
label θ′

, 0, 0, 1
1 + zj︸ ︷︷ ︸
label θ′′

, 0

]
. (3.40)

Assume instead that (3.39) is verified for a different pair of labels (θ̇′, θ̇′′). Then, the
location of the values changes, namely, we obtain another belief vector, say,

q̇
|S
j =

[
zj

1 + zj︸ ︷︷ ︸
label θ̇′

, 0, 0, 0, 0, 0, 0, 1
1 + zj︸ ︷︷ ︸
label θ̇′′

]
, (3.41)

which is a permuted version of q|Sj in (3.40). Now, in (3.37) we apply the pooling operator
C to the conditional belief vectors q|Sj to compute the output belief vector q. Then, we
compute the ratio between q(θ′) and q(θ′′), namely, the θ′th and θ′′th entries of this
vector. Assume now that we apply C to the permuted belief q̇|Sj to compute another
output belief vector q̇(θ′). By label neutrality, we must have

q̇
(
θ̇′
)

= q
(
θ′
)
, q̇

(
θ̇′′
)

= q
(
θ′′
)
. (3.42)

This implies that the ratio in (3.37) does not depend on the particular pair of labels,
but only on the values {zj}, which allows us to write

log q(θ′)
q(θ′′) = g

(
log q1(θ′)

q1(θ′′) , log q2(θ′)
q2(θ′′) , . . . , log qK(θ′)

qK(θ′′)

)
, (3.43)

where the function g does not depend on the labels θ′, θ′′. When we say that g does
not depend on the labels, we mean that its functional form remains the same if we
vary the labels, namely, we do not have different functions gθ′θ′′ for different pairs of
labels. Moreover, g is continuous because, in the RHS of (3.37), the pooling operator C
is continuous by assumption, and, in view of (3.38), each conditional belief q|Sj can be
regarded as a continuous function of log qj (θ′)

qj (θ′′) .
Consider now a third hypothesis θ′′′. We can write

log q(θ′)
q(θ′′′) = log q(θ′)

q(θ′′) + log q(θ′′)
q(θ′′′)

= g

(
log q1(θ′)

q1(θ′′) , log q2(θ′)
q2(θ′′) , . . . , log qK(θ′)

qK(θ′′)︸ ︷︷ ︸
x

)

+ g

(
log q1(θ′′)

q1(θ′′′) , log q2(θ′′)
q2(θ′′′) , . . . , log qK(θ′′)

qK(θ′′′)︸ ︷︷ ︸
y

)
(3.44)

3.4. Behavioral Viewpoint 57

and also

log q(θ′)
q(θ′′′) = g

(
log q1(θ′)

q1(θ′′′) , log q2(θ′)
q2(θ′′′) , . . . , log qK(θ′)

qK(θ′′′)︸ ︷︷ ︸
x+y

)
. (3.45)

Grouping (3.44) and (3.45) we find that g satisfies

g(x+ y) = g(x) + g(y), x, y ∈ RK , (3.46)

which is a multidimensional Cauchy functional equation, to be solved by seeking a
function g : RK 7→ R [66]. It is known that the unique continuous solutions to (3.46) are
in the following form [66]:

g(x) =
K∑
j=1

ajxj , (3.47)

where xj is the jth entry of x, and where the solution space is spanned by aj ∈ R, for
j = 1, 2, . . . ,K. Using the definition of g from (3.43), Eq. (3.47) becomes

log q(θ′)
q(θ′′) =

K∑
j=1

aj log qj(θ′)
qj(θ′′)

. (3.48)

By exponentiation and normalization (since q must be a belief vector), Eq. (3.48) leads
to (3.36). It is easily verified that (3.36) fulfills Assumptions 3.1 and 3.4 for all choices of
{qj} and {aj}. To conclude the proof, we show that the combination weights {aj} must
add up to 1 and be positive. Consider qj = p for all j, with p having positive entries
and p(θ′) ̸= p(θ′′) for two hypotheses θ′ and θ′′ (the case where all entries of p are equal
is trivial). By unanimity we have

log p(θ′)
p(θ′′) =

K∑
j=1

aj log p(θ′)
p(θ′′) ⇐⇒

K∑
j=1

aj = 1. (3.49)

Finally, we show that positivity of the weighting coefficients follows from monotonicity.
To see why, consider, for the input belief vectors, two assignments {qj} and {q′j} as
defined in Assumption 3.3, along with the corresponding output belief vectors q and q′.
Recall that the input belief vectors of the two assignments are equal to each other, but
for the ith input belief vectors qi and q′i, which are different and satisfy the following
inequalities:

q′i(θ̄) > qi(θ̄), q′i(θ) ≤ qi(θ) ∀θ ̸= θ̄ (3.50)

for some hypothesis θ̄ ∈ Θ. From (3.36) we obtain the following representation for the
output belief q(θ̄):

q(θ̄) =

K∏
j=1

q
aj

j (θ̄)

K∏
j=1

q
aj

j (θ̄) +
∑
θ ̸=θ̄

K∏
j=1

q
aj

j (θ)
=

1 +
∑
θ ̸=θ̄

K∏
j=1

(
qj(θ)
qj(θ̄)

)aj

−1

, (3.51)

58 From Single-Agent to Social Learning

and a similar expression holds for q′(θ̄). Therefore, in view of (3.51) we can write

q(θ̄) =

1 +
∑
θ ̸=θ̄

cθ

(
qi(θ)
qi(θ̄)

)ai

−1

,

q′(θ̄) =

1 +
∑
θ ̸=θ̄

cθ

(
q′i(θ)
q′i(θ̄)

)ai

−1

,

(3.52)

where we defined
cθ ≜

∏
j ̸=i

(
qj(θ)
qj(θ̄)

)aj

=
∏
j ̸=i

(
q′j(θ)
q′j(θ̄)

)aj

, (3.53)

with the equality following from (3.30). To prove monotonicity we must show that under
the considered assignments for the input belief vectors, the output belief vectors satisfy
the inequality q′(θ̄) > q(θ̄). To this end, observe from (3.52) that we have the following
equivalence:

q′(θ̄) > q(θ̄) ⇐⇒
∑
θ ̸=θ̄

cθ

(
q′i(θ)
q′i(θ̄)

)ai

<
∑
θ ̸=θ̄

cθ

(
qi(θ)
qi(θ̄)

)ai

. (3.54)

In view of (3.50), the inequality on the RHS of the implication holds if, and only if,
ai > 0. This implies that the inequality on the LHS holds if, and only if, ai > 0, and the
proof is complete.

■

In summary, Theorem 3.1 reveals that under the considered behavioral
assumptions, the pooling rule is a weighted geometric average of the beliefs,
up to a normalization factor necessary to yield a probability vector. Note
that the theorem requires Θ to contain at least three elements. This is
because, for |Θ| = 2, the independence of irrelevant alternatives is trivially
satisfied, thus imposing no restrictions on the combination rule. In other
words, this behavioral approach does not help deduce the form of the social
learning algorithm for the case of two hypotheses.

We are now ready to exploit the general result in (3.36) in our social
learning algorithm, specifically, in (3.10b). In order to use (3.36) in (3.10b),
we need to take into account two facts. First, each agent k receives the
intermediate beliefs only from its neighbors j ∈ Nk. Thus, the ensemble
of input belief vectors on which the pooling operator acts is given by the
collection {ψj,t}j∈Nk . Second, the pooling operator Ck can be dependent on
the particular agent k, which implies that the weight aj > 0 appearing in
(3.36) is replaced by a weight ajk > 0, defined for j ∈ Nk, and fulfilling the

3.4. Behavioral Viewpoint 59

condition ∑j∈Nk ajk = 1. In summary, the belief vector µk,t corresponding
to agent k at time t is obtained through the following combination rule,
for all θ ∈ Θ:

µk,t(θ) ∝
∏
j∈Nk

[ψj,t(θ)]ajk ∝
∏
j∈Nk

[µj,t−1(θ)ℓj(xj,t|θ)]ajk , (3.55)

where in the last step we used the Bayesian update from (3.10a).
We see that rule (3.55) is identical to rule (3.18), namely, to the rule

obtained in Section 3.3 based on information-theoretic principles. We arrive
at the remarkable conclusion that social learning with geometric averaging
is optimal both under the minimization problem in (3.13) and under the
behavioral Assumptions 3.1, 3.2, 3.3, and 3.4. In addition, note that the
information-theoretic approach adopted in Section 3.3 is less restrictive in
that it does not require the condition |Θ| > 2.

Before proceeding further, it is useful to examine another property of
the pooling operator in (3.36), known as external Bayesianity [79, 80, 101].
It can be stated as follows. Assume all agents observe the same data x and
have the same likelihood ℓ(x|θ). Under these conditions, it is meaningful to
expect that the belief obtained by first updating all the K beliefs with the
common likelihood ℓ(x|θ) and then combining the results, is equivalent to
the belief obtained by first combining the K beliefs and then updating the
result. A pooling rule satisfies external Bayesianity if this interchangeability
property holds when all agents have the same data and likelihood.

We now verify that the geometric pooling operator in (3.36) is externally
Bayesian [135]. If we first compute the Bayesian updates of the individual
belief vectors {qj}:

qBu
j (θ) ∝ qj(θ)ℓ(x|θ), (3.56)

and then combine them by using the geometric-averaging rule, we obtain

q(θ) ∝
K∏
j=1

[
qBu
j (θ)

]aj ∝ K∏
j=1

[qj(θ)ℓ(x|θ)]aj

= [ℓ(x|θ)]
∑K

j=1 aj ×
K∏
j=1

q
aj
j (θ) = ℓ(x|θ)

K∏
j=1

q
aj
j (θ), (3.57)

where in the last step we used the condition∑K
j=1 aj = 1. Now note that the

term ℓ(x|θ)∏K
j=1 q

aj
j (θ) in (3.57) can be interpreted as resulting from the

following process. First combine the individual beliefs qj(θ) with geometric
averaging to obtain an aggregate belief ∝ ∏K

j=1 q
aj
j (θ), and then perform

60 From Single-Agent to Social Learning

a Bayesian update, using this aggregate belief along with the likelihood
ℓ(x|θ), to obtain q(θ). We have thus shown that the geometric-averaging
rule is externally Bayesian.

It is worth mentioning that there exists in the literature an axiomatic
approach, different from the one we have illustrated here, which aims at
finding the general functional form of pooling operators that are exter-
nally Bayesian. In these alternative approaches, external Bayesianity is
a requirement rather than a consequence. Remarkably, it can be shown
that the weighted geometric average is the only rule that satisfies external
Bayesianity under certain additional constraints — see [79, 80].

3.4.2 Arithmetic-Averaging Rule, Revisited

The next theorem, proved in [131], reveals how the pooling rule changes if
independence of irrelevant alternatives is replaced by separability.

Theorem 3.2 (Arithmetic averaging). Let Assumptions 3.1, 3.2, 3.3, and 3.5 be
satisfied, and let q = C(q1, q2, . . . , qK). If |Θ| > 2, we must have, for all θ ∈ Θ,

q(θ) =
K∑
j=1

ajqj(θ), (3.58)

with aj > 0 and
∑K

j=1 aj = 1.

Proof. Let us focus on q(θ), namely, the θth entry of the belief vector q resulting from
the pooling rule. In view of the separability assumption, q(θ) depends only on the values
{qj(θ)}Kj=1, which allows us to write, for a certain function gθ,

q(θ) = gθ(q1(θ), q2(θ), . . . , qK(θ)). (3.59)

Note that in principle separability allows the functional form of gθ to depend on θ (which
justifies the subscript θ). However, we now show that label neutrality implies that this
dependence on θ disappears. In fact, consider a set of values z1, z2, . . . , zK , with

qj(θ′) = zj for j = 1, 2, . . . ,K (3.60)

and with q(θ′) = z for some value z. Assume instead that (3.60) is verified for a different
label θ′′. Then, by label neutrality, the θ′′th entry of the output belief vector must take
on the same value, i.e., we must have q(θ′′) = z. In other words, the mapping by which
the function gθ associates the input values {zj} with the output value z does not depend
on the particular label θ, but only on the values {zj}. Therefore, it is legitimate to write

q(θ) = g(q1(θ), q2(θ), . . . , qK(θ)), (3.61)

3.4. Behavioral Viewpoint 61

where we do not have different functions gθ corresponding to different labels, i.e., the
functional form of g does not depend on θ. Moreover, g is continuous by continuity of
the pooling operator.

Consider now two hypotheses θ′ and θ′′. Since the pooling operator produces a belief
vector whose entries add up to 1, we can write

g(q1(θ′), q2(θ′), . . . , qK(θ′)) + g(q1(θ′′), q2(θ′′), . . . , qK(θ′′))

= 1 −
∑

θ/∈{θ′,θ′′}

g(q1(θ), q2(θ), . . . , qK(θ)).

(3.62)

Consider next another ensemble of beliefs {q̃j}, with the following assignment for
j = 1, 2, . . . ,K:

q̃j(θ′) = qj(θ′) + qj(θ′′), (3.63)
q̃j(θ′′) = 0, (3.64)
q̃j(θ) = qj(θ) ∀θ /∈ {θ′, θ′′}. (3.65)

We can apply (3.62) to {q̃j} and get

g(q̃1(θ′), q̃2(θ′), . . . , q̃K(θ′)) + g(q̃1(θ′′), q̃2(θ′′), . . . , q̃K(θ′′))

= 1 −
∑

θ/∈{θ′,θ′′}

g(q1(θ), q2(θ), . . . , qK(θ)).

(3.66)

Grouping (3.62) and (3.66), we can write

g(q1(θ′), q2(θ′), . . . , qK(θ′)︸ ︷︷ ︸
x

) + g(q1(θ′′), q2(θ′′), . . . , qK(θ′′)︸ ︷︷ ︸
y

)

= g(q1(θ′) + q1(θ′′), q2(θ′) + q2(θ′′), . . . , qK(θ′) + qK(θ′′)︸ ︷︷ ︸
x+y

) + g(0, 0, . . . , 0)︸ ︷︷ ︸
g0

.

(3.67)

Introducing, for x ∈ [0, 1]K , the function

h(x) = g(x) − g0, (3.68)

we can represent (3.67) as
h(x+ y) = h(x) + h(y), (3.69)

where the entries xj and yj of the K-dimensional vectors x and y obey the condition
0 ≤ xj+yj ≤ 1 for j = 1, 2, . . . ,K. Therefore, Eq. (3.69) is a conditional multidimensional
Cauchy equation, with the qualification “conditional” indicating the fact that the
admissible domain for the vectors x and y is restricted [104]. For our particular restricted
domain 0 ≤ xj + yj ≤ 1 for j = 1, 2, . . . ,K, it is known that the unique family of
continuous solutions is the same as in the unrestricted case (3.46) examined before,

62 From Single-Agent to Social Learning

namely we have that [4, 57, 104]4

h(x) =
K∑
j=1

ajxj . (3.71)

Returning to the definitions of h(x) in (3.68) and g(x) in (3.61), we obtain

q(θ) =
K∑
j=1

ajqj(θ) + g0. (3.72)

Now, applying unanimity to a common input belief vector p we get

p = p

K∑
j=1

aj + g0, (3.73)

which, considering a vector p with one entry equal to 0, yields g0 = 0. As a result, Eq.
(3.72) coincides with (3.58). Using (3.73) with g0 = 0 we also see that the combination
weights must add up to 1. Moreover, it is readily seen that the pooling rule in (3.58)
satisfies monotonicity if, and only if, the combination weights are all positive. We
complete the proof by observing that, for all choices of input belief vectors {qj} and
positive combination weights {aj} that add up to 1, the pooling rule (3.58) returns a
valid belief vector q (i.e., a probability vector) and fulfills Assumptions 3.1 and 3.5.

■

By following a similar argument to the one applied to the geometric
rule in the previous section, we can now incorporate (3.58) into our social
learning algorithm, i.e., into (3.10b), to get

µk,t(θ) =
∑
j∈Nk

ajkψj,t(θ), (3.74)

with the weights ajk, defined for j ∈ Nk, fulfilling the conditions ajk > 0
and ∑

j∈Nk ajk = 1. Rule (3.74) is identical to (3.23), which arose in
Section 3.3 from information-theoretic principles. Remarkably again, we
conclude that social learning with arithmetic averaging is optimal both
under the minimization problem in (3.21) and under Assumptions 3.1,
3.2, 3.3, and 3.5, that is, under behavioral axioms where independence
of irrelevant alternatives is replaced by separability. As was the case for
geometric averaging, for arithmetic averaging the behavioral approach
requires at least three hypotheses, while the information-theoretic approach
adopted in Section 3.3 covers even the case |Θ| = 2.

4Actually, the fundamental result proved in [57] refers to the case K = 1. However, it can
be straightforwardly extended to an arbitrary K by noting that, in view of (3.69), we can also
represent the function h as the sum of K functions

h(x) = h(x1, 0, . . . , 0) + h(0, x2, 0, . . . , 0) + . . .+ h(0, 0, . . . , xK) (3.70)

and then apply the result available for K = 1 to any of these functions.

3.5. Unifying Framework 63

Table 3.1: Summary of pooling rules and pertinent criteria.

Pooling rule Information-theoretic Behavioral

Geometric avg.
∑
j∈Nk

ajkD(p||ψj,t) Indep. irrelevant alternatives

Arithmetic avg.
∑
j∈Nk

ajkD(ψj,t||p) Separability

In summary, from the analysis conducted in this section and Section 3.3,
we learned that the most popular combination rules, the geometric (a.k.a.
log-linear) and arithmetic (a.k.a. linear) rules, are the optimal solutions to
two different formulations: One based on information-theoretic arguments
and another based on behavioral arguments. In one problem, we focus on
minimizing an information-theoretic measure that quantifies the discrep-
ancy between the target belief and the beliefs of neighboring agents. In the
other problem, we place a set of axiomatic constraints on the agents’ ad-
missible behavior. Table 3.1 summarizes the results. In the column referred
to behavioral assumptions, we report only the distinguishing behavioral
assumption for the two combination rules, implicitly implying that the
other three assumptions (label neutrality, unanimity, and monotonicity)
are fulfilled in both cases.

3.5 Unifying Framework

The earlier Figure 3.2 illustrates the structure of the social learning frame-
work. In the figure, the first block performs a Bayesian update from a
previous-lag belief to an intermediate belief using the fresh data sample.
The second block implements a suitable combination rule, such as geometric
or arithmetic pooling.

However, in several applications other requirements emerge, under which
the criteria adopted to design the scheme in Figure 3.2 will need to be
revisited. We provide two relevant examples, which will help motivate a
unifying framework for non-Bayesian social learning.

Example 3.2 (Adaptive social learning). The first example pertains to a modification
of Bayes’ rule, motivated by a strong need for adaptation when the agents need to
be responsive to drifts in the environmental conditions, e.g., the state of nature, the

64 From Single-Agent to Social Learning

statistical properties of the streaming data, the likelihood models, or the network
topology. We will explain later in Chapter 8 that the social learning scheme of Figure 3.2
is not capable of adapting well to changes in the environment and that the agents exhibit
significant stubbornness in their behavior.

In order to modify the Bayesian update to infuse adaptation, we return to the
information-theoretic approach from Section 2.3. We explained there that Bayes’ rule
results from minimizing the free-energy F (p) introduced in (2.61) or its variation F̃ (p)
in (2.70). In either of these formulations, the contributions of the prior and likelihood
are weighted equally. One principled way to induce adaptation is to modify the cost
function so as to give more relative importance to the new data, which appears as an
argument of the likelihood. To this end, we will formulate in Chapter 8 the following
alternative problem to determine the intermediate belief vector

ψk,t = arg min
p∈∆H

{
(1 − δ)D(p||µBu

k,t) + δD(p||µlik
k,t)
}
, 0 < δ < 1, (3.75)

where µBu
k,t denotes the traditional Bayesian update defined in (2.64), specifically com-

puted by using as the prior the previous-lag belief vector µk,t−1, while µlik
k,t denotes the

posterior defined in (2.67), which assumes a uniform prior. In both cases we use the
likelihood ℓk(xk,t|θ).

Observe that (3.75) minimizes a convex combination of two KL divergences. The first
divergence measures the discrepancy between the target belief vector p and the Bayesian
update µBu

k,t, which takes into account both the new data and the past belief vector
µk,t−1. The second divergence measures the discrepancy between p and the posterior µlik

k,t,
which ignores the past belief and is based on the new data only. The design parameter
δ ∈ (0, 1) determines the level of adaptation by giving more or less importance to fresh
data over past data. As δ → 0, we recover the traditional Bayesian update. On the other
hand, as δ increases, the role of D(p||µlik

k,t) is enhanced and the minimization in (3.75)
will tend to promote belief vectors that are closer to µlik

k,t. Since µlik
k,t does not embody

prior information, this mechanism provides a way to depress information accumulated
from past data and to emphasize information coming from fresh data.

Example 3.3 (Partial information sharing). It has been assumed so far that each agent
k sends over the network its full belief vector ψk,t. This might not always be the case.
For instance, due to privacy reasons, or simply for the desire of “discussing” particular
opinions, the agents might not be willing to share their entire belief vector. Another
relevant requirement concerns the need to reduce communication costs by compressing
the information to be transmitted. In either case, the agents share an encoded version of
their beliefs, yielding an intermediate processing step in the social learning mechanism.
This encoding step would be implemented locally, i.e., before communication takes place,
but it would then require a decoding stage before the social learning phase.

One interesting type of encoding is the sharing of partial information. For instance,
the agents might exchange the belief about one hypothesis of interest ϑ• ∈ Θ. Such
model can be conveniently abstracted by saying that each agent k sends an encoded
version of its intermediate belief vector ψk,t. In this case, the encoded version amounts
to extracting only the entry ψk,t(ϑ•), whereas the entries corresponding to θ ≠ ϑ• are
not shared. Upon receiving ψj,t(ϑ•) from its neighbors j ∈ Nk\{k}, agent k can perform
a decoding operation to fill in the missing entries in the intermediate belief vectors ψj,t.
This process gives rise to a decoded or reconstructed belief vector ψ̂

(k)
j,t that agent k

3.5. Unifying Framework 65

assigns to agent j. One possible decoding rule is as follows:

ψ̂
(k)
j,t (θ) =

ψj,t(ϑ•) if θ = ϑ•,

1 − ψj,t(ϑ•)
H − 1 otherwise,

(3.76)

where we note that the remaining probability mass, 1 − ψj,t(ϑ•), is distributed equally
across the hypotheses for which no information is shared. The problem of social learning
under partial information sharing will be studied in Chapter 11.

Motivated by the aforementioned two examples, we can introduce a
unifying framework for non-Bayesian social learning described by the
diagram in Figure 3.3 and summarized by the following four steps.

(µk,t−1, xk,t)
update−→ ψk,t, (3.77a)

ψk,t
encode−→ ek,t, (3.77b)(

ψk,t, {ej,t}j∈Nk\{k}
) decode−→

{
ψ̂

(k)
j,t

}
j∈Nk

, (3.77c){
ψ̂

(k)
j,t

}
j∈Nk

combine−→ µk,t. (3.77d)

Update. The self-learning step (3.77a) is implemented through a general
update rule. This is not necessarily a Bayesian update. For example, it
could be an adaptive rule as in Example 3.2 and Chapter 8.

Encode. In step (3.77b) we introduce a local encoder that is used by each
agent k before sharing, to map its locally updated belief vector into some
encoded vector ek,t ∈ Ek. The space Ek depends on the particular encoding
scheme. The encoding operation reflects the necessity of accounting for
some constraints relative to the information that can be shared over the
network. For instance, ek,t might be a single entry of ψk,t as in Example 3.3
and Chapter 11.

Decode. Agent k has direct access to its own uncoded belief vector ψk,t,
whereas it only receives encoded signals ej,t from neighbors j ∈ Nk\{k}.
Therefore, in step (3.77c) we introduce a decoder that is employed by
agent k to construct a set of belief vectors {ψ̂j,t}j∈Nk from the available
information (ψk,t, {ej,t}j∈Nk\{k}). For example, when ej,t is a single entry
of the belief vector, one possible decoding rule is given by (3.76).

66 From Single-Agent to Social Learning

<latexit sha1_base64="kZae5RVbwye8zvbkhDPJkxGTqAc=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9pQ9lsN+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGSxHxBgqUvJ1oTlUgeSsY3U791hPXRsTRA44T7is6iEQoGEUrPXZV2stG5zjplcpuxZ2BLBMvJ2XIUe+Vvrr9mKWKR8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y2lEFTd+Njt4Qk6t0idhrG1FSGbq74mMKmPGKrCdiuLQLHpT8T+vk2J47WciSlLkEZsvClNJMCbT70lfaM5Qji2hTAt7K2FDqilDm1HRhuAtvrxMmhcV77JSva+Wazd5HAU4hhM4Aw+uoAZ3UIcGMFDwDK/w5mjnxXl3PuatK04+cwR/4Hz+AOfmkH0=</latexit>µk,t
<latexit sha1_base64="VuTp/BU570lJFVwdxIqmYrbpfcY=">AAACFXicbVDLSsNAFJ34rPEVdekmWAQXUpIi6rLoxmUF+4AmlMnkJh06mYSZiVBCf8KNv+LGhSJuBXf+jdM2grYeGDiccw937gkyRqVynC9jaXlldW29smFubm3v7Fp7+22Z5oJAi6QsFd0AS2CUQ0tRxaCbCcBJwKATDK8nfucehKQpv1OjDPwEx5xGlGClpb516gUQU14Q4ArE2IyBg8DM88w8C7EC0wMe/rh9q+rUnCnsReKWpIpKNPvWpxemJE90nDAsZc91MuUXWChKGIxNL5eQYTLEMfQ05TgB6RfTq8b2sVZCO0qFflzZU/V3osCJlKMk0JMJVgM5703E/7xerqJLv6A8yxVwMlsU5cxWqT2pyA6pAKLYSBNMBNV/tckAC0x0B9LUJbjzJy+Sdr3mntfObuvVxlVZRwUdoiN0glx0gRroBjVRCxH0gJ7QC3o1Ho1n4814n40uGWXmAP2B8fENSBafhw==</latexit>

general
update

<latexit sha1_base64="B8jOydWT2UYvHL1eHbmY5YjxWIs=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8aNiVoB6DXjxGMA/YLGF2MkmGzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KE8Et+P63t7K6tr6xWdgqbu/s7u2XDg6bVqeGsgbVQpt2TCwTXLEGcBCsnRhGZCxYKx7dTf3WEzOWa/UI44RFkgwU73NKwElhR6bdbHQOF8GkWyr7FX8GvEyCnJRRjnq39NXpaZpKpoAKYm0Y+AlEGTHAqWCTYie1LCF0RAYsdFQRyWyUzU6e4FOn9HBfG1cK8Ez9PZERae1Yxq5TEhjaRW8q/ueFKfRvooyrJAWm6HxRPxUYNJ7+j3vcMApi7AihhrtbMR0SQyi4lIouhGDx5WXSvKwEV5XqQ7Vcu83jKKBjdILOUICuUQ3dozpqIIo0ekav6M0D78V79z7mrStePnOE/sD7/AHHKJDv</latexit>µk,t�1
<latexit sha1_base64="YE+upPI67fd2xQCRTv5vzbrv8PI=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVHruJEb1sdI6TXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR8S4r1ftquXaTx1GAYziBM/DgCmpwB3VoAAMFz/AKb45xXpx352PeuuLkM0fwB87nD7FPkPE=</latexit>

 k,t

<latexit sha1_base64="g/+KAc4jFarqjh3SukdCueRka18=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgQZbdTUziLejFYwTzgGQJs5PZZMjsg5lZMSz5CC8eFPHq93jzb5xNIqhoQUNR1U13lxdzJpVlfRi5ldW19Y38ZmFre2d3r7h/0JZRIghtkYhHouthSTkLaUsxxWk3FhQHHqcdb3KV+Z07KiSLwls1jakb4FHIfEaw0lLnfpBOztRsUCxZ5kW96pw7yDItq+aUqxlxahWnjGytZCjBEs1B8b0/jEgS0FARjqXs2Vas3BQLxQins0I/kTTGZIJHtKdpiAMq3XR+7gydaGWI/EjoChWaq98nUhxIOQ083RlgNZa/vUz8y+slyq+7KQvjRNGQLBb5CUcqQtnvaMgEJYpPNcFEMH0rImMsMFE6oYIO4etT9D9pO6ZdNSs3lVLjchlHHo7gGE7Bhho04Bqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0Czv2P5w==</latexit>xk,t

<latexit sha1_base64="KGzQkS9mzVOCv9vTFm6kyyD9vHs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWw2k3bpZhN3N0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnsgHM07Rj+lA8ogzaqzUCZElIZeDfrniVt05yCrxclKBHI1++asXJiyLURomqNZdz02NP6HKcCZwWuplGlPKRnSAXUsljVH7k/m9U3JmlZBEibIlDZmrvycmNNZ6HAe2M6ZmqJe9mfif181MdO1PuEwzg5ItFkWZICYhs+dJyBUyI8aWUKa4vZWwIVWUGRtRyYbgLb+8Slq1qndZvbivVeo3eRxFOIFTOAcPrqAOd9CAJjAQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QMpDJAO</latexit>

decoding
<latexit sha1_base64="jE0zAncjo2Jxym1lFYAybeOJ6tA=">AAAB73icbVBNSwMxFHxbv2r9qnr0EiyCp7JbRD0WvXis4LaFdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etHUgMMy8R95MmHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU1jJThPpEcqm6IdaUM0F9wwyn3VRRnIScdsLx7czvPFGlmRQPZpLSIMFDwWJGsLFSlwoiIyaGg2rNrbtzoFXiFaQGBVqD6lc/kiRLqDCEY617npuaIMfKMMLptNLPNE0xGeMh7VkqcEJ1kM/vnaIzq0Qolso+YdBc/b2R40TrSRLayQSbkV72ZuJ/Xi8z8XWQM5FmxiZbfBRnHBmJZuFRxBQlhk8swUQxeysiI6wwMbaiii3BW468StqNundZv7hv1Jo3RR1lOIFTOAcPrqAJd9ACHwhweIZXeHMenRfn3flYjJacYucY/sD5/AE4cZAY</latexit>

encoding

<latexit sha1_base64="scWsiaKG6ATfk2qo7rYoGA9HkMw=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBg5REinosevFYwX5AG8pmO2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx3cxvP4E2IlaPOEnAj9hQiVBwhlZqQz8bX+C0X664VXcOukq8nFRIjka//NUbxDyNQCGXzJiu5yboZ0yj4BKmpV5qIGF8zIbQtVSxCIyfzc+d0jOrDGgYa1sK6Vz9PZGxyJhJFNjOiOHILHsz8T+vm2J442dCJSmC4otFYSopxnT2Ox0IDRzlxBLGtbC3Uj5imnG0CZVsCN7yy6ukdVn1rqq1h1qlfpvHUSQn5JScE49ckzq5Jw3SJJyMyTN5JW9O4rw4787HorXg5DPH5A+czx9O1o+Q</latexit>ek,t

<latexit sha1_base64="IkR3imGcHnuDhsOHYAmyhE/gnUg=">AAACGHicbVDLSgMxFM3UV62vqks3wSK4kDojRV0W3biSCvYBTRkyadrGyWSGJCOUMJ/hxl9x40IRt935N6btLLR6IeRwzn2eIOFMadf9cgpLyyura8X10sbm1vZOeXevpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+0gvJ7q7UcqFYvFvR4ntBfhoWADRrC2lF8+RYb65uFEZyizP2ICRViPCObmNvNDFGASKo7VCCIToizzyxW36s4C/gVeDiogj4ZfnqB+TNKICk1sH9X13ET3DJaaEU6zEkoVTewQPKRdCwWOqOqZ2WEZPLJMHw5iaZ/QcMb+rDA4UmocBTZzurVa1Kbkf1o31YPLnmEiSTUVZD5okHKoYzh1CfaZpETzsQWYSGZ3hWSEJSbaelmyJniLJ/8FrbOqd16t3dUq9avcjiI4AIfgGHjgAtTBDWiAJiDgCbyAN/DuPDuvzofzOU8tOHnNPvgVzuQbxuOhfQ==</latexit>{ej,t}j2Nk\{k} pooling
rule

<latexit sha1_base64="ULdcrks5fayPBbnJdKEXcZafDYs=">AAACEnicbVC7TsMwFHXKq4RXgZElokKCpUrKAGMFC2OR6ENqospxblKrjh3ZDlIV9RtY+BUWBhBiZWLjb3AfSNByJEtH59xj+54wY1Rp1/2ySiura+sb5U17a3tnd6+yf9BWIpcEWkQwIbshVsAoh5ammkE3k4DTkEEnHF5P/M49SEUFv9OjDIIUJ5zGlGBtpH7lzA8hobwgwDXIsZ0JYa5KfN+WOQMfePRj9StVt+ZO4SwTb06qaI5mv/LpR4LkqYkThpXqeW6mgwJLTQmDse3nCjJMhjiBnqEcp6CCYrrS2DkxSuTEQprDtTNVfycKnCo1SkMzmWI9UIveRPzP6+U6vgwKyrNcAyezh+KcOVo4k36ciEogmo0MwURS81eHDLDExHSgbFOCt7jyMmnXa955rX5brzau5nWU0RE6RqfIQxeogW5QE7UQQQ/oCb2gV+vRerberPfZaMmaZw7RH1gf35CNnqk=</latexit>

� b j,t

j2Nk

<latexit sha1_base64="j9WzPe3/OWTRCfq6OXns3rs6lZA=">AAACHXicbZDLSsNAFIYn9VbrrerSTbAILqQktaDLohtXUsFeoAlhMp22YyeTMHOilJAXceOruHGhiAs34ts4SbvQ1gMDH/9/DnPO70ecKbCsb6OwtLyyulZcL21sbm3vlHf32iqMJaEtEvJQdn2sKGeCtoABp91IUhz4nHb88WXmd+6pVCwUtzCJqBvgoWADRjBoySvXHZ8NncR5YH06wpA4kWKpl9ydQJo7GTtMOAGGEcE8uU69ceqVK1bVystcBHsGFTSrplf+dPohiQMqgHCsVM+2InATLIERTtOSEysaYTLGQ9rTKHBAlZvk16XmkVb65iCU+gkwc/X3RIIDpSaBrzuzLdW8l4n/eb0YBuduwkQUAxVk+tEg5iaEZhaV2WeSEuATDZhIpnc1yQhLTEAHWtIh2PMnL0K7VrVPq7WbeqVxMYujiA7QITpGNjpDDXSFmqiFCHpEz+gVvRlPxovxbnxMWwvGbGYf/Snj6wdygKQA</latexit>

Figure 3.3: Unifying framework for non-Bayesian social learning. In comparison with Figure 3.2,
the following distinguishing elements emerge: i) a general update rule that each agent k applies
to its past belief vector µk,t−1 and new data xk,t; ii) an encoding step that each agent k applies
to the intermediate belief vector before sharing it within the social group; and iii) a decoding
step that each agent k applies to the available information, i.e., to its own belief vector ψk,t
and the encoded information received from neighbors j ∈ Nk\{k}.

Combine. After the above three steps, each agent k possesses a collection
of reconstructed belief vectors {ψ̂(k)

j,t }j∈Nk associated with its neighbors.
According to the analysis conducted in the previous sections, in step (3.77d)
agent k will adopt a suitable combination rule to aggregate these beliefs.

Chapter 4

Network Models

Social learning relies on the local exchange of information between spatially
dispersed agents that interact according to a certain network topology.
We describe in this chapter the network models relevant to decentralized
learning and comment on their fundamental properties.

4.1 Network Graphs

We focus in our treatment on networks of agents. Any two agents may
be connected directly by an edge if they are neighbors, or they may be
connected by a path that passes through other intermediate agents, or they
may not be connected at all. The topology of a network can be described
in terms of graphs — see, e.g., [22, 151, 155, 171].

Definition 4.1 (Graphs). A network of size K is generally represented by a
directed graph consisting of K vertices (which we will refer to more frequently as
nodes or agents) and a set of directed edges connecting the nodes. By “directed”
we mean that an edge might exist from node j to node k and not in the opposite
direction. When all edges in a graph exist in both directions, the graph is called
“undirected”.

A relevant concept associated with a graph is the path.

Definition 4.2 (Paths). A directed path from node j to node k is a sequence of
directed edges, where the first edge in the sequence starts at j and the last edge
ends at k. When the starting and ending nodes coincide, the path is called a
cycle. When there is an edge that connects a node to itself, then the cycle has
length 1 and is called a self-loop.

68 Network Models

Another relevant concept is the neighborhood.

Definition 4.3 (Neighborhoods). The neighborhood Nk of node k is the set of
nodes j (possibly including node k itself) for which there exists an edge starting
at j and ending at k.

Note that we have introduced a directed neighborhood, a.k.a. in-
neighborhood. In fact, the neighborhood Nk includes only nodes connected
to k by an edge entering node k. As we have seen in the previous chapter,
the neighborhood Nk identifies the agents from which agent k collects the
beliefs to be combined during the pooling stage, and is therefore sufficient
to describe the social learning strategies. Obviously, we could define the
dual directed neighborhood (a.k.a. out-neighborhood) of nodes connected
to k by an edge emanating from k. In the following, to make the termi-
nology lighter, we will simply use the term neighborhood, and it should be
clear from the context if we are referring to an in-neighborhood or to an
out-neighborhood. Likewise, unless otherwise specified, graphs and related
descriptors (e.g., edges) are implicitly intended to be directed.

We observe that there might exist multiple paths starting at node j and
ending at node k. However, it is readily seen that the shortest path cannot
exceed length K − 1 (because if a node is visited more than once along the
path, we can cut redundant sub-paths). This also implies that the shortest
cycle cannot exceed length K. In fact, a cycle (of length greater than 1)
linking k to itself can always be made of a path from k to some other node
k′, plus one edge from k′ to k. By choosing the shortest path from k to k′,
we see that the length of a cycle cannot exceed K.

In our treatment, it is useful to consider weighted graphs, where we
associate a nonnegative weight ajk with each pair (j, k), including the case
j = k. These nonnegative weights can be conveniently collected into a
K ×K combination matrix A = [ajk]. Every such matrix with nonnegative
entries will be called a nonnegative matrix.

Definition 4.4 (Weighted graphs and combination matrices). We associate with
every nonnegative square matrix A = [ajk], also called a combination matrix, a
weighted graph constructed as follows. First, one constructs the support graph
of A, where an edge will exist from node j to node k whenever ajk > 0. In
particular, node k would have a self-loop when akk > 0. Then, the graph becomes
weighted by associating the matrix entry ajk with the edge emanating from j

4.1. Network Graphs 69

toward k. It is useful to note that the neighborhood of node k, introduced in
Definition 4.3, can be alternatively written in terms of the combination matrix
as

Nk = {j : ajk > 0} . (4.1)

We will generally be dealing with weighted graphs and their associated
combination matrices. To lighten the terminology, we will often simply
refer to the “graph” rather than to the “weighted graph.”

1
<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

2
<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

4
<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

a6k > 0
ak6 = 0

<latexit sha1_base64="IjpgbHfJ8RJEUQJLllkZRDARXLU=">AAACBXicbVDLSsNAFJ3UV42vqEtdBIvixpK0Ut0oRTcuK9gHJCFMppN2yOTBzEQoIRs3/oobF4q49R/c+TdO2iy0euDC4Zx7ufceL6GEC8P4UioLi0vLK9VVdW19Y3NL297p8ThlCHdRTGM28CDHlES4K4igeJAwDEOP4r4XXBd+/x4zTuLoTkwS7IRwFBGfICik5Gr7R9DNWkF+adi2dVJv4tBRCylo5ReGq9WMujGF/peYJamBEh1X+7SHMUpDHAlEIeeWaSTCySATBFGcq3bKcQJRAEfYkjSCIeZONv0i1w+lMtT9mMmKhD5Vf05kMOR8EnqyM4RizOe9QvzPs1LhnzsZiZJU4AjNFvkp1UWsF5HoQ8IwEnQiCUSMyFt1NIYMIiGDU2UI5vzLf0mvUTeb9cbtaa19VcZRBXvgABwDE5yBNrgBHdAFCDyAJ/ACXpVH5Vl5U95nrRWlnNkFv6B8fAM42ZZ6</latexit>

akj
<latexit sha1_base64="NWVbBF23KZG0GthxcqgC3kdh/hI=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMF+wHtUrJptk2bTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuH4bua3npg2XMlHO0lYEJOB5BGnxDqpSXrZeDTtlcpexZsDrxI/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNi93UsITQMRmwjqOSxMwE2fzaKT53Sh9HSruSFs/V3xMZiY2ZxKHrjIkdmmVvJv7ndVIb3QQZl0lqmaSLRVEqsFV49jruc82oFRNHCNXc3YrpkGhCrQuo6ELwl19eJc1qxb+sVB+uyrXbPI4CnMIZXIAP11CDe6hDAyiM4Ble4Q0p9ILe0ceidQ3lMyfwB+jzB84xj0c=</latexit>

ajk
<latexit sha1_base64="6vQNZ6Uq52uVGD2NCKTtwhPqH4s=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMF+wHtUrJptk2bTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuH4bua3npg2XMlHO0lYEJOB5BGnxDqpSXrZaDztlcpexZsDrxI/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNi93UsITQMRmwjqOSxMwE2fzaKT53Sh9HSruSFs/V3xMZiY2ZxKHrjIkdmmVvJv7ndVIb3QQZl0lqmaSLRVEqsFV49jruc82oFRNHCNXc3YrpkGhCrQuo6ELwl19eJc1qxb+sVB+uyrXbPI4CnMIZXIAP11CDe6hDAyiM4Ble4Q0p9ILe0ceidQ3lMyfwB+jzB84wj0c=</latexit>

<latexit sha1_base64="g3p9fWLeTKA4lOU2jawSnolmOqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFN66kgn1AO5RMmmlDM8mYZApl6He4caGIWz/GnX9jpp2Fth4IHM65l3tygpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs389oQqzaR4NNOY+hEeChYygo2V/F6EzYhgnt7P+uN+ueJW3TnQKvFyUoEcjX75qzeQJImoMIRjrbueGxs/xcowwums1Es0jTEZ4yHtWipwRLWfzkPP0JlVBiiUyj5h0Fz9vZHiSOtpFNjJLKRe9jLxP6+bmPDaT5mIE0MFWRwKE46MRFkDaMAUJYZPLcFEMZsVkRFWmBjbU8mW4C1/eZW0LqreZbX2UKvUb/I6inACp3AOHlxBHe6gAU0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8fDIySSw==</latexit>

Nk

K
<latexit sha1_base64="HQfadDQrozr2PpvG928HQmjcOjI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL4KXBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6NTjNM=</latexit>

Figure 4.1: Agents that are linked by edges can share information. The neighborhood of
agent k is marked by the dotted line and consists of the set Nk = {4, 6, j}. Likewise, the
neighborhood of agent 1 consists of the set N1 = {1, j}. For emphasis in the figure, we
are representing edges between agents by two separate directed arrows. We will continue
to use this representation whenever useful. Otherwise, in future network pictures we will
represent undirected edges by a single segment with no arrows. We show the combination
weights for some agents. For example, the weights ajk and akj are associated with the
directed edges from j to k and from k to j, respectively. We also emphasize that ak6 = 0
since there is no edge from k to 6, while a6k > 0 because there is an edge from 6 to k.

Figure 4.1 shows one example of a network graph, where we emphasize
the combination weights and the neighborhood of agent k. An edge between
two neighboring agents is represented by a directed arrow to indicate the
direction in which information can flow. The absence of an edge signifies
that the corresponding combination weight is equal to 0.

70 Network Models

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

4<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

Nk<latexit sha1_base64="uWYXbTBHmRm4Bv2m56/n4R8UPzw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN66kgn1AO5RMmmlDM8mYZApl6He4caGIWz/GnX9jpp2Fth4IHM65l3tygpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs389oQqzaR4NNOY+hEeChYygo2V/F6EzYhgnt7P+uN+ueJW3TnQKvFyUoEcjX75qzeQJImoMIRjrbueGxs/xcowwums1Es0jTEZ4yHtWipwRLWfzkPP0JlVBiiUyj5h0Fz9vZHiSOtpFNjJLKRe9jLxP6+bmPDaT5mIE0MFWRwKE46MRFkDaMAUJYZPLcFEMZsVkRFWmBjbU8mW4C1/eZW0alXvolp7uKzUb/I6inACp3AOHlxBHe6gAU0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8fCuySRg==</latexit>

ajk
<latexit sha1_base64="6vQNZ6Uq52uVGD2NCKTtwhPqH4s=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMF+wHtUrJptk2bTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuH4bua3npg2XMlHO0lYEJOB5BGnxDqpSXrZaDztlcpexZsDrxI/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNi93UsITQMRmwjqOSxMwE2fzaKT53Sh9HSruSFs/V3xMZiY2ZxKHrjIkdmmVvJv7ndVIb3QQZl0lqmaSLRVEqsFV49jruc82oFRNHCNXc3YrpkGhCrQuo6ELwl19eJc1qxb+sVB+uyrXbPI4CnMIZXIAP11CDe6hDAyiM4Ble4Q0p9ILe0ceidQ3lMyfwB+jzB84wj0c=</latexit>

a6k
<latexit sha1_base64="t/16jr6j4ZI8jyoMzwoGv13Gdg8=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6rHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3UJL3scjTplcpexZsBLxM/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNit3UsITQERmwjqOSxMwE2ezaCT51Sh9HSruSFs/U3xMZiY0Zx6HrjIkdmkVvKv7ndVIbXQcZl0lqmaTzRVEqsFV4+jruc82oFWNHCNXc3YrpkGhCrQuo6ELwF19eJs1qxT+vVO8vyrWbPI4CHMMJnIEPV1CDO6hDAyg8wjO8whtS6AW9o4956wrKZ47gD9DnD374jxM=</latexit>

a3k
<latexit sha1_base64="iSInsd15BiRChvlpgEdW4RJfWEc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0GPQi8cI5gHJEmYns8mYeSwzs0JY8g9ePCji1f/x5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKflgJwkNBR5KFjOCrZNauJ/VxtN+qexX/DnQKglyUoYcjX7pqzdQJBVUWsKxMd3AT2yYYW0Z4XRa7KWGJpiM8ZB2HZVYUBNm82un6NwpAxQr7UpaNFd/T2RYGDMRkesU2I7MsjcT//O6qY2vw4zJJLVUksWiOOXIKjR7HQ2YpsTyiSOYaOZuRWSENSbWBVR0IQTLL6+SVrUS1CrV+8ty/SaPowCncAYXEMAV1OEOGtAEAo/wDK/w5invxXv3Phata14+cwJ/4H3+AHpmjxA=</latexit>

a4k
<latexit sha1_base64="6levS7lvu99fYQdb5cdTXp0AsJI=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqezWgh6LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2qSf1cfTfrniVb058Crxc1KBHM1++as3UDSNmbRUEGO6vpfYICPacirYtNRLDUsIHZMh6zoqScxMkM2vneIzpwxwpLQrafFc/T2RkdiYSRy6zpjYkVn2ZuJ/Xje10VWQcZmklkm6WBSlAluFZ6/jAdeMWjFxhFDN3a2Yjogm1LqASi4Ef/nlVdKuVf2Lau2uXmlc53EU4QRO4Rx8uIQG3EITWkDhEZ7hFd6QQi/oHX0sWgsonzmGP0CfP3vsjxE=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

ajk
<latexit sha1_base64="6vQNZ6Uq52uVGD2NCKTtwhPqH4s=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMF+wHtUrJptk2bTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuH4bua3npg2XMlHO0lYEJOB5BGnxDqpSXrZaDztlcpexZsDrxI/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNi93UsITQMRmwjqOSxMwE2fzaKT53Sh9HSruSFs/V3xMZiY2ZxKHrjIkdmmVvJv7ndVIb3QQZl0lqmaSLRVEqsFV49jruc82oFRNHCNXc3YrpkGhCrQuo6ELwl19eJc1qxb+sVB+uyrXbPI4CnMIZXIAP11CDe6hDAyiM4Ble4Q0p9ILe0ceidQ3lMyfwB+jzB84wj0c=</latexit>

a3k
<latexit sha1_base64="iSInsd15BiRChvlpgEdW4RJfWEc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0GPQi8cI5gHJEmYns8mYeSwzs0JY8g9ePCji1f/x5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKflgJwkNBR5KFjOCrZNauJ/VxtN+qexX/DnQKglyUoYcjX7pqzdQJBVUWsKxMd3AT2yYYW0Z4XRa7KWGJpiM8ZB2HZVYUBNm82un6NwpAxQr7UpaNFd/T2RYGDMRkesU2I7MsjcT//O6qY2vw4zJJLVUksWiOOXIKjR7HQ2YpsTyiSOYaOZuRWSENSbWBVR0IQTLL6+SVrUS1CrV+8ty/SaPowCncAYXEMAV1OEOGtAEAo/wDK/w5invxXv3Phata14+cwJ/4H3+AHpmjxA=</latexit>

a4k
<latexit sha1_base64="6levS7lvu99fYQdb5cdTXp0AsJI=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqezWgh6LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2qSf1cfTfrniVb058Crxc1KBHM1++as3UDSNmbRUEGO6vpfYICPacirYtNRLDUsIHZMh6zoqScxMkM2vneIzpwxwpLQrafFc/T2RkdiYSRy6zpjYkVn2ZuJ/Xje10VWQcZmklkm6WBSlAluFZ6/jAdeMWjFxhFDN3a2Yjogm1LqASi4Ef/nlVdKuVf2Lau2uXmlc53EU4QRO4Rx8uIQG3EITWkDhEZ7hFd6QQi/oHX0sWgsonzmGP0CfP3vsjxE=</latexit>

a6k
<latexit sha1_base64="t/16jr6j4ZI8jyoMzwoGv13Gdg8=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6rHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3UJL3scjTplcpexZsBLxM/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNit3UsITQERmwjqOSxMwE2ezaCT51Sh9HSruSFs/U3xMZiY0Zx6HrjIkdmkVvKv7ndVIbXQcZl0lqmaTzRVEqsFV4+jruc82oFWNHCNXc3YrpkGhCrQuo6ELwF19eJs1qxT+vVO8vyrWbPI4CHMMJnIEPV1CDO6hDAyg8wjO8whtS6AW9o4956wrKZ47gD9DnD374jxM=</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

<latexit sha1_base64="EJ8j+WLiKBYhRHse7tmqUC7SKzc=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C1IvHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90e3Ubz5xbUSkHnEc825IB0oEglG00sP1Va9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5PGWdk7L1fuK6XqTRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AF3ONFQ==</latexit>

A =
<latexit sha1_base64="jGa9yVxlRogmun73syllkjaI4uw=">AAAB7XicdVBNS8NAEJ34WetX1aOXxSJ4Ckla23orevFYwX5AG8pmu23XbrJhdyOU0P/gxYMiXv0/3vw3btoKKvpg4PHeDDPzgpgzpR3nw1pZXVvf2Mxt5bd3dvf2CweHLSUSSWiTCC5kJ8CKchbRpmaa004sKQ4DTtvB5Crz2/dUKiaiWz2NqR/iUcSGjGBtpBbup5PSrF8oOvZFreKde8ixHafqlSoZ8aplr4Rco2QowhKNfuG9NxAkCWmkCcdKdV0n1n6KpWaE01m+lygaYzLBI9o1NMIhVX46v3aGTo0yQEMhTUUazdXvEykOlZqGgekMsR6r314m/uV1Ez2s+SmL4kTTiCwWDROOtEDZ62jAJCWaTw3BRDJzKyJjLDHRJqC8CeHrU/Q/aXm2W7HLN+Vi/XIZRw6O4QTOwIUq1OEaGtAEAnfwAE/wbAnr0XqxXhetK9Zy5gh+wHr7BN8nj1k=</latexit>ak3 <latexit sha1_base64="SNLqFsApGTXO8eJPzKRCQMDMp9w=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4Gmamta27ohuXFewD2qFk0kybNpMMSUYoQ//BjQtF3Po/7vwbM20FFT1w4XDOvdx7TxAzqrTjfFi5tfWNza38dmFnd2//oHh41FYikZi0sGBCdgOkCKOctDTVjHRjSVAUMNIJpteZ37knUlHB7/QsJn6ERpyGFCNtpDYapNPJfFAsOfZlvepdeNCxHafmlasZ8WoVrwxdo2QogRWag+J7fyhwEhGuMUNK9Vwn1n6KpKaYkXmhnygSIzxFI9IzlKOIKD9dXDuHZ0YZwlBIU1zDhfp9IkWRUrMoMJ0R0mP128vEv7xeosO6n1IeJ5pwvFwUJgxqAbPX4ZBKgjWbGYKwpOZWiMdIIqxNQAUTwten8H/S9my3alduK6XG1SqOPDgBp+AcuKAGGuAGNEELYDABD+AJPFvCerRerNdla85azRyDH7DePgEyyY+Q</latexit>akj

<latexit sha1_base64="RvLSJX9l28H4s85If8IgieSmX3c=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GmamT3dFNy4r2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BszbQUVPXDhcM693HtPEDOqtON8WLm19Y3Nrfx2YWd3b/+geHjUUSKRmLSxYEL2AqQIo5y0NdWM9GJJUBQw0g2mV5nfvSdSUcFv9SwmfoTGnIYUI22kDhqm0+p8WCw59kWj5lU96NiOU/fKtYx49YpXhq5RMpTACq1h8X0wEjiJCNeYIaX6rhNrP0VSU8zIvDBIFIkRnqIx6RvKUUSUny6uncMzo4xgKKQpruFC/T6RokipWRSYzgjpifrtZeJfXj/RYcNPKY8TTTheLgoTBrWA2etwRCXBms0MQVhScyvEEyQR1iagggnh61P4P+l4tluzKzeVUvNyFUcenIBTcA5cUAdNcA1aoA0wuAMP4Ak8W8J6tF6s12VrzlrNHIMfsN4+AeIxj1s=</latexit>ak5

<latexit sha1_base64="pukKC4/a/4Vumdv9C1rDgxpFPro=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFS/bJXLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lW5Uq+UqrdZHHk4gVM4Bw+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYObjMI=</latexit>

5

<latexit sha1_base64="SNLqFsApGTXO8eJPzKRCQMDMp9w=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4Gmamta27ohuXFewD2qFk0kybNpMMSUYoQ//BjQtF3Po/7vwbM20FFT1w4XDOvdx7TxAzqrTjfFi5tfWNza38dmFnd2//oHh41FYikZi0sGBCdgOkCKOctDTVjHRjSVAUMNIJpteZ37knUlHB7/QsJn6ERpyGFCNtpDYapNPJfFAsOfZlvepdeNCxHafmlasZ8WoVrwxdo2QogRWag+J7fyhwEhGuMUNK9Vwn1n6KpKaYkXmhnygSIzxFI9IzlKOIKD9dXDuHZ0YZwlBIU1zDhfp9IkWRUrMoMJ0R0mP128vEv7xeosO6n1IeJ5pwvFwUJgxqAbPX4ZBKgjWbGYKwpOZWiMdIIqxNQAUTwten8H/S9my3alduK6XG1SqOPDgBp+AcuKAGGuAGNEELYDABD+AJPFvCerRerNdla85azRyDH7DePgEyyY+Q</latexit>akj
<latexit sha1_base64="jGa9yVxlRogmun73syllkjaI4uw=">AAAB7XicdVBNS8NAEJ34WetX1aOXxSJ4Ckla23orevFYwX5AG8pmu23XbrJhdyOU0P/gxYMiXv0/3vw3btoKKvpg4PHeDDPzgpgzpR3nw1pZXVvf2Mxt5bd3dvf2CweHLSUSSWiTCC5kJ8CKchbRpmaa004sKQ4DTtvB5Crz2/dUKiaiWz2NqR/iUcSGjGBtpBbup5PSrF8oOvZFreKde8ixHafqlSoZ8aplr4Rco2QowhKNfuG9NxAkCWmkCcdKdV0n1n6KpWaE01m+lygaYzLBI9o1NMIhVX46v3aGTo0yQEMhTUUazdXvEykOlZqGgekMsR6r314m/uV1Ez2s+SmL4kTTiCwWDROOtEDZ62jAJCWaTw3BRDJzKyJjLDHRJqC8CeHrU/Q/aXm2W7HLN+Vi/XIZRw6O4QTOwIUq1OEaGtAEAnfwAE/wbAnr0XqxXhetK9Zy5gh+wHr7BN8nj1k=</latexit>ak3

<latexit sha1_base64="RvLSJX9l28H4s85If8IgieSmX3c=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GmamT3dFNy4r2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BszbQUVPXDhcM693HtPEDOqtON8WLm19Y3Nrfx2YWd3b/+geHjUUSKRmLSxYEL2AqQIo5y0NdWM9GJJUBQw0g2mV5nfvSdSUcFv9SwmfoTGnIYUI22kDhqm0+p8WCw59kWj5lU96NiOU/fKtYx49YpXhq5RMpTACq1h8X0wEjiJCNeYIaX6rhNrP0VSU8zIvDBIFIkRnqIx6RvKUUSUny6uncMzo4xgKKQpruFC/T6RokipWRSYzgjpifrtZeJfXj/RYcNPKY8TTTheLgoTBrWA2etwRCXBms0MQVhScyvEEyQR1iagggnh61P4P+l4tluzKzeVUvNyFUcenIBTcA5cUAdNcA1aoA0wuAMP4Ak8W8J6tF6s12VrzlrNHIMfsN4+AeIxj1s=</latexit>ak5

Figure 4.2: We associate a K × K combination matrix A with every network of K
agents. The (j, k) entry of A contains the combination weight ajk, which scales the
information arriving at agent k and originating at agent j.

Let us comment on the practical meaning of the combination weights.
As we have seen in Chapter 3, in the social learning strategies, agent k
combines the information it receives from agents j ∈ Nk by using a set
of convex positive combination weights {ajk}j∈Nk . This scaling can be
interpreted as a measure of the confidence that agent k assigns to its
interaction with agent j.

The weights ajk and akj can be different, and one or both weights
can also be zero. In fact, the subscripts j and k in ajk have different
meanings. This is emphasized in Figure 4.2. The row index j designates
the source agent (i.e., the sender) and the column index k designates the
sink agent (i.e., the receiver). In other words, the entries on the kth column
of A contain the coefficients used by agent k to scale the information
corresponding to each agent (i.e., each row) j. If ajk = 0, the information
from agent j is not used by agent k — see Figure 4.2.

In some cases we need to distinguish between the physical network
topology and the topology resulting from the combination matrix A. For
example, consider a collection of electronic devices organized into a wireless
communication network. The physical topology defines whether one agent
can send and/or receive information from another agent. To scale the
information exchanged across the network, the agents will need to assign
some weights on top of this topology. Obviously, the weight ajk will be
zero when agent k cannot receive from agent j. However, this weight can
be zero even when agent k is physically connected to agent j and can
receive information from it. This happens when agent k deliberately decides
to ignore the information from agent j. Thus, there can be a difference

4.1. Network Graphs 71

between the underlying physical topology and the actual “communication”
topology defined by the support graph of A. However, once the combination
matrix is defined, the underlying physical topology is “overwritten” by
the support graph of A. In other words, if k ignores information received
from j, then it is irrelevant to know whether this happens because k is
physically unable to receive information from j, or because k chooses to
ignore it on purpose. In summary, moving forward, whenever we refer to a
network topology we will be in effect referring to the topology defined by
the support graph of A.

The next definition lists four useful notions of connectivity.

Definition 4.5 (Network connectivity). We distinguish four types of connectivity.

i) Connected graph. Consider the nontrivial case K > 1. A graph (or net-
work) is said to be connected when, for j = 1, 2, . . . ,K and k = 1, 2, . . . ,K,
with j ≠ k, there exists a path originating at j and ending at k. In other
words, given any two nodes, there are paths in both directions linking them
(the paths need not be the same). Note that over a connected graph, for
any node k there always exists a path originating and ending at k since,
even in the absence of a self-loop (i.e., even when akk = 0) we can join two
paths from k to j and from j to k. In the trivial case K = 1, we will say
that the graph is connected when a11 > 0.

ii) Primitive graph. A connected graph is said to be primitive when there
exist paths of common length m > 0 linking any two distinct nodes in both
directions and linking any node to itself.

iii) Strong graph. A connected graph is said to be strong when it has at least
one self-loop, meaning that akk > 0 for some node k. As we will show later
in Section 4.3, a strong graph is also primitive, but the reverse implication
does not hold.

iv) Weak graph. The graphs that do not belong to the family described by
definition i) are said to be weak.

Note that in the definition of a connected graph, since j and k are
arbitrary nodes, we require that any two distinct nodes are linked in both
directions, either directly when they are neighbors or by passing through
intermediate nodes when they are not neighbors. In this way, information
can flow in both directions between any two distinct agents in the network,
although the forward path from a node j to some other node k need not
be the same as the backward path from k to j.

Figure 4.3 shows four examples of networks corresponding to the four
families of graphs in Definition 4.5. The leftmost graph is connected, because

72 Network Models

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

4<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

4<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

4<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

4<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

strong
<latexit sha1_base64="9vY/fCa9G3cq3sNL9rZ/L5IOYlk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY8FL3qrYD+gCWWz3bRLN5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJxySZZrzNEpnoXkgNl0LxNgqUvJdqTuNQ8m44uZ373SeujUjUI05THsR0pEQkGEUr+bkfRsSgTtRoNqjW3Lq7AFknXkFqUKA1qH75w4RlMVfIJDWm77kpBjnVKJjks4qfGZ5SNqEj3rdU0ZibIF/cPCMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xj/D6CbIhUoz5IotF0WZJJiQeQBkKDRnKKeWUKaFvZWwMdWUoY2pYkPwVl9eJ51G3buqNx4ateZ9EUcZzuAcLsGDa2jCHbSgDQxSeIZXeHMy58V5dz6WrSWnmDmFP3A+fwA8eJHU</latexit>

weak
<latexit sha1_base64="0acSdxqwy2W2lcZTy8bPxQlSKX8=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXARrsI5gOTI+xt5pIle3vH7p4SjvwLGwtFbP03dv4bN8kVmvhg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7G1zO//YhK81jem0mCfkSHkoecUWOlh6wXhOQJ6XjaL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m188JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEV37GZZIalGyxKEwFMTGZvU8GXCEzYmIJZYrbWwkbUUWZsSGVbAje8surpFWrehfV2l2tUr/N4yjCCZzCOXhwCXW4gQY0gYGEZ3iFN0c7L86787FoLTj5zDH8gfP5A3aEkMs=</latexit>

primitive
<latexit sha1_base64="U9rxd8msrR9zzmNq1Ismi4U2GiI=">AAAB+HicbVA9SwNBEN3zM8aPnFraLAbBKtzFQsuAjXYRzAckIext5pIlu3fH7lwgHvklNhaK2PpT7Pw3bpIrNPHBwOO9GWbmBYkUBj3v29nY3Nre2S3sFfcPDo9K7vFJ08Sp5tDgsYx1O2AGpIiggQIltBMNTAUSWsH4du63JqCNiKNHnCbQU2wYiVBwhlbqu6WsG4Q00UIJFBOY9d2yV/EWoOvEz0mZ5Kj33a/uIOapggi5ZMZ0fC/BXsY0Ci5hVuymBhLGx2wIHUsjpsD0ssXhM3phlQENY20rQrpQf09kTBkzVYHtVAxHZtWbi/95nRTDm14moiRFiPhyUZhKijGdp0AHQgNHObWEcW1f55SPmGYcbVZFG4K/+vI6aVYr/lWl+lAt1+7zOArkjJyTS+KTa1Ijd6ROGoSTlDyTV/LmPDkvzrvzsWzdcPKZU/IHzucPEYOTXw==</latexit>

connected
<latexit sha1_base64="1IqmVc/IzwI01i40dAzJucEaxHY=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSD3oseNFbBfsBbSibzaRdutkNuxuhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0w508bzvp3SxubW9k55t7K3f3BYdY+OO1pmikKbSi5VLyQaOBPQNsxw6KUKSBJy6IaTm7nffQSlmRQPZppCkJCRYDGjxFhp6FbzQRhjKoUAaiCaDd2aV/cWwOvEL0gNFWgN3a9BJGmWgDCUE637vpeaICfKMMphVhlkGlJCJ2QEfUsFSUAH+eLwGT63SoRjqWwJgxfq74mcJFpPk9B2JsSM9ao3F//z+pmJr4OciTQzIOhyUZxxbCSep4Ajpuy/fGoJoYrZWzEdE0VsBkpXbAj+6svrpNOo+5f1xn2j1rwr4iijU3SGLpCPrlAT3aIWaiOKMvSMXtGb8+S8OO/Ox7K15BQzJ+gPnM8f1x6TOQ==</latexit>

Figure 4.3: (Leftmost panel) Connected graph, where there exist paths between any
two agents in both directions. (Second panel) Primitive graph, where there exist paths
of length 16 between any two distinct agents, in both directions, and from any agent to
itself. (Third panel) Strong graph, obtained from the connected graph in the leftmost
panel by simply adding a self-loop at agent 1. (Rightmost panel) Weak graph, obtained
from the strong graph in the third panel by simply reversing the arrow connecting agents
1 and 4. This slight change makes agent 1 incapable of sending information to any of
the other agents in the network, even though information can reach agent 1 from all
other agents (directly or indirectly).

if we select any two nodes j and k, we can find paths linking them in
both directions. For example, for nodes 2 and 4, one valid path from 2
to 4 goes through 1 and one valid path for the reverse direction from 4
to 2 goes through 3. Similarly, paths can be determined linking all other
combinations of nodes in both directions. Note that in the considered
example no pair of nodes is directly connected by edges in both directions.
Nevertheless, we can still find paths linking any pair of nodes in both
directions.

Note also that the paths connecting 1 and 2 must have odd length,
whereas the paths connecting 1 and 3 must have even length. Therefore,
no paths of common length can be found, and the graph is not primitive.
In comparison, the graph shown in the second panel of Figure 4.3 is
primitive. In fact, it can be verified that, thanks to the addition of the
edge represented in green, there exist paths of common length 16 between
any two distinct nodes, in both directions, and that there also exist paths
of length 16 linking any node to itself. We remark that this graph has no
self-loops.

The third panel shows a network with the same structure as the one in
the leftmost panel, but for the additional presence of a self-loop at node 1,
which makes the graph strong. Note that now it is possible to find paths

4.2. Combination Matrices 73

of common length 10 between any two distinct nodes, in both directions,
and also from any node to itself. Therefore, the graph is also primitive.

Finally, observe the rightmost graph in Figure 4.3. Compared with the
strong graph in the third panel, we simply reversed the direction of the
arrow that emanated from 1 toward 4. With this slight modification, the
information from agent 1 cannot reach any other agent in the network and
agent 1 is only at the receiving end. This graph is accordingly weak.

Throughout our treatment, we will use interchangeably the words “net-
work” and “graph.” Moreover, to avoid misunderstanding, we hasten to
add that the terms “connected,” “strong,” and “weak,” are not uniformly
defined in the literature and can refer to slightly different notions. Never-
theless, we will remain faithful to Definition 4.5. We will shortly see that
the graph families in this definition entail some useful correspondences
with the families of irreducible, primitive, and reducible matrices that arise
in matrix theory.

4.2 Combination Matrices

We have explained before how to associate a weighted graph with a nonneg-
ative square matrix, which we called the combination matrix and denoted
by A. The particular choice of the weights influences specific properties
that will be of interest for the social learning strategies. For example, we
explained in Chapter 3 how convex combination weights arise. Moreover,
the choice of the weights determines the spectral properties of the matrix
(i.e., the structure of its eigenvalues and eigenvectors), which will be seen
to be critical for the asymptotic properties of the social learning strategies.

However, some other critical properties relative to the flow of information
over the network are more immediately revealed by the mere support graph
of A, namely, by the unweighted graph that encodes the network “skeleton”
and describes only the interconnections between agents. In matrix analysis,
there exist powerful tools to characterize the interplay between matrices
and their support graphs. In particular, for nonnegative matrices, an elegant
theory was developed by Perron and Frobenius [93, 126]. We exploit this
theory to great effect in our analysis.

To start with, we show how the nth power of a nonnegative square
matrix is related to paths of length n over its support graph.

74 Network Models

Lemma 4.1 (Paths and matrix powers). Let A be a nonnegative K ×K matrix,
and consider the support graph of A. Over this graph, a path of length n between
nodes j and k (including the case j = k) exists if, and only if, the (j, k) entry of
the matrix power An is positive.

Proof. From the rules of matrix multiplication, the (j, k) entry of the nth power of A is
given by

[An]jk =
K∑

m1=1

K∑
m2=1

. . .

K∑
mn−1=1

ajm1 am1m2 . . . amn−1k. (4.2)

Therefore, [An]jk > 0 if, and only if, there exists at least one sequence of agent indices
{m1,m2, . . . ,mn−1} associated with nonzero scaling weights {ajm1 , am1m2 , . . . , amn−1k},
i.e., if, and only if, we have a path

j
ajm1−→ m1

am1m2−→ m2 −→ · · · −→ mn−1
amn−1k

−→ k [n edges]. (4.3)

■

Next, we introduce irreducible matrices, which are tightly coupled with
connected networks. Although the notion of irreducible matrices applies to
matrices with entries of arbitrary sign, we restrict our treatment to the
case of nonnegative matrices.

Definition 4.6 (Irreducible matrices). A nonnegative K × K matrix A is ir-
reducible when its support graph is connected. In other words, when for any
pair (j, k), including the case j = k, there exists a shortest path of some length
njk ≤ K (depending in general on j and k) that starts at j and ends at k. In
view of Lemma 4.1, the following property holds for irreducible matrices: For
any pair (j, k), including the case j = k, there exists a positive integer njk ≤ K
such that

[Anjk]jk > 0. (4.4)

Some of the forthcoming results will examine the spectral properties of
useful families of matrices. In preparation for these results, it is useful to
recall the basic definitions of the algebraic and geometric multiplicity of
an eigenvalue [93, 126].

Definition 4.7 (Eigenvalue multiplicity). Consider a square matrix A (not neces-
sarily nonnegative) and an eigenvalue λ of A. We have the following definitions:

i) The algebraic multiplicity of λ is the number of times it is repeated as a

4.2. Combination Matrices 75

root of the characteristic equation det(A−λI) = 0. An eigenvalue occurring
only once is called simple. When we say “there are h eigenvalues equal to
λ” we mean that the algebraic multiplicity of λ is equal to h.

ii) The geometric multiplicity of λ is the maximal number of linearly inde-
pendent eigenvectors associated with it, namely, the dimension of the null
space of A− λI. The geometric multiplicity cannot exceed the algebraic
multiplicity.

iii) An eigenvalue whose geometric multiplicity equals the algebraic multiplicity
is called semisimple.

The next theorem establishes the fundamental properties of nonnegative
irreducible matrices. Before stating the result, it might be useful to recall
that the spectral radius of a square matrix is equal to the largest magnitude
of its eigenvalues.

Theorem 4.1 (Perron-Frobenius theorem [126, p. 673]). Let A be a nonnegative
irreducible K ×K matrix. Then the following properties hold:

i) The matrix A has a simple eigenvalue λ equal to the spectral radius ρ(A)
and, moreover, ρ(A) > 0. All other eigenvalues of A are not equal to ρ(A),
but they can have magnitude equal to ρ(A), i.e., λ need not be the only
eigenvalue on the spectral circle.

ii) With proper sign scaling, all entries of the eigenvector of A corresponding to
the eigenvalue λ = ρ(A) can be made positive. Let v denote this eigenvector,
with its entries {vk} normalized to add up to 1, i.e.,

Av = λv, 1
Tv = 1, vk > 0 for k = 1, 2, . . . ,K. (4.5)

We refer to v as the Perron vector of A. All eigenvectors of A associated
with the other eigenvalues cannot be made nonnegative (they have entries
with varied signs or complex-valued entries).

4.2.1 Convergence of Matrix Powers

As will become apparent in the next chapters, social learning algorithms will
rely on repeated exchanges of information between neighboring nodes over
a graph. This iterative process will correspond to information traversing
longer and longer paths across the network as the number of iterations
increases. Technically, such repeated interactions can be represented by
matrix powers At, with t denoting the number of iterations. It is therefore
critical to study the convergence properties of these matrix powers.

76 Network Models

One useful notion of convergence for the matrix powers is Cesàro
summability.

Definition 4.8 (Cesàro summability). A square matrix A (not necessarily non-
negative) is said to be Cesàro-summable when the arithmetic mean of the matrix
powers converges, i.e., when there exists a matrix A• such that

lim
t→∞

1
t

t∑
τ=1

Aτ = A•. (4.6)

Cesàro summability will be useful in the study of social learning. For
example, it will be exploited in Chapter 5 to examine the convergence of
the beliefs under social learning with geometric averaging.

In some other cases we will appeal to a stronger notion of convergence.
This will be the case in Chapters 6 and 9, when we will examine the error
probability performance of social learning. The stronger notion we refer
to requires that the matrix powers converge. In this case we say that A
is a convergent matrix. It is readily seen that any convergent matrix is
Cesàro-summable, since convergence of the powers implies convergence of
their arithmetic means. The converse is in general not true.

The next theorem establishes the fundamental result on the convergence
of matrix powers.

Theorem 4.2 (Convergent matrices [126, p. 630]). A square matrix A (not
necessarily nonnegative) is said to be convergent when the limit as t → ∞ of
the sequence of powers At exists. This situation happens if, and only if, one of
the following conditions is verified:

i) ρ(A) < 1, in which case At converges to a null matrix, i.e., a matrix with
all entries equal to 0.

ii) ρ(A) = 1 with λ = 1 being a semisimple eigenvalue and with no other
eigenvalues on the unit circle.

Theorem 4.2 is very general; it provides necessary and sufficient con-
ditions for the convergence of any square matrix. We now focus on the
family of nonnegative irreducible matrices. For this family, we are going
to show in Theorem 4.3 that the convergence of matrix powers is tightly
coupled with the notion of primitive matrices, which are introduced next.

4.3. Strong and Primitive Graphs 77

Definition 4.9 (Primitive matrices). A nonnegative irreducible matrix A is said
to be primitive when it has only one eigenvalue on its spectral circle and is called
imprimitive otherwise. In view of Theorem 4.1, for primitive matrices the only
eigenvalue on the spectral circle is equal to ρ(A), whereas imprimitive matrices
have other eigenvalues, all different from ρ(A), but having magnitude equal to
ρ(A). Furthermore, the following property, a.k.a. Frobenius’ test for primitivity,
holds [126, p. 673]: A nonnegative irreducible matrix A is primitive if, and only
if, there exists a positive integer m such that the entries of Am are all positive. In
view of Lemma 4.1, we see that primitive matrices are automatically associated
with primitive graphs in the sense of Definition 4.5.

Comparing Frobenius’ test for primitivity with the property of irre-
ducible matrices in (4.4), we find now that the power m in Am is uniform
across the graph nodes, i.e., it does not change with the indices j and k.

For primitive matrices, the conclusions from the Perron-Frobenius
theorem can be strengthened to establish the limiting behavior of the
matrix powers, as stated in the next theorem.

Theorem 4.3 (Powers of primitive matrices [126, p. 674]). Consider a nonneg-
ative irreducible matrix A and let λ = ρ(A). Then, the matrix A is primitive
if, and only if, limt→∞(A/λ)t exists, in which case the limit will be a rank-one
matrix with positive entries according to the following formula:

lim
t→∞

(
A

λ

)t
= v uT

uTv
, (4.7)

where v and u are the Perron vectors of A and AT, respectively.
Furthermore, let λ2 denote the second largest-magnitude eigenvalue of A, and
let r be such that

|λ2|
ρ(A) < r < 1. (4.8)

Then, there exists a constant, C depending on A and r, such that∣∣∣∣∣
[(

A

λ

)t
− v uT

uTv

]
jk

∣∣∣∣∣ ≤ Crt (4.9)

for all indices j and k and all t ∈ N.

4.3 Strong and Primitive Graphs

The assumption of a connected graph ensures that information will be
flowing between any two arbitrary agents and that this flow of information
is bidirectional: Information flows from j to k and from k to j, although

78 Network Models

the paths over which the flows occur need not be the same and the manner
in which information is scaled over these paths can also be different. As
we will see, e.g., in Chapters 5 and 7, connected graphs will be critical to
guarantee full propagation of information across the network and enable
successful social learning.

In addition to being connected, a primitive graph features the existence
of common-length paths between any two distinct nodes, in both directions,
and from each node to itself. In view of Theorem 4.3, for combination
matrices associated with primitive graphs, the asymptotic behavior of the
matrix powers is known. This additional knowledge will be exploited in
our analysis to characterize the performance of social learning strategies,
e.g., in Chapters 6 and 9.

Furthermore, the assumption of a strong graph requires that the network
is connected and, additionally, there exists at least one agent in the network
that trusts its own information and will assign some positive weight to it.
This is a reasonable condition and is characteristic of many real networks.
If akk = 0 for all k, then this means that all agents will be ignoring their
individual information and will be relying instead on information received
from other agents. The next lemma shows that strong graphs are always
primitive.

Lemma 4.2 (Strong graphs are primitive). If the graph associated with a non-
negative K ×K matrix A is strong, then there exists a positive integer m such
that all entries of Am are positive and, hence, A is a primitive matrix.

Proof. Since the graph associated with A is strong, it is also a connected graph. According
to Definition 4.6, this means that A is an irreducible matrix. It follows that, for any pair
(j, k), including the case j = k, there exists an integer njk > 0 such that the (j, k) entry
of the matrix power Anjk is positive. Note that this integer is dependent on indices j
and k. We now go a step further and show that, over strong graphs, a common (i.e.,
independent of the particular agents j and k) power m exists such that all entries of
Am are positive.

Recall from Definition 4.5 that a strong graph is a connected graph with the additional
requirement that there exists at least one agent k0 with a self-loop, i.e., with ak0k0 > 0.
We know from (4.4) that [Anjk0]jk0

> 0 for any agent j in the network. Then,

[
A(njk0 +1)]

jk0
= [Anjk0A]jk0

=
K∑
m=1

[Anjk0]jm amk0

≥ [Anjk0]jk0
ak0k0 > 0, (4.10)

4.3. Strong and Primitive Graphs 79

which implies that the positivity of the (j, k0) entry is maintained at higher powers of A
once it is satisfied at power njk0 . Let

m′ ≜ max
j∈{1,2,...,K}

njk0 . (4.11)

Note that m′ ≤ K since index njk identifies the shortest path between nodes j and k,
and we know that the shortest path cannot be longer than K. From (4.10) and (4.11),
we can also write [

Am
′
]
jk0

> 0 (4.12)

for all j, which means that the entries on the k0th column of Am′ are all positive.
Interchanging the roles of k0 and j, we can define an index

m′′ ≜ max
j∈{1,2,...,K}

nk0j . (4.13)

This index is still upper bounded by K and guarantees that[
Am

′′
]
k0j

> 0 (4.14)

for all j, which means that the entries on the k0th row of Am′′ are all positive.
Now, let m = m′ + m′′ and let us examine the entries of the matrix Am. We can

write schematically

Am = Am
′
Am

′′
=

 × × + ×
× × + ×
× × + ×
× × + ×

 × × × ×

× × × ×
+ + + +
× × × ×

 , (4.15)

where the + signs are used to refer to the positive entries on the k0th column of Am′

and the k0th row of Am′′ , whereas the × signs are used to refer to the remaining entries
of Am′ and Am

′′ , which are nonnegative. It is clear from the above equality that the
resulting entries of Am will all be positive, and we conclude that A is primitive from
Definition 4.9.

■

It is useful to summarize the ties between network connectivity and
irreducible or primitive matrices:{

connected graph ⇐⇒ irreducible matrix,
strong graph =⇒ primitive matrix.

(4.16)

Observe that in the second relation we do not have a double implication,
since a primitive matrix can arise even when the graph is not strong. In
other words, a primitive matrix is always associated with a connected
graph since it is irreducible by definition, but this graph could have no
self-loops — see the second panel from the left in Figure 4.3.

80 Network Models

4.4 Stochastic Combination Matrices

We explained in Chapter 3 that, in the context of social learning, the
combination weights employed by each agent to scale the information
received from its neighbors form a convex combination, i.e., they are
nonnegative and add up to 1. This property gives rise to left stochastic
(a.k.a. column stochastic) combination matrices A. The term “stochastic
matrix,” arising in the theory of Markov chains, does not refer to any
randomness in the entries of A; it simply means that the columns of A
consist of nonnegative weights that add up to 1.

Definition 4.10 (Left and doubly stochastic matrices). A nonnegative K ×K
matrix A is said to be left stochastic when the entries on each of its columns
add up to 1, namely, when

K∑
j=1

ajk =
∑
j∈Nk

ajk = 1 ⇐⇒ 1
TA = 1

T. (4.17)

Note that Eq. (4.17) implies that at least one weight ajk, for j = 1, 2, . . . ,K,
must be nonzero. Recalling definition (4.1), this means that, for a left stochastic
matrix, the neighborhood of every node k is nonempty.
In the special case where also the entries on each row of A add up to 1 (which
does not necessarily require A to be a symmetric matrix), the matrix is said to
be doubly stochastic, and we have A1 = 1, or

A
1

K
= 1

K
. (4.18)

This implies that, if a doubly stochastic matrix is also irreducible, its Perron
vector is v = 1/K, i.e., the Perron vector has uniform entries.

From now on, we will always assume that the combination matrix is left
stochastic. The next lemma shows one property of left stochastic matrices
that will be useful in the sequel.

Lemma 4.3 (Spectral radius of left stochastic matrices). For any left stochastic
matrix A,

ρ(A) = 1. (4.19)
That is, the spectral radius of a left stochastic matrix is equal to 1.

Proof. The spectral radius is upper bounded by any matrix norm, and in particular by

4.4. Stochastic Combination Matrices 81

the maximum absolute column sum norm, yielding [93, 126]

ρ(A) ≤ max
k∈{1,2,...,K}

K∑
j=1

|ajk| = max
k∈{1,2,...,K}

K∑
j=1

ajk = 1, (4.20)

where the first equality holds because A is nonnegative and the second one because it is
left stochastic. On the other hand, Eq. (4.17) implies that 1 is an eigenvalue of AT, and
since a matrix and its transpose share the same eigenvalues, we conclude that 1 is an
eigenvalue of A. The claim then follows from (4.20).

■

Another useful property of left stochastic matrices is that they are
always Cesàro-summable.

Theorem 4.4 (All left stochastic matrices are Cesàro-summable [126, p. 697]).
Let A be a left stochastic matrix. Then, there exists a left stochastic matrix A•
such that

lim
t→∞

1
t

t∑
τ=1

Aτ = A•. (4.21)

Moreover, if A is irreducible, with Perron vector v, then

A• = v 1T. (4.22)

That is, the limiting matrix A• is a rank-one matrix that has all columns equal
to the Perron vector of A.

For a connected network, the previous theorem shows that the time-
average of the combination-matrix powers converge to a matrix whose
columns are all equal to the Perron vector v associated with A. As observed
before, raising A to power t corresponds to applying the combination matrix
t times, that is, to performing t nested combination steps. In other words,
[At]jk, the (j, k) entry of the matrix At, represents the weight that agent k
would assign to agent j after t combination steps. According to (4.22), for
all k, the time-average of weights [At]jk would converge to vj , the jth entry
of the Perron vector. As a result, weight vj quantifies the importance or
centrality that agent j assumes in the network. In fact, in graph theory, one
useful indicator for the relative importance of the network nodes is the so-
called eigenvector centrality score [16]. When a weighted graph is connected
(see Definition 4.5) and described by a combination matrix A, the centrality
score assigned to node j is represented by the jth entry of the Perron
vector associated with A. Note that, over weighted graphs, the centrality

82 Network Models

score assigned to the nodes accounts not only for the network topology,
but also for the intensity of interaction between the nodes, represented by
the values of the combination weights.

For left stochastic and primitive matrices, the conclusions from Theo-
rem 4.3 admit a simpler form that will be repeatedly used in our treatment.

Corollary 4.1 (Powers of left stochastic and primitive matrices). If a K × K
matrix A is left stochastic and primitive, with Perron vector v, then

lim
t→∞

At = v 1T. (4.23)

That is, the sequence of matrix powers converges to a rank-one matrix that has
all columns equal to the Perron vector of A. Furthermore, denoting by λ2 the
second largest-magnitude eigenvalue of A, and letting

|λ2| < r < 1, (4.24)

there exists a constant C depending on A and r, such that∣∣∣[At − v 1T]
jk

∣∣∣ ≤ Crt (4.25)

for all indices j and k and all t ∈ N.

Proof. Since ρ(A) = 1 in view of Lemma 4.3, Eq. (4.17) implies that 1/K is the Perron
vector of AT (recall that the Perron vector is scaled so that its entries add up to 1).
Therefore, since A is primitive, we can apply (4.7) with the choices u = 1/K and
λ = ρ(A) = 1 — see (4.19). Then, Eq. (4.23) follows from the relation 1Tv = 1, which
holds since v is the Perron vector of A. Equation (4.25) then follows from (4.9).

■

4.5 Weak Graphs

We focused so far on connected graphs, i.e., networks where any two agents
are reachable through some paths in both directions. We wish now to
characterize the remaining types of networks, where some pairs of agents
are connected only in one direction, or they are not even connected through
any path. According to Definition 4.5, we refer to these networks as weak
graphs.

Interestingly, the combination matrices associated with weak graphs can
be represented in a canonical form, a.k.a. Gantmacher normal form [77],
as detailed in the next theorem.1

1To avoid confusion, we remark that in [126, Eq. (8.4.6)] the combination matrix is right
(instead of left) stochastic (i.e., the rows, and not the columns, add up to 1). As a result, the
blocks referring to the sending and receiving networks introduced in Theorem 4.5 are switched.

4.5. Weak Graphs 83

Theorem 4.5 (Canonical form for reducible left stochastic matrices [126, p. 695]).
Let A be a left stochastic K × K matrix associated with a weak graph. In
the trivial case where the graph is made of isolated subnetworks that do not
communicate with each other, A has a block-diagonal structure where each block
is a left stochastic matrix corresponding to each isolated subnetwork. In this
case the graph is said to be completely reducible. Otherwise, any weak graph can
be partitioned into two groups of subnetworks, namely, S ≥ 1 sending networks
and R ≥ 1 receiving networks. Then, A can always be reduced to the following
canonical form by a suitable permutation of the agent labels:

A =

A1 0 · · · 0 A1,S+1 A1,S+2 · · · A1,S+R
0 A2 · · · 0 A2,S+1 A2,S+2 · · · A2,S+R
...

...
. . .

...
...

... · · ·
...

0 0 · · · AS AS,S+1 AS,S+2 · · · AS,S+R
0 0 · · · 0 AS+1 AS+1,S+2 · · · AS+1,S+R
0 0 · · · 0 0 AS+2 · · · AS+2,S+R
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · AS+R

, (4.26)

where the individual submatrices have the following properties:

i) All submatrices on the main diagonal are square.
ii) Top left block. The submatrix As, for s = 1, 2, . . . , S, dictates the inner

communication structure relative to agents in the sth sending network. Each
submatrix As is irreducible (thus corresponding to a connected subgraph),
and the entries on each of its columns add up to 1 since A is left stochastic.

iii) Top right block. The submatrix As,S+r, for s = 1, 2, . . . , S and r =
1, 2, . . . , R, dictates the communication from agents in the sth sending
network to agents in the rth receiving network.

iv) Bottom right block. The submatrix AS+r, for r = 1, 2, . . . , R, dictates
the inner communication structure relative to agents in the rth receiving
network. Each submatrix AS+r is either irreducible or a 1 × 1 matrix
equal to 0.2 The submatrices AS+r,S+r′ , for r, r′ = 1, 2, . . . , R, dictate the
communication from the rth to the r′th receiving network.

v) For each r = 1, 2, . . . , R, at least one of the submatrices lying above AS+r
(i.e., A1,S+r, A2,S+r, . . . , AS+r−1,S+r) has at least one nonzero entry.

Theorem 4.5 reveals the structural properties of weak graphs, which
are conveniently summarized below and represented in Figure 4.4.

• Recalling that the entry ajk of the combination matrix A is relative to
the flow of information from j to k, then the null bottom left block in

2Even when AS+r is a 1× 1 matrix equal to 0, the corresponding agent interacts with the
network through the connections described by the submatrices lying above AS+r in view of
point v).

84 Network Models

<latexit sha1_base64="hIYMbekZ+20mE5HphT2VPj+hmbQ=">AAAB/3icbVA9SwNBEN3zM8avU8HGZjEIVuEuiFoGbSwjmA9IjrC3mUuW7O0eu3tKOFP4V2wsFLH1b9j5b9wkV2jig4HHezPMzAsTzrTxvG9naXlldW29sFHc3Nre2XX39htapopCnUouVSskGjgTUDfMcGglCkgccmiGw+uJ37wHpZkUd2aUQBCTvmARo8RYqeseZp0wwhpEj4k+FmAepBrqcdcteWVvCrxI/JyUUI5a1/3q9CRNYxCGcqJ12/cSE2REGUY5jIudVENC6JD0oW2pIDHoIJveP8YnVunhSCpbwuCp+nsiI7HWozi0nTExAz3vTcT/vHZqossgYyJJDQg6WxSlHBuJJ2HgHlNADR9ZQqhi9lZMB0QRamxkRRuCP//yImlUyv55+ey2Uqpe5XEU0BE6RqfIRxeoim5QDdURRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwBRgZZP</latexit>

sending networks

<latexit sha1_base64="eNPHsZzNkCdZL22zBllbwEv19cU=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARXJWZIuqy6MZlBfuAtpRMeqcNzSRDkqmUoW78FTcuFHHrX7jzb0zbWWjrgcDhnHu5OSeIOdPG876d3Mrq2vpGfrOwtb2zu+fuH9S1TBSFGpVcqmZANHAmoGaY4dCMFZAo4NAIhjdTvzECpZkU92YcQycifcFCRomxUtc9SttBiBVQYCMm+liAeZBqqCddt+iVvBnwMvEzUkQZql33q92TNIlAGMqJ1i3fi00nJcowymFSaCcaYkKHpA8tSwWJQHfSWYIJPrVKD4dS2ScMnqm/N1ISaT2OAjsZETPQi95U/M9rJSa86qRMxIkBQeeHwoRjI/G0DtxjNrvhY0sIVcz+FdMBUYQaW1rBluAvRl4m9XLJvyid35WLleusjjw6RifoDPnoElXQLaqiGqLoET2jV/TmPDkvzrvzMR/NOdnOIfoD5/MH7xeXNw==</latexit>

receiving networks

Figure 4.4: One example of a weak graph, reflecting the canonical structure in Theorem 4.5,
with two sending networks (blue nodes) and three receiving networks (yellow nodes). As explained
before, undirected edges are depicted with no arrows.

(4.26) signifies that the communication between agents in the sending
networks and agents in the receiving networks is one-directional. That
is, a link can exist from an agent in a sending network to an agent in
a receiving network, but not in the reverse direction.

• The block-diagonal structure of the top left block in (4.26) signifies
that sending networks do not communicate with each other.

• Point v) of Theorem 4.5 implies that a receiving network r must
necessarily receive information from at least one agent external to r.
Note that this agent need not belong to a sending network. It can also
belong to a receiving network r′ different from r. However, observe
that we must have r′ < r, because the matrix blocks below AS+r are
null or absent.

• Another conclusion stemming from point v) of Theorem 4.5 is that
each receiving network is reachable through a path that originates
at some sending network. Let us explain why this is the case. Point
v) implies that there exists at least one nonzero entry in at least

4.5. Weak Graphs 85

one of the submatrices A1,S+1, A2,S+1, . . . , AS,S+1, which correspond
to connections from the sending networks to the receiving network
r = 1. This means that the receiving network r = 1 is connected to a
sending network. On the other hand, using again point v), we know
that, if the receiving network r = 2 is not connected to any sending
network, it must necessarily be connected to the receiving network
r = 1. In this case, the receiving network r = 2 can be reached from
a sending network by using a path that goes through the receiving
network r = 1. By iterating this reasoning, we conclude that each
receiving network can be reached through a path that originates at
some sending network.

• According to the Gantmacher normal form, a receiving network must
receive, but can also send. In comparison, a sending network cannot
receive and might also not send (indeed, a sending network s evolves
in isolation when the submatrices As,S+1, As,S+2, . . . , As,S+R are all
null). Therefore, a more rigorous (albeit less appealing) classification
would have been “non-receiving vs. receiving,” in place of “sending
vs. receiving.”

In summary, the agents in a weak graph can be conveniently partitioned
into two groups, S and R, where the group S consists of the S sending
networks, whereas the group R consists of the R receiving networks. To
avoid misunderstanding, we remark that S (resp., R) does not denote
the total number of agents in S (resp., R), which is instead given by the
cardinality |S| (resp., |R|).

The representation in (4.26) can be compactly written as follows:

A =
[
AS ASR
0 AR

]
, (4.27)

where the matrix ASR, i.e., the top right block, globally collects the edges
from agents in the ensemble of sending networks to agents in the ensemble
of receiving networks, while the matrix AR, i.e., the bottom right block,
describes the communication structure involving all receiving networks.
The matrix AS pertains to the sending networks and, since we know these
networks do not communicate with each other, it takes the block-diagonal
form shown in the top left block in (4.26).

The structure highlighted in the canonical form of Theorem 4.5 is not
that uncommon in real-world networks. Actually, it is quite frequent over

86 Network Models

social networks, where some influential agents (e.g., celebrities) have a
large number of followers, while the influential agents themselves may
not consult information from most of these followers. Another example
is that of media networks, which promote the emergence of opinions by
feeding information to users without paying attention to feedback from
them. A similar effect arises when social networks operate in the presence
of stubborn agents, which insist on their opinion regardless of the evidence
provided by local observations or by neighboring agents [3, 173].

4.5.1 Convergent Matrices over Weak Graphs

The next theorem arises in the theory of Markov chains, where sending
and receiving networks are referred to as ergodic and transient classes,
respectively. This terminology is related to their persistence as t→∞, in
the sense that the limiting distribution of the Markov chain is concentrated
only on the states belonging to the ergodic classes. As we will see later in
Section 5.6, the physical interpretation in our social learning context is
that sending networks are influential and determine the limiting behavior
of the entire network, whereas receiving networks are influenced. The exact
asymptotic behavior of the sequence of matrix powers is characterized in
the next theorem [126, p. 698].

Theorem 4.6 (Matrix powers over weak graphs). Let A be a left stochastic
K ×K matrix associated with a weak graph. For each s = 1, 2, . . . , S, let As be
the Ks ×Ks submatrix associated with the sth sending network according to
the canonical form (4.26). Denote by v(s) the Perron vector of As, and collect
the Perron vectors corresponding to all sending networks into the block-diagonal
matrix

V ≜

v(1)1T

K1 0 · · · 0
0 v(2)1T

K2 · · · 0
...

...
. . .

...
0 0 · · · v(S)1T

KS

 , (4.28)

where 1Ks is the Ks × 1 vector with all entries equal to 1. Let also

W ≜ V ASR (I|R| −AR)−1, (4.29)

where I|R| (recall that |R| is the number of agents in the receiving networks) is
the |R| × |R| identity matrix, and the submatrices ASR and AR are defined in
the block-triangular representation (4.27). Then, we have the following results:

i) The matrix A (which is Cesàro-summable since it is left stochastic — see

4.5. Weak Graphs 87

Theorem 4.4) satisfies the condition

lim
t→∞

1
t

t∑
τ=1

Aτ =
[
V W

0 0

]
. (4.30)

ii) The sequence of matrix powers At converges if, and only if, all the submatri-
ces {As}Ss=1 associated with the sending networks are primitive. Moreover,
if the sequence is convergent, the limiting matrix is

lim
t→∞

At =
[
V W

0 0

]
. (4.31)

Proof. First, we want to establish that for each receiving network r = 1, 2, . . . , R,
the spectral radius ρ(AS+r) of matrix AS+r is strictly smaller than 1. Observe that
ρ(AS+r) ≤ 1 since the spectral radius of A is equal to 1 from Lemma 4.3, and we
recall that the eigenvalues of a block-triangular matrix are the eigenvalues of the block
matrices on the main diagonal. We know that AS+r is either a scalar equal to 0, or an
irreducible matrix (thus, corresponding to a connected network). In the former case we
have ρ(AS+r) = 0. Thus, assume that AS+r is irreducible. Reasoning by contradiction,
we assume ρ(AS+r) = 1, which, in view of Theorem 4.1, would imply

AS+rv
(S+r) = v(S+r) (4.32)

for a Perron vector v(S+r). From (4.32) we can also write

1
T
KS+r

AS+r︸ ︷︷ ︸
uT

v(S+r) = 1
T
KS+r

v(S+r), (4.33)

where KS+r denotes the number of agents belonging to the rth receiving network. From
point v) in Theorem 4.5 we know that each receiving network receives information from
at least one agent in the rest of the network. Since the columns of A add up to 1, we
deduce that at least one column of AS+r must have a sum that is strictly smaller than
1, which in turn implies that the vector u defined in (4.33) has at least one entry strictly
smaller than 1. In this case, the equality in (4.33) would be impossible. We conclude
that ρ(AS+r) < 1 and, hence, ρ(AR) < 1.

Now we proceed to prove (4.30). Owing to the block-triangular representation in
(4.27), we can write

At =
[
AtS Wt

0 AtR

]
, (4.34)

where Wt is some unknown |S| × |R| matrix. Since A is left stochastic, it is also Cesàro
summable in view of Theorem 4.4. Therefore, using the representation in (4.34), it is
legitimate to write

lim
t→∞

1
t

t∑
τ=1

Aτ =

lim
t→∞

1
t

t∑
τ=1

AτS lim
t→∞

1
t

t∑
τ=1

Wτ

0 lim
t→∞

1
t

t∑
τ=1

AτR

 . (4.35)

88 Network Models

Since AS is a block-diagonal matrix collecting the submatrices As of the sending networks,
for s = 1, 2, . . . , S, when we compute AτS , we obtain a block-diagonal matrix whose
blocks are given by Aτs . Since the submatrices As are irreducible, from Theorem 4.4 we
obtain

lim
t→∞

1
t

t∑
τ=1

Aτs = v(s)
1

T
Ks
, (4.36)

which, using (4.28), yields

lim
t→∞

1
t

t∑
τ=1

AτS = V. (4.37)

Regarding the bottom right block in (4.35), it vanishes as t → ∞ because, in particular,
we have

lim
t→∞

AtR = 0 (4.38)

since ρ(AR) < 1. Defining

W = lim
t→∞

1
t

t∑
τ=1

Wτ , (4.39)

and substituting (4.37) and (4.38) into (4.35), we obtain

lim
t→∞

1
t

t∑
τ=1

Aτ =
[
V W

0 0

]
. (4.40)

Now we show how to determine W . We have the identity

lim
t→∞

1
t

t∑
τ=1

Aτ = lim
t→∞

1
t

t−1∑
τ=1

AτA (4.41)

Substituting (4.27) and (4.47) into (4.41), we have[
V W

0 0

]
=
[
V W

0 0

][
AS ASR
0 AR

]
. (4.42)

Considering the top right block only, and performing the pertinent matrix-block multi-
plication, we obtain the following relation:

W = V ASR +WAR, (4.43)

which implies (4.29). This means that we have established (4.30), and the proof of part
i) is complete. We switch to part ii).

We want to establish that the sequence of matrix powers At converges if, and only if,
all the submatrices {As}Ss=1 are primitive, and that if the sequence converges, its limit
is given by (4.31). First, observe that the condition ρ(AR) < 1 means that the bottom
right block AR contributes to the spectrum of A with eigenvalues lying strictly inside
the unit circle. Consider now the top left block AS , which is a block-diagonal matrix
collecting the submatrices As of the sending networks, for s = 1, 2, . . . , S. Owing to the
block-diagonal structure, if we raise A to a power t, each of the matrices As will be
raised to t. In view of Theorem 4.2, if at least one of these matrices is imprimitive, then
it is not convergent, and A will not be convergent either. Let us then focus on the case
where all the submatrices {As}Ss=1 are primitive.

4.5. Weak Graphs 89

Observe that the eigenvalues associated with the top left block AS are the eigenvalues
of the submatrices {As}Ss=1 on the main diagonal. Since these submatrices are left
stochastic and primitive, each of them has a simple eigenvalue equal to 1, and no
other eigenvalues on the unit circle. From this observation, and since AR is associated
with eigenvalues lying strictly inside the unit circle, we conclude that the eigenvalue 1
has algebraic multiplicity S. Let us now examine the eigenvectors associated with this
eigenvalue. Recalling that we denote by v(s) the Perron vector of the submatrix As, for
s = 1 we have

A×

v(1)

0
...
0

 =

A1v

(1)

0
...
0

 =

v(1)

0
...
0

 , (4.44)

for s = 2 we have

A×

0
v(2)

0
...
0

 =

0

A2v
(2)

0
...
0

 =

0
v(2)

0
...
0

 , (4.45)

and so on. Therefore, we can associate with the eigenvalue 1 the following S eigenvectors:

v(1)

0
0
...
0
...
0

,

0
v(2)

0
...
0
...
0

, . . . ,

0
0
0
...

v(S)

...
0

, (4.46)

which are mutually orthogonal and, hence, the geometric multiplicity of the eigenvalue 1
is equal to S. This means that the geometric multiplicity of the eigenvalue 1 is equal to
its algebraic multiplicity. In other words, the eigenvalue 1 is semisimple and, as observed
before, is the only eigenvalue on the unit circle. In view of Theorem 4.2, the matrix A is
convergent. This means that the sequence of matrix powers At converges. Owing to the
block-triangular representation in (4.27), we can write

At =
[
AtS Wt

0 AtR

]
t→∞−→

[
V W

0 0

]
, (4.47)

where: i) AtS converges to V in view of Corollary 4.1; ii) AtR vanishes because ρ(AR) < 1;
and iii) Wt is some unknown |S| × |R| matrix, whose limit W is known to exist since we
have established that A is a convergent matrix. On the other hand, we have the identity

lim
t→∞

At =
(

lim
t→∞

At−1
)
A. (4.48)

Substituting (4.27) and (4.47) into (4.48) we have[
V W

0 0

]
=
[
V W

0 0

][
AS ASR
0 AR

]
. (4.49)

90 Network Models

Considering the top right block only, and performing the pertinent matrix-block multi-
plication, we obtain the following relation:

W = V ASR +WAR, (4.50)

which implies (4.29).
■

The matrix power At is left stochastic for any t, which implies that the
limiting matrix [

V W

0 0

]
(4.51)

is left stochastic. Since this limiting matrix has a null bottom right block,
the entries on each column of its top right block, W = [wjk] (defined for
j ∈ S and k ∈ R), must add up to 1, i.e., for any k ∈ R we have∑

j∈S
wjk = 1. (4.52)

Furthermore, from (4.29) we can write

W = V ASR
(
I|R| +AR +A2

R + . . .
)
. (4.53)

By expanding the matrix products, the (j, k) entry of the matrix W can
be represented as follows:

wjk =
∑
h∈S

[V]jh
∑
h′∈R

[ASR]hh′
(
[I|R|]h′k + [AR]h′k + [A2

R]h′k + . . .
)
. (4.54)

Assume that j belongs to the sth sending network and denote the ensemble
of agents in this network by As. By exploiting the structure of the matrix
V defined by (4.28), from (4.54) we can write

wjk = v
(s)
j

∑
h∈As

∑
h′∈R

[ASR]hh′
(
[I|R|]h′k + [AR]h′k + [A2

R]h′k + . . .
)
, (4.55)

from which we find that wjk aggregates the sum of influences over all
paths originating at the sending network As (i.e., the agents belonging to
the sending network of agent j) and ending at agent k ∈ R. Accordingly,
wjk > 0 if, and only if, there exists a directed path from some h ∈ As
to k. Moreover, Eq. (4.52) implies that wjk must be nonzero for at least
one j ∈ S. This means that each agent k is reachable through a path
that originates at a sending network. Note that the latter property is
consistent with the comments following Theorem 4.5, in particular, with
the implications of point v).

4.6. Combination Policies 91

4.6 Combination Policies

In this section we describe some common policies used to build the combi-
nation matrix A. We first need to define the desired support graph of A,
and then design a combination policy to assign the combination weights
on top of this graph. A list of popular combination policies is reported
in Table 4.1. In the table, the symbol degk = |Nk| denotes the degree3

(technically, the in-degree) of agent k, which is equal to the size of its
neighborhood, and the symbol degmax denotes the maximum degree across
the network:

degmax ≜ max
k∈{1,2,...,K}

degk. (4.56)

Since the combination matrix must be left stochastic, the sum along each
of its columns is equal to 1. As a result, each node k has a nonempty
neighborhood, i.e., degk > 0 for k = 1, 2, . . . ,K.

4.6.1 Left Stochastic Policies

The first two rows of Table 4.1 show two popular policies to construct a left
stochastic matrix. The uniform-averaging rule is perhaps the simplest one.
Each agent k scales the observations received from neighbor j (possibly
including the case j = k) with a uniform weight. Since all the nonzero
weights used by agent k must add up to 1, the uniform weight must be
equal to 1/degk.

In the rule reported on the second row, named relative-degree rule, agent
k sets, for all agents j ∈ Nk,

ajk =
degj∑

m∈Nk

degm
, (4.57)

that is, agent k scales the information received from agent j proportionally
to the degree of agent j, where the proportionality factor (the sum in
the denominator) serves to guarantee that the weights add up to 1. One
difference between the uniform-averaging and the relative-degree rules is
that in the latter case agent k should know the degree degj of each neighbor
j ∈ Nk, whereas in the former case it must know only its own degree degk.

3According to (4.1), the neighborhood of agent k includes agent k itself when there is a self-
loop. In this case, the degree degk also counts agent k. Note that this definition of degree differs
from other definitions used in the literature, where agent k is excluded from the neighborhood
and consequently from the degree.

92 Network Models

Table 4.1: Popular policies to construct the combination matrix A = [ajk]. The second column
lists the properties of the graph and indicates whether the matrix is left stochastic (LS) or
doubly stochastic (DS).

Entries of the combination matrix A Type of graph & matrix
1. Uniform-averaging rule

ajk =

1

degk
if j ∈ Nk,

0 otherwise.
directed, LS

2. Relative-degree rule

ajk =

degj∑

m∈Nk

degm
if j ∈ Nk,

0 otherwise.

directed, LS

3. Laplacian rule

ajk =

a if j ∈ Nk\{k},

1 − a (degk − 1) if j = k,

0 otherwise.

undirected
self-loops for all k
symmetric DS

4. Metropolis

ajk =

1
max{degj , degk} if j ∈ Nk\{k},

1 −
∑

m∈Nk\{k}

amk if j = k,

0 otherwise.

undirected
self-loops for all k
symmetric DS

4.6. Combination Policies 93

4.6.2 Doubly Stochastic Policies

One common situation is when the support graph of A is undirected and
each agent uses its own information, which means that all nodes in the
graph have a self-loop. For this scenario we illustrate two popular policies,
referred to as the Laplacian and Metropolis combination rules.

The Laplacian rule, which appears in the third row of Table 4.1, relies
on the use of the so-called Laplacian matrix of the network graph, denoted
by L = [ljk] and defined as follows [22, 56, 100, 151, 153]:

ljk =

−1 if j ∈ Nk\{k},

degk − 1 if j = k,

0 otherwise.
(4.58)

The Laplacian rule constructs the combination matrix A from L by setting

A = I − aL (4.59)

for some scalar a that must guarantee that all entries ajk with j ∈ Nk
are positive. It is straightforward to check that this condition imposes the
following constraint on the scalar a:

0 < a <
1

degmax − 1 . (4.60)

We are assuming that degmax > 1, since each agent has a self-loop, which
means that the case degmax = 1 would correspond to the trivial case where
all agents are connected only to themselves.

It is readily verified that the matrix A in (4.59) is left stochastic.
Moreover, by construction, the Laplacian matrix L is symmetric, which
means that A in (4.59) is also symmetric. But since A is left stochastic, the
symmetry ensures that A is doubly stochastic. Note, however, that a doubly
stochastic matrix need not be symmetric in general. It is also important
to note that undirected graphs do not imply that the combination matrix
must be doubly stochastic. For example, it can be verified that if we apply
the uniform-averaging rule to a general undirected graph we do not obtain
a doubly stochastic matrix.

Let us briefly comment on the choice of the parameter a. We have shown
in the previous sections conditions for the powers of A to be convergent.
In particular, they converge when A is primitive. The choice of the scalar
a determines the value of the second largest-magnitude eigenvalue and
therefore the rate of convergence — see (4.8) and (4.9). It is shown in [32,

94 Network Models

172] how a can be chosen to maximize the convergence rate when knowledge
of the Laplacian matrix is available. An alternative popular choice is

a = 1
degmax

, (4.61)

which is also referred to as the maximum-degree rule.4 In the following,
when we refer to the Laplacian rule we implicitly imply that a is computed
according to (4.61).

Note that with the Laplacian rule all agents in the network use one
and the same weight. Moreover, in order to implement this rule each agent
needs to know the maximum degree from across the network. A different
combination policy is the Metropolis rule, which replaces the maximum
degree from across the network with the maximum degree between agents j
and k, and is accordingly also referred to as the local-degree rule. Specifically,
beyond its own degree, agent k must only know the degrees of its neighbors
j ∈ Nk\{k}. It is readily seen that the Metropolis rule also yields a
symmetric and doubly stochastic combination matrix.

4Actually, the maximum-degree and the local-degree rules in [172] use degmax − 1 in place of
degmax, but this choice would imply that the node(s) featuring maximum degree will not have a
self-loop.

Chapter 5

Social Learning with Geometric Averaging

The derivations in Chapter 3 motivated the following social learning strat-
egy with geometric averaging (see listing (3.16)):

ψk,t(θ) ∝ µk,t−1(θ)ℓk(xk,t|θ), (5.1a)
µk,t(θ) ∝

∏
j∈Nk

[ψj,t(θ)]ajk . (5.1b)

An alternative representation is obtained by grouping the two steps, which
yields

µk,t(θ) ∝
∏
j∈Nk

[µj,t−1(θ)ℓ(xj,t|θ)]ajk . (5.2)

In this chapter we examine the long-term properties of µk,t as t→∞ and
identify the hypothesis ϑ⋆ that is learned by the agents.

To avoid repetitions, we collect in the following assumption two common
conditions that will be used to prove all the results in the remainder of
this text.

Assumption 5.1 (Combination matrix and initial beliefs).

i) Combination matrix. The K ×K combination matrix A = [ajk] is left
stochastic:

K∑
j=1

ajk = 1, ajk ≥ 0. (5.3)

ii) Initial Beliefs. For each agent k = 1, 2, . . . ,K, the initial belief vector has
strictly positive entries:

µk,0(θ) > 0 ∀θ ∈ Θ. (5.4)

96 Social Learning with Geometric Averaging

Condition i) was motivated in Chapter 3, when we showed that under
the two optimal pooling rules that we derived (namely, the geometric and
arithmetic averaging rules), each agent must employ convex combination
weights; this fact translates into the left stochastic property of the combi-
nation matrix. Condition ii) rules out the singular case where the agents
begin the learning process by ignoring some hypotheses.

5.1 Belief Convergence

The convergence questions will be addressed by considering the follow-
ing model for the data distributions and likelihoods characterizing the
individual agents.

Assumption 5.2 (Data distributions and likelihoods). Each agent k = 1, 2, . . . ,K
at time t = 1, 2, . . . receives a data sample xk,t. The collections of K samples
across the agents, {x1,t,x2,t, . . . ,xK,t}, are assumed iid over time. The proba-
bility (density or mass) function of xk,t is denoted by fk. Note that dependence
across the agents (i.e., over space) is possible since fk is a marginal probability
function pertaining to agent k. To perform social learning, agent k employs
likelihood models {ℓk,θ}θ∈Θ of the same nature as fk (namely, for all θ ∈ Θ, ℓk,θ
is a pdf if fk is a pdf, and a pmf otherwise).1 We assume that, for k = 1, 2, . . . ,K,
and for all θ ∈ Θ,

D(fk||ℓk,θ) < ∞. (5.5)

For later use, it is important to note that, under Assumptions 5.1 and 5.2,
the beliefs ψk,t(θ) and µk,t(θ) resulting from (5.1a) and (5.1b) are almost-
surely positive for all k, t, and θ. First, observe that the likelihoods cannot
be zero, but for an ensemble of realizations occurring with probability zero
under fk, otherwise condition (5.5) would be violated. This implies that the
denominator arising from the Bayesian update (i.e., the denominator hidden
by the proportionality sign in (5.1a)) is nonzero almost surely. Moreover,
positivity of the likelihoods also implies that, starting from a belief µk,t−1(θ)
that is nonzero at any θ, the intermediate belief ψk,t(θ) in (5.1a) is nonzero.
Now, since the combination matrix is left stochastic because of point i)
of Assumption 5.1, then Nk is nonempty (see Definition 4.10). Therefore,
Eq. (5.1b) ensures that µk,t(θ) > 0. Positivity of the beliefs ψk,t(θ) and
µk,t(θ) can be extended to all times by induction, after noticing that the

1As usual, we drop the argument x in fk(x) and ℓk(x|θ) and write fk and ℓk,θ, respectively,
to denote the pertinent pdf or pmf. However, in the latter notation we need to add the subscript
θ to emphasize the dependence on the particular θ.

5.1. Belief Convergence 97

initial beliefs µk,0(θ) are positive in view of point ii) of Assumption 5.1.
From now on, we will implicitly exploit the positivity of the beliefs when
we evaluate expressions where it matters, e.g., when we compute ratios
between beliefs or the logarithm of a belief.

The next theorem establishes the convergence of µk,t as t→∞.

Theorem 5.1 (Belief convergence). Let Assumptions 5.1 and 5.2 be satisfied.
Since all left stochastic matrices are Cesàro-summable (Theorem 4.4), there
exists a limiting matrix A• = [a•jk] such that

lim
t→∞

1
t

t∑
τ=1

Aτ = A•. (5.6)

For each agent k = 1, 2, . . . ,K, consider the following network average of KL
divergences:

D̄k(θ) ≜
K∑
j=1

a•jkD(fj ||ℓj,θ). (5.7)

If D̄k(θ) admits a unique minimizer ϑ⋆k, then

µk,t(ϑ
⋆
k) a.s.−−−→

t→∞
1 (5.8)

and the beliefs about all hypotheses θ ̸= ϑ⋆k vanish at an exponential rate:

logµk,t(θ)
t

a.s.−−−→
t→∞

D̄k(ϑ⋆k) − D̄k(θ) < 0 ∀θ ̸= ϑ⋆k. (5.9)

Proof. In view of (5.2), for any θ ̸= ϑ⋆k we can write

log
µk,t(ϑ⋆k)
µk,t(θ)

=
∑
j∈Nk

ajk

[
log

µj,t−1(ϑ⋆k)
µj,t−1(θ) + log ℓj(xj,t|ϑ

⋆
k)

ℓj(xj,t|θ)

]

=
K∑
j=1

ajk

[
log

µj,t−1(ϑ⋆k)
µj,t−1(θ) + log ℓj(xj,t|ϑ

⋆
k)

ℓj(xj,t|θ)

]
, (5.10)

where the last equality follows from the definition of Nk introduced in (4.1). To prove
the claim of the theorem, we call upon Lemma D.3. First, we observe that (5.10) can be
cast in the vector form (D.57), namely, in the form

zt = AT(zt−1 + yt) (5.11)

by setting

yt =
[

log ℓ1(x1,t|ϑ⋆k)
ℓ1(x1,t|θ)

, log ℓ2(x2,t|ϑ⋆k)
ℓ2(x2,t|θ)

, . . . , log ℓK(xK,t|ϑ⋆k)
ℓK(xK,t|θ)

]
, (5.12a)

zt =
[

log
µ1,t(ϑ⋆k)
µ1,t(θ)

, log
µ2,t(ϑ⋆k)
µ2,t(θ)

, . . . , log
µK,t(ϑ⋆k)
µK,t(θ)

]
, (5.12b)

98 Social Learning with Geometric Averaging

where we recall that in our notation all vectors are column vectors. Lemma D.3 requires
that A is left stochastic and that the sequence {yt} is formed by iid vectors whose
entries have finite mean. Now, under Assumption 5.1, A is left stochastic, whereas, under
Assumption 5.2, the collections {x1,t,x2,t, . . . ,xK,t} are iid over time, implying that the
sequence {yt} is formed by iid vectors. It remains to show that all entries of yt have
finite mean. To this end, consider the jth entry of yt,

log ℓj(xj,t|ϑ
⋆
k)

ℓj(xj,t|θ)
= log fj(xj,t)

ℓj(xj,t|θ)
− log fj(xj,t)

ℓj(xj,t|ϑ⋆k) . (5.13)

In view of Assumption 5.2, both terms on the RHS of (5.13) have finite mean, which
implies that the jth entry of the vector yt has finite mean. We conclude that the sequence
{yt} satisfies the conditions required to invoke Lemma D.3. In particular, the vector ȳ
used in Lemma D.3 coincides with Eyt. We can therefore apply the claim of Lemma D.3
to conclude that

1
t
zt

a.s.−−−→
t→∞

(A•)T Eyt. (5.14)

Using the definition of zt from (5.12b) and taking the expectation of the individual
entries of yt in (5.12a), we can rewrite (5.14) in terms of the kth entry as follows:

1
t

log
µk,t(ϑ⋆k)
µk,t(θ)

a.s.−−−→
t→∞

K∑
j=1

a•jk Efj log ℓj(xj,t|ϑ
⋆
k)

ℓj(xj,t|θ)

=
K∑
j=1

a•jk

[
D(fj ||ℓj,θ) −D(fj ||ℓj,ϑ⋆

k
)
]

= D̄k(θ) − D̄k(ϑ⋆k). (5.15)

Since ϑ⋆k is the unique minimizer of D̄k(θ), then the RHS of (5.15) is positive for all
θ ̸= ϑ⋆k, yielding

log
µk,t(ϑ⋆k)
µk,t(θ)

a.s.−−−→
t→∞

∞ ∀θ ̸= ϑ⋆k, (5.16)

which further implies (recall that the beliefs are bounded)

µk,t(θ)
a.s.−−−→
t→∞

0 ∀θ ̸= ϑ⋆k. (5.17)

Since the entries µk,t(θ) add up to 1, Eq. (5.8) follows. Finally, using (5.8) in (5.15), Eq.
(5.9) is proved.

■

Theorem 5.1 provides a complete characterization of the learning behav-
ior under the social learning strategy in (5.2). Consider first the limiting
matrix A• defined by (5.6). Since the matrix power At is representative of
t iterated exchanges of information between neighboring agents over the
graph, the matrix entry a•jk represents an asymptotic weight that agent
k will use to scale the information received by agent j. These asymptotic
weights play a role in the construction of the network average of KL di-
vergences D̄k(θ) in (5.7), which is defined for each agent k and can be

5.1. Belief Convergence 99

different across the agents. When D̄k(θ) has a unique minimizer ϑ⋆k, Eq.
(5.8) reveals that the belief vector µk,t will asymptotically place unit mass
on ϑ⋆k.

Notably, D̄k(θ) is determined by the interplay between attributes of
the graph and attributes of the statistical models: The limiting matrix
A• summarizes the ultimate effect of the network topology and combina-
tion weights, whereas the KL divergences summarize the features of the
statistical models that are relevant to the learning problem. Specifically,
we see from (5.7) that the limiting matrix entry a•jk represents the weight
assigned by agent k to the KL divergence D(fj ||ℓj,θ), which quantifies the
difference between the actual model fj that governs the data of agent
j, and the postulated likelihood model ℓj,θ that agent j uses to update
its beliefs. As a result, the function D̄k(θ) represents a global (across the
agents) measure of discrepancy between the true models {fj}Kj=1 and the
local models {ℓj,θ}Kj=1. In the case where the observations are independent
across the agents, this measure admits a straightforward interpretation, as
explained in the next example.

Example 5.1 (Observations independent across the agents). When the combination
matrix is doubly stochastic and irreducible, we know from (4.18) that the Perron vector
entries are uniform, yielding

D̄k(θ) = 1
K

K∑
j=1

D(fj ||ℓj,θ) for k = 1, 2, . . . ,K. (5.18)

If the observations are independent across the agents (i.e., over space), we can introduce
the joint distribution f :

f(x1,t, x2,t, . . . , xK,t) =
K∏
k=1

fk(xk,t). (5.19)

Introducing also the joint likelihood model ℓθ defined by

ℓ(x1,t, x2,t, . . . , xK,t|θ) =
K∏
k=1

ℓk(xk,t|θ), (5.20)

and observing that the KL divergence is additive for independent observations, we find
that the average KL divergence in (5.18) is, but for the scaling factor 1/K, the KL
divergence between the joint models, i.e.,

D̄k(θ) = 1
K
D(f ||ℓθ). (5.21)

100 Social Learning with Geometric Averaging

Obviously, D̄k(θ) admits a minimizer since it is defined over a discrete
finite set, Θ. The requirement that the minimizer is unique means that we
rule out the possibility that there exist multiple hypotheses that provide
the best explanation for the data. The following example illustrates a setup
where the uniqueness of the minimizer is easily explained.

Example 5.2 (Unique minimizer of (5.7)). Consider a left stochastic irreducible combi-
nation matrix A. In this case, from Theorem 4.4 we know that the limiting matrix in
(5.6) is given by A• = v1T, where v is the Perron vector of A. As a result, from (5.7) we
see that the network average of KL divergences is the same for all agents, and given by

D̄k(θ) =
K∑
j=1

vjD(fj ||ℓj,θ) for k = 1, 2, . . . ,K. (5.22)

Assume further that for each agent k we have fk(x) = ℓk(x|ϑo), for some ϑo ∈ Θ. That
is, the true distribution fk(x) coincides with the local likelihood corresponding to a
true hypothesis ϑo, which is common to all agents. We will refer to this situation as
the objective evidence scenario in Section 5.3. In this case, the network average of KL
divergences from (5.22) becomes

D̄k(θ) =
K∑
j=1

vjD(ℓj,ϑo ||ℓj,θ) for k = 1, 2, . . . ,K, (5.23)

from which we see that D̄k(ϑo) = 0 for k = 1, 2, . . . ,K. This implies (since the KL
divergence is nonnegative) that ϑo is a minimizer of D̄k(θ). Observe also that we can
have ℓj,θ = ℓj,ϑo for some hypotheses θ ≠ ϑo, which means that agent j is not able
to distinguish θ from ϑo. If all agents were under this condition, then we would get
D̄k(θ) = 0. This possibility is ruled out by the assumption of a unique minimizer, which
therefore translates into the following global identifiability condition: D̄k(θ) ̸= 0 for all
θ ̸= ϑo, i.e., for each θ ̸= ϑo there exists at least one agent that is able to distinguish θ
from ϑo. This condition is discussed later — see Assumption 5.4.

The take-away messages from Theorem 5.1 are: i) the belief vector of
agent k converges to a probability vector placing unit mass on a single
hypothesis ϑ⋆k; and ii) this hypothesis is generally agent-dependent and is
the minimizer of the weighted combination (5.7) of KL divergences between
actual and postulated models. However, in its present form, the theorem
does not give much insight into what the agents learn, leaving open a
number of fundamental questions. For example, when is ϑ⋆k the same for
all agents? In other words, when do the agents reach agreement through
social learning? Is the value ϑ⋆k related to some true hypothesis contained
in the observed data? Are there situations where multiple truths coexist?
In the next sections we shed light on these and other important aspects
for both cases of connected and weak graphs.

5.2. Learning over Connected Graphs 101

5.2 Learning over Connected Graphs

One critical element influencing the social learning behavior is the network
topology. In this section we consider connected graphs, already introduced
in Definition 4.5. The next theorem establishes the belief convergence under
this setting, as a straightforward application of Theorem 5.1.

Theorem 5.2 (Network agreement over connected graphs). Let Assumptions 5.1
and 5.2 be satisfied. Assume that the network graph is connected, let v be the
Perron vector associated with the combination matrix A, and consider the
following network average of KL divergences:

Dnet(θ) ≜
K∑
k=1

vkD(fk||ℓk,θ). (5.24)

If Dnet(θ) admits a unique minimizer ϑ⋆, then for k = 1, 2, . . . ,K,

µk,t(ϑ
⋆) a.s.−−−→

t→∞
1. (5.25)

Proof. Since A is a left stochastic irreducible matrix, from (4.22) it follows that

A• = lim
t→∞

1
t

t∑
τ=1

Aτ = v1T, (5.26)

which means that the limiting matrix A• in (5.6) has rank one with identical columns
given by v. In this case, definition (5.7) reduces to (5.24) for all k, and then Eq. (5.25)
follows from (5.8).

■

Theorem 5.2 reveals that connected graphs enable agreement among
agents. To gain further insight into the mechanism that leads to agreement
over graphs, it is useful to compare the network average Dnet(θ) in (5.24)
against its general version D̄k(θ) in (5.7). To this end, let us rewrite these
two network averages as follows:

D̄k(θ) =
K∑
j=1

a•jkD(fj ||ℓj,θ), (5.27)

Dnet(θ) =
K∑
j=1

vjD(fj ||ℓj,θ). (5.28)

We see that in (5.27) the KL divergence of the jth agent is scaled by
a limiting weight, a•jk, which depends on the particular agent k under

102 Social Learning with Geometric Averaging

consideration. In contrast, in (5.27) the KL divergence of the jth agent is
scaled by the Perron vector entry vj , which does not depend on k. This is
because the time-average of the matrix powers converges to a matrix with
all columns equal to the Perron vector v. As a result, while the network
average D̄k(θ) determines the performance of agent k, the network average
Dnet(θ) determines the performance of all agents. This explains why the
agents behave equally and (when Dnet(θ) has a unique minimizer ϑ⋆) are
able to reach agreement, with the belief vector of every agent converging to
a probability vector that places unit mass on one and the same hypothesis
ϑ⋆.

Example 5.3 (Agreement). Consider a network of K = 12 agents, connected according
to the topology displayed in the top left panel of Figure 5.1. The network graph is
undirected, and there are no self-loops. The combination matrix A is designed following
the uniform-averaging rule (see Table 4.1), resulting in a left stochastic matrix. It can
be verified that there exists a path between any two nodes in both directions, thus the
graph is connected, i.e., the combination matrix is irreducible. We have evaluated the
Perron vector associated with A, which is equal to

v = 1
30 [5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5] . (5.29)

Moreover, it can be verified that A has two eigenvalues on the unit circle: the eigenvalue
1 that must be present since A is left stochastic, and another eigenvalue equal to −1. As
a result, A is not primitive.

Each agent k = 1, 2, . . . , 12 observes streaming observations xk,1,xk,2, . . . distributed
according to some true model fk(x). The agents are partitioned into the following
clusters (displayed with different colors in Figure 5.1):

C1 = {1, 2, 3, 4},
C2 = {5, 6, 7, 8},
C3 = {9, 10, 11, 12},

(5.30)

and the true models are assumed to be common to all agents belonging to the same
cluster. That is, denoting by gc(x) the true model pertaining to cluster Cc, with c = 1, 2, 3,
we have fk(x) = gc(x) for all k ∈ Cc. The true model gc(x) is a unit-variance Gaussian
pdf with mean νc, where

ν1 = 0.8, ν2 = 1.6, ν3 = 2.4. (5.31)

We assume that all agents have common likelihoods, that is, ℓk(x|θ) = ℓ(x|θ) for all k.
Each likelihood ℓ(x|θ), when regarded as a function of x, is a unit-variance Gaussian
pdf with mean νθ = θ, for θ ∈ Θ = {1, 2, 3}. The top right panel of Figure 5.1 shows the
likelihoods (solid line) and the true models (dashed line).

The asymptotic beliefs resulting from the social learning process are characterized in
Theorem 5.2, where we see that the agents will agree on the hypothesis ϑ⋆ that minimizes

5.2. Learning over Connected Graphs 103

1

2

3

4

5
6

7

8

9

10
11

12

C1 C2 C3

−2 −1 0 1 2 3 4 5

x

0.0

0.2

0.4

0.6

`(
x
|θ)

g1(x)
g2(x)

g3(x)

0 100 200 300 400

t

0.0

0.5

1.0

µ
1,
t(
θ)

θ = 1 θ = 2 θ = 3

0 100 200 300 400

t

0.0

0.5

1.0
µ

5,
t(
θ)

0 100 200 300 400

t

0.0

0.5

1.0

µ
9,
t(
θ)

Figure 5.1: (Top left) Network topology showing the different clusters Cc corresponding to
Example 5.3. The graph is undirected and there are no self-loops. (Top right) Likelihood models
ℓ(x|θ) (solid line) and true models gc(x) (dashed line). (Bottom) Belief evolution over 400
iterations for agents 1, 5, and 9. We see that, as t grows, the agents place their full belief mass
on the unique minimizer ϑ⋆ = 2.

the network average of KL divergences Dnet(θ) defined in (5.24). In this example, Dnet(θ)
is given by

Dnet(θ) =
12∑
k=1

vkD(fk||ℓθ) =
3∑
c=1

D(gc||ℓθ) ×
∑
k∈Cc

vk, (5.32)

where the entries of the Perron vector are obtained from (5.29). We can compute the KL
divergence between Gaussian distributions with the same variance using (2.45), which
yields, for θ ∈ Θ,

D(g1||ℓθ) = 1
2(0.8 − θ)2,

D(g2||ℓθ) = 1
2(1.6 − θ)2,

D(g3||ℓθ) = 1
2(2.4 − θ)2,

(5.33)

from which we see that (5.5) holds. Using (5.32), the network average of KL divergences
can thus be written as

Dnet(θ) = 1
2(0.8 − θ)2

∑
k∈C1

vk + 1
2(1.6 − θ)2

∑
k∈C2

vk + 1
2(2.4 − θ)2

∑
k∈C3

vk

= 11
60(0.8 − θ)2 + 2

15(1.6 − θ)2 + 11
60(2.4 − θ)2, (5.34)

with hypothesis-specific values

Dnet(1) = 0.414, Dnet(2) = 0.314, Dnet(3) = 1.214. (5.35)

104 Social Learning with Geometric Averaging

The minimizer of Dnet(θ) is therefore ϑ⋆ = 2. The bottom panels of Figure 5.1 show
the evolution of the beliefs of agents 1, 5, and 9 over 400 iterations. We observe that,
although the agents belong to different clusters with different true models, they all agree
asymptotically on the same hypothesis ϑ⋆ = 2.

We see from (5.24) and (5.25) that, over connected graphs, all agents
end up solving the minimization problem

ϑ⋆ = arg min
θ∈Θ

K∑
k=1

vkD(fk||ℓk,θ). (5.36)

In other words, all agents will agree on the hypothesis θ that minimizes a
global (across the agents) measure of discrepancy between the true and
likelihood models. If we compare this conclusion with the single-agent
case studied in Lemma 2.3 and Example 2.4, we find that over there, the
minimizer ϑ⋆ had a useful interpretation as corresponding to the likelihood
model that gives the best match with the true model f . The conclusion is
not as straightforward in the multi-agent case since different agents can
now have different true models fk, and the question of what ϑ⋆ means and
how it relates to the true and likelihood models becomes more elaborate.

5.3 Objective Evidence

In this section we assume that the true generative model fk agrees with
one of the likelihood models at some true hypothesis (denoted by ϑo), i.e.,
fk = ℓk,ϑo . In other words, the likelihood set for each agent includes the
true generative model.

Assumption 5.3 (Objective evidence). Each agent k = 1, 2, . . . ,K at time
t = 1, 2, . . . receives a data sample xk,t. The collections of K samples across
the agents, {x1,t,x2,t, . . . ,xK,t}, are assumed iid over time. To perform social
learning, agent k employs likelihood models {ℓk,θ}θ∈Θ, and each data sample
xk,t is distributed according to ℓk,ϑo , namely, the true underlying hypothesis
is ϑo ∈ Θ. Moreover, we assume that, for k = 1, 2, . . . ,K and for all θ and θ′

belonging to Θ,
D(ℓk,θ||ℓk,θ′) < ∞. (5.37)

Under this assumption, and as we are going to see, it is expected that a
good social learning strategy should ultimately discover the true hypothesis
by placing increasing mass on ϑo as more data are collected.

5.3. Objective Evidence 105

In order to distinguish the true hypothesis ϑo from another hypothesis
θ, it is necessary that the data collected by the agents have different
statistical properties under the two hypotheses. This is not always the case.
For example, consider an agent observing a sinusoidal signal through a
sensor that is able to detect only the amplitude of the signal, but not its
phase. Now, if ϑo and θ correspond to two signals with the same amplitude
but different phases, the data observed by the agent will have the same
statistical properties under ϑo and θ, implying that ϑo is indistinguishable
from θ. Formally, agent k will be unable to distinguish ϑo from θ when the
likelihoods are the same under the two hypotheses, i.e., when

D(ℓk,ϑo ||ℓk,θ) = 0. (5.38)

When condition (5.38) is satisfied for at least one θ ≠ ϑo, we say that the
learning problem is locally unidentifiable for agent k. The qualification
“locally” highlights the fact that agent k would be unable, if learning in
isolation, to identify correctly ϑo. Note that local unidentifiability is typical
in social learning, as individual agents have often a partial view regarding
the phenomenon of interest, and their local data tend to be insufficient to
identify correctly the true underlying hypothesis. This is one reason why
the agents are motivated to cooperate.

However, local unidentifiability does not preclude the network from
identifying the true model ϑo. This is because, through repeated social
learning steps, the sharing of information will help all agents overcome
their individual limitations and allow them to attain their learning goal.
For this to happen, local identifiability is not necessary and the following
global condition is in fact sufficient.

Assumption 5.4 (Global identifiability). For each hypothesis θ ̸= ϑo, we assume
that there exists at least one agent k (which can be different for different θ) such
that

D(ℓk,ϑo ||ℓk,θ) > 0. (5.39)

In other words, global identifiability requires that, for each hypothesis
θ ≠ ϑo, there exists at least one agent that is able to distinguish it from
ϑo. Note that this is a significantly weaker condition than requiring local
identifiability for all agents. At one extreme, we may have a problem that
is locally unidentifiable for all agents, but globally identifiable. Referring
back to the sinusoidal signal example, consider now two agents using

106 Social Learning with Geometric Averaging

different types of sensors. Agent 1 is able to detect the amplitude of the
signal but not the phase, whereas agent 2 is able to detect the phase but
not the amplitude. If both amplitude and phase are relevant to reveal a
hypothesis of interest, then none of the agents is in a position to identify
the hypothesis. However, working together, they would be able to learn
properly by combining their local information. The next result, which is a
corollary of Theorem 5.2, ascertains that global identifiability is sufficient
to guarantee truth learning under objective evidence.

Corollary 5.1 (Truth learning over connected graphs). Let Assumptions 5.1, 5.3,
and 5.4 be satisfied. If the network graph is connected, then for k = 1, 2, . . . ,K,

µk,t(ϑ
o) a.s.−−−→

t→∞
1. (5.40)

Proof. The claim in (5.40) will be proved if we show that the true hypothesis ϑo coincides
with the minimizer ϑ⋆ defined in the statement of Theorem 5.2. To see that this is
the case, note that under Assumption 5.3 we have fk = ℓk,ϑo , which implies that the
network average of KL divergences (5.24) becomes

Dnet(θ) =
K∑
k=1

vkD(ℓk,ϑo ||ℓk,θ). (5.41)

Clearly, Dnet(ϑo) is equal to 0. From Assumption 5.4, for each θ ≠ ϑo, there exists at
least one agent k for which D(ℓk,ϑo ||ℓk,θ) > 0. From this assumption and the fact that
vk > 0 for k = 1, 2, . . . ,K, we have that

Dnet(θ) > 0, θ ̸= ϑo. (5.42)

Hence, ϑo minimizes Dnet(θ) and it therefore coincides with ϑ⋆ from Theorem 5.2.
■

In summary, we see that Assumption 5.4 provides one important mo-
tivation for agents to cooperate in social learning. When the learning
problem is locally unidentifiable, meaning that an individual agent can
have one or more hypotheses θ ̸= ϑo that are indistinguishable from the
true hypothesis (zero KL divergence), then this agent will not be able to
learn well individually. In contrast, under the global identifiability condition
(5.39), Corollary 5.1 reveals that each agent in the network will now be
able to identify the true hypothesis by cooperating with its neighbors.

5.3. Objective Evidence 107

1

2

3

4

5
6

7

8

9

10
11

12

−2 −1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

`(
x
|θ)

0 10 20 30 40

t

0.0

0.5

1.0

µ
1
,t
(θ

)

θ = 1 θ = 2 θ = 3

0 10 20 30 40

t

0.0

0.5

1.0
µ

5
,t
(θ

)

0 10 20 30 40

t

0.0

0.5

1.0

µ
9
,t
(θ

)
Figure 5.2: (Top left) Network topology used in Example 5.4. The graph is undirected and all
agents are assumed to have a self-loop, not shown in the figure. (Top right) Likelihood models.
(Bottom) Belief evolution over 40 iterations for agents 1, 5, and 9. We see that, as t grows, the
agents place their full belief mass on the true hypothesis ϑo = 1.

Example 5.4 (Truth learning). We consider the network topology shown in Figure 5.2.
The graph is undirected and can be verified to be connected. Moreover, all agents have a
self-loop, not shown in the figure. On top of this graph we build a combination matrix by
using the Metropolis combination policy (see Table 4.1), which yields a doubly stochastic
matrix. It follows from (4.18) that the Perron vector is uniform, which in this case yields
v = (1/12)1.

The network operates under the objective evidence model (Assumption 5.3). In other
words, the streams of data xk,1,xk,2, . . . are drawn according to a true distribution
ℓk(x|ϑo) for each agent k. Specifically, the true underlying hypothesis is ϑo = 1. The
observations are statistically independent across the agents.

We assume that the agents have common likelihood models, i.e., ℓk(x|θ) = ℓ(x|θ)
for all k, and that ℓ(x|θ) is a unit-variance Gaussian pdf with mean νθ = θ, for
θ ∈ Θ = {1, 2, 3} — see the top right panel of Figure 5.2. We can verify that both (5.37)
and Assumption 5.4 hold. The network average of KL divergences is given by

Dnet(θ) = 1
12

12∑
k=1

D(ℓk,ϑo ||ℓk,θ) = D(ℓϑo ||ℓθ) = 1
2(ϑo − θ)2, (5.43)

where the last equality follows from (2.45). In the bottom panels of Figure 5.2, we plot
the belief evolution for agents 1, 5, and 9 over 40 iterations. We see that all agents agree
asymptotically on the true hypothesis ϑo, as predicted by Corollary 5.1.

108 Social Learning with Geometric Averaging

5.4 Subjective Evidence

There are many situations where it not possible to define a “true” hy-
pothesis. For example, assume that two agents are forming their opinions
about a particular candidate θ ∈ {candidate 1, candidate 2} in an election
competition. Agent 1 belongs to a certain group that is biased toward
candidate 1, and, hence, the evidence collected by agent 1 pushes the
choice in favor of this candidate. The situation is reversed for agent 2. In
this case we can talk of subjective evidence, and the fundamental question
arises as to where the social learning strategy will converge. To start with,
let us formalize the concept of subjective evidence in our framework.

Assumption 5.5 (Subjective evidence). Each agent k = 1, 2, . . . ,K at time
t = 1, 2, . . . receives a data sample xk,t. The collections of K samples across
the agents, {x1,t,x2,t, . . . ,xK,t}, are assumed iid over time. To perform social
learning, agent k employs likelihood models {ℓk,θ}θ∈Θ, and each data sample
xk,t is distributed according to ℓk,ϑo , namely, the “locally true” underlying
hypothesis at agent k is ϑok ∈ Θ. Moreover, we assume that, for k = 1, 2, . . . ,K
and for all θ and θ′ belonging to Θ,

D(ℓk,θ||ℓk,θ′) < ∞. (5.44)

According to Theorem 5.2, the key measure for determining on which
opinion the agents will agree is the network average of KL divergences in
(5.24) or, more specifically, its minimizer ϑ⋆. Under the subjective evidence
model defined by Assumption 5.5, this network average of KL divergences
reduces to

Dnet(θ) =
K∑
k=1

vkD(ℓk,ϑo
k
||ℓk,θ). (5.45)

We will now examine how the local models and the network topology lead
to the prevalence of some particular hypotheses.

Example 5.5 (How majority builds a common opinion). We consider the same network,
combination matrix and likelihood models used in the previous example, but we now
assume that the network operates under the subjective evidence model (Assumption 5.5).
More specifically, the network is divided into two clusters,

C1 = {1, 2},
C2 = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

(5.46)

5.4. Subjective Evidence 109

1

2

3

4

5
6

7

8

9

10
11

12

C1 C2

−2 −1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

`(
x
|θ)

C1 C2

0 20 40 60

t

0.0

0.5

1.0

µ
1
,t
(θ

)

θ = 1 θ = 2 θ = 3

0 20 40 60

t

0.0

0.5

1.0
µ

2
,t
(θ

)

0 20 40 60

t

0.0

0.5

1.0

µ
5
,t
(θ

)
Figure 5.3: (Top left) Network topology showing the different clusters Cc corresponding to
Example 5.5. The graph is undirected and all agents are assumed to have a self-loop, not shown
in the figure. (Top right) Likelihood models. (Bottom) Belief evolution over 60 iterations for
agents 1, 2, and 5. We see that, as t grows, the agents place their full belief mass on the unique
minimizer ϑ⋆ = 3.

for which the true models are given by fk(x) = ℓ(x|1) for k ∈ C1, and fk(x) = ℓ(x|3)
for k ∈ C2 — see the top right panel of Figure 5.3. It is readily verified that (5.44)
holds. Moreover, in the simulations the observations have been generated as statistically
independent across the agents.

Upon communicating during social learning, the agents will likely receive contrasting
opinions, because the different clusters “promote” different hypotheses. However, since
almost all agents belong to cluster C2, we expect that this conflict is resolved in favor of
hypothesis 3. We now prove that this is actually the case in this example. To this end,
let us write explicitly the network average of KL divergences

Dnet(θ) = 2
12D(ℓ1||ℓθ) + 10

12D(ℓ3||ℓθ) = 2
24(1 − θ)2 + 10

24(3 − θ)2, (5.47)

from which we can compute the hypothesis-specific values

Dnet(1) = 5
3 , Dnet(2) = 1

2 , Dnet(3) = 1
3 . (5.48)

Therefore, the minimizer of the network average of KL divergences is ϑ⋆ = 3. In the
bottom panels of Figure 5.3, we plot the belief evolution for agents 1, 2, and 5 over 60
iterations, which shows that the majority cluster C2 is able to steer the network’s opinion
toward hypothesis 3. Note that agents 1 and 2 belong to cluster C1, which promotes
instead hypothesis 1.

Example 5.6 (How centrality builds a common opinion). In this example, we equalize
the two clusters in Example 5.5 and set them according to

C1 = {1, 2, 3, 4, 5, 6},
C2 = {7, 8, 9, 10, 11, 12}.

(5.49)

110 Social Learning with Geometric Averaging

1

2

3

4

5
6

7

8

9

10
11

12

C1 C2

−2 −1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

`(
x
|θ)

C1 C2

0 50 100 150 200

t

0.0

0.5

1.0

µ
1,
t(
θ)

θ = 1 θ = 2 θ = 3

0 50 100 150 200

t

0.0

0.5

1.0
µ

7,
t(
θ)

0 50 100 150 200

t

0.0

0.5

1.0

µ
12
,t
(θ

)
Figure 5.4: (Top left) Network topology showing the different clusters Cc corresponding to
Example 5.6. The graph is undirected and all agents are assumed to have a self-loop, not shown
in the figure. (Top right) Likelihood models. (Bottom) Belief evolution over 200 iterations for
agents 1, 7, and 12. We see that, as t grows, the agents place their full belief mass on the unique
minimizer ϑ⋆ = 1.

The true and likelihood models are the same as in Example 5.5, and they can be seen in
the top right panel of Figure 5.4. Again, the true model of cluster C1 is ℓ(x|1), and the
true model of cluster C2 is ℓ(x|3), indicating that conflicting evidence is observed by the
agents.

Since the clusters have equal size, we cannot expect a majority rule to drive the agents’
opinions. We now show how a different network attribute, namely, centrality, becomes
important. From Theorem 5.2 we know that the network average Dnet(θ) determines
the target hypothesis ϑ⋆ the agents will agree on. Under the subjective evidence model,
Dnet(θ) takes the specific form in (5.45). In the weighted combination of KL divergences
appearing in (5.45), the impact of a particular agent k is enhanced by increasing the
value of its own Perron vector entry vk. Accordingly, vk represents a measure of the
centrality of agent k. This interpretation is actually not limited to social learning — see
the explanation following Theorem 4.4.

Since different Perron vector entries reflect the different degree of influence of the
agents, to highlight the role of agent centrality we would like to assign a nonuniform
Perron vector. To this end, we now construct a left stochastic combination matrix (on
top of the same network topology shown in top left panel of Figure 5.4) by using the
procedure described in [170], which allows us to choose a predefined Perron vector. In
this example, we choose in particular the following Perron vector:

v = 1
60 [8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2]. (5.50)

5.4. Subjective Evidence 111

The combination matrix is built with the following rule:

ajk =

vj if j ∈ Nk\{k},

1 −
∑

j∈Nk\{k}

vj if j = k,

0 otherwise.

(5.51)

We can verify that the resulting combination matrix A is left stochastic with the Perron
vector specified in (5.50). Under this design, although the number of agents in each
cluster is the same, their importance in the network is very distinct. From (5.50) we
see that significantly larger centrality scores are given to agents belonging to cluster C1
in comparison with agents in cluster C2. This will impact the asymptotic beliefs in the
network, as we see next.

First, we write down the expression for the network average of KL divergences,

Dnet(θ) = 8
10D(ℓ1||ℓθ) + 2

10D(ℓ3||ℓθ) = 8
20(1 − θ)2 + 2

20(3 − θ)2, (5.52)

from which we can compute the hypothesis-specific values

Dnet(1) = 0.4, Dnet(2) = 0.5, Dnet(3) = 1.6. (5.53)

The minimizer of the network average of KL divergences is now ϑ⋆ = 1. In the bottom
panels of Figure 5.4, we plot the beliefs of agents 1, 7, and 12 over 200 iterations. All
these agents tend to place their full belief mass on hypothesis 1. In other words, the
cluster with the largest centrality scores, C1, is able to determine the network’s opinion.
Note that agents 7 and 12 belong to cluster C2, which promotes a hypothesis different
from ϑ⋆.

Example 5.7 (Truth is somewhere in between). In the last two examples we considered
two distinct elements that determine the final agents’ opinions, namely, cluster size and
agent centrality. We now remove both these elements and examine how the opinion
formation mechanism changes. We consider the same network topology used in the last
two examples, with balanced clusters (see the top left panel of Figure 5.5), and with
a Metropolis combination matrix (see Table 4.1), so that all agents share the same
centrality score since the Perron vector has equal entries. The true and likelihood models
are kept unchanged with respect to the last two examples. As was the case before, the
observations are statistically independent across the agents.

We can evaluate the network average of KL divergences as

Dnet(θ) = 6
12D(ℓ1||ℓθ) + 6

12D(ℓ3||ℓθ) = 6
24(1 − θ)2 + 6

24(3 − θ)2, (5.54)

from which we can compute the hypothesis-specific values

Dnet(1) = 1, Dnet(2) = 0.5, Dnet(3) = 1. (5.55)

Therefore, the minimizer of the network average of KL divergences is ϑ⋆ = 2. In the
bottom panels of Figure 5.5, we plot the evolution of beliefs of agents 1, 5, and 9 over
40 iterations. The curves show that, although the clusters C1 and C2 observe evidence
supporting, respectively, hypotheses 1 and 3, neither cluster is able to exert a domineering

112 Social Learning with Geometric Averaging

1

2

3

4

5
6

7

8

9

10
11

12

C1 C2

−2 −1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

`(
x
|θ)

C1 C2

0 10 20 30 40

t

0.0

0.5

1.0

µ
1
,t
(θ

)

θ = 1 θ = 2 θ = 3

0 10 20 30 40

t

0.0

0.5

1.0
µ

5
,t
(θ

)

0 10 20 30 40

t

0.0

0.5

1.0

µ
9
,t
(θ

)
Figure 5.5: (Top left) Network topology showing the different clusters Cc corresponding to
Example 5.7. The graph is undirected and all agents are assumed to have a self-loop, not shown
in the figure. (Top right) Likelihood models. (Bottom) Belief evolution over 40 iterations for
agents 1, 5, and 9. We see that, as t grows, the agents place their full belief mass on the unique
minimizer ϑ⋆ = 2.

influence. Instead, the conflicting evidence drives the agents to place their full belief
mass on the intermediate hypothesis ϑ⋆ = 2.

How can we explain this effect? One interpretation is that, in the presence of con-
flicting evidence, the agents opt for a conservative choice. Referring to real-life situations,
we can think of one person betting on a soccer match between teams 1 and 2. Assume
that discordant solicitations come from the environment, i.e., the person receives data
suggesting to bet on the victory of team 1, as well as data suggesting to bet on the
victory of team 2. If there is no sufficient evidence to let one suggestion prevail, then
the most plausible choice would be to bet on a draw!

5.5 Fake Evidence

There is another specialization of the general model in Assumption 5.2
that is useful in social learning applications. It is the case where some
agents observe data generated according to the true hypothesis ϑo, while
the other agents observe data following “fake” distributions.

Assumption 5.6 (Fake evidence). Each agent k = 1, 2, . . . ,K at time t = 1, 2, . . .
receives a data sample xk,t. The collections of K samples across the agents,

5.5. Fake Evidence 113

{x1,t,x2,t, . . . ,xK,t}, are assumed iid over time. The probability (density or
mass) function of xk,t is denoted by fk. To perform social learning, agent k
employs likelihood models {ℓk,θ}θ∈Θ of the same nature as fk (namely, for all
θ ∈ Θ, ℓk,θ is a pdf if fk is a pdf, and a pmf otherwise).
There exists a true hypothesis ϑo ∈ Θ and the agents are divided into two
categories, truthful and untruthful. The data samples of the truthful agents
are distributed according to the likelihoods corresponding to a common true
hypothesis ϑo, i.e., fk = ℓk,ϑo when agent k is truthful. When agent k is
untruthful, its data samples are instead drawn from some arbitrary fk. We
assume that, for k = 1, 2, . . . ,K and for all θ ∈ Θ,

D(fk||ℓk,θ) < ∞. (5.56)

The fundamental question arising from the model in Assumption 5.6 is
whether the untruthful agents can bias the choices of the truthful agents
and preclude them from learning the true hypothesis ϑo.

Example 5.8 (One fake agent). Consider the network topology displayed in the top
left panel of Figure 5.6. The graph is undirected and all agents are assumed to have a
self-loop, not shown in the figure. This graph can be verified to be strong. On top of it,
we construct a Metropolis combination matrix — see Table 4.1. We focus on the fake
evidence case (Assumption 5.6), where the network is “contaminated” by the presence
of one untruthful agent, namely agent 12. The likelihoods follow the Gaussian models
used in the last examples.

The true model is the same across all truthful agents and corresponds to a true
likelihood ℓ(x|ϑo), i.e., fk(x) = ℓ(x|ϑo) for k = 1, 2, . . . , 11. In contrast, the observations
of the untruthful agent are drawn from a true model f12(x), which is set as a unit-
variance Gaussian pdf with mean ν12 = 20. In this scenario, we can verify that (5.56)
holds. Moreover, in the simulations the observations have been generated as statistically
independent across the agents. The true model of the untruthful agent and the likelihoods
are displayed in the top right panel of Figure 5.6. We consider the true underlying
hypothesis to be ϑo = 1.

The network average of KL divergences is given by

Dnet(θ) = 11
12D(ℓϑo ||ℓθ) + 1

12D(f12||ℓθ) = 11
24(1 − θ)2 + 1

24(20 − θ)2, (5.57)

from which we can compute the hypothesis-specific values

Dnet(1) = 15.04, Dnet(2) = 13.96, Dnet(3) = 13.88. (5.58)

The network average of KL divergences is thus minimized at ϑ⋆ = 3. In the bottom
panels of Figure 5.6, we plot the evolution of beliefs of agents 1, 5, and 12 over 80 itera-
tions. We see that the presence of the untruthful agent is sufficient to lead the network
astray, by forcing all agents to place their full belief mass on the wrong hypothesis ϑ⋆ = 3.

114 Social Learning with Geometric Averaging

1

2

3

4

5
6

7

8

9

10
11

12

truthful

untruthful

0 5 10 15 20

x

0.0

0.2

0.4

`(
x
|θ)

f12(x)

0 20 40 60 80

t

0.0

0.5

1.0

µ
1
,t
(θ

)

θ = 1 θ = 2 θ = 3

0 20 40 60 80

t

0.0

0.5

1.0
µ

5
,t
(θ

)

0 20 40 60 80

t

0.0

0.5

1.0

µ
1
2
,t
(θ

)
Figure 5.6: (Top left) Network topology showing truthful and untruthful agents corresponding
to Example 5.8. The graph is undirected and all agents are assumed to have a self-loop, not
shown in the figure. (Top right) Likelihood models ℓ(x|θ) (solid line) and true model f12(x) of
the untruthful agent (dashed line). The true model of the truthful agents is ℓ(x|1) (blue line).
(Bottom) Belief evolution over 80 iterations for agents 1, 5, and 12. We see that, as t grows, the
agents place their full belief mass on the unique minimizer ϑ⋆ = 3.

5.6 Learning over Weak Graphs

The discussion in the earlier sections focused on examining belief propa-
gation over connected graphs. We now examine what happens over weak
graphs, which were introduced in Section 4.5. We recall that, over a weak
graph, the agents are partitioned into two groups, S and R, containing
sending and receiving networks, respectively.

Theorem 5.3 (Mind control over weak graphs). Let Assumptions 5.1 and 5.2
be satisfied. Assume that the network graph is weak. According to Theorem 4.5,
we have

A• = lim
t→∞

1
t

t∑
τ=1

Aτ =
[
V W

0 0

]
, (5.59)

where the matrices V and W are defined by (4.28) and (4.29), respectively.
For each s = 1, 2, . . . , S, if agent k belongs to the sth sending network, its
asymptotic beliefs can be derived directly from Theorem 5.2. This is because the
neighborhood Nk contains only agents from the sth sending network. In contrast,
the agents in the receiving networks exhibit the following distinct behavior.
Using (5.59), for each agent k ∈ R we can rewrite the network average of KL

5.6. Learning over Weak Graphs 115

divergences in (5.7) as

D̄k(θ) =
∑
j∈S

wjkD(fj ||ℓj,θ). (5.60)

If D̄k(θ) admits a unique minimizer ϑ⋆k, then for all k ∈ R,

µk,t(ϑ
⋆
k) a.s.−−−→

t→∞
1. (5.61)

Proof. The result follows from Theorem 5.1 once we apply Theorem 4.6 and consequently
replace the general matrix A• in (5.6) with the particular matrix in (5.59).

■

Equation (5.60) contains the essential elements to understand the learn-
ing mechanism over weak graphs. First, the behavior of agents belonging
to R is determined solely by KL divergences relative to agents belonging
to S. This is a remarkable conclusion that leads to a phenomenon we refer
to as mind control [118, 147, 148], since the learning behavior of the agents
in the receiving networks is completely controlled by the agents in the
sending networks.

Second, the dependence of the weights wjk in (5.60) on the agent
index k reveals that the learning behavior can also be distinct across the
agents in the receiving networks, leading to a phenomenon we refer to
as discord [118, 147, 148]. This behavior is in sharp contrast with what
happens over connected graphs, where we have seen in (5.25) that all
agents reach agreement on a common hypothesis ϑ⋆.

Example 5.9 (Truth learning under objective evidence). Consider 12 agents partitioned
into the following clusters:

C1 = {1, 2, 3, 4},
C2 = {5, 6, 7, 8},
C3 = {9, 10, 11, 12}.

(5.62)

The agents are connected according to the weak graph shown in the top left panel of
Figure 5.7, which is made of two sending networks and one receiving network. The
clusters C1 and C2 correspond to the two sending networks, whereas cluster C3 correspond
to the receiving network. That is, we have S = C1 ∪ C2 and R = C3. All agents are
assumed to have a self-loop (not shown in the figure) and, according to the weak-graph
model, the edges from the two sending networks to the receiving network are directed.
All other edges are chosen as undirected. Moreover, the combination matrix constructed
with the uniform-averaging rule — see Table 4.1.

116 Social Learning with Geometric Averaging

1

2
3

4 5

6

7

8

9

10

11
12

C1 C2

C3

°2 °1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

`(
x
|µ)

0 20 40

t

0.0

0.5

1.0

µ
9
,t
(µ

)

µ = 1 µ = 2 µ = 3

0 20 40

t

0.0

0.5

1.0

µ
10

,t
(µ

)

0 20 40

t

0.0

0.5

1.0

µ
11

,t
(µ

)
0 20 40

t

0.0

0.5

1.0

µ
12

,t
(µ

)

Figure 5.7: (Top left) Network topology showing the sending networks, i.e., clusters C1 and C2,
and the receiving network, i.e., cluster C3, used in Example 5.9. Undirected edges are represented
without arrows, and all agents have a self-loop, not shown in the figure. (Top right) Likelihood
models. (Bottom) Belief evolution for the agents in the receiving network over 40 iterations.
We see that, as t grows, the agents place their full belief mass on the common true hypothesis
ϑo = 1.

We assume that all agents operate under the objective evidence model with true
hypothesis ϑo = 1 and that they use the same Gaussian likelihoods adopted in the
last examples (see the top right panel of Figure 5.7). Moreover, in the simulations the
observations are drawn as statistically independent across the agents. From (5.60), the
network average of KL divergences for agent k ∈ R is given by

D̄k(θ) = 1
2
∑
j∈S

wjk(ϑo − θ)2 = 1
2(1 − θ)2, (5.63)

where we used the fact that
∑

j∈S wjk = 1. Thus, D̄k(θ) is clearly minimized at
ϑ⋆k = ϑo = 1 for any agent k ∈ R. The bottom panels of Figure 5.7 show the evolution
of beliefs over time for all agents in the receiving network. We see that, in this case, the
agents in the receiving network asymptotically place their full belief mass on the true
hypothesis ϑo in accordance with Theorem 5.3.

Example 5.9 shows a situation where all agents in a weak graph are
able to learn the truth. As a matter of fact, it is possible to give a
complete characterization of truth learning for the case of objective evidence.
First, we must distinguish between the behavior of sending and receiving
networks.

Consider first the sending networks, and observe that the agents in each
sending network receive information only from agents in the same sending

5.6. Learning over Weak Graphs 117

network. This implies that, when we run the social learning algorithm
in listing (3.16), the beliefs of the agents in the sth sending network
are actually produced by the same social learning algorithm run with a
combination matrix equal to the submatrix As. Since As is irreducible,
from Theorem 5.2 we conclude that the agents in each sending network will
learn the truth if the problem is globally identifiable within that network,
i.e., if the individual sending network satisfies Assumption 5.4.

On the other hand, for agents in the receiving networks, we can rewrite
(5.60) under objective evidence, yielding

D̄k(θ) =
∑
j∈S

wjkD(ℓj,ϑo ||ℓj,θ). (5.64)

We see that D̄k(ϑo) = 0 and, hence, ϑo is a minimizer for D̄k(θ) because the
KL divergence is nonnegative. This minimizer is unique when D̄k(θ) > 0
for all θ ≠ ϑo. In view of (5.64), this condition is met when, for each
θ ̸= ϑo, there exists at least one agent j ∈ S satisfying

wjkD(ℓj,ϑo ||ℓj,θ) > 0, (5.65)

which means that agent j is able to distinguish θ from ϑo (i.e., that
D(ℓj,ϑo ||ℓj,θ) > 0) and is connected to agent k through some path (i.e.,
wjk > 0). Note that, according to this definition, the problem might be
unidentifiable for some sending network s, but identifiable for the ensemble
of sending networks that are connected to agent k. In this case, agent k will
learn the truth, even if agents belonging to the sth sending network will
not. This happens because the agents belonging to s receive information
only from agents within their own sending network, while agent k benefits
from information received from other sending networks.

Example 5.10 (Mind control). Consider the same weak graph, combination matrix, and
likelihoods used in Example 5.9. Recall that the agents were organized into three clusters
according to (5.62), with the clusters C1 and C2 representing the sending networks, and
cluster C3 representing the receiving network.

Concerning the true distributions, we assume that the true models {fk(x)} vary
across the clusters, while the agents within the same cluster share the same true model.
Accordingly, denoting by gc(x) the true model pertaining to cluster Cc, with c = 1, 2, 3,
we have fk(x) = gc(x) for all k ∈ Cc. The true model gc(x) is a unit-variance Gaussian
pdf with mean νc, where

ν1 = 0.8, ν2 = 1.2, ν3 = 3.2. (5.66)

Moreover, in the simulations the observations are drawn as statistically independent
across the agents. The true and likelihood models can be seen in the top right panel of

118 Social Learning with Geometric Averaging

1

2
3

4 5

6

7

8

9

10

11
12

C1 C2

C3

°2 °1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

`(
x
|µ)

g1(x)
g2(x)

g3(x)

0 10 20 30

t

0.0

0.5

1.0

µ
9
,t
(µ

)

µ = 1 µ = 2 µ = 3

0 10 20 30

t

0.0

0.5

1.0

µ
10

,t
(µ

)

0 10 20 30

t

0.0

0.5

1.0

µ
11

,t
(µ

)
0 10 20 30

t

0.0

0.5

1.0

µ
12

,t
(µ

)

Figure 5.8: (Top left) Network topology showing the sending networks, i.e., clusters C1 and
C2, and the receiving network, i.e., cluster C3, used in Example 5.10. Undirected edges are
represented without arrows, and all agents have a self-loop, not shown in the figure. (Top
right) Likelihood models ℓ(x|θ) (solid line) and true models gc(x) (dashed line). (Bottom) Belief
evolution for the agents in the receiving network over 30 iterations. We see that, as t grows,
these agents place all their belief mass on the common hypothesis ϑ⋆k = 1.

Figure 5.8. The models pertaining to the agents in the sending networks lie closer to
ℓ(x|1), therefore providing evidence supporting hypothesis 1. In contrast, the agents in
the receiving network observe data streams whose distribution is closer to ℓ(x|3), thus
supporting hypothesis 3.

The network average of KL divergences is given by

D̄k(θ) = 1
2
∑
j∈C1

wjk(ν1 − θ)2 + 1
2
∑
j∈C2

wjk(ν2 − θ)2

= 1
2(0.8 − θ)2

∑
j∈C1

wjk + 1
2(1.2 − θ)2

∑
j∈C2

wjk. (5.67)

Using the fact that ∑
j∈S

wjk =
∑
j∈C1

wjk +
∑
j∈C2

wjk = 1, (5.68)

we can evaluate the hypothesis-specific values of D̄k(θ) as

D̄k(1) = (0.2)2

2
∑
j∈C1

wjk + (0.2)2

2
∑
j∈C2

wjk = 0.02, (5.69)

D̄k(2) = (1.2)2

2
∑
j∈C1

wjk + (0.8)2

2
∑
j∈C2

wjk = 0.32 + 0.4
∑
j∈C1

wjk, (5.70)

D̄k(3) = (2.2)2

2
∑
j∈C1

wjk + (1.8)2

2
∑
j∈C2

wjk = 1.62 + 0.8
∑
j∈C1

wjk. (5.71)

5.6. Learning over Weak Graphs 119

1

2
3

4 5

6

7

8

9

10

11
12

C1 C2

C3

°2 °1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

`(
x
|µ)

g1(x) g2(x), g3(x)

0 20 40 60

t

0.0

0.5

1.0

µ
9
,t
(µ

)

µ = 1 µ = 2 µ = 3

0 20 40 60

t

0.0

0.5

1.0

µ
10

,t
(µ

)

0 20 40 60

t

0.0

0.5

1.0

µ
11

,t
(µ

)
0 20 40 60

t

0.0

0.5

1.0

µ
12

,t
(µ

)

Figure 5.9: (Top left) Network topology showing the sending networks, i.e., clusters C1 and
C2, and the receiving network, i.e., cluster C3, used in Example 5.11. Undirected edges are
represented without arrows, and all agents have a self-loop, not shown in the figure. (Top
right) Likelihood models ℓ(x|θ) (solid line) and true models gc(x) (dashed line). (Bottom) Belief
evolution for the agents in the receiving network over 60 iterations. We see that, as t grows,
discord across the agents emerges, since their beliefs are concentrated on hypotheses ϑ⋆k that
depend on the particular agent k. Specifically, we have: ϑ⋆9 = 1, ϑ⋆10 = 2, ϑ⋆11 = 3, and ϑ⋆12 = 2.

Since the weights wjk are nonnegative, from (5.71) we conclude that the minimizer of
the network average of KL divergences is ϑ⋆k = 1 for any agent k ∈ R. In the bottom
panels of Figure 5.8, we see that, despite observing private data generated according
to hypothesis 3, the agents in the receiving network asymptotically ignore this local
information and place their full belief mass on the hypothesis supported by the sending
networks, i.e., ϑ⋆k = 1.

Example 5.11 (Discord). In this example we start from the setting used in Example 5.10,
and modify the network topology and the true distributions as follows. Concerning the
topology, we consider a weak graph with the same sending and receiving networks used
in Example 5.10, however with different connectivity between these networks, resulting
in the graph shown in Figure 5.9.

Concerning the true distributions, as done in Example 5.10 we assume that fk(x) =
gc(x) for all k ∈ Cc, with c = 1, 2, 3. The true model gc(x) is a unit-variance Gaussian
pdf with mean νc, where

ν1 = 0.8, ν2 = 3.2, ν3 = 3.2. (5.72)

Moreover, in the simulations the observations are generated as statistically independent
across the agents. The true and likelihood models can be seen in the top right panel
of Figure 5.9. The true model pertaining to the first sending network (cluster C1) is
closer to ℓ(x|1), whereas the true model of cluster C2 is closer to ℓ(x|3). This means

120 Social Learning with Geometric Averaging

that, differently from what happened in Example 5.10, the two sending networks now
provide conflicting information to the agents in the receiving network. Moreover, these
agents share the same true model as cluster C2, which would in principle suggest further
support for hypothesis 3.

The network average of KL divergences is computed for any agent k ∈ R as

D̄k(θ) = 1
2
∑
j∈C1

wjk(ν1 − θ)2 + 1
2
∑
j∈C2

wjk(ν2 − θ)2

= 1
2(0.8 − θ)2

∑
j∈C1

wjk + 1
2(3.2 − θ)2

∑
j∈C2

wjk. (5.73)

The minimization of (5.73) is not so easily found as was the case for Examples 5.9
and 5.10. As a matter of fact, the solution in this example is agent-dependent and varies
according to the connectivity of each agent in the receiving network with respect to the
sending networks C1 and C2. Specifically, the effect of this connectivity is represented
in (5.73) by the cumulative weights

∑
j∈C1

wjk and
∑

j∈C2
wjk, which are reported in

Table 5.1.

Table 5.1: Cumulative weights incorporating the effect from each of the two sending networks
C1 and C2 to each agent k in the receiving network.

Agent k
∑
j∈C1

wjk
∑
j∈C2

wjk

9 0.8 0.2
10 0.5 0.5
11 0.2 0.8
12 0.5 0.5

The cumulative weights from Table 5.1 quantify the influence of each sending network
(C1 and C2) on each agent k in the receiving network. For example, we see that agent
9 is mostly influenced by the sending network C1, while agent 11 is mostly influenced
by the sending network C2. Agents 10 and 12 are affected equally by the two sending
networks. Inserting into (5.73) the values reported in Table 5.1, we obtain the following
minimizers for D̄k(θ):

ϑ⋆9 = 1, ϑ⋆10 = 2, ϑ⋆11 = 3, ϑ⋆12 = 2, (5.74)

which reveal two remarkable effects. Agent 9 sees the sending network C1 as the most
influential, and is accordingly steered toward the hypothesis promoted by C1. The
situation is reversed for agent 11, which is in fact more influenced by the sending network
C2.

A second phenomenon is observed for agents 10 and 12, for which no domineering
sending network emerges. In this case, the agents opt for hypothesis 2, according to the
truth-is-somewhere-in-between effect observed in Example 5.7.

Chapter 6

Error Probability Performance

The main focus of the previous chapter was to study the convergence
of the belief vectors under the social learning strategy with geometric
averaging summarized in listing (3.16). In particular, Theorem 5.2 revealed
that, over connected graphs, all agents asymptotically place the full belief
mass on some target hypothesis ϑ⋆ that optimizes a global measure of
matching between the data and the likelihood models. For example, under
the objective evidence model in Section 5.3, all agents tend to promote
with full confidence the true underlying hypothesis ϑo.

These results focus only on what happens as t → ∞. It is equally
important to examine the performance of social learning for finite t, which
is the focus of the current chapter. To do so, one useful index of performance
is the error probability of each agent k at each time instant t. This measure
is formally defined in the next section as the probability that the belief
vector µk,t is not maximized at the target hypothesis ϑ⋆. We already
know from Theorem 5.2 that the probability of error converges to 0 for all
agents. However, the result does not provide information about how fast
the probability will approach zero.

Unfortunately, for general data distributions and likelihood models,
a closed-form characterization for the error probability is a formidable
task. For this reason, we will focus instead on the asymptotic analysis
(for large t) of the error probability. In particular, in Theorem 6.2 we will
show an asymptotic normality result that can be used to approximate the
error probability through closed-form expressions involving the Gaussian
distribution. Then, in Theorem 6.3, we will perform a large deviation
analysis to calculate the error exponents that reveal how fast the error
probability converges to 0 as t→∞.

122 Error Probability Performance

It is interesting to remark that Theorems 5.2, 6.2, and 6.3 form a
standard path in asymptotic statistics [159, 166]. This observation is not
surprising once we recognize that, after unfolding the recursion from (5.10)
(and ignoring a transient term that depends on the initial beliefs), the
logarithmic belief ratios will be sums of independent random variables,
namely, of logarithmic likelihood ratios scaled by coefficients arising from
powers of the combination matrix. And for sums of independent variables,
one can typically carry out the following three-step asymptotic analysis.
First, one appeals to the law of large numbers to characterize the con-
vergence of the sum (divided by t) toward some deterministic value, as
we did in the proof of Theorem 5.2. Second, one can characterize the
asymptotic distribution of the sum through central limit theorems leading
to Gaussian approximations, as we will do in Theorem 6.2. As a third step,
one traditionally appeals to the theory of large deviations to characterize
the probability of deviating from the prescribed limiting value, and this
type of analysis is carried out in Theorem 6.3.

For the performance analysis in this chapter, we continue to work under
Assumptions 5.1 and 5.2, and focus on primitive graphs and a unique
target hypothesis ϑ⋆, as stated in the next assumption.

Assumption 6.1 (Primitive graphs and unique minimizer ϑ⋆). We assume that the
network graph is primitive and focus on the network average of KL divergences
encountered in Theorem 5.2,

Dnet(θ) =
K∑
k=1

vkD(fk||ℓk,θ), (6.1)

where v is the Perron vector associated with the left stochastic combination
matrix A. As done before, we assume that Dnet(θ) has a unique minimizer

ϑ⋆ = arg min
θ∈Θ

Dnet(θ), (6.2)

which in the sequel will be referred to as the target hypothesis.

6.1 Useful Statistical Descriptors

Before carrying out our analysis, it is convenient to introduce several
quantities of interest. For ease of reference, the major symbols used in our
analysis are listed in Table 6.1.

6.1. Useful Statistical Descriptors 123

Table 6.1: Notation relevant to the performance analysis of social learning.

fk(x) True distribution governing the data of agent k
ℓk(x|θ) Likelihood model of agent k
µk,t(θ) belief assigned to hypothesis θ by agent k at time t
µk,t H × 1 vector stacking the entries µk,t(θ)
v = [vk] Perron vector

Dnet(θ) Network average of KL divergences,
K∑
k=1

vkD(fk||ℓk,θ)

ϑ⋆ Target hypothesis that minimizes Dnet(θ)

λk,t(θ) Log likelihood ratio, log ℓk(xk,t|ϑ⋆)
ℓk(xk,t|θ)

, θ ̸= ϑ⋆

λk,t (H − 1) × 1 vector stacking the entries λk,t(θ), θ ̸= ϑ⋆

λ̄k Expected value of λk,t
Σk (H − 1) × (H − 1) covariance matrix of λk,t
Λk(s; θ) Logarithmic moment generating function (LMGF) of λk,t(θ)

λnet,t(θ) Network average of log likelihood ratios,
K∑
k=1

vk λk,t(θ), θ ̸= ϑ⋆

λnet,t (H − 1) × 1 vector stacking the entries λnet,t(θ)
λ̄net Expected value of λnet,t

Σnet (H − 1) × (H − 1) covariance matrix of λnet,t

Λnet(s; θ) Logarithmic moment generating function of λnet,t(θ)

βk,t(θ) Log belief ratio, log
µk,t(ϑ⋆)
µk,t(θ)

, θ ̸= ϑ⋆

βk,t (H − 1) × 1 vector stacking the entries βk,t(θ)

β̄k,t Time-scaled version of βk,t, namely, β̄k,t ≜
βk,t
t

pk,t Instantaneous error probability of agent k at time t

124 Error Probability Performance

6.1.1 Log Likelihood Ratios

First, we introduce the log likelihood ratio1

λk,t(θ) ≜ log ℓk(xk,t|ϑ
⋆)

ℓk(xk,t|θ)
, θ ̸= ϑ⋆, (6.3)

and its expectation

λ̄k(θ) ≜ Eλk,t(θ) = D(fk||ℓk,θ)−D(fk||ℓk,ϑ⋆). (6.4)

Note that, under Assumption 5.2, the log likelihood ratios are almost-surely
well defined, since, in view of (5.5), the numerator and denominator in
(6.3) are equal to 0 with zero probability. Note also that λ̄k(θ) does not
depend on t since, in view of Assumption 5.2, the expectation in (6.4)
is computed assuming that xk,t is distributed according to some true
underlying stationary model fk(x), i.e., we continue to assume invariant
distribution over time. When we omit the argument θ and write λk,t, we
will be referring to the (H − 1)× 1 vector of log likelihood ratios

λk,t = [λk,t(1),λk,t(2), . . . ,λk,t(H − 1)] , (6.5)

where, without loss of generality, we consider that the set of hypotheses
is Θ = {1, 2, . . . ,H} and that the hypotheses have been ordered in such a
way that ϑ⋆ = H. To avoid confusion, we recall that in our notation all
vectors are column vectors. Likewise, we introduce the (H − 1)× 1 vector

λ̄k = Eλk,t (6.6)

that collects the expected values λ̄k(θ) for θ ̸= ϑ⋆.
We continue by defining the network average of log likelihood ratios,

for all θ ̸= ϑ⋆,

λnet,t(θ) ≜
K∑
k=1

vk λk,t(θ) (6.7)

or, in vector form,

λnet,t =
K∑
k=1

vk λk,t. (6.8)

The weight assigned to the log likelihood ratio of the kth agent is given by
the kth entry, vk, of the Perron vector that is associated with irreducible

1In order to avoid confusion, we remark that in [25] the symbol λk,t was used to denote log
belief ratios instead of log likelihood ratios. In this book we adopt a more suggestive notation:
We use the symbol λ (lambda) to denote log likelihood ratios, and the symbol β (beta) to denote
log belief ratios — see the forthcoming section.

6.1. Useful Statistical Descriptors 125

matrices, i.e., with connected graphs — see Theorem 4.1. It is also useful
to introduce the expected vector

λ̄net ≜ Eλnet,t =
K∑
k=1

vkλ̄k, (6.9)

whose θth entry, in view of (6.1) and (6.4), is given by

λ̄net(θ) = Eλnet,t(θ) =
K∑
k=1

vkλ̄k(θ) = Dnet(θ)−Dnet(ϑ⋆) > 0, (6.10)

where positivity results from the uniqueness of ϑ⋆ in (6.2).
The average variable λnet,t plays a fundamental role in the description

of the social learning performance. In fact, we will discover in this chapter
that different statistical descriptors of λnet,t (mean, covariance matrix,
generating functions) characterize at different levels of refinement the
asymptotic properties of a fundamental decision statistic used to evaluate
the performance, namely, the log belief ratios introduced in the next section.

6.1.2 Log Belief Ratios

In order to characterize the learning performance, it is convenient to work
in terms of the logarithmic ratio between the belief about ϑ⋆ and the belief
about θ ≠ ϑ⋆. Therefore, with reference to the beliefs of agent k at time t,
we introduce the log belief ratio

βk,t(θ) ≜ log
µk,t(ϑ⋆)
µk,t(θ)

, θ ̸= ϑ⋆. (6.11)

Observe that the ratio is well defined since, as already remarked, under
conditions (5.4) and (5.5), the beliefs µk,t(θ) remain almost-surely nonzero
for any θ during the algorithm evolution. As we did for the log likelihood
ratio, it is also useful to introduce the (H−1)×1 vector of log belief ratios

βk,t =
[
βk,t(1),βk,t(2), . . . ,βk,t(H − 1)

]
. (6.12)

Note that the log belief ratio vector βk,t has H−1 entries, whereas the belief
vector µk,t has H entries. However, we must recall that µk,t has only H−1
degrees of freedom, since it is a probability vector, which implies that once
H − 1 entries are given, the remaining entry is obtained from the condition∑
θ∈Θµk,t(θ) = 1. The next theorem shows that the H-dimensional vector

µk,t can be fully reconstructed given knowledge of the (H − 1)-dimensional

126 Error Probability Performance

vector βk,t. In the theorem, we use normal font for µk,t and βk,t to emphasize
that the result pertains to the functional dependence between beliefs and log
belief ratios, with the particular statistical distributions being immaterial
here.

Theorem 6.1 (Sufficiency of log belief ratios). Let 0 < µk,t(θ) < 1 for all θ ∈ Θ.
The belief vector µk,t is a deterministic function of the log belief ratio vector
βk,t. Specifically, we have that

µk,t(θ) =

e−βk,t(θ)

1 +
∑
θ′ ̸=ϑ⋆

e−βk,t(θ′)
if θ ̸= ϑ⋆,

1
1 +

∑
θ′ ̸=ϑ⋆

e−βk,t(θ′)
if θ = ϑ⋆.

(6.13)

Proof. Consider θ ̸= ϑ⋆. From (6.11) we have

µk,t(θ) = µk,t(ϑ⋆)e−βk,t(θ). (6.14)

Since the belief vector is a probability vector, and, hence, its entries must add up to 1,
we must have

µk,t(ϑ⋆) +
∑
θ′ ̸=ϑ⋆

µk,t(θ′) = 1. (6.15)

Using (6.14) in the summation appearing in (6.15), we conclude that

µk,t(ϑ⋆) +
∑
θ′ ̸=ϑ⋆

µk,t(ϑ⋆)e−βk,t(θ′) = 1, (6.16)

which is equivalent to
µk,t(ϑ⋆) = 1

1 +
∑
θ′ ̸=ϑ⋆

e−βk,t(θ′)
, (6.17)

and (6.13) is proved for the case θ = ϑ⋆. The expression in (6.13) for θ ̸= ϑ⋆ follows by
substituting (6.17) into (6.14).

■

6.1.3 Error Probabilities

One natural way for the agents to make a decision is to select the hypothesis
or hypotheses that maximize the belief. Under this rule, the occurrence of
a wrong decision by agent k at time t corresponds to the occurrence of the
event

Ek,t ≜
{
ϑ⋆ ̸= arg max

θ∈Θ
µk,t(θ)

}
. (6.18)

6.2. Normal Approximation for Large t 127

Therefore, the instantaneous error probability of agent k at time t can be
defined as

pk,t ≜ P [Ek,t] = P
[
ϑ⋆ ̸= arg max

θ∈Θ
µk,t(θ)

]
. (6.19)

It is useful to rewrite the error probability as a function of the log belief
ratios. To this end, observe that the event within brackets in (6.19) cor-
responds to stating that the belief is not maximized at ϑ⋆, which in turn
corresponds to affirming that the log belief ratios in (6.11) are less than
or equal to 0 for at least one θ ≠ ϑ⋆. That is, the occurrence of an error
corresponds to the event

Ek,t =
{
∃θ ̸= ϑ⋆ such that βk,t(θ) ≤ 0

}
, (6.20)

which can be rewritten as the union of events where any log belief ratio is
less than or equal to 0, i.e.,

Ek,t =
⋃
θ ̸=ϑ⋆

{
βk,t(θ) ≤ 0

}
. (6.21)

We can thus write the probability of error as

pk,t = P

 ⋃
θ ̸=ϑ⋆

{
βk,t(θ) ≤ 0

} . (6.22)

6.2 Normal Approximation for Large t

In this section we prove that the random vector βk,t (properly shifted and
scaled) is asymptotically normal as t→∞. To this end, we will assume
finiteness of second-order moments for the log likelihood ratios λk,t(θ). In
order to state the asymptotic normality result, it is useful to introduce
some additional quantities, which appear listed in Table 6.1. First, we
define the (H−1)×(H−1) covariance matrix of the vector of log likelihood
ratios at every agent k:

Σk ≜ E
[(
λk,t − λ̄k

) (
λk,t − λ̄k

)T]
. (6.23)

Likewise, we introduce the covariance matrix of the network average vector
λnet,t defined by (6.8):

Σnet ≜ E
[(
λnet,t − λ̄net

) (
λnet,t − λ̄net

)T]
. (6.24)

128 Error Probability Performance

Finally, we introduce a symbol for the log belief ratio divided by t:

β̄k,t ≜
βk,t
t
. (6.25)

Theorem 6.2 (Asymptotic normality under geometric averaging). Let Assump-
tions 5.1, 5.2, and 6.1 be satisfied, and let G (0,Σ) denote a random vector having
a zero-mean multivariate Gaussian distribution with covariance matrix Σ. If the
covariance matrices Σk have finite entries, then for k = 1, 2, . . . ,K,

√
t
(
β̄k,t − λ̄net

) d−−−→
t→∞

G (0,Σnet) . (6.26)

Proof. Exploiting (5.2), (6.11), and the definition of Nk from (4.1), we obtain the
recursion, for θ ̸= ϑ⋆,

βk,t(θ) =
K∑
j=1

ajk
[
βj,t−1(θ) + λj,t(θ)

]
, (6.27)

which can be unfolded to arrive at the equality

βk,t(θ) =
K∑
j=1

[At]jkβj,0(θ) +
t∑

τ=1

K∑
j=1

[Aτ]jk λj,t−τ+1(θ), (6.28)

where we recall that [At]jk denotes the (j, k) entry of the matrix power At. This relation
can be rewritten in the following vector form by using the log likelihood and log belief
vectors defined in (6.5) and (6.12), respectively:

βk,t =
K∑
j=1

[At]jkβj,0 +
t∑

τ=1

K∑
j=1

[Aτ]jk λj,t−τ+1

d=
K∑
j=1

[At]jkβj,0 +
t∑

τ=1

K∑
j=1

[Aτ]jk λj,τ , (6.29)

where the symbol d= denotes equality in distribution, which holds because the data
are iid over time. Using the definitions of λ̄net and β̄k,t provided in (6.9) and (6.25),

6.2. Normal Approximation for Large t 129

respectively, in view of (6.29) we can write
√
t
(
β̄k,t − λ̄net

)
d= 1√

t

K∑
j=1

[At]jkβj,0 +
√
t

(
1
t

t∑
τ=1

K∑
j=1

[Aτ]jk λj,τ −
K∑
j=1

vj λ̄j

)

= 1√
t

K∑
j=1

[At]jkβj,0 +
√
t

(
1
t

t∑
τ=1

K∑
j=1

[Aτ]jk λj,τ − 1
t

t∑
τ=1

K∑
j=1

vj λ̄j

)

= 1√
t

K∑
j=1

[At]jkβj,0 + 1√
t

t∑
τ=1

K∑
j=1

([Aτ]jk − vj) λ̄j

+ 1√
t

t∑
τ=1

K∑
j=1

[Aτ]jk
(
λj,τ − λ̄j

)
. (6.30)

Since 0 ≤ [At]jk ≤ 1, the first term on the RHS vanishes as t → ∞. In addition, since
the matrix A is assumed to be primitive, we can use the bound in (4.25) to conclude that
the second term on the RHS also vanishes as t → ∞. Accordingly, in view of Slutsky’s
theorem (applied to vectors — see (D.39)) the claim of the theorem will be proved if we
show that the third term converges in distribution (see Definition D.4) to a Gaussian
random vector with mean zero and covariance matrix Σnet. To this end, we call upon
Theorem D.9, applied to the sequence

yt =
K∑
j=1

[At]jk
(
λj,t − λ̄j

)
. (6.31)

We now verify that this sequence satisfies conditions (D.52), (D.53), and (D.54). It is
immediately seen that condition (D.52) is satisfied since Eλj,t = λ̄j , implying that
Eyt = 0. Consider next condition (D.53). We will show that it is satisfied with limiting
covariance matrix equal to Σnet, i.e., we will establish that

lim
t→∞

1
t

t∑
τ=1

E
[
yτy

T
τ

]
= Σnet. (6.32)

Applying the definition of Σnet from (6.24), Eq. (6.32) becomes

lim
t→∞

1
t

t∑
τ=1

E
[
yτy

T
τ

]
= E

[(
λnet,t − λ̄net

) (
λnet,t − λ̄net

)T
]

= E
[(
λnet,1 − λ̄net

) (
λnet,1 − λ̄net

)T
]
, (6.33)

where in the last step we replaced λnet,t with λnet,1 because the vectors λnet,t are
identically distributed over time.

Now, we recall that the Cesàro limit of the sequence is equal to the limit of the
sequence (when the latter exists).2 Therefore, to prove (6.33) it will be sufficient to

2 Given a real-valued sequence {zτ}, its Cesàro limit is defined as the limit of the sequence
of arithmetic means z̄t = (1/t)

∑t

τ=1 zτ . Note that the Cesàro limit might exist even when

130 Error Probability Performance

establish the following result:

lim
τ→∞

E
[
yτy

T
τ

]
= E

[(
λnet,1 − λ̄net

) (
λnet,1 − λ̄net

)T
]
. (6.35)

By substituting (6.31) into the LHS of (6.35), and (6.7) into the RHS, Eq. (6.35) can
be equivalently rewritten as

lim
τ→∞

E

[
K∑
j=1

K∑
j′=1

[Aτ]jk[Aτ]j′k

(
λj,τ − λ̄j

) (
λj′,τ − λ̄j′

)T

]

= lim
τ→∞

E

[
K∑
j=1

K∑
j′=1

[Aτ]jk[Aτ]j′k

(
λj,1 − λ̄j

) (
λj′,1 − λ̄j′

)T

]

= E

[
K∑
j=1

K∑
j′=1

vjvj′
(
λj,1 − λ̄j

) (
λj′,1 − λ̄j′

)T

]
, (6.36)

where, in the intermediate step, we replaced λj,τ and λj′,τ with λj,1 and λj′,1 due to
the identical distribution over time. Proving (6.36) is equivalent to proving that, for all
θ, θ′ ∈ Θ,

lim
τ→∞

E

[
K∑
j=1

K∑
j′=1

[Aτ]jk[Aτ]j′k

(
λj,1(θ) − λ̄j(θ)

) (
λj′,1(θ′) − λ̄j′ (θ′)

)]

= E

[
K∑
j=1

K∑
j′=1

vjvj′
(
λj,1(θ) − λ̄j(θ)

) (
λj′,1(θ′) − λ̄j′ (θ′)

)]
. (6.37)

Let us verify that (6.37) holds. For this purpose, observe first that

lim
τ→∞

[Aτ]jk = vj (6.38)

in view of (4.23), which implies

K∑
j=1

K∑
j′=1

[Aτ]jk[Aτ]j′k

(
λj,1(θ) − λ̄j(θ)

) (
λj′,1(θ′) − λ̄j′ (θ′)

)
a.s.−−−−→
τ→∞

K∑
j=1

K∑
j′=1

vjvj′
(
λj,1(θ) − λ̄j(θ)

) (
λj′,1(θ′) − λ̄j′ (θ′)

)
. (6.39)

Therefore, Eq. (6.37) would be proved if we could interchange the limit and the expecta-
tion. In view of the dominated convergence theorem (Theorem D.6), this operation is
legitimate if the τ -dependent random variables on the LHS of (6.39) are upper bounded
by a τ -independent random variable that has finite mean. We now show that this is

the sequence {zτ} does not admit a limit. However, when {zτ} admits a limit, the following
implication is known to hold [52, Thm. 4.2.3]:

lim
τ→∞

zτ = z =⇒ lim
t→∞

z̄t = z. (6.34)

6.2. Normal Approximation for Large t 131

actually the case. By applying the triangle inequality and noting that 0 ≤ [Aτ]jk ≤ 1
for all τ , j, and k, we can write∣∣∣∣∣

K∑
j=1

K∑
j′=1

[Aτ]jk[Aτ]j′k

(
λj,1(θ) − λ̄j(θ)

) (
λj′,1(θ′) − λ̄j′ (θ′)

)∣∣∣∣∣
≤

K∑
j=1

K∑
j′=1

∣∣λj,1(θ) − λ̄j(θ)
∣∣×
∣∣λj′,1(θ′) − λ̄j′ (θ′)

∣∣ ≜ z⋆. (6.40)

Since the log likelihood ratios have finite second moment by assumption, and since we
have the inequality∣∣λj,1(θ) − λ̄j(θ)

∣∣×
∣∣λj′,1(θ′) − λ̄j′ (θ′)

∣∣
≤ 1

2

[(
λj,1(θ) − λ̄j(θ)

)2
+
(
λj′,1(θ′) − λ̄j′ (θ′)

)2
]
, (6.41)

the random variable z⋆ defined in (6.40) has finite mean, as desired. We can accordingly
call upon the dominated convergence theorem to establish that (6.37) holds. This
concludes the verification of condition (D.53).

It remains to show that the Lindeberg condition (D.54) is satisfied, namely, that

1
t

t∑
τ=1

E
[
∥yτ∥2 I

[
∥yτ∥2 > ε t

]]
= 0. (6.42)

To this end, we note that, since
K∑
j=1

[Aτ]jk = 1 (6.43)

and [Aτ]jk ≥ 0, we can apply Jensen’s inequality (see Theorem C.5 and in particular
(C.10)) to the squared norm of (6.31) to get

∥yτ∥2 ≤
K∑
j=1

[Aτ]jk∥λj,τ − λ̄j∥2 ≤
K∑
j=1

∥λj,τ − λ̄j∥2 ≜ z⋆τ . (6.44)

The condition ∥yτ∥2 ≤ z⋆τ further implies

∥yτ∥2 I
[
∥yτ∥2 > ε t

]
≤ z⋆τ I [z⋆τ > ε t] . (6.45)

Note that the random variables z⋆τ defined in (6.44) are identically distributed. Therefore,
in view of (6.45) we have

1
t

t∑
τ=1

E
[
∥yτ∥2 I

[
∥yτ∥2 > ε t

]]
≤ 1
t

t∑
τ=1

E
[
z⋆τ I [z⋆τ > ε t]

]
= E

[
z⋆1 I [z⋆1 > ε t]

]
. (6.46)

Since we can write
z⋆1 I [z⋆1 > ε t] ≤ z⋆1 (6.47)

132 Error Probability Performance

and since z⋆1 has finite mean (because the log likelihood ratios have finite variances),
we can apply the dominated convergence theorem (Theorem D.6) to z⋆1 I [z⋆1 > ε t] to
conclude that the RHS of (6.46) vanishes as t → ∞. This also implies that the LHS
vanishes, which means that the Lindeberg condition holds. Then the proof is complete
by applying Theorem D.9 to the last term on the RHS of (6.30), with the choice of yt
in (6.31).

■

Example 6.1 (Gaussian approximation). We consider a network of K = 10 agents that
communicate according to the topology in Figure 6.1. The graph is undirected, and
all agents are assumed to have a self-loop, not shown in the figure. The graph can be
verified to be strong. On top of it, a Metropolis combination matrix (see Table 4.1) is
constructed, which results in a doubly stochastic matrix, therefore yielding a uniform
Perron vector v = [vk], with vk = 1/K for k = 1, 2, . . . ,K. The agents wish to solve

1
23

4

5

6

7

8

9

10

Figure 6.1: Network topology used in Example 6.1. The graph is undirected and all agents are
assumed to have a self-loop (not shown in the figure).

a social learning problem with three hypotheses, i.e., θ ∈ {1, 2, 3}. The observations
xk,t ∈ {0, 1}, for each agent k and time t, are all distributed as balanced Bernoulli
random variables (i.e., with P[xk,t = 0] = 0.5), and are independent across k and t. We
assume identical Bernoulli likelihood models across the agents, namely,

ℓk(x|θ) = qθ I[x = 0] + (1 − qθ) I[x = 1], (6.48)

where the hypothesis-dependent probabilities qθ are

q1 = 0.52, q2 = 0.48, q3 = 0.5. (6.49)

According to this setup, we are considering the objective evidence model described
in Section 5.3, since the observations are distributed according to a true underlying
hypothesis, in this case hypothesis ϑo = 3. Using (6.48), the log likelihood ratio between

6.2. Normal Approximation for Large t 133

the true hypothesis ϑo and a hypothesis θ ∈ {1, 2} is computed as

λk,t(θ) = log ℓk(xk,t|ϑo)
ℓk(xk,t|θ)

= log ℓk(xk,t|3)
ℓk(xk,t|θ)

= I[xk,t = 0] log 0.5
qθ

+ I[xk,t = 1] log 0.5
1 − qθ

= − log 2 − I[xk,t = 0] log qθ − I[xk,t = 1] log(1 − qθ). (6.50)

From (6.50) we can compute the mean of λk,t(θ) as

λ̄k(θ) = Eλk,t(θ) = − log 2 − 1
2 log qθ − 1

2 log(1 − qθ). (6.51)

By combining (6.50) and (6.51), and performing straightforward algebraic manipulations,
we can write

λk,t(θ) − λ̄k(θ) = 1
2 I[xk,t = 0] log 1 − qθ

qθ
+ 1

2 I[xk,t = 1] log qθ
1 − qθ

= 1
2(−1)1−xk,t log qθ

1 − qθ
. (6.52)

We observe that the random variables λk,t(1)−λ̄k(1) and λk,t(2)−λ̄k(2) are proportional,
i.e., they are deterministically related. Accordingly, their covariance matrix must be
singular. In fact, from (6.52) we can compute the covariance matrix

Σk = 1
4 ×

(

log q1

1 − q1

)2

log q1

1 − q1
log q2

1 − q2

log q1

1 − q1
log q2

1 − q2

(
log q2

1 − q2

)2

 , (6.53)

whose determinant is seen to be 0. Since in this example the observations are identically
distributed across the agents, and since the Metropolis matrix is doubly stochastic
(hence, the Perron vector has all entries equal to 1/K), the network covariance matrix
Σnet from (6.24) is equal to

Σnet = 1
4K ×

(

log q1

1 − q1

)2

log q1

1 − q1
log q2

1 − q2

log q1

1 − q1
log q2

1 − q2

(
log q2

1 − q2

)2

 . (6.54)

Note that, thanks to the factor K appearing in (6.54), the variances (i.e., the diagonal
entries of Σnet) decrease as the number of agents increases. This is one example that shows
the benefits of cooperation, since a reduced variance is representative of a higher learning
accuracy. We will examine more closely the benefits of cooperation in Section 6.3.1, in
terms of another performance indicator, namely, the large deviation exponents that will
be seen to govern the decay to 0 of the error probability.

In view of the aforementioned proportionality (i.e., perfect correlation) between
the random variables λk,t(1) − λ̄k(1) and λk,t(2) − λ̄k(2), it is redundant to examine
the joint evolution of the log belief ratios β̄k,t(1) and β̄k,t(2). We focus instead on
their individual evolution. More specifically, in each panel of Figure 6.2, we display
a histogram computed from 5000 independent realizations of the shifted and scaled
variable

√
t
(
β̄k,t(θ) − λ̄net(θ)

)
, for k = 2 and θ = 1. Different panels refer to different

134 Error Probability Performance

-0.0506 -0.0253 0.0000 0.0253 0.0506
0

10

20

30
d

is
tr

ib
u

ti
on

of
√
t(
β̄

2
,t
(1

)
−
λ̄

n
et

(1
))

t = 100

-0.0506 -0.0253 0.0000 0.0253 0.0506
0

10

20

30

t = 500

-0.0506 -0.0253 0.0000 0.0253 0.0506
0

10

20

30

d
is

tr
ib

u
ti

on
of

√
t(
β̄

2
,t
(1

)
−
λ̄

n
et

(1
))

t = 1000

empirical histogram limiting Gaussian

-0.0506 -0.0253 0.0000 0.0253 0.0506
0

10

20

30

t = 5000

Figure 6.2: Histograms computed from 5000 independent realizations of the shifted and scaled
variable

√
t
(
β̄k,t(θ)− λ̄net(θ)

)
, for k = 2 and θ = 1, in the setting of Example 6.1. Different

panels refer to different values of t. The histograms are compared against a zero-mean Gaussian
distribution with variance Σnet(1, 1) (black curves), where the covariance matrix Σnet is reported
in (6.54).

values of t. In view of Theorem 6.2, this shifted and scaled variable must follow, for
sufficiently large t, a zero-mean Gaussian distribution with variance Σnet(1, 1), where
Σnet(θ, θ′) denotes the (θ, θ′) entry of the covariance matrix Σnet in (6.54). The pdf of
this limiting Gaussian distribution is represented by the black curves in Figure 6.2.
Examining the four panels of the figure (which correspond to different values of t), we
see that the empirical and limiting distributions become in fact similar as t increases.3

6.3 Large Deviations for Large t

In this section we resort to the theory of large deviations introduced in
Appendix E, to obtain the following type of asymptotic characterization
for the error probability [59, 60]:

pk,t = exp
{
−t
[
Ψ + o(1)

]}
(6.55)

for a certain value Ψ that is called the error exponent. The symbol o(1)
denotes here a quantity that approaches zero as t→∞ — see Table 1.1.

3We remark that convergence in distribution refers to the convergence of cumulative distri-
bution functions and not of probability density functions. Therefore, Figure 6.2 should not be
interpreted in the sense of showing convergence of pdfs.

6.3. Large Deviations for Large t 135

We conclude from (6.55) that the leading exponential order (as t→∞) is
given by the term −tΨ. Equation (6.55) can be equivalently rewritten as

lim
t→∞

1
t

log pk,t = −Ψ. (6.56)

In place of (6.55) or (6.56), a compact and common notation to indicate
equality to the leading exponential order is [52]

pk,t
·= e−Ψ t. (6.57)

The error exponent Ψ is a compact statistical descriptor of the social learn-
ing performance; it can be used to compare different systems or to optimize
different parameters (e.g., the network graph, the likelihood models) to
achieve the maximum decay rate for the error probability. For example, it
makes sense to compare two different networks implementing a social learn-
ing algorithm in terms of their exponents; the network featuring the largest
exponent will be considered superior since its probability vanishes faster.
We will see relevant examples of this type of comparison in Chapter 13.

The theory of large deviations has been exploited in [9] for binary
hypothesis testing, and in [106] for social learning with geometric averaging,
under the objective evidence model. The next theorem considers the more
general setting in Assumption 5.2.

Before stating the theorem, it is necessary to introduce the logarithmic
moment generating function (LMGF), a.k.a. cumulant generating function,
of the log likelihood ratios (see Appendix E.1.2):

Λk(s; θ) ≜ logE exp
{
sλk,t(θ)

}
, (6.58)

where s ∈ R and the expectation is computed under the true model fk(x),
which does not change over time, and this explains why Λk(s; θ) does not
depend on t. It is also useful to introduce the LMGF of the network average
of log likelihood ratios λnet,t(θ) defined by (6.7):

Λnet(s; θ) ≜ logE exp
{
sλnet,t(θ)

}
(6.59)

and its Fenchel-Legendre transform (see Appendix E.1.1)

Λ∗net(y; θ) = sup
s∈R

(
sy − Λnet(s; θ)

)
, y ∈ R. (6.60)

136 Error Probability Performance

Theorem 6.3 (Error exponents under geometric averaging). Let Assumptions 5.1,
5.2, and 6.1 be satisfied. If, for k = 1, 2, . . . ,K and for all θ ̸= ϑ⋆,

Λk(s; θ) < ∞ ∀s ∈ R, (6.61)

then
P
[
βk,t(θ) ≤ 0

] ·= e−Ψ(θ) t, (6.62)
where

Ψ(θ) ≜ Λ∗net(0; θ) = − inf
s∈R

Λnet(s; θ) > 0. (6.63)

Moreover, the error probability for each agent k is dominated by the worst-case
(i.e., the smallest) exponent:

pk,t
·= e−Ψ t, Ψ = min

θ ̸=ϑ⋆
Ψ(θ). (6.64)

Proof. To prove the theorem we will study the large deviations of the time-scaled log
belief ratio β̄k,t(θ) — see (6.25). The proof of the theorem involves: i) calling upon the
Gärtner-Ellis theorem (Theorem E.2) to provide the exponential characterization of the
log beliefs for the individual hypotheses θ ̸= ϑ⋆, namely, Eq. (6.62); and ii) using classic
probabilistic bounds to obtain, from the individual error exponents, the exponent of the
overall error probability pk,t, namely, Eq. (6.64).

We start with step i). Let

Λ1/t(s) ≜ logE exp
{
s β̄k,t(θ)

}
(6.65)

denote the LMGF of the time-scaled log belief ratio β̄k,t(θ). For simplicity, we omitted
the dependence of Λ1/t(s) on k and θ. Consider now the Gärtner-Ellis theorem with
the asymptotic parameter ε chosen as ε = 1/t, with t → ∞. Examining the claim of
Theorem E.2, and in particular condition (E.159), we see that if we establish that

lim
t→∞

1
t

Λ1/t(s t) = Λnet(s; θ), (6.66)

then we can conclude that (6.62) holds with exponent Ψ(θ) given by (6.63). Let us
accordingly prove that (6.66) holds. In view of (6.28), the LMGF Λ1/t(s) can be computed
as

Λ1/t(s) = logE exp
{
s

t
βk,t(θ)

}
= s

t

K∑
j=1

[At]jkβj,0(θ) +
t∑

τ=1

Λ̂τ
(
s

t

)
. (6.67)

In the last step we exploited the fact that the random variables λj,t−τ+1(θ) are indepen-
dent over time (we recall that the LMGF of the sum of independent random variables is
equal to the sum of the LMGFs of the random variables) and introduced the function

Λ̂τ (s) ≜ logE exp

{
s

K∑
j=1

[Aτ]jk λj,t−τ+1(θ)

}

= logE exp

{
s

K∑
j=1

[Aτ]jk λj,1(θ)

}
, (6.68)

6.3. Large Deviations for Large t 137

where the equality follows from the identical distribution over time. From (6.67) we can
write

1
t

Λ1/t(st) − Λnet(s; θ) = s

t

K∑
j=1

[At]jkβj,0(θ) + 1
t

t∑
τ=1

(
Λ̂τ (s) − Λnet(s; θ)

)
. (6.69)

To prove (6.66), we show that both terms on the RHS of (6.69) vanish as t → ∞. Since
0 ≤ [At]jk ≤ 1, the first term vanishes as t → ∞. Regarding the second term, in view of
(4.23) we have the following convergence:

exp

{
s

K∑
j=1

[Aτ]jk λj,1(θ)

}
a.s.−−−−→
τ→∞

exp

{
s

K∑
j=1

vjλj,1(θ)

}
. (6.70)

Moreover, using (6.43) and applying Jensen’s inequality (see Theorem C.5 and in
particular (C.10)) to the exponential function, we can write

exp

{
s

K∑
j=1

[Aτ]jk λj,1(θ)

}
≤

K∑
j=1

[Aτ]jk exp
{
sλj,1(θ)

}
≤

K∑
j=1

exp
{
sλj,1(θ)

}
. (6.71)

Note that the RHS of (6.71) has finite mean in view of (6.61). Therefore, Eq. (6.71)
guarantees that the random variable

exp

{
s

K∑
j=1

[Aτ]jk λj,1(θ)

}
(6.72)

is upper bounded by a random variable (independent of τ) with finite mean. This allows
us to call upon the dominated convergence theorem (Theorem D.6) and conclude from
(6.70) that

lim
τ→∞

E exp

{
s

K∑
j=1

[Aτ]jk λj,1(θ)

}
= E exp

{
s

K∑
j=1

vjλj,1(θ)

}
, (6.73)

which, taking the logarithm and using (6.7), (6.59), and (6.68), is equivalent to

lim
τ→∞

Λ̂τ (s) = Λnet(s; θ). (6.74)

Equation (6.74) implies that the second term on the RHS of (6.69) vanishes — see
footnote 2 in this chapter. This concludes the proof of (6.66).

It is now legitimate to call upon Theorem E.2 (with the choice ε = 1/t), which
establishes that the following large deviation principle (see Definition E.2) holds for all
sets S (the infimum over an empty set is taken as ∞):

− inf
y∈int(S)

Λ∗net(y; θ) ≤ lim inf
t→∞

1
t

log P
[
β̄k,t(θ) ∈ S

]
≤ lim sup

t→∞

1
t

log P
[
β̄k,t(θ) ∈ S

]
≤ − inf

y∈cl(S)
Λ∗net(y; θ), (6.75)

where int(S) and cl(S) denote the interior and the closure of S, respectively, and where
Λ∗net(y; θ) is the Fenchel-Legendre transform of Λnet(s; θ) — see (6.60). The function

138 Error Probability Performance

Λ∗net(y; θ) is also referred to, in the theory of large deviations, as the rate function — see
Appendix F. Note that Λnet(s; θ) is finite for all s ∈ R because so are by assumption the
individual LMGFs Λk(s) — see footnote 6 in Appendix F. Accordingly, the function
Λnet(s; θ) and its Fenchel-Legendre transform Λ∗net(y; θ) possess all the regularity proper-
ties listed in Lemma E.1. Consider in particular the choice S = (−∞, 0], and observe
that λ̄net(θ) > 0 due to Assumption 6.1. By exploiting the aforementioned regularity
properties, we can compute the infimum and supremum appearing in (6.75) as (see, also
Figures E.1 and E.2 for typical shapes of the rate function)

inf
y∈int(S)

Λ∗net(y; θ) = inf
y∈cl(S)

Λ∗net(y; θ) = Λ∗net(0; θ), (6.76)

which means that S = (−∞, 0] is a continuity set of the function Λ∗net(y; θ) or an
Λ⋆net-continuity set — see (E.155). Substituting (6.76) into (6.75), we obtain

lim
t→∞

1
t

log P
[
β̄k,t(θ) ≤ 0

]
= −Λ∗net(0; θ), (6.77)

where, in view of (6.60), the rate function evaluated at y = 0 can be computed as

Λ∗net(0; θ) = sup
s∈R

(
− Λnet(s; θ)

)
= − inf

s∈R
Λnet(s; θ) > 0. (6.78)

The inequality in (6.78) holds since, in view of Lemma E.1, the rate function Λ∗net(y; θ) is
nonnegative and is equal to 0 only when y is equal to the mean of the random variable
whose LMGF is Λnet(s; θ). This random variable is λnet,t(θ) and its mean is λ̄net(θ). Since
we have 0 ̸= λ̄net(θ), we conclude that Λ∗net(0; θ) > 0. Grouping (6.77), (6.78), and the
definition of Ψ(θ) in (6.63) (and further observing that P[βk,t(θ) ≤ 0] = P[β̄k,t(θ) ≤ 0]
because β̄k,t(θ) = βk,t(θ)/t), the proof of (6.62) is complete.

It remains to prove that the exponential characterization (6.62) for the probability
P[βk,t(θ) ≤ 0] implies the exponential characterization (6.64) for the overall error
probability pk,t. To this end, observe that in view of (6.22), pk,t can be bounded as
follows (with the lower bound holding for all θ ̸= ϑ⋆):

P
[
βk,t(θ) ≤ 0

]
≤ pk,t ≤

∑
θ ̸=ϑ⋆

P
[
βk,t(θ) ≤ 0

]
, (6.79)

where the upper bound is the union bound [65].
Using the lower bound in (6.79) along with (6.77) we can write

lim inf
t→∞

1
t

log pk,t ≥ max
θ ̸=ϑ⋆

(
− Ψ(θ)

)
= − min

θ ̸=ϑ⋆
Ψ(θ) = −Ψ, (6.80)

where Ψ is defined in (6.64).
Let us now focus on the upper bound in (6.79). By definition, for all θ ̸= ϑ⋆ we have

that Ψ ≤ Ψ(θ). Accordingly, the convergence in (6.77) implies that, given an arbitrary
ε > 0, for sufficiently large t we can write

P
[
βk,t(θ) ≤ 0

]
≤ e−(Ψ−ε)t. (6.81)

Using (6.81) in the RHS of (6.79) yields

1
t

log pk,t ≤ 1
t

log(H − 1) − Ψ + ε, (6.82)

6.3. Large Deviations for Large t 139

Due to the arbitrariness of ε, we have

lim sup
t→∞

1
t

log pk,t ≤ −Ψ. (6.83)

Grouping (6.80) and (6.83), we obtain the desired claim.
■

6.3.1 Benefits of Cooperation

One useful insight that can be gained from Theorem 6.3 relates to the
benefits of cooperation. In Chapter 5 we have seen that cooperation
is rewarding since it allows to overcome the limited view that agents
experience when the learning problems are not locally identifiable. Using
the results from Theorem 6.3, it is possible to reveal another benefit of
cooperation, namely, that cooperation can improve learning accuracy. We
illustrate this aspect through an example.

Example 6.2 (Cooperation improves learning accuracy). Consider K agents connected
according to a primitive graph associated with a doubly stochastic combination matrix,
yielding a Perron vector with uniform entries vk = 1/K for k = 1, 2, . . . ,K. The
observations are statistically independent across the agents. Moreover, the likelihood
models ℓk,θ and and the true distributions fk are equal across the agents. These models
guarantee that each agent could learn the target hypothesis ϑ⋆ individually. Therefore,
in this case cooperation is not useful to resolve local unidentifiability issues. However,
we will now show that cooperation boosts the learning performance. In particular, the
performance will be measured in terms of the error exponent Ψ in (6.64).

To evaluate Ψ, we need to evaluate first the hypothesis-dependent error exponents
Ψ(θ) in (6.63), where the LMGF Λnet(s; θ) was defined in (6.59). To start with, recall
from (6.58) that Λk(s; θ) denotes the LMGF of λk,t(θ), and observe that Λnet(s; θ) is
given by

Λnet(s; θ) =
K∑
k=1

Λk(vks; θ) =
K∑
k=1

Λk(s/K; θ), (6.84)

where in the first equality we used the fact that the data are independent across the
agents (and, hence, the LMGF of λnet,t(θ) in (6.7) is given by the sum of the LMGFs of
the variables vk λk,t(θ)), whereas in the second equality we replaced each Perron vector
entry vk by 1/K since the combination matrix is doubly stochastic. Moreover, since the
random variables λk,t(θ) are identically distributed across the agents, from (6.84) we
can also write

Λnet(s; θ) = KΛk(s/K; θ), (6.85)
where the particular choice of k = 1, 2, . . . ,K is immaterial.

Using (6.63), we can compute Ψ(θ) for the network of K agents. We can also specialize
(6.63) to the case of an individual agent working in isolation. The corresponding exponent
will be denoted by Ψind(θ). In summary, from (6.63) we obtain

Ψ(θ) = − inf
s∈R

Λnet(s; θ), Ψind(θ) = − inf
s∈R

Λind(s; θ). (6.86)

140 Error Probability Performance

Exploiting (6.85) and (6.86), we obtain

Ψ(θ)=− inf
s∈R

Λnet(s; θ) =−K inf
s∈R

Λind(s/K; θ) =−K inf
s∈R

Λind(s; θ) = KΨind(θ). (6.87)

Referring to the worst-case exponent in (6.64), we finally obtain

Ψ = KΨind. (6.88)

We thus find that the network error exponent is K times larger than the error exponent
of a standalone agent; this implies that the error probability vanishes exponentially faster
(by a factor K) in the social learning case. Intuitively, a network of K agents observes K
times as much data as a single agent at each time instant. Cooperation among the agents
allows to exploit this increased knowledge and yields the aforementioned improvement
in the learning performance. Note also that a similar effect was already observed in
terms of the K-fold variance reduction in Example 6.1.

Moreover, in Chapter 13 we will also discuss the connections between the performance
of the individual agents in the network and the performance of an ideal centralized
system that has access to all observations. We will see that independence across the
agents and doubly stochastic matrices lead to an asymptotic equivalence of each agent
with the centralized system. However, if we remove these conditions the agents can
incur a performance loss with respect to the centralized system, and we will discuss an
alternative social learning strategy to address this issue.

Example 6.3 (Error exponents). Consider the same setup used in Example 6.1. We
want to specialize to this example the large deviation characterization provided by
Theorem 6.3. To this end, we proceed to evaluate the error exponents Ψ(θ) in (6.63).
They can be computed by exploiting the characterization available for the rate function
of Bernoulli variables from Example E.3, as we now illustrate.

From (6.50) we know that λk,t(θ) is equal to − log 2 − log qθ if xk,t = 0 and to
− log 2 − log(1 − qθ) if xk,t = 1, which is equivalent to the representation

λk,t(θ) = log 0.5
qθ

+ log qθ
1 − qθ

xk,t = aθ + bθ xk,t, (6.89)

where
aθ ≜ log 0.5

qθ
, bθ ≜ log qθ

1 − qθ
. (6.90)

Equation (6.89) reveals that λk,t(θ) is a shifted and scaled version of the Bernoulli
variable xk,t (which, in this example, has equiprobable outcomes 0 and 1 under the
true underlying model). From the definition of an LMGF, it is readily verified that if a
random variable x has LMGF Λ(s), then a shifted and scaled variable a+ bx has LMGF
equal to

as+ Λ(bs). (6.91)
Applying this property to (6.89), and denoting by ΛBer(s) the LMGF of the Bernoulli
variable xk,t (i.e., the LMGF from (E.45) with the choice p = 1/2), we get

Λk(s; θ) = aθs+ ΛBer(bθs). (6.92)

Since the observations are iid across the agents, for the evaluation of the network LMGF
Λnet(s; θ) we can appeal to (6.85), obtaining

Λnet(s; θ) = aθs+KΛBer(bθs/K). (6.93)

6.3. Large Deviations for Large t 141

From the definition of the Fenchel-Legendre transform, it is straightforward to verify that
if a function g(s) has Fenchel-Legendre transform g∗(y), the following three properties
hold, for any choice of the constants a ∈ R, b ̸= 0, and c > 0:

as+ g(s) → g∗(y − a), g(bs) → g∗(y/b), cg(s/c) → cg∗(y), (6.94)

where the arrow indicates application of the Fenchel-Legendre transform. Using these
three properties in (6.93), we obtain

Λ∗net(y; θ) = KΛ∗Ber

(
y − aθ
bθ

)
. (6.95)

Replacing Λ∗Ber with the expression for the rate function of a Bernoulli random variable
with equiprobable outcomes (i.e., Eq. (E.58) with probability p = 1/2), we obtain, for
the case bθ > 0,

Λ∗net(y; θ) =

KDb

(
y − aθ
bθ

∣∣∣∣∣
∣∣∣∣∣12
)

if aθ ≤ y ≤ aθ + bθ,

∞ otherwise,

(6.96)

and for the case bθ < 0,

Λ∗net(y; θ) =

KDb

(
y − aθ
bθ

∣∣∣∣∣
∣∣∣∣∣12
)

if aθ + bθ ≤ y ≤ aθ,

∞ otherwise.

(6.97)

In the last two equations, the notation Db(r′||r′′) is a shortcut for the KL divergence
(see Definition B.4) between the two binary pmfs [r′, 1 − r′] and [r′′, 1 − r′′], namely,

Db(r′||r′′) ≜ r′ log r′

r′′
+ (1 − r′) log 1 − r′

1 − r′′
. (6.98)

Using the definitions of aθ and bθ from (6.90) in (6.96) and (6.97), we get

Λ∗net(y; θ) =

KDb

(
y − log 0.5

qθ

log qθ
1−qθ

∣∣∣∣∣
∣∣∣∣∣12
)

if ymin ≤ y ≤ ymax,

∞ otherwise,

(6.99)

where
ymin = log 0.5

max(qθ, 1 − qθ)
, ymax = log 0.5

min(qθ, 1 − qθ)
. (6.100)

We can now compute the error exponent Ψ(θ) by evaluating the rate function Λ∗net(y; θ)
at y = 0, yielding

Ψ(θ) = KDb

(
log qθ

0.5
log qθ

1−qθ

∣∣∣∣∣
∣∣∣∣∣12
)
. (6.101)

With the choices in (6.49), from (6.101) we obtain the numerical values

Ψ(1) = 2 × 10−3, Ψ(2) = 2 × 10−3 (6.102)

142 Error Probability Performance

0 500 1000 1500 2000 2500 3000
t

10−4

10−3

10−2

10−1

100
p k
,t

markers: simulation
dashes: Gaussian approx.
line: large deviations

agent 1

agent 2

agent 5

agent 7

Figure 6.3: Error probability pk,t as a function of t, for k = 1, 2, 5, 7, in the setting of
Example 6.3. Markers refer to the empirical error probability estimated from 5000 Monte
Carlo runs. The dashed line refers to the theoretical error probability in (6.22) computed using
the Gaussian approximation in (6.104). The solid line refers to the function e−Ψt, with error
exponent Ψ predicted by the large deviation analysis in Theorem 6.3.

and the error exponent Ψ in (6.64) is thus

Ψ = min
θ∈{1,2}

Ψ(θ) = 2 × 10−3. (6.103)

In Figure 6.3 we display the error probability pk,t defined in (6.19), as a function of
t, for the agents listed in the legend. The markers in the figure represent probabilities
estimated empirically from 5000 Monte Carlo runs. The dashed line represents the error
probability curve computed by using the following Gaussian approximation for the scaled
log belief ratio:

β̄k,t(θ) ≈ G
(
λ̄net,

1
t

Σnet(θ, θ)
)
, (6.104)

which is obtained from Theorem 6.2. The solid line represents the function e−Ψt, where
Ψ is the error exponent provided by (6.103).

Figure 6.3 shows that, in the considered example, the Gaussian approximation can
be used to estimate the error probability with good accuracy in a certain range, say,
for 1500 < t < 3000. However, we know from Appendix E (see Example E.5) that the
Gaussian approximation does not offer theoretical convergence guarantees on the tails,
i.e., as the error probability decreases. On the other hand, the error exponent Ψ, while
not being useful to approximate the error probability curves, is guaranteed to provide
a faithful prediction of their exponential rate of decay, that is, of their slope (in the
considered logarithmic scale for the vertical axis).

Example 6.4 (Chernoff information). Consider the situation where: i) the observations
are statistically independent across the agents; ii) they follow the objective evidence
model (see Section 5.3) with a common underlying hypothesis ϑo; and iii) the combination
matrix is doubly stochastic.

Since the observations are independent across the agents and the matrix is doubly
stochastic (hence, its Perron vector has equal entries), to compute the LMGF of the

6.3. Large Deviations for Large t 143

network variable λnet,t(θ) we can use (6.84) to obtain

Λnet(s; θ) =
K∑
k=1

Λk(s/K; θ). (6.105)

In view of Theorem 6.3, the error exponent of the social learning strategy is given by

Λ∗net(0; θ) = − inf
s∈R

K∑
k=1

Λk(s/K; θ) = − inf
s∈R

K∑
k=1

Λk(s; θ). (6.106)

In view of the independence across the agents, and using (6.3) and (6.58), the last sum
in (6.106) can also be represented as

logE

[
K∏
k=1

exp
{
sλk,t(θ)

}]
= logE

[(∏K

k=1 ℓk(xk,t|ϑo)∏K

k=1 ℓk(xk,t|θ)

)s]
. (6.107)

Now, given a random vector z and two pdfs or pmfs f(z) and g(z), the quantity

C(f, g) ≜ − inf
s∈R

logE
[(

f(z)
g(z)

)s]
(6.108)

is referred to as the Chernoff information between f and g [44, 59, 60]. In view of
(6.107), the error exponent Λ∗net(0; θ) is the Chernoff information between the two pdfs
or pmfs

K∏
k=1

ℓk(xk,t|ϑo),
K∏
k=1

ℓk(xk,t|θ), (6.109)

defined over the aggregate of observations across the agents, namely, [x1,t,x2,t, . . . ,xK,t].
The Chernoff information is one fundamental quantity to characterize the performance
of optimal Bayesian hypothesis testing, originally used for the binary case [44], and
later for the multi-hypothesis case [107]. We will comment on these aspects more closely
when dealing with the comparison between social learning and Bayesian learning in
Section 13.1.

Chapter 7

Social Learning with Arithmetic Averaging

In this chapter we consider the social learning algorithm with arithmetic
averaging, reported in listing (3.24) and replicated here for ease of reference:

ψk,t(θ) ∝ µk,t−1(θ)ℓk(xk,t|θ), (7.1a)
µk,t(θ) =

∑
j∈Nk

ajkψj,t(θ). (7.1b)

Pooling the beliefs by means of an arithmetic average is perhaps the simplest
and most direct solution. Despite this simplicity, however, establishing the
convergence of the beliefs under arithmetic averaging is significantly more
challenging than it is under geometric averaging. This is because, under
geometric averaging, it is possible to reduce the analysis to the study of
log belief ratios that can be expressed in terms of sums of independent log
likelihood ratios. Due to this property, one can then appeal to the strong
law of large numbers to obtain convergence results under great generality —
see Theorem 5.1. As a matter of fact, in Chapter 5 we were able to examine
a number of useful cases, including continuous and discrete distributions,
connected and weak graphs, objective and subjective evidence, and the
presence of fake agents. In comparison, the available results on convergence
of the beliefs under arithmetic averaging are more limited, mostly focusing
on data belonging to discrete finite sets (in the forthcoming treatment
we remove this restriction), connected graphs, and the objective evidence
model.

146 Social Learning with Arithmetic Averaging

7.1 Modeling Assumptions

The convergence results in this chapter are stated under the objective
evidence model (Assumption 5.3), i.e., the observations xk,t are distributed
according to some true likelihood ℓk(x|ϑo), where ϑo ∈ Θ.

Recall that the index k appearing in the observation xk,t and the
likelihoods ℓk(x|ϑo) indicates that the network agents are allowed to be
heterogeneous. This heterogeneity affects the inferential capabilities of the
individual agents. For example, as was seen in Section 5.3, given a certain
hypothesis θ, agent k might not be able to distinguish θ from the true
hypothesis ϑo. This happens when agent k has the same model for θ and ϑo,
i.e., when D(ℓk,ϑo ||ℓk,θ) = 0. In this case, we say that θ is indistinguishable
from ϑo by agent k. More generally, we define the set of indistinguishable
hypotheses (which we will refer to, for brevity, as indistinguishable set) for
each agent k as

Ik ≜
{
θ ∈ Θ\{ϑo} such that D(ℓk,ϑo ||ℓk,θ) = 0

}
. (7.2)

We also define the set of distinguishable hypotheses (referred to as distin-
guishable set) for agent k as

Dk ≜ Θ\
(
Ik ∪ {ϑo}

)
. (7.3)

As was done in Section 5.3, to enable all agents to learn the truth we
require the global identifiability condition formulated in Assumption 5.4.
That is, we assume that for each θ ̸= ϑo, there exists at least one agent
that is able to distinguish θ from ϑo.

Before establishing the convergence result, we introduce the following
assumption, which excludes the case where the true likelihood ℓk(x|ϑo) can
be constructed as a convex combination of the distinguishable likelihoods
ℓk(x|θ) for θ ∈ Dk.

Assumption 7.1 (Convex independent likelihoods). For each agent k whose
distinguishable set Dk is nonempty, the true likelihood ℓk,ϑo is not a convex
combination of the likelihoods {ℓk,θ}θ∈Dk of the distinguishable hypotheses. This
means that for all convex combination weights {q(θ)}θ∈Dk (i.e., nonnegative
weights such that

∑
θ∈Dk

q(θ) = 1), we have

ℓk,ϑo ̸=
∑
θ∈Dk

q(θ)ℓk,θ. (7.4)

7.2. Belief Convergence 147

Assumption 7.1 is a sufficient condition that is useful to prove our
results. It is typically satisfied when the agents employ parametric families
of likelihoods, where different hypotheses are identified by different values of
the parameters. For example, in a Gaussian, exponential, or binomial family
it is not possible to represent one likelihood as the convex combination of
other likelihoods within the same family.

Thus, when the likelihoods belong to some structured parametric family,
Assumption 7.1 is typically satisfied. We now show that it can be satisfied
also in the somehow opposite case where the likelihoods are chosen in an
unstructured manner. Specifically, let Xk be a discrete finite set, and recall
that a probability mass function on Xk is a point lying in the probability
simplex ∆|Xk|. Assume that the likelihoods are picked uniformly at random
from the probability simplex. Then, when the cardinality of Xk is larger
than the cardinality of the distinguishable set Dk, the probability of picking
a set of likelihoods that violate Assumption 7.1 is zero. This is because:
i) the dimension of the probability simplex is d′ = |Xk| − 1, whereas the
dimension of the convex hull generated by |Dk| likelihoods is at most
d′′ = |Dk| − 1 < d′; and ii) if we pick some points uniformly at random
from a continuous space of dimension d′, the probability that they lie in a
given space of dimension d′′ < d′ is zero.

The next example shows one case where Assumption 7.1 is violated.

Example 7.1 (Discrete observation space with two elements). Consider a discrete
observation space Xk = {a, b}. For each θ ∈ Θ, the pmf

ℓk,θ = [ℓk(a|θ), ℓk(b|θ)] (7.5)

can be represented by a point (p1, p2) ∈ R2 — see Figure 7.1. More specifically, ℓk,θ
lies in ∆2, the probability simplex in R2, which is a line segment. Consider now three
hypotheses, θ1, θ2, θ3, for which agent k has three distinct likelihoods. It follows that one
of them must necessarily lie in between the other two likelihoods, as shown in Figure 7.1.
Referring to this figure, when ϑo = θ3 condition (7.4) would be violated.

7.2 Belief Convergence

For observations modeled as discrete random variables with finite support,
truth learning under arithmetic averaging is established in [131, Thm. 5],
without requiring Assumption 7.1. By introducing Assumption 7.1, in
the next theorem we are able to cover also the cases of discrete random

148 Social Learning with Arithmetic Averaging

<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0
<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="qYPpeST/PffZuvza/umCdzjiS5M=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBg5SkFPUkBS8eK9gPaELYbKft0s0HuxOlxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0gEV2jb30ZhbX1jc6u4XdrZ3ds/MMuHbRWnkkGLxSKW3YAqEDyCFnIU0E0k0DAQ0AnGNzO/8wBS8Ti6x0kCXkiHER9wRlFLvll2QQg/G5+7OAKkfm3qmxW7as9hrRInJxWSo+mbX24/ZmkIETJBleo5doJeRiVyJmBaclMFCWVjOoSephENQXnZ/PSpdaqVvjWIpa4Irbn6eyKjoVKTMNCdIcWRWvZm4n9eL8XBlZfxKEkRIrZYNEiFhbE1y8HqcwkMxUQTyiTXt1psRCVlqNMq6RCc5ZdXSbtWdS6q9bt6pXGdx1Ekx+SEnBGHXJIGuSVN0iKMPJJn8krejCfjxXg3PhatBSOfOSJ/YHz+ABf/k+Q=</latexit>

`k,✓2

<latexit sha1_base64="krpkM0c8CH9VwEXhC6j93PFXOMw=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4kJJIUU9S8OKxgv2AJoTNdtIu3XywO1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglRwhbb9baysrq1vbJa2yts7u3v7ZuWgrZJMMmixRCSyG1AFgsfQQo4CuqkEGgUCOsHoZup3HkAqnsT3OE7Bi+gg5iFnFLXkmxUXhPDz0ZmLQ0DqOxPfrNo1ewZrmTgFqZICTd/8cvsJyyKIkQmqVM+xU/RyKpEzAZOymylIKRvRAfQ0jWkEystnp0+sE630rTCRumK0ZurviZxGSo2jQHdGFIdq0ZuK/3m9DMMrL+dxmiHEbL4ozISFiTXNwepzCQzFWBPKJNe3WmxIJWWo0yrrEJzFl5dJ+7zmXNTqd/Vq47qIo0SOyDE5JQ65JA1yS5qkRRh5JM/klbwZT8aL8W58zFtXjGLmkPyB8fkDFnqT4w==</latexit>

`k,✓1

<latexit sha1_base64="zEqLMybEpk7nopBJ9QoU51vvgUA=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBg5REi3qSghePFewHNCFsttN26eaD3YlSYn+KFw+KePWXePPfuG1z0NYHA4/3ZpiZFySCK7Ttb6Owsrq2vlHcLG1t7+zumeX9lopTyaDJYhHLTkAVCB5BEzkK6CQSaBgIaAejm6nffgCpeBzd4zgBL6SDiPc5o6gl3yy7IISfjU5dHAJS/3zimxW7as9gLRMnJxWSo+GbX24vZmkIETJBleo6doJeRiVyJmBSclMFCWUjOoCuphENQXnZ7PSJdayVntWPpa4IrZn6eyKjoVLjMNCdIcWhWvSm4n9eN8X+lZfxKEkRIjZf1E+FhbE1zcHqcQkMxVgTyiTXt1psSCVlqNMq6RCcxZeXSeus6lxUa3e1Sv06j6NIDskROSEOuSR1cksapEkYeSTP5JW8GU/Gi/FufMxbC0Y+c0D+wPj8ARmEk+U=</latexit>

`k,✓3

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="nt8MdY5JaS3KnBdcSU+WP/7kPmo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD0nf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHqX1dp9rVK/yeMowgmcwjl4cAV1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8BOo2d</latexit>p1

<latexit sha1_base64="Qnjrl9/4PbKS422eDCiTEfACZCQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUU9S8OKxoq2FNpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG00n3Sr/XLFbfqzkFWiZeTCuRo9stfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDKz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZfXiXtWtW7qNbv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8AAr6Nng==</latexit>p2

Figure 7.1: Illustration for Example 7.1.

variables with infinite support and of continuous random variables. For
discrete random variables with finite support, the proof of the theorem
below constitutes an alternative (perhaps simpler) proof with respect to
the one offered in [131], albeit at the expense of introducing an additional
assumption.

Theorem 7.1 (Belief convergence). Let Assumptions 5.1, 5.3, 5.4, and 7.1 be
satisfied. If the network graph is connected, then for k = 1, 2, . . . ,K,

µk,t(ϑ
o) a.s.−−−→

t→∞
1. (7.6)

Before presenting the proof of Theorem 7.1, we introduce some relevant
intermediate results. We start by defining the following quantity for any
convex combination vector q ∈ ∆H :

dk(q) ≜ E log ℓk(xk,t|ϑo)∑
θ∈Θ

q(θ)ℓk(xk,t|θ)
, (7.7)

which is a KL divergence because i) the denominator is a pdf (or pmf) as
it is a convex combination of pdfs (or pmfs); and ii) under Assumption 5.3,
the expectation is computed considering the true likelihood ℓk(x|ϑo). Fur-
thermore, given the underlying probability space (Ω,F ,P), we introduce
the filtration (see Definition D.5) generated by the belief vectors of all
agents, namely, the sequence of sub-σ-fields

Ft ≜ σ
(
{µk,0}Kk=1, {µk,1}Kk=1, . . . , {µk,t}Kk=1

)
, t = 0, 1, . . . (7.8)

7.2. Belief Convergence 149

Note that F0 = σ
(
{µk,0}Kk=1

)
= {∅,Ω} is the trivial σ-field, since we are

modeling the initial beliefs as deterministic.
Before proceeding with the analysis, it is important to remark that, as

was the case for geometric averaging, even under arithmetic averaging the
beliefs ψk,t(θ) and µk,t(θ) remain nonzero almost surely if Assumptions 5.1
and 5.2 are satisfied. In fact, we have already observed (see the discussion
before Theorem 5.1) that under Assumption 5.2 the likelihoods are almost-
surely positive, implying that i) the denominator in the Bayesian update
step (7.1a) is almost-surely positive; and ii) starting from a belief µk,t−1(θ)
that is nonzero at any θ, the intermediate belief ψk,t(θ) in (7.1a) is nonzero.
Now, since in view of point i) of Assumption 5.1 the combination matrix is
left stochastic, for each agent k there exists at least one agent j such that
ajk > 0 (see Definition 4.10). Thus, Eq. (7.1b) implies that µk,t(θ) > 0.
Moreover, since from point ii) in Assumption 5.1 the initial beliefs µk,0(θ)
are nonzero, positivity of the beliefs ψk,t(θ) and µk,t(θ) extends to all t by
induction. The aforementioned properties will be useful in the following
development, where we will work with log beliefs such as logµk,t(ϑo). Since
the beliefs are nonzero almost surely, the random variable logµk,t(ϑo) is
well-posed. Moreover, since belief vectors are probability vectors, we also
have µk,t(ϑo) < 1, which implies that logµk,t(ϑo) is a negative random
variable (recall that when we say that a random variable is negative we
mean that it is smaller than 0 almost surely).

Lemma 7.1 (Useful submartingale). Let Assumptions 5.1 and 5.3 be satisfied.
Assume that the network graph is connected, let v be the Perron vector associated
with the combination matrix A, and define the random variables, for t = 0, 1, . . .,

mt ≜
K∑
k=1

vk logµk,t(ϑ
o). (7.9)

Then the following properties hold:
i) For t = 1, 2, . . .,

E [mt|Ft−1] ≥ mt−1 +
K∑
k=1

vkdk(µk,t−1). (7.10)

ii) The sequence {mt}∞t=0 is a negative submartingale (see Definition D.6)
with respect to the filtration {Ft}∞t=0 in (7.8), and there exists a random
variable m∞ such that

mt
a.s.−−−→
t→∞

m∞. (7.11)

iii) The sequence of expected values Emt has a finite limit.

150 Social Learning with Arithmetic Averaging

Proof. Taking the logarithm of (7.1b), we can write

logµk,t(ϑ
o) = log

(∑
j∈Nk

ajkψj,t(ϑ
o)

)

(a)= log

∑
j∈Nk

ajk
µj,t−1(ϑo)ℓj(xj,t|ϑo)∑
θ∈Θ

µj,t−1(θ)ℓj(xj,t|θ)

(b)
≥
∑
j∈Nk

ajk log

 µj,t−1(ϑo)ℓj(xj,t|ϑo)∑
θ∈Θ

µj,t−1(θ)ℓj(xj,t|θ)

=
∑
j∈Nk

ajk logµj,t−1(ϑo) +
∑
j∈Nk

ajk log

 ℓj(xj,t|ϑo)∑
θ∈Θ

µj,t−1(θ)ℓj(xj,t|θ)

 , (7.12)

where in (a) we used (7.1a) and in (b) we used Jensen’s inequality (see Theorem C.5 and
in particular (C.10)) in view of the concavity of the logarithm. Taking the expectation
of the LHS and RHS of (7.12) conditioned on Ft−1 yields, for t = 1, 2, . . . ,

E
[
logµk,t(ϑ

o)|Ft−1
]

≥
∑
j∈Nk

ajk logµj,t−1(ϑo)

+
∑
j∈Nk

ajkE

log

 ℓj(xj,t|ϑo)∑
θ∈Θ

µj,t−1(θ)ℓj(xj,t|θ)

∣∣∣∣∣Ft−1

 . (7.13)

Assumption 5.3 implies that the observations at time t are independent of the past
observations, and, hence, of the previous-lag belief vector µj,t−1. Moreover, once we
condition on the filtration Ft−1, the random vector µj,t−1 is frozen. As a result, the
expectation on the second term on the RHS of (7.13) corresponds to a KL divergence
between the true likelihood ℓj,ϑo and a mixture of likelihoods

∑
θ∈Θ µj,t−1(θ)ℓj,θ. In

other words, using definition (7.7), the second term on the RHS of (7.13) can be
represented as ∑

j∈Nk

ajkdj(µj,t−1). (7.14)

In view of the definition of Nk from (4.1) and using (7.14), we can rewrite (7.13) as

E
[
logµk,t(ϑ

o)|Ft−1
]

≥
K∑
j=1

ajk logµj,t−1(ϑo) +
K∑
j=1

ajkdj(µj,t−1). (7.15)

Since the combination matrix A is left stochastic (see part i) of Assumption 5.1) and the
network graph is assumed to be connected, it follows from Definition 4.6 and Lemma 4.3
that A is an irreducible matrix with spectral radius ρ(A) = 1. From the Perron-Frobenius
theorem (Theorem 4.1) it follows that we can define the Perron vector v, which, we
recall, has positive entries and satisfies the relation

Av = v. (7.16)

7.2. Belief Convergence 151

Expanding this equation in terms of the individual entries of Av and v, we get

K∑
k=1

ajkvk = vj , j = 1, 2, . . . ,K. (7.17)

Multiplying both sides of (7.15) by vk, summing over k, and using (7.17) yields (7.10),
which proves part i) of the lemma.

To prove part ii), observe that the nonnegativity of the KL divergence implies
dk(µk,t−1) ≥ 0; it then follows from part i) that

E [mt|Ft−1] ≥ mt−1. (7.18)

Note that mt is a negative random variable since the entries of the Perron vector are
positive and all the beliefs are almost surely strictly less than 1 — see the discussion
before the statement of the theorem. Taking the expectation of both sides of (7.18), we
can write

0 > Emt ≥ Emt−1 ≥ · · · ≥ m0, (7.19)

which implies that mt has finite mean for t = 0, 1, . . . (note that m0 is finite since
the initial beliefs are nonzero in view of point ii) in Assumption 5.1). Therefore, in
view of (7.18), we conclude that the sequence {mt}∞t=0 is a negative submartingale (see
Definition D.6). Then part ii) follows from the martingale convergence theorem — see
in particular Corollary D.1. Finally, part iii) follows from (7.19), which implies that
the sequence of expectations is a convergent sequence (since it is nondecreasing and
bounded from above).

■

Lemma 7.2 (All agents discard the distinguishable hypotheses). Let Assump-
tions 5.1, 5.3, and 7.1 be satisfied, and assume that the network graph is
connected, with a combination matrix A having Perron vector v. Then, for
k = 1, 2, . . . ,K and for all θ ∈ Dk,

µk,t(θ)
p−−−→

t→∞
0. (7.20)

Proof. Under the considered assumptions, we can use the results from Lemma 7.1.
Taking the expectation in (7.10), we get

Emt ≥ Emt−1 +
K∑
k=1

vkEdk(µk,t−1). (7.21)

Using (7.21) along with the fact that the KL divergence is nonnegative, we see that

0 ≤
K∑
k=1

vkEdk(µk,t−1) ≤ Emt − Emt−1, (7.22)

152 Social Learning with Arithmetic Averaging

which, in view of part ii) of Lemma 7.1, implies that the RHS of (7.22) converges to 0.
Therefore, we can apply the squeeze (or sandwich) theorem [144, Thm. 3.19] to (7.22),
obtaining

lim
t→∞

K∑
k=1

vkEdk(µk,t−1) = 0. (7.23)

Since vk > 0 for all k and dk(µk,t−1) is a nonnegative random variable, it follows that

lim
t→∞

Edk(µk,t−1) = 0, (7.24)

which means that dk(µk,t−1) converges to 0 in the 1st mean, i.e., in the L1 norm —
see Definition D.3. In view of (D.17), this implies that dk(µk,t−1) converges to 0 in
probability, namely,

dk(µk,t−1) p−−−→
t→∞

0 (7.25)

for k = 1, 2, . . . ,K. Using Pinsker’s inequality (Theorem C.7) we can lower bound the
KL divergence dk(µk,t−1) and write

dk(µk,t−1) ≥ 1
2D

2
TV

(
ℓk,ϑo ,

∑
θ∈Θ

µk,t−1(θ)ℓk,θ

)
, (7.26)

where the symbol DTV denotes the total variation distance, whose expression is provided
in Definition C.1.

Consider now an agent k for which |Dk| > 0. Letting

q(θ) =
µk,t−1(θ)∑

θ′∈Dk

µk,t−1(θ′)
, θ ∈ Dk, (7.27)

we can write

ℓk(xk,t|ϑo) −
∑
θ∈Θ

µk,i−1(θ)ℓk(xk,t|θ)

=

(
1 −

∑
θ∈Ik∪{ϑo}

µk,i−1(θ)

)
ℓk(xk,t|ϑo) −

∑
θ∈Dk

µk,i−1(θ)ℓk(xk,t|θ)

=

(
ℓk(xk,t|ϑo) −

∑
θ∈Dk

q(θ)ℓk(xk,t|θ)

) ∑
θ′∈Dk

µk,i−1(θ′), (7.28)

which, in view of the formulas for the total variation distance in Definition C.1, implies

DTV

(
ℓk,ϑo ,

∑
θ∈Θ

µk,t−1(θ)ℓk,θ

)

=

∣∣∣∣∣ ∑
θ∈Dk

µk,t−1(θ)

∣∣∣∣∣×DTV

(
ℓk,ϑo ,

∑
θ∈Dk

q(θ)ℓk,θ

)
. (7.29)

We now show that the total variation distance appearing on the RHS is lower bounded
by a strictly positive value dmin. Let w be a vector belonging to the probability simplex

7.2. Belief Convergence 153

∆|Dk|. Denote the entries of w by w(θ), for θ ∈ Dk, and consider the total variation
distance

DTV

(
ℓk,ϑo ,

∑
θ∈Dk

w(θ)ℓk,θ

)
= g(w) (7.30)

regarded as a function of w. It is readily verified that g(w) is continuous with respect to
w. We want to characterize the infimum of g(w) over ∆Dk . Since the probability simplex
is a compact set (i.e., it is closed and bounded), from the extreme value theorem [144],
the infimum of g(w) over ∆Dk is in fact a minimum that is attained at some point(s) of
the set. Denoting by dmin this minimum, we must have g(w) = dmin for some w ∈ Dk.
Since the total variation distance is nonnegative, dmin ≥ 0. Now, if dmin = 0, then the total
variation in (7.30) would be equal to 0 for some w ∈ Dk. This would mean ℓk,ϑo could be
written as a convex combination of the likelihoods {ℓk,θ}θ∈Dk , violating Assumption 7.1.
We conclude that dmin > 0.

In summary, we have shown that g(w) ≥ dmin > 0 for all w ∈ Dk. As a result, the
total variation distance appearing on the RHS of (7.29) can be lower bounded as follows:

DTV

(
ℓk,ϑo ,

∑
θ∈Dk

q(θ)ℓk,θ

)
≥ dmin > 0. (7.31)

Combining (7.26), (7.29), and (7.31), we obtain

dk(µk,t−1) ≥ d2
min
2

∣∣∣∣∣∑
θ∈Dk

µk,t−1(θ)

∣∣∣∣∣
2

. (7.32)

Since dmin is positive, we conclude from (7.25) that, for k = 1, 2, . . . ,K and for all
θ ∈ Dk,

µk,t(θ)
p−−−→

t→∞
0. (7.33)

■

Lemma 7.3 (All agents learn the truth in probability). Let Assumptions 5.1,
5.3, 5.4, and 7.1 be satisfied. If the network graph is connected, then for k =
1, 2, . . . ,K,

µk,t(ϑ
o) p−−−→

t→∞
1, (7.34)

where we remark that the convergence holds in probability (while in Theorem 7.1
we strengthen this result by proving almost-sure convergence).

Proof. We start by showing that, for an agent k and a hypothesis θ, we have

µk,t(θ)
p−−−→

t→∞
0, (7.35)

then the same result holds for all other agents in the network.
Using (7.1b), under condition (7.35) we can write

µk,t(θ) =
∑
j∈Nk

ajkψj,t(θ)
p−−−→

t→∞
0. (7.36)

154 Social Learning with Arithmetic Averaging

Now, let 0 < ε < 1. Since ajk > 0 for j ∈ Nk, and since ψj,t(θ) is nonnegative, then for
all j ∈ Nk the following implication holds:

ajkψj,t(θ) > ε =⇒
∑
j∈Nk

ajkψj,t(θ) > ε. (7.37)

This further implies that

P
[
ajkψj,t(θ) > ε

]
≤ P

[∑
j∈Nk

ajkψj,t(θ) > ε

]
(7.38)

for all j ∈ Nk, and using (7.36) in (7.38) we conclude that

ψj,t(θ)
p−−−→

t→∞
0. (7.39)

Now we would like to show that the convergence result in (7.39) holds for µj,t(θ) as
well. Actually, we would not need to prove this result when θ ∈ Dj , since in this case
we already know from Lemma 7.2 that µj,t(θ) converges to 0 in probability. However,
the following derivation holds for any θ. In view of (7.1a), the belief µj,t−1(θ) can be
represented as

µj,t−1(θ) = ψj,t(θ)
∑
θ′∈Θ

µj,t−1(θ′) ℓj(xj,t|θ
′)

ℓj(xj,t|θ)

≤ ψj,t(θ)
∑
θ′∈Θ

ℓj(xj,t|θ′)
ℓj(xj,t|θ)

. (7.40)

Observe that the random variable defined by the sum in (7.40) has constant distribution
over time, and that ψj,t(θ) vanishes in probability in view of (7.39). Therefore, we can
apply Slutsky’s theorem (in particular, Eq. (D.38) in Theorem D.4) to the RHS of (7.40),
concluding that µj,t(θ)

p−−−→
t→∞

0 for all j ∈ Nk.
In summary, we have shown that the following implication holds

µk,t(θ)
p−−−→

t→∞
0 =⇒ µj,t(θ)

p−−−→
t→∞

0 ∀j ∈ Nk. (7.41)

Consider now the neighbors j′ ∈ Nj of an agent j ∈ Nk. Repeating the same steps used
to prove the implication in (7.41), we get

µj,t(θ)
p−−−→

t→∞
0 =⇒ µj′,t(θ)

p−−−→
t→∞

0 ∀j′ ∈ Nj . (7.42)

Since the network graph is assumed to be connected, we can repeat this process so as to
reach all agents in the network, finally establishing that

if µk,t(θ)
p−−−→

t→∞
0 for an agent k, then µj,t(θ)

p−−−→
t→∞

0 for j = 1, 2, . . . ,K. (7.43)

Let us now consider an agent k for which Dk is nonempty. Such an agent must necessarily
exist in view of Assumption 5.4. From Lemma 7.2 we know that

µk,t(θ)
p−−−→

t→∞
0 ∀θ ∈ Dk. (7.44)

7.2. Belief Convergence 155

In view of (7.43), this implies that µj,t(θ)
p−−−→

t→∞
0 for j = 1, 2, . . . ,K and for all θ ∈ Dk.

Repeating the above argument for all agents with nonempty distinguishable set Dk, we
have that

µj,t(θ)
p−−−→

t→∞
0 (7.45)

for j = 1, 2, . . . ,K and for all θ ∈
⋃K

k=1 Dk. Since Assumption 5.4 imposes that all
hypotheses θ ≠ ϑo are distinguishable for at least one agent, it follows that

⋃K

k=1 Dk =
Θ\{ϑo}, which, in view of (7.45), means that, for all agents, the beliefs about the false
hypotheses vanish in probability. Therefore, all agents learn the truth in probability,
and the proof is complete.

■

Proof of Theorem 7.1. Lemma 7.3 ensures that the whole network learns the truth in
probability. Therefore, we have that

K∑
k=1

vk logµk,t(ϑ
o) p−−−→

t→∞
0. (7.46)

Using part ii) of Lemma 7.1, and since almost-sure convergence implies convergence in
probability, we have that

K∑
k=1

vk logµk,t(ϑ
o) a.s.−−−→

t→∞
0. (7.47)

Since vk > 0 and logµk,t(ϑo) < 0, it follows that

logµk,t(ϑ
o) a.s.−−−→

t→∞
0, (7.48)

which is equivalent to
µk,t(ϑ

o) a.s.−−−→
t→∞

1, (7.49)

and the proof of Theorem 7.1 is complete.
■

To illustrate the result of Theorem 7.1, we introduce the following
example.

Example 7.2 (Truth learning under arithmetic averaging). We consider the same setting
used in Example 5.4, which is now briefly summarized. The network graph is reported in
Figure 7.2 (it is undirected and all agents are assumed to have a self-loop, not shown in
the figure). On top of this graph, a combination matrix is built by using the Metropolis
combination rule — see Table 4.1.

The agents have common likelihood models, i.e., ℓk(x|θ) = ℓ(x|θ) for all k, and ℓ(x|θ)
is a unit-variance Gaussian pdf with mean νθ = θ, for θ ∈ Θ = {1, 2, 3} — see the top
right panel of Figure 7.2. The network operates under the objective evidence model
(Assumption 5.3), with the true underlying hypothesis being ϑo = 1.

156 Social Learning with Arithmetic Averaging

1

2

3

4

5
6

7

8

9

10
11

12

−2 −1 0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

`(
x
|θ)

0 10 20 30 40

t

0.0

0.5

1.0

µ
1
,t
(θ

)

θ = 1 θ = 2 θ = 3

0 10 20 30 40

t

0.0

0.5

1.0
µ

5
,t
(θ

)

0 10 20 30 40

t

0.0

0.5

1.0

µ
9
,t
(θ

)
Figure 7.2: (Top left) Network topology used in Example 7.2. The graph is undirected and all
agents are assumed to have a self-loop, not shown in the figure. (Top right) Likelihood models.
(Bottom) Belief evolution over 40 iterations for agents 1, 5, and 9. We see that, as t grows, the
agents place their full belief mass on the true hypothesis ϑo = 1.

While in Example 5.4 the agents used geometric averaging, in the present example
they implement the social learning strategy with arithmetic averaging seen in (7.1a) and
(7.1b).

In the bottom panels of Figure 7.2, we plot the belief evolution for agents 1, 5, and 9
over 40 iterations. We see that all agents agree asymptotically on the true hypothesis
ϑo, as predicted by Theorem 7.1.

Chapter 8

Adaptive Social Learning

We have seen in Chapter 5 that, as the amount of streaming data grows,
the belief vector converges to an ideal belief vector that places unit mass on
the true hypothesis (or on the hypothesis corresponding to the minimizer
of the network average of KL divergences). In other words, if the amount of
streaming data is sufficiently large, maximum credibility is assigned to the
target hypothesis whereas no credibility is assigned to other hypotheses.
Remarkably, the learning performance continues to improve steadily as
more evidence is collected, and we know from (5.9) that the convergence to
the ideal belief is exponentially fast. Such continuous improvement has a
subtle and often overlooked effect of making the agents stubborn and unable
to react quickly enough to drifts in the underlying operational conditions
(such as a changing target hypothesis). This is a serious limitation, both
from design and behavioral perspectives. From the design viewpoint, there
are several applications where adaptation is a critical requirement for
the deployment of learning systems in highly dynamic and uncertain
environments. From the behavioral viewpoint, we would like the social
learning models to capture the cognitive abilities of groups of animals or
humans, who tend to adapt well to changing conditions.

8.1 Stubbornness of Agents

Let us illustrate the slow reaction time to drifts in the environment by
applying the social learning algorithm (3.16) to a problem involving weather
forecasting, with three possible hypotheses: sunny, cloudy, and rainy.

Consider 10 agents linked by a connected graph and assume that the
streaming observations collected by the agents drive them to believe that

158 Adaptive Social Learning

0 200 600

weather
state

sunny rainy

0 100 200 300 400 500 600

time

0.00

0.25

0.50

0.75

1.00

belief
of agent 1

sunny cloudy rainy

0 337 560 600

decision
of agent 1 sunny cloudy rainy

Figure 8.1: Traditional social learning strategy — see listing (3.16). (Top) Evolution of the
weather state. The state drifts at time 200 from “sunny” to “rainy”. (Center) Belief evolution
for agent 1. (Bottom) The instantaneous decision of agent 1, taken by choosing the hypothesis
that maximizes the belief at the current instant. We see that traditional social learning is not
able to adapt to the new state of nature: It takes until about time 580 to correctly identify the
“rainy” state (blue), after having assigned for a long intermediate period maximal belief to a
wrong state, namely, the “cloudy” state (green).

“tomorrow will be sunny.” In this way, their belief vectors will converge to
place maximal mass on the state corresponding to sunny weather. After
some time, the observations available for the decision evolve in response
to changes in meteorological conditions, with the most recent evidence
suggesting that “tomorrow will be rainy.” In this case, the agents will
unfortunately show some significant inertia to changing their beliefs to
place maximal mass on the state corresponding to rainy weather.

This effect is illustrated in Figure 8.1, where we display the time
evolution of the true1 state (top), the beliefs of agent 1 (center), and its
decisions (bottom). Similar behavior can be observed for the other agents.
In line with the evidence suggested by the initial set of data, the belief

1To avoid confusion, note that in a weather forecasting problem, data are collected at a
certain time instant to predict the weather state relative to a future time instant, e.g., one day
ahead. Accordingly, when we say that the true state changes from sunny to rainy at time t,
we do not mean that it is actually starting to rain at time t. We mean instead that the data
collected at time t are compatible with the statistical model corresponding to rainy weather,
rather than sunny weather.

8.2. Adaptive Update 159

mass assigned to the hypothesis “sunny” (see the yellow curve) becomes
close to 1 after a few iterations, i.e., the network arrives quickly at the
correct determination about the state of nature.

The state of nature changes to rainy at instant t = 200, but a long
time passes before the agent perceives the drift. The belief starts to change
only at t ≈ 350, when, however, the agent still does not detect the true
state. Indeed, it first transitions to believing that it is cloudy (green curve)
before switching to believing that it is rainy (blue curve) many iterations
later, at t ≈ 580. This example shows that, under the traditional social
learning strategy (3.16), the agents are not able to react sufficiently fast
and to adapt their beliefs to track drifts in the environment. While they
are able to learn very well until the change, they show a delayed reaction
after the change, needing many iterations to overcome their stubbornness
and opt for the correct hypothesis.

8.2 Adaptive Update

In order to instill adaptation into the social learning algorithm, we must
make it more reactive to the incoming data and less dependent on the
past beliefs. Referring back to the general scheme for non-Bayesian social
learning in Figure 3.3, the step where the algorithm blends past and new
information is the update step. We recall that the goal of this step, for
each agent k at time t, is to modify the past belief vector µk,t−1 into an
intermediate belief vector ψk,t by incorporating the likelihood ℓk(xk,t|θ)
of the new data sample xk,t. For this task, the traditional social learning
algorithm (3.16) relies on a Bayesian update with prior µk,t−1 and likelihood
ℓk(xk,t|θ), namely,

ψk,t(θ) = µBu
k,t(θ) ≜

µk,t−1(θ)ℓk(xk,t|θ)∑
θ′∈Θ

µk,t−1(θ′)ℓk(xk,t|θ′)
. (8.1)

We illustrated in Figure 8.1 that this learning approach infuses some
stubbornness into the behavior of the agents. Therefore, to construct an
adaptive social learning algorithm, we now focus on modifying the update
rule (8.1) by adjusting the computation of the intermediate belief vector
ψk,t.

To this end, we will make use of another belief vector similar to the one

160 Adaptive Social Learning

introduced in (2.67), namely,

µlik
k,t(θ) ≜

ℓk(xk,t|θ)∑
θ′∈Θ

ℓk(xk,t|θ′)
. (8.2)

We referred to this belief as the “likelihood” posterior since it basically
turns the likelihood into a belief by suitable normalization. Note that the
belief vector µlik

k,t corresponds to a Bayesian update similar to (8.1), albeit
obtained with a uniform prior that gives equal preference to all hypotheses
(i.e., by replacing µk,t−1(θ) in (8.1) with 1/H). Comparing (8.2) with (8.1),
we see that (8.2) ignores the past belief and relies solely on the new data.
This property of µlik

k,t will be exploited in the next sections to construct a
social learning strategy that is more reactive to new data.

In this construction, we will follow the approach used in Section 2.3,
where we showed that the Bayesian posterior is the minimizer of cost
functions based on information-theoretic measures. The new update rule
will rely on suitable modifications of these cost functions, which infuse the
learning algorithm with an adaptation capability. In particular, we will
propose two approaches and interpretations, which will lead to the same
adaptive rule.

8.2.1 Adaptive Update: First Approach

In traditional social learning, the intermediate belief vector ψk,t is obtained
through a Bayesian update, i.e., it is computed using (8.1). As a result,
ψk,t is obviously the solution to the optimization problem

ψk,t = µBu
k,t = arg min

p∈∆H

D
(
p∥µBu

k,t

)
. (8.3)

One way to induce faster reaction to new data is to modify this construction
by combining two different KL divergences: One divergence is based on
the Bayesian update µBu

k,t (which accounts for past information through
the past belief vector µk,t−1, and for new data through the likelihood) and
another divergence is based on the “likelihood” posterior µlik

k,t (which, as
already mentioned, employs only new data). Specifically, we now seek to
construct ψk,t by considering instead

ψk,t ≜ arg min
p∈∆H

{
(1− δ)D

(
p||µBu

k,t

)
+ δD

(
p||µlik

k,t

)}
, (8.4)

where 0 < δ < 1 is a weight used to tune the degree of adaptation of the
resulting update rule. We see from (8.4) that, when δ → 0, we recover the

8.2. Adaptive Update 161

Bayesian update (8.3). In comparison, as δ moves away from zero, the role
of D(p||µlik

k,t) is magnified. This is one way to promote adaptation by giving
more relevance to new evidence and depressing the convictions arising
from the past. The extreme case δ = 1 would correspond to ψk,t = µlik

k,t,
i.e., to a social learning algorithm that throws away the past information
at each time instant. Such algorithm would push adaptation to the limit,
in the sense that the beliefs at time t would depend only on the data
observed at time t, without exploiting more fully the information collected
over previous time instants. In the next section we will comment more
closely on the choice of δ and its impact on the trade-off between learning
performance and adaptation capacity.

It is possible to solve (8.4) and obtain a closed-form expression for the
intermediate belief vector. Indeed, through straightforward manipulations
we can write

(1− δ)D(p||µBu
k,t) + δD(p||µlik

k,t)

= (1− δ)
∑
θ∈Θ

p(θ) log p(θ)
µk,t−1ℓ(xk,t|θ)

+ δ
∑
θ∈Θ

p(θ) log p(θ)
ℓ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log
(

p(θ)
µk,t−1ℓ(xk,t|θ)

)1−δ

+
∑
θ∈Θ

p(θ) log
(

p(θ)
ℓ(xk,t|θ)

)δ
+ const.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1ℓ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1(θ)ℓ(xk,t|θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)ℓ(xk,t|θ′)︸ ︷︷ ︸

KL divergence

+ const. (8.5)

The constant terms collect quantities that do not depend on p. According
to (8.5), we can nullify the final KL divergence and, hence, minimize the
cost function in (8.4), with the unique choice

ψk,t(θ) =
µ1−δ
k,t−1(θ)ℓ(xk,t|θ)∑

θ′∈Θ µ
1−δ
k,t−1(θ′)ℓ(xk,t|θ′)

. (8.6)

162 Adaptive Social Learning

Compared with (8.1), we now see that the past belief µk,t−1(θ) is raised to
the power 1− δ.

8.2.2 Adaptive Update: Second Approach

We can motivate the same construction (8.6) by following an alternative
argument. Referring back to (2.72), we know that the Bayesian update
(8.1) for the intermediate belief is also the result of solving the following
optimization problem

ψk,t = µBu
k,t = arg min

p∈∆H

{
H(p, µk,t−1) +D(p||µlik

k,t)
}

(8.7)

formulated in terms of: i) the cross-entropy H(p, µk,t−1) between the
candidate belief vector p and the past belief vector µk,t−1; and ii) the KL
divergence D(p||µlik

k,t) between p and the “likelihood” posterior µlik
k,t in (8.2).

Again, in order to endow this construction with an adaptation ability, we
incorporate weighting and modify (8.7) into

ψk,t = arg min
p∈∆H

{
(1− δ)H(p, µk,t−1) +D(p||µlik

k,t)
}
, (8.8)

with 0 < δ < 1. As was the case before, this choice for the weighting allows
us to recover the traditional Bayesian update (8.1) when δ → 0, and the
limiting solution ψk,t = µlik

k,t when δ = 1. As δ moves away from zero, the
cross-entropy term that incorporates the past information (through the
past belief vector µk,t−1) is given progressively less importance. In this way,
we enhance the role of the new information, which is incorporated into the
KL divergence involving the belief µlik

k,t (which depends solely on the new
data). We can also solve (8.8) in closed form by means of the following
manipulations:

(1− δ)H(p, µk,t−1) +D(p||µlik
k,t)

= (1− δ)
∑
θ∈Θ

p(θ) log 1
µk,t−1(θ) +

∑
θ∈Θ

p(θ) log p(θ)
µlik
k,t(θ)

= (1− δ)
∑
θ∈Θ

p(θ) log 1
µk,t−1(θ) +

∑
θ∈Θ

p(θ) log p(θ)
ℓ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log 1
µ1−δ
k,t−1(θ)

+
∑
θ∈Θ

p(θ) log p(θ)
ℓ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1(θ)ℓ(xk,t|θ)

+ const.

8.2. Adaptive Update 163

1 2 3 4 5 6 7

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ
k
,t
−

1
(θ

)

1 2 3 4 5 6 7

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ̂
k
,t
−

1
(θ

)

δ = 0.5

1 2 3 4 5 6 7

θ

0.0

0.2

0.4

0.6

0.8

1.0

µ̂
k
,t
−

1
(θ

)

δ = 0.8

Figure 8.2: An example illustrating why (8.10) is a flattened version of µk,t−1.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1(θ)ℓ(xk,t|θ)∑

θ′∈Θ µ1−δ
k,t−1(θ′)ℓ(xk,t|θ′)︸ ︷︷ ︸

KL divergence

+ const. (8.9)

It follows that the optimal solution to (8.8) coincides with (8.6).

8.2.3 Interpretation as a Bayesian Update

It is possible to show that (8.6) corresponds to a Bayesian update applied
to a modified prior. To this end, we decompose (8.6) into two steps. First,
agent k uses the past belief µk,t−1(θ) to construct a new belief as follows:

µ̂k,t−1(θ) =
µ1−δ
k,t−1(θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)

, (8.10)

where the normalization is meant to ensure that µ̂k,t−1 is a probability
vector. Second, agent k applies Bayes’ rule by taking as the prior the
modified belief vector µ̂k,t−1, yielding

ψk,t(θ) = µ̂k,t−1(θ)ℓk(xk,t|θ)∑
θ′∈Θ

µ̂k,t−1(θ′)ℓk(xk,t|θ′)
. (8.11)

These two steps combined are equivalent to (8.6). The exponentiation and
normalization in (8.10) has the physical meaning of flattening the belief
vector, i.e., of making it more uniform across θ, as shown in Figure 8.2 for
two values of δ. In this way, if an agent had a particularly peaked belief
around a certain hypothesis, perhaps due to a bias accumulated over time,
flattening the belief helps give more credit to new data.

164 Adaptive Social Learning

8.2.4 Adaptive Social Learning

Referring back to Figure 3.3, we can now use the adaptive rule (8.6) in
the general update block, in place of the traditional Bayesian update that
was used before. For the combination rule we focus on geometric averaging.
The resulting social learning algorithm is detailed in listing (8.13). By
grouping the update and combination steps, the overall belief evolution
can be represented in the following compact form:

µk,t(θ) ∝
∏
j∈Nk

[
µ1−δ
j,t−1(θ)ℓ(xj,t|θ)

]ajk
. (8.12)

This recursion replaces (5.2) and is referred to as the adaptive social
learning (ASL) strategy. It was originally proposed in [25], where it is
also possible to find an alternative form for the update step that will be
discussed later in Section 8.5.

Adaptive social learning (ASL)
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
choose an adaptation parameter δ, with 0 < δ < 1
for t = 1, 2, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣∣

agent k observes xk,t
for θ = 1, 2, . . . , H∣∣∣∣∣ ψk,t(θ) =

µ1−δ
k,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)ℓk(xk,t|θ′)

end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣
for θ = 1, 2, . . . , H∣∣∣∣∣ µk,t(θ) =

∏
j∈Nk

[ψj,t(θ)]ajk∑
θ′∈Θ

∏
j∈Nk

[ψj,t(θ′)]ajk

end

(cooperation)

end
end

(8.13)

8.3 Learning versus Adaptation

In the social learning framework discussed in Chapter 5, a stationary setting
is assumed, where the streaming observations collected by the agents are

8.3. Learning versus Adaptation 165

generated from fixed models {fk}, and all relevant system attributes (e.g.,
network topology, likelihood models) do not change over time. The goal of
the social learning strategy was to maximize the belief about the target
model ϑ⋆ that provides the best explanation for the data. In comparison,
under an adaptive setting where the system attributes can change over time,
the learning algorithm now needs to satisfy at least two requirements. While
effective learning (i.e., convergence) must be guaranteed under stationary
conditions, it is also critical to guarantee adaptation (i.e., tracking) under
drifting conditions, such as drifting of ϑ⋆. Therefore, an adaptive social
learning algorithm should allow agents to react more readily to these drifts
and start learning under the new conditions, within a tolerable reaction
time.

The trade-off between learning and adaptation translates into a trade-off
between steady-state performance (how well an algorithm learns) and con-
vergence rate (how fast it learns during its transient phase). As is typical
of adaptive strategies, an algorithm with faster convergence properties is
able to track better albeit at the expense of worse learning performance.
A systematic analysis of the learning/adaptation trade-off requires us to
define more formally the concepts of learning and adaptation, and to
develop a proper technical framework in order to quantify this trade-off.

Learning. In our context, “learning” means “guessing the right model”
after sufficient time. As we have explained in the previous chapters, the
right model is formally identified by a target hypothesis ϑ⋆ that minimizes
a suitable cost function providing a degree of fitting between the data (i.e.,
the underlying true generative models) and the likelihood models employed
by the agents. The learning performance of a social learning algorithm is
assessed by means of a steady-state analysis, where the statistical conditions
are assumed to remain stationary and the amount of data is sufficiently
large to neglect transient effects related to the initial state. The analysis
then focuses on evaluating the probability that an agent guesses the target
hypothesis ϑ⋆.

In Chapter 5 we showed that traditional social learning with geometric
averaging (see listing (3.16)) enables all agents to learn the desired target
with vanishing error probability. We will see that this is not the case
for the ASL strategy. A residual error probability remains over time, and
it depends on δ. The analysis in Chapter 9 will quantify the size of this error.

166 Adaptive Social Learning

Adaptation. When the generative models or other system attributes
change during the learning process, the social learning algorithm will need
to react to these drifts so as to guarantee proper learning and tracking
under the new conditions. The adaptation ability of the algorithm will
be measured by how long it takes to reach the steady-state regime corre-
sponding to these new conditions. This stage of the algorithm is usually
referred to as the transient phase, and the time to reach the steady-state
regime is called the adaptation time. A detailed analysis of the transient
phase of the ASL strategy will be carried out in Chapter 10.

8.4 Adaptive Setting

In Chapters 5 and 6 we characterized the learning behavior of nonadaptive
social learning with geometric averaging. Here and in the next two chapters,
we will be dealing with the learning behavior of the ASL strategy. The
derivations in the aforementioned chapters (see for example Theorem 5.1)
exploited the recursive form in (5.11), whose converging behavior was
established by applying the strong law of large numbers. Unfortunately, for
the ASL strategy in (8.12), the introduction of the adaptation parameter δ
changes completely the picture. In fact, we will see that the beliefs µk,t(θ)
will no longer converge to deterministic values (such as 1 or 0) as t→∞.
They will converge instead to random variables (we will see later that
such randomness plays a critical role in enabling adaptation and tracking).
The characterization of these random variables and the associated error
probability will be demanding. We start by defining the observational
model used to study adaptive social learning.

Definition 8.1 (Observational model for adaptive social learning). Assume that
the ASL algorithm in listing (8.13) has been running until a certain time t0, after
which the system conditions (e.g., the true model) change.2 Then, adaptation
is quantified by characterizing the transient phase, starting at t0 + 1, that the
system undergoes before reaching the steady state. To examine the steady-state
behavior (as t → ∞), we assume that from t0 + 1 onward the system remains
stationary. Specifically, each agent k = 1, 2, . . . ,K at time t = t0 + 1, t0 + 2, . . .
receives a data sample xk,t. The collections of K samples across the agents,
{x1,t,x2,t, . . . ,xK,t}, are assumed iid over time. The probability (density or
mass) function of xk,t is denoted by fk. To perform social learning, agent k
employs likelihood models {ℓk,θ}θ∈Θ of the same nature as fk (namely, for all
θ ∈ Θ, ℓk,θ is a pdf if fk is a pdf, and a pmf otherwise).

8.4. Adaptive Setting 167

Due to the structure of the recursion in (8.12), to examine it from
t0 + 1 onward we do not need all the past belief vectors, but only the
belief vectors {µk,t0}Kk=1. Moreover, by examining (8.12), and from the
same argument used in the proof of Theorem 5.1, it is straightforward to
see that if the algorithm is initialized with a belief vector placing nonzero
mass on all θ ∈ Θ, the belief will remain nonzero at any θ during the
algorithm evolution (with probability 1). This implies that the condition
of positive initial beliefs that we have been using so far can be translated
into the assumption of positive beliefs at t0. For convenience of notation
and without loss of generality, in the following analysis we set t0 = 0.

8.4.1 Steady-State Error Probabilities

In Chapter 5 we were able to establish exact convergence, as t→∞, of the
traditional social learning strategy (5.2) to the target hypothesis ϑ⋆. Now,
because of the adaptation requirement, even when t → ∞ there will be
a nontrivial probability of arriving at an erroneous decision. Accordingly,
we need to introduce an error probability that will be useful: i) in the
steady-state analysis, to quantify the learning performance; and ii) in the
transient analysis, to measure the adaptation time.3

We thus introduce the steady-state error probability

pk(δ) ≜ lim
t→∞

pk,t, (8.14)

where we made explicit the dependence on δ of the limiting probability
since in the following we will examine its behavior as δ → 0. There are
two fundamental questions related to the concept of steady-state error
probability. The first question regards its existence, which in principle is
not guaranteed. Theorem 9.1 will provide an affirmative answer to this
question by characterizing the steady-state behavior of the log belief ratios.
The second question regards the evaluation of pk(δ). An exact evaluation
is generally a formidable task. Therefore, to tackle this critical problem, in
Chapter 9 we will perform an asymptotic analysis in the regime of small δ.

2Actually, for our analysis to hold, it is not required that a change occurs at t0 + 1. In other
words, t0 can be any arbitrary time instant. However, in adaptive social learning we are mainly
interested in examining what happens after a change.

3Other metrics to quantify learning and adaptation are possible. For example, in the theory
of quickest detection, usual metrics are the rate of false alarms (which in our setting can be
connected to the average number of samples between mistakenly chosen hypotheses in steady
state), and the expected time to detect a change (which in our setting can be connected to the
adaptation time) [14, 141, 163].

168 Adaptive Social Learning

0 20 40 60 80 100

t

10−3

10−2

10−1

100
p k
,t

p1(δ) ≈ 2.0× 10−3

p10(δ) ≈ 7.8× 10−3

agent 1 agent 10

Figure 8.3: Illustrative example showing the evolution of the error probability of two agents in
a network running the ASL algorithm.

In Figure 8.3 we show an example of evolution for the error probability
pk,t (estimated empirically via Monte Carlo simulation) of two agents
in a network implementing the ASL strategy (8.12). We see that the
instantaneous error probability pk,t converges toward a steady-state nonzero
value pk(δ) as t increases. It is useful to remark that this behavior is different
from that of traditional social learning studied in Chapter 5 where, under
stationary conditions, the error probability of each agent was shown to
vanish as time elapses. This is one instance of the learning/adaptation
trade-off: Nonadaptive strategies can increase their accuracy indefinitely
under stationary conditions. However, astronomically low values of the error
probabilities lead to a detrimental inertia in responding to nonstationary
conditions.

8.5 Variation on ASL

Another adaptive rule can be obtained in lieu of (8.6) by revisiting the
information-theoretic approach used in Section 8.2.1. The modification
consists of replacing the Bayesian update µBu

k,t that was used in the opti-
mization problem (8.4), with the previous-lag belief µk,t−1, yielding

ψk,t = arg min
p∈∆H

{
(1− δ)D(p||µk,t−1) + δD(p||µlik

k,t)
}
, (8.15)

where, as usual, 0 < δ < 1. Note that, while for δ → 0 the adaptive
rule arising from (8.4) led back to the traditional Bayesian update, the
alternative rule (8.15) will instead ignore the new data and stick to the
old belief vector µk,t−1.

8.5. Variation on ASL 169

We can solve (8.15) to get a closed-form expression for the intermediate
belief vector. To this end, we manipulate the cost function in (8.15) as
follows:

(1− δ)D(p||µk,t−1) + δD(p||µlik
k,t)

= (1− δ)
∑
θ∈Θ

p(θ) log p(θ)
µk,t−1(θ) + δ

∑
θ∈Θ

p(θ) log p(θ)
ℓ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log
(

p(θ)
µk,t−1(θ)

)1−δ

+
∑
θ∈Θ

p(θ) log
(

p(θ)
ℓ(xk,t|θ)

)δ
+ const.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1(θ)ℓδ(xk,t|θ)

+ const.

=
∑
θ∈Θ

p(θ) log p(θ)
µ1−δ
k,t−1(θ)ℓδ(xk,t|θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)ℓδ(xk,t|θ′)︸ ︷︷ ︸

KL divergence

+ const. (8.16)

and we conclude that the cost function is minimized by the choice
ψk,t(θ) ∝ µ1−δ

k,t−1(θ)ℓδ(xk,t|θ). (8.17)
Compare now (8.17) with (8.6). Both rules discount the past belief µk,t−1(θ)
by raising it to the power 1 − δ (recall that 0 < δ < 1). The fundamen-
tal difference is that in (8.17) the likelihood ℓ(xk,t|θ) is also discounted,
since it is raised to the power δ. Note that, while (as was explained in
Section 8.2.3) Eq. (8.6) can be interpreted as a Bayesian update with
modified prior, this is no longer true for (8.17). This is because the integral
with respect to x of the likelihood exponentiated to δ is not equal to 1.
We will examine more closely these aspects later in Example 9.2, where
we will discover that the ASL update rule (8.6) and its variation (8.17)
exhibit an interesting commonality as well as an important distinguishing
feature. They will be shown to be equivalent in terms of decisions (i.e., the
hypothesis maximizing the beliefs will ultimately be the same under both
strategies), but the credibility assigned to the hypotheses (i.e., the values
of the belief-vector entries) can be very different under the two strategies.

Interpretation as a diffusion strategy. Consider now the adaptive
rule (8.17), followed by the geometric-averaging rule

µk,t(θ) ∝
∏
j∈Nk

[ψj,t(θ)]ajk . (8.18)

170 Adaptive Social Learning

It is useful to rewrite (8.17) and (8.18) in terms of the log belief ratios in
(6.11) and the log likelihood ratios in (6.3), yielding

log ψk,t(ϑ
⋆)

ψk,t(θ)
= (1− δ)βk,t−1(θ) + δ λk,t(θ), (8.19a)

βk,t(θ) =
K∑
j=1

ajk log ψj,t(ϑ
⋆)

ψj,t(θ)
. (8.19b)

The iterative algorithm described by (8.19a) and (8.19b) is in the form
of a standard diffusion algorithm (of the adapt-then-combine type) with
constant step-size δ [151, 152, 155]. In particular, the RHS of (8.19a) can
be rewritten as

βk,t−1(θ)− δ
(
βk,t−1 − λk,t(θ)

)
︸ ︷︷ ︸

stochastic gradient

, (8.20)

which is an iteration of a stochastic gradient descent algorithm with step-
size δ and instantaneous risk function at agent k given by

Jk(β) = 1
2 E

[(
β − λk,t(θ)

)2]
, (8.21)

where β is the (scalar) optimization variable and λk,t(θ) is the random
input variable. It is worth mentioning that, in the context of estimation
and detection, the single-agent version of (8.19a) and (8.19b) is also
known as exponentially-weighted-moving-average (EWMA) control chart
or geometric-moving-average (GMA) control chart [143]. This terminology
arises because, by recursive application of the weight (1−δ), the same data
is assigned an overall weight that changes over time, specifically decaying
with the exponential (or geometric) law (1− δ)t.

Chapter 9

Learning Accuracy under ASL

The adaptation properties of the ASL strategy (8.13) are enabled by a
learning mechanism that is fundamentally different from that of traditional
social learning. To see why, let us assume that the system conditions remain
stable for a sufficiently long time interval. With traditional social learning,
the belief assigned to the target hypothesis ϑ⋆ will converge to 1 as t→∞.
As we have already observed, such assignment of full credibility has the
downside that, in the face of drifting conditions, the algorithm becomes
stubborn and remains stuck in its past determination for a long time before
moving on to track the changes.

In contrast, we will see that for the ASL strategy the beliefs will not
converge as time elapses: They will fluctuate indefinitely, exhibiting a
random behavior including in steady state. This everlasting randomness is
critical to ensure that the algorithm will adapt quickly to a change in the
environment. This is because the random fluctuations keep the algorithm
more dynamic, preventing it from being “trapped” into a conviction arising
from past data. This behavior is commonly encountered in the theory of
stochastic optimization when one employs stochastic gradient algorithms
with constant step-size. In this context, when the optimizers drift over
time, random fluctuations help the algorithm move away from a current
stationary point and start tracking the new optimizer [151, 154, 155]. On
the technical side, however, the random character preserved by the belief
even when t → ∞, makes the steady-state analysis significantly more
challenging.

In order to carry out a meaningful steady-state analysis, the funda-
mental preliminary step becomes to establish whether the random belief
fluctuations allow the belief vectors to reach a steady state as t → ∞,

172 Learning Accuracy under ASL

in the sense that they converge to some limiting random vectors with a
fixed distribution. We will ascertain that this is the case. Once this fact is
established, the learning performance will then be assessed by examining
the statistical behavior of the beliefs in steady state. We will provide an
accurate characterization of such statistical behavior in the regime of small
adaptation parameters, i.e., by performing an asymptotic analysis as δ → 0.
Under this regime, we will show that the steady-state belief vector places
unit mass on ϑ⋆ with probability converging to 1 as δ → 0. The properties
of this convergence will be characterized in detail through an asymptotic
normality result and a large deviation analysis.

In the next chapter, we will furthermore characterize the transient
performance by obtaining closed-form relations that reveal how the adap-
tation time grows with smaller δ. When all is said and done, the analysis
will reveal that the well-known learning/adaptation trade-off from classic
learning theory [155] continues to exist under social learning: Smaller (resp.,
larger) values of δ imply higher (resp., lower) learning accuracy and slower
(resp., faster) adaptation or response time.

Before proceeding with the analysis, we remark that the relevant de-
scriptors (e.g., log likelihood ratios, log belief ratios) and the pertinent
notation have been introduced in Chapter 6. In particular, the average
variable λnet,t in (6.8), which played a critical role in the performance of
traditional social learning, will be seen to play an equally important role
to characterize the steady-state (t→∞) performance of the ASL strategy
in the regime of small adaptation parameters (δ → 0).

9.1 Steady-State Analysis

We start by examining the evolution of the log belief ratios. Exploiting
(8.12), (6.11), and (6.3), we can readily establish the following recursion,
for all θ ̸= ϑ⋆ (compare with (6.27)):

βk,t(θ) =
∑
j∈Nk

ajk
[
(1− δ)βj,t−1(θ) + λj,t(θ)

]
. (9.1)

9.1. Steady-State Analysis 173

This recursion can be unfolded to obtain

βk,t(θ) = (1− δ)t
K∑
j=1

[At]jkβj,0(θ)
︸ ︷︷ ︸

transient term

+
t∑

τ=1

K∑
j=1

(1− δ)τ−1[Aτ]jk λj,t−τ+1(θ), (9.2)

where we recall that A = [ajk] denotes the left stochastic combination
matrix.

The goal of the steady-state analysis is to examine the learning behavior
of the algorithm for large t. To this end, in the next theorem we start by
establishing that the log belief ratio vector βk,t converges in distribution,
as t→∞, to a certain steady-state random vector βk. This means that the
probability distribution of βk,t converges to the probability distribution
of βk — see Definition D.4. As a notational remark, we will be denoting
steady-state variables (i.e., limiting variables obtained as t → ∞) by
omitting the subscript t from the corresponding non-asymptotic notation.

Theorem 9.1 (Steady-state log belief ratios). Let Assumptions 5.1, 5.2, and 6.1
be satisfied.1 Then, for k = 1, 2, . . . ,K, the vector of log belief ratios βk,t
converges in distribution as t → ∞ to a random vector βk:

βk,t
d−−−→

t→∞
βk. (9.3)

Furthermore, the entries of βk are given by the random variables

βk(θ) ≜
K∑
j=1

∞∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,τ (θ), θ ̸= ϑ⋆, (9.4)

where each of the inner series is (almost surely) absolutely convergent.

Proof. We are interested in characterizing, for each agent k, the asymptotic behavior of
the random vector βk,t as t → ∞. In particular, we want to establish that it converges
in distribution. In view of (9.2), the log belief vector βk,t can be written as

βk,t = (1 − δ)t
K∑
j=1

[At]jkβj,0(θ) + β̂k,t, (9.5)

1We remark that, in the proof of this theorem, we only use the definition of ϑ⋆ from
Assumption 6.1, but we do not need the fact that the graph is primitive. For this reason, the
result of the theorem still holds if we replace the primitive graph with a connected graph in
Assumption 6.1.

174 Learning Accuracy under ASL

where, for θ ̸= ϑ⋆, the entries of the vector β̂k,t are defined as

β̂k,t(θ) ≜
K∑
j=1

t∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,t−τ+1(θ). (9.6)

Since the first term on the RHS of (9.5) converges (deterministically) to 0 as t → ∞,
in view of the vector version of Slutsky’s theorem (see (D.39)), to establish (9.3) it is
sufficient to prove that

β̂k,t
d−−−→

t→∞
βk. (9.7)

We will now establish that (9.7) holds.
Let us start by observing from (9.6) that β̂k,t can be represented as

β̂k,t = gk,t,δ

(
{λj,1}Kj=1, {λj,2}Kj=1, . . . , {λj,t}Kj=1

)
(9.8)

to highlight that the random vector βk,t is a certain function gk,t,δ of the log likelihood
ratios {λj,1}Kj=1, {λj,2}Kj=1, . . . , {λj,t}Kj=1, collected from all agents up to time t. Consider
now the vector β←k,t, whose θth entry is given by

β←k,t(θ) =
K∑
j=1

t∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,τ (θ), (9.9)

which corresponds to (9.6) with the log likelihood ratios λj,t−τ+1(θ) taken in reverse
order. In view of (9.8), this means that we can write

β←k,t = gk,t,δ

(
{λj,t}Kj=1, {λj,t−1}Kj=1, . . . , {λj,1}Kj=1

)
. (9.10)

However, since the data are iid over time, the reverse ordering does not alter the
distribution of the resulting random vector, which means that

β̂k,t
d= β←k,t, (9.11)

where d= denotes equality in distribution. Accordingly, since β̂k,t and β←k,t share the
same distribution for all t, to establish (9.7) it suffices to establish that

β←k,t
d−−−→

t→∞
βk. (9.12)

In view of Lemma F.3, each of the K inner partial sums in (9.9) converges almost surely
to the random variable defined by the series

∞∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,τ (θ), (9.13)

which, in particular, according to Lemma F.3 is almost surely an absolutely convergent
series. Note that the assumptions of Lemma F.3 are met because the random variables
λj,τ (θ) have finite first moment in view of (5.5), and the weights [Aτ]jk are nonnegative
and bounded by 1. Summing (9.13) over j = 1, 2, . . .K, we have in fact shown that

β←k,t
a.s.−−−→
t→∞

βk (9.14)

9.1. Steady-State Analysis 175

where the θth entry of the limiting random vector βk is given by

βk(θ) =
K∑
j=1

∞∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,τ (θ). (9.15)

Since almost-sure convergence implies convergence in distribution, in view of (9.11) we
obtain (9.12), which completes the proof.

■

As a corollary of Theorem 9.1, we characterize the steady-state belief
vector.

Corollary 9.1 (Steady-state belief vector). Under the same assumptions used in
Theorem 9.1, for k = 1, 2, . . . ,K the belief vector µk,t from (8.12) converges in
distribution as t → ∞ to a steady-state belief vector µk:

µk,t
d−−−→

t→∞
µk, (9.16)

where the entries of µk are defined as follows:

µk(θ) =

e−βk(θ)

1 +
∑
θ′ ̸=ϑ⋆

e−βk(θ′)
if θ ̸= ϑ⋆,

1
1 +

∑
θ′ ̸=ϑ⋆

e−βk(θ′)
if θ = ϑ⋆.

(9.17)

Proof. By applying the continuous mapping theorem (Theorem D.3) to the belief vector
defined by (6.13), we conclude that the convergence in (9.3) implies the convergence of
µk,t to the expressions in (9.17).

■

It is useful to provide some comments on Theorem 9.1. First, we have
that the random series in (9.4) is (almost surely) absolutely convergent,
which means that the steady-state random vector βk can be meaningfully
defined. For this convergence to hold, in Theorem 9.1 we did not need
existence of second or higher-order moments of the log likelihood ratios
λk,t(θ). It was enough to assume finite mean, a condition guaranteed by
(5.5) applied to (6.4).

176 Learning Accuracy under ASL

Second, consider the random sums (9.6) and (9.9), namely,

β̂k,t(θ) =
K∑
j=1

t∑
τ=1

(1− δ)τ−1[Aτ]jk λj,t−τ+1(θ) (9.18)

and

β←k,t(θ) =
K∑
j=1

t∑
τ=1

(1− δ)τ−1[Aτ]jk λj,τ (θ). (9.19)

It is important to notice that (9.4) does not correspond to letting t→∞ in
(9.18). Indeed, the series in (9.4) is obtained from (9.18) by first taking the
summands indexed by t− τ + 1 in reverse order and then letting t→∞.
In other words, the series in (9.4) is obtained by considering the limiting
value of β←k,t(θ).

To gain further insight, in the left panel of Figure 9.1, we display
one realization of the random sums in (9.18) and (9.19), for θ = 2. The
random sum β̂k,t(θ), displayed with solid line, exhibits persistent random
fluctuations as time elapses. In contrast, the random sum β←k,t(θ), displayed
with dashed line, converges as time elapses; actually, it converges to the
value βk(θ) defined by (9.4). The right panel shows a different realization
of the two random sums. We see that the limiting value βk(θ) is different
in the two panels, which emphasizes that this limiting value is random.

0 50 100 150 200 250 300

t

0

1

2

3

lo
g

b
el

ie
f

ra
ti

o

solid line: β̂k,t(2) dashed line: β←k,t(2)

realization 1

0 50 100 150 200 250 300

t

1

2

3

lo
g

b
el

ie
f

ra
ti

o

realization 2

Figure 9.1: Illustrative curves showing a comparison of the random sequences βk,t(θ) and
β←k,t(θ).

The profoundly different behavior of β̂k,t(θ) and β←k,t(θ) arises from
the different ordering of the summands in (9.18) and (9.19). In particular,
in (9.19) the most recent term, corresponding to λj,t(θ), is scaled by the
smallest weight (1− δ)t−1. As t→∞, this weight vanishes, and the series
converges (almost surely). In contrast, in (9.18) the term λj,t(θ) is scaled
by the highest weight (1− δ)0 = 1, which does not vanish as t→∞, thus
keeping fluctuations alive. These persistent random fluctuations imply that

9.1. Steady-State Analysis 177

the agents will never converge to accept one hypothesis with full certainty.
Making the agents more “doubtful” renders them more reactive to changes,
enabling the adaptation mechanisms discussed in detail in the forthcoming
analysis.

Even though the sums in (9.18) and (9.19) exhibit a markedly different
behavior in terms of their time evolution (i.e., on the sample paths),
Theorem 9.1 ensures that their probability distributions converge as t→∞
to the same distribution, namely, to the distribution of the limiting variable
βk(θ). This equivalence can be explained as follows. Consider one of the
panels in Figure 9.1, and focus on a sufficiently large t (say, t = 300).
We see that the corresponding values β̂k,300(θ) and β←k,300(θ) are different
from each other. However, if we now repeat the experiment in Figure 9.1
several times, the realizations of β̂k,300(θ) across different experiments will
be distributed similarly to the realizations of β←k,300(θ).

The existence of a steady-state vector βk to which βk,t converges in
distribution, makes the definition of a steady-state error probability mean-
ingful. That is, along with the instantaneous error probability introduced
in (6.22),

pk,t = P

 ⋃
θ ̸=ϑ⋆

{
βk,t(θ) ≤ 0

} , (9.20)

we introduce the steady-state error probability (making explicit the depen-
dence on δ is important for the following treatment)

pk(δ) ≜ P

 ⋃
θ ̸=ϑ⋆

{
βk(θ) ≤ 0

} . (9.21)

Now, we learned from Theorem 9.1 that the probability distribution of
βk,t converges to the probability distribution of the steady-state vector βk
and, hence, from (9.20),2

lim
t→∞

pk,t = pk(δ). (9.25)
2Actually, there is one subtlety that must be considered to infer (9.25) from the convergence

in distribution of βk,t to βk. Indeed, let S =
{
z ∈ RH−1 : z1 > 0, z2 > 0, . . . , zH−1 > 0

}
and

observe that
1− pk,t = P

[
βk,t ∈ S

]
. (9.22)

Then, Eq. (9.25) is equivalent to

lim
t→∞

P
[
βk,t ∈ S

]
= P [βk ∈ S] . (9.23)

According to (D.15), Eq. (9.23) follows from the convergence in distribution (9.3), provided that
P [βk ∈ ∂S] = 0, i.e., provided that the distribution of the limiting random vector βk assigns
zero probability to the boundary ∂S of the set S. However, from Lemma F.2 we know that the

178 Learning Accuracy under ASL

Before concluding this section, we remark that Theorem 9.1 constitutes
only a first step toward the evaluation of the ASL performance, since it
establishes only the existence of a steady-state error probability without
providing any explicit form for it. Obtaining an analytical formula for the
steady-state error probability is in general a formidable task. In the next
sections we tackle this challenging problem by focusing on an asymptotic
characterization of βk in the regime of small δ.

9.2 Small-δ Regime

We will provide three types of asymptotic results, namely, a weak law of
small adaptation parameters, an asymptotic normality result, and a large
deviation analysis. This type of characterization was applied to binary
adaptive detection in [119, 120, 123]. In this text we focus instead on
adaptive social learning. The results that we are going to present were
originally proved in [25] with reference to the objective evidence model
from Section 5.3 and (regarding the asymptotic normality and the large
deviations) under the assumption of statistically independent observations
across the agents. Here we generalize these results by considering arbitrary
true models fk(x) (see Definition 8.1) and by removing the independence
assumption.

Weak law of small δ (Theorem 9.2). We will show that, for small δ,
the scaled steady-state vector δ × βk is concentrated on a deterministic
quantity, namely, the mean λ̄net of the vector λnet,t defined by (6.8). This
concentration property will guarantee that, with high probability as δ → 0,
the target hypothesis ϑ⋆ is chosen by each agent. Moreover, we show that
the steady-state belief about the target hypothesis converges to 1 as δ → 0.
This result will require only finiteness of the first moments of the log
likelihood ratios λk,t(θ).

Asymptotic normality (Theorem 9.3). We will ascertain that the

series

βk(θ) =
∞∑
τ=1

K∑
j=1

(1− δ)τ−1[Aτ]jk λj,τ (θ) (9.24)

is a continuous random variable if the random variables
∑K

j=1(1− δ)τ−1[Aτ]jk λj,τ (θ) are not
deterministic from a certain τ onward. Since the case where these variables become deterministic
appears to be pathological, we can safely assume that P[βk(θ) = 0] = 0 for all θ ≠ ϑ⋆, which
further implies P [βk ∈ ∂S] = 0.

9.2. Small-δ Regime 179

steady-state log belief ratios (properly shifted and scaled) are asymptot-
ically normal for small δ. From this property we will also construct a
Gaussian approximation for the error probability pk(δ) of each individ-
ual agent. For these results we assume finiteness of the variance of the
log likelihood ratio λk,t(θ). We remark that earlier results of asymptotic
normality for adaptive distributed detection were established under the
stronger requirement of finiteness of the third-order moment [119].

Large deviations (Theorem 9.4). We will characterize the exponential
rate of decay of the error probability pk(δ) as δ → 0. This result will require
the existence of the moment generating function of the log likelihood ratios
λk,t(θ).

Notably, the above three results reflect perfectly a traditional path
in asymptotic statistics [159, 166]. It is also interesting to note that the
requirements in terms of finiteness of moments are the same that we
encounter in the classic theorems, that is, first moments for the weak
law of large numbers [159, 166], second moments for the central limit
theorem [159, 166], and moment generating function for large deviations [59,
60]. However, in order to avoid misunderstanding, it is necessary to clarify
one fundamental difference between our small-δ analysis and classic results.
Let us refer, for example, to the asymptotic normality result. In the
traditional setting considered in statistics, one examines the Gaussian
behavior exhibited by sums of random variables when the number of terms
of the sum goes to infinity. In contrast, the result in Theorem 9.3 does
not affirm that the sums involved in (9.2) converge to a Gaussian random
variable as t → ∞. As a matter of fact, we have shown in Theorem 9.1
that these sums converge to some random variable βk(θ), but this variable
is not Gaussian, in general. Theorem 9.3 deals instead with the behavior of
the limiting variable βk(θ) as δ goes to 0. The same distinction applies to
the other two asymptotic results, namely, the weak law of small adaptation
parameters and the large deviation analysis. For this reason, as already
explained in [123], the correct way to deal with the asymptotic regime of
small δ in the adaptation context involves the following two steps:

• First, it is necessary to introduce a proper steady-state vector (i.e.,
the vector βk in Theorem 9.1), which already embodies the effect of
combining an infinite number of summands.

180 Learning Accuracy under ASL

• Then, one needs to characterize the asymptotic behavior of βk as δ
goes to 0.

It is worth noting that, in the adaptation literature, the critical role of the
first step is usually not emphasized. This is because the adaptation litera-
ture mostly focuses on regression/estimation problems, where one usually
quantifies the performance by evaluating convergence of moments [151,
154]. In contrast, when dealing with social learning, we need to characterize
the statistical descriptors, i.e., the log belief ratios βk,t(θ), or the beliefs
µk,t(θ), in order to quantify the performance, e.g., through the probability
of choosing the correct hypothesis. In order to evaluate probabilities at the
steady state, it is critical to obtain first a representation of the steady-state
random variables, which is what we did in Theorem 9.1.

In preparation for the technical analysis, it is convenient to introduce
the following scaled version of the limiting random vector βk:

bk ≜ δ × βk. (9.26)

We remark that the error probability in (9.25) can be equivalently rewritten
in terms of the scaled vector bk:

pk(δ) = P

 ⋃
θ ̸=ϑ⋆

{
bk(θ) ≤ 0

} . (9.27)

Table 9.1: Notation relevant to the ASL performance analysis.

βk Steady-state (t → ∞) log belief ratio vector of agent k in (9.4)
bk Scaled version of βk, namely, bk = δ × βk

9.3 Consistency of Adaptive Social Learning

In this section we focus on characterizing the learning behavior of the
ASL strategy as δ → 0. The main result enabling this characterization is
the weak law of small adaptation parameters. This law establishes that,
as δ → 0, for each agent k the scaled steady-state log belief ratio vector
bk is concentrated on the same deterministic quantity λ̄net, namely, the
expected value of the network average log likelihood ratio vector.

9.3. Consistency of Adaptive Social Learning 181

Theorem 9.2 (Weak law of small adaptation parameters). Let Assumptions 5.1,
5.2, and 6.1 be satisfied. Then, for k = 1, 2, . . . ,K,

bk
p−−−→

δ→0
λ̄net. (9.28)

Proof. Consider the θth entry of the scaled steady-state belief vector,

bk(θ) = δβk(θ) = δ

K∑
j=1

∞∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,τ (θ). (9.29)

We now want to apply Lemma F.5 to each one of the K inner series in (9.29). Consider
the jth series, and apply Lemma F.5 with the choices

ατ = [Aτ]jk, yτ = λj,τ (θ), z(δ) = δ

∞∑
τ=1

(1 − δ)τ−1ατ yτ . (9.30)

In view of (4.25), ατ meets condition (F.4) with α = vj , and by definition

Eyτ = λ̄j(θ). (9.31)

Therefore, from Lemma F.5 we conclude that

z(δ) p−−−→
δ→0

vj λ̄j(θ). (9.32)

Since the sum of random variables converging in probability converges in probability to
the sum of the limiting variables (see property P1 in Lemma D.1), we conclude that

bk(θ) p−−−→
δ→0

K∑
j=1

vj λ̄j(θ) = λ̄net(θ). (9.33)

Moreover, since the convergence in probability of random vectors is equivalent to the
convergence in probability of their entries (see property P2 in Lemma D.1), Eq. (9.33)
is equivalent to (9.28), and the proof is complete.

■

From Theorem 9.2 we can immediately establish a first form of con-
sistency of the ASL strategy, namely, that the probability of error pk(δ)
vanishes as δ → 0.

Corollary 9.2 (ASL consistency). Under the same assumptions used in Theo-
rem 9.2, for k = 1, 2, . . . ,K,

lim
δ→0

pk(δ) = 0. (9.34)

182 Learning Accuracy under ASL

Proof. In view of Assumption 6.1, the network average of KL divergences Dnet(θ) admits
a unique minimizer ϑ⋆, yielding λ̄net(θ) > 0 for all θ ̸= ϑ⋆ — see (6.10). Then, Eq. (9.28)
implies that, for all θ ̸= ϑ⋆,

lim
δ→0

P [bk(θ) ≤ 0] = 0, (9.35)

which, using the union bound in (9.27), gives (9.34). ■

Corollary 9.2 expresses consistency in terms of the probability of making
a wrong choice, i.e., it reveals that such probability vanishes as δ → 0.
We now present another corollary of Theorem 9.2, which strengthens the
concept of consistency by showing that, as δ → 0, the belief vector displays
the desired behavior of placing unit mass on the target hypothesis ϑ⋆.

Corollary 9.3 (Belief behavior under ASL). Under the same assumptions used
in Theorem 9.2, for k = 1, 2, . . . ,K,

µk(ϑ⋆) p−−−→
δ→0

1. (9.36)

Proof. Substituting definition (9.26) into the second relation in (9.17), we obtain

µk(ϑ⋆) = 1

1 +
∑
θ ̸=ϑ⋆

exp
{

−bk(θ)
δ

} . (9.37)

On the other hand, from (9.28) and the positivity condition (6.10) we have that, for
θ ̸= ϑ⋆,

bk(θ) p−−−→
δ→0

λ̄net(θ) > 0. (9.38)

From (9.38) we conclude that all arguments of the exponential functions in (9.37) diverge
to −∞ in probability as δ → 0 [159]; this fact implies (9.36).

■

Example 9.1 (ASL consistency for vanishing δ). We consider K = 10 agents connected
according to the strong graph displayed in the left panel of Figure 9.2 (the graph is
undirected, and we assume that all agents have a self-loop, not shown in the figure).
The combination matrix is designed using the uniform-averaging rule, resulting in a left
stochastic matrix — see Table 4.1.

The network is tasked with the following learning problem. Recall that a Laplace
random variable with mean x̄ and scale parameter σ has the following pdf:

1
2σ exp

{
−|x− x̄|

σ

}
. (9.39)

9.3. Consistency of Adaptive Social Learning 183

1
23

4

5

6

7

8

9

10

−2 −1 0 1 2

x

0.0

0.2

0.4

0.6

g n
(x

)

n = 1 n = 2 n = 3

Figure 9.2: (Left) Network topology used in Example 9.1. The graph is undirected and all
agents are assumed to have a self-loop, not shown in the figure. (Right) Family of Laplace
densities used in the example.

In our example we consider a family of Laplace pdfs, seen in the right panel of Figure 9.2,
in the form

gn(x) = 1
2e
−|x−0.1n|, n = 1, 2, 3, (9.40)

that is, with unit scale parameter and mean equal to 0.1n. The likelihood models adopted
by the agents are chosen from among these Laplace densities, in the way specified in
Table 9.2. For example, from the first row, each of the agents k ∈ {1, 2, 3} uses the
likelihood models

ℓk(x|1) = g1(x), ℓk(x|2) = g1(x), ℓk(x|3) = g3(x). (9.41)

Table 9.2: Identifiability setup for the learning problem in Example 9.1.

Likelihood model: ℓk(x|θ)
Agent k

θ = 1 θ = 2 θ = 3
1 − 3 g1(x) g3(x) g3(x)
4 − 6 g1(x) g1(x) g3(x)
7 − 10 g3(x) g2(x) g3(x)

To make the setting more interesting, we assume that the inference problem is locally
unidentifiable for all agents. For example, we see from Table 9.2 that agent 3 is not able
to distinguish θ = 1 from θ = 2, since the model corresponding to these two hypotheses
coincide, namely, ℓ3(x|1) = ℓ3(x|2) = g1(x).

Regarding the generation of the data {xk,t}, they are iid across the agents and over
time, and we focus on the objective evidence model described in Section 5.3, where
there exists a common true hypothesis ϑo. In this example we set ϑo = 3. According to
Table 9.2, the data of agents 1 − 6 obey model g3(x), whereas for agents 7 − 10 the true
model is g1(x). As we already know from the previous chapters, in this case the target
hypothesis that minimizes the network average of KL divergences Dnet(θ) is the true
hypothesis, namely, ϑ⋆ = ϑo.

184 Learning Accuracy under ASL

10−310−210−1

δ

0.00

0.01

0.02
b 1

(θ
)

λ̄net(1) = 0.0115

λ̄net(2) = 0.0057

(scaled)
log belief ratios

θ = 1 θ = 2

10−310−210−1

δ

0.0

0.2

0.4

0.6

0.8

1.0

µ
1
(θ

)

beliefs

θ = 1 θ = 2 θ = 3

Figure 9.3: Consistency of the ASL strategy — see Example 9.1. (Top) According to the
weak law of small adaptation parameters (Theorem 9.2), as δ → 0 the entries of the (scaled,
steady-state) log belief ratio vector for agent 1 are concentrated on the corresponding entries
of the deterministic vector λ̄net. (Bottom) According to Corollary 9.3, the steady-state belief
vector for agent 1 tends to place unit mass on the target hypothesis ϑ⋆ = 3 as δ → 0.

In order to examine the steady-state behavior empirically, we let the ASL algorithm
run for a sufficiently long period of time. To be conservative, in view of the prescriptions
that we will obtain later from Chapter 10, the duration of this period is chosen to be at
least one order of magnitude larger than the inverse of the adaptation parameter, 1/δ.

In our simulation, we consider the evolution of the ASL algorithm over T = 10000
time samples, after which we assume that the algorithm has reached the steady state,
namely, in terms of log belief ratios we assume that

δ × βk,T ≈ δ × βk = bk. (9.42)

From Theorem 9.2 we know that, as δ approaches zero, the vectors bk for all agents tend
to be concentrated on λ̄net. This effect is shown in the top panel of Figure 9.3, where, for
each value of δ (50 values for δ, uniformly spaced in the log domain, are chosen from the
interval [0.0001, 1)), we run an independent experiment and report the corresponding
values of the scaled log belief ratios δ × β1,T (θ) ≈ b1(θ), for hypotheses θ = 1 and θ = 2.
We see the weak law of small adaptation parameter arising, since the limiting log belief
ratios tend to be concentrated on λ̄net(θ). Moreover, in the bottom panel of Figure 9.3
we display the corresponding behavior for the beliefs, revealing that, in accordance with
Corollary 9.3, as δ → 0, the belief about the target hypothesis tends to 1.

9.3. Consistency of Adaptive Social Learning 185

Example 9.2 (Belief behavior under the alternative update rule in (8.17)). In this
example we examine the performance of the alternative update rule introduced in
Section 8.5. To this end, let us combine the two steps (8.19a) and (8.19b) into a single
step (we use the superscript “diff” because the strategy in Section 8.5 was shown to be
equivalent to a diffusion strategy):

βdiff
k,t(θ) =

∑
j∈Nk

ajk
{

(1 − δ)βdiff
j,t−1(θ) + δ λj,t(θ)

}
, (9.43)

where, in comparison with (9.1), we now have an additional factor δ multiplying λj,t(θ).
Unfolding the recursion in (9.43) we arrive at

βdiff
k,t(θ) = (1 − δ)t

K∑
j=1

[At]jkβdiff
j,0(θ) + δ

t∑
τ=1

K∑
j=1

(1 − δ)τ−1[Aτ]jkλj,t−τ+1(θ). (9.44)

In (9.2) we arrived at a similar expression for the ASL strategy, namely,

βk,t(θ) = (1 − δ)t
K∑
j=1

[At]jkβj,0(θ) +
t∑

τ=1

K∑
j=1

(1 − δ)τ−1[Aτ]jk λj,t−τ+1(θ). (9.45)

We see that in both (9.44) and (9.45) there is a first term that dies out exponentially
with time, and which is due to the initial state. Therefore, the relevant terms that
determine the evolution of the algorithms over time are given by the trailing summations
appearing in (9.44) and (9.45). Comparing these terms, we see that they differ only by a
scaling factor δ. Recalling that βdiff

k,t(θ) and βk,t(θ) represent log belief ratios, as far as we
have to maximize these ratios over θ ≠ ϑ⋆, the scaling factor is immaterial. We conclude
that the two strategies are equivalent in terms of selection of the maximum-credibility
opinion! However, this does not mean that the beliefs of the two strategies would take
on the same values and, as we will now show, in terms of belief formation there is a
more sensible difference between the two strategies.

To illustrate this phenomenon, we start by expressing the belief of the diffusion
strategy in terms of the log belief ratios βdiff

k,t(θ) in (9.43) (see Theorem 6.1) obtaining in
particular

µdiff
k,t(ϑ

⋆) = 1
1 +

∑
θ ̸=ϑ⋆

e−βdiff
k,t

(θ)
. (9.46)

Then, we focus on the steady state. Regarding the ASL strategy, from Theorem 9.1 we
know that

βk,t
d−−−→

t→∞
βk. (9.47)

However, since the transient terms in (9.44) and (9.45) can be ignored thanks to Slutsky’s
theorem (Theorem D.4), by considering that the second term in (9.44) is equal to the
second term in (9.45) multiplied by δ, we arrive at

βdiff
k,t

d−−−→
t→∞

δ × βk = bk, (9.48)

where in the equality we applied the definition of bk from Table 9.1. Using (9.48) in
(9.46), we conclude from the continuous mapping theorem (Theorem D.3) that the beliefs

186 Learning Accuracy under ASL

in (9.46) converge in distribution, as t → ∞, to a steady-state belief vector µdiff
k whose

ϑ⋆th entry is given by (compare with (9.37)):

µdiff
k (ϑ⋆) = 1

1 +
∑
θ ̸=ϑ⋆

e−bk(θ)
. (9.49)

Applying Theorem 9.2, from (9.49) and the continuous mapping theorem (now with
reference to the convergence as δ → 0), we obtain

µdiff
k (ϑ⋆) p−−−→

δ→0

1
1 +

∑
θ ̸=ϑ⋆

e−λ̄net(θ)
. (9.50)

Therefore, for the diffusion strategy the belief vector tends, as δ → 0, to a deterministic
vector that does not place unit mass on the target hypothesis ϑ⋆, even if it is always
maximized at ϑ⋆. In other words, when we move toward the nonadaptive solution (since
as δ → 0 we are going to give equal credit to all data from the initial time instant up to
the present one), we do not recover the behavior of traditional social learning.

In summary, we conclude that the two considered adaptive strategies, using the
updates (8.6) and (8.17), respectively, are equivalent in terms of selection of the maximum-
credibility hypothesis, but they differ in terms of belief formation. In particular, as
δ → 0, with the ASL update rule (8.6) the agents tend to place all the belief mass on
the target hypothesis ϑ⋆, i.e., their beliefs about ϑ⋆ converge to 1. In comparison, with
the diffusion update rule (8.17) the agents’ beliefs converges to a deterministic belief
vector whose maximum entry is located at ϑ⋆, but is not equal to 1. This difference
might matter, e.g., from a behavioral perspective, namely, to understand which update
strategy reflects better the way of reasoning that an individual agent uses in social
learning environments.

Theorem 9.2 establishes the convergence of the error probability to 0
as δ → 0. However, it does not reveal how this probability vanishes. In the
next two sections, we characterize the behavior of the error probability in
greater detail. First, in Section 9.4 we establish that the vector of log belief
ratios (properly shifted and scaled) follows a Gaussian distribution for small
δ. Then, in Section 9.5 we show that the error probability of each individual
agent decays exponentially with the inverse of the adaptation parameter,
1/δ. We also provide a detailed characterization of the error exponent.
These results are useful because they reveal how the accuracy of the
algorithm varies with the adaptation parameter δ, providing manageable
formulas for performance evaluation and highlighting the fundamental
scaling laws of adaptive social learning.

9.4. Normal Approximation for Small δ 187

9.4 Normal Approximation for Small δ

In this section we show that the random vector bk, when properly shifted
and scaled, is asymptotically normal as δ → 0. To this end, we will assume
finiteness of second-order moments for the log likelihood ratios λk,t(θ).
We recall that, according to Table 6.1, the covariance matrix of λk,t is
denoted by Σk, whereas the covariance matrix of the average variable λnet,t
is denoted by Σnet. In addition, we introduce the following notation for the
first two moments of the scaled steady-state log belief ratios bk:

b̄k ≜ Ebk, Σbk ≜ E
[(
bk − b̄k

) (
bk − b̄k

)T]
. (9.51)

Using Lemmas F.4 and F.6, it is possible to express the mean and covariance
matrix of the random vector bk as3

b̄k = λ̄net +O(δ), Σbk = δ

2Σnet +O(δ2), (9.52)

where the notation O(δ) represents a quantity such that the ratio O(δ)/δ
remains bounded as δ → 0 — see Table 1.1. We see from (9.52) that, as
δ → 0, there are leading terms that do not depend on the agent index
k. The impact of the agents is implicitly included in the higher-order
corrections, i.e., in the O(·) terms. Moreover, Eq. (9.52) reveals that, for
small δ, the first two moments of the scaled steady-state log belief ratios
are determined by the first two moments of the network average of log
likelihood ratios. In particular, for small δ, the first relation in (9.52) reveals
that b̄k approximates λ̄net, whereas the second relation reveals that Σbk

approximates δΣnet/2. We are now ready to state our asymptotic normality
theorem.

Theorem 9.3 (Asymptotic normality under ASL). Let Assumptions 5.1, 5.2,
and 6.1 be satisfied, and let G (0,Σ) denote a random vector having a zero-mean
multivariate Gaussian distribution with covariance matrix Σ. If the covariance
matrices Σk have finite entries, then for k = 1, 2, . . . ,K,

bk − λ̄net√
δ

d−−−→
δ→0

G
(

0, 1
2 Σnet

)
. (9.53)

Proof. In the proof, it is convenient to use the notation

g = [g(1), g(2), . . . , g(H − 1)] (9.54)
3 Technically, Lemma F.6 deals with variances and not covariances. However, the result for

covariances is obtained following the same arguments used to prove Lemma F.6.

188 Learning Accuracy under ASL

for a zero-mean Gaussian random vector with covariance matrix equal to Σnet/2. Ac-
cording to this notation, claim (9.53) is reformulated as

bk − λ̄net√
δ

d−−−→
δ→0

g. (9.55)

When dealing with convergence in distribution of random vectors, the standard path is
to reduce the vector problem to a scalar problem through the so-called Cramér-Wold
device — see Theorem D.2. Using the Cramér-Wold device, the claim in (9.55) will be
proved if we show that, for any sequence of real numbers c(1), c(2), . . . , c(H − 1),∑

θ ̸=ϑ⋆

c(θ) bk(θ) − λ̄net(θ)√
δ

d−−−→
δ→0

∑
θ ̸=ϑ⋆

c(θ)g(θ). (9.56)

Let us now examine the LHS of (9.56). Recalling the definition of bk from Table 9.1 and
using (9.15), we get∑

θ ̸=ϑ⋆

c(θ)bk(θ) =
K∑
j=1

δ

∞∑
τ=1

(1 − δ)τ−1[Aτ]jk
∑
θ ̸=ϑ⋆

c(θ)λj,τ (θ). (9.57)

To establish (9.56), we will call upon Lemma F.7. It is convenient to introduce an ad-hoc
notation that matches the notation used in Appendix F. Let us set, for j = 1, 2, . . . ,K
and τ ∈ N,

yj,τ =
∑
θ ̸=ϑ⋆

c(θ)λj,τ (θ), yτ = [y1,τ ,y2,τ , . . . ,yK,τ], (9.58)

αj,τ = [Aτ]jk, ατ = [α1,τ , α2,τ , . . . , αK,τ], α = v, (9.59)

zt(δ) = δ

t∑
τ=1

(1 − δ)τ−1αT
τyτ , z(δ) = δ

∞∑
τ=1

(1 − δ)τ−1αT
τyτ , (9.60)

yave,τ = vTyτ =
∑
θ ̸=ϑ⋆

c(θ)λnet,τ (θ), (9.61)

ȳave = E
[
vTyτ

]
=
∑
θ ̸=ϑ⋆

c(θ)λ̄net(θ), (9.62)

σ2
ave = VAR

[
vTyτ

]
=
∑
θ ̸=ϑ⋆

∑
θ′ ̸=ϑ⋆

c(θ)c(θ′)Σnet(θ, θ′), (9.63)

where Σnet(θ, θ′) is the (θ, θ′) entry of Σnet. We see that the random variables zt(δ) in
(9.60) match the structure of the random sums used in Definition F.2. In particular,
condition (F.37) is verified in view of (4.25), with the sequence of vectors ατ converging
to the Perron vector v. Moreover, yτ has finite second moment since it is a linear
combination of random vectors with finite second moments. It is therefore legitimate to
invoke Lemma F.7 to infer the following convergence in distribution:

z(δ) − ȳave√
δ

d−−−→
δ→0

G
(

0, 1
2σ

2
ave

)
. (9.64)

On the other hand, exploiting Eqs. (9.57)–(9.63), from straightforward algebraic manip-
ulations one can verify the identity:

z(δ) − ȳave√
δ

=
∑
θ ̸=ϑ⋆

c(θ) bk(θ) − λ̄net(θ)√
δ

, (9.65)

9.4. Normal Approximation for Small δ 189

which, in view of (9.64), implies∑
θ ̸=ϑ⋆

c(θ) bk(θ) − λ̄net(θ)√
δ

d−−−→
δ→0

G
(

0, 1
2σ

2
ave

)
. (9.66)

We see that (9.66) would correspond to (9.56) if the linear combination on the RHS
of (9.56) (which is a zero-mean Gaussian variable since it is a linear combination of
zero-mean Gaussian variables) has variance σ2

ave/2. This turns out to be the case, since
we have

VAR

[∑
θ ̸=ϑ⋆

c(θ)g(θ)

]
= 1

2
∑
θ ̸=ϑ⋆

∑
θ′ ̸=ϑ⋆

c(θ)c(θ′)Σnet(θ, θ′) = 1
2σ

2
ave (9.67)

and the proof is complete.
■

Example 9.3 (Gaussian approximation). With reference to the same setting used in
Example 9.1, we consider T = 10000 time samples, where again all agents are collecting
data under a true hypothesis ϑo = 3. We assume that the ASL algorithm has reached
the steady state at T , allowing us to write

δ × βk,T ≈ δ × βk = bk. (9.68)

In each panel of Figure 9.4, we display 200 independent realizations of the shifted and
scaled vector

δ × βk,T − λ̄net√
δ

≈ bk − λ̄net√
δ

, (9.69)

for k = 6. From Theorem 9.3 it follows that, in steady state, this shifted and scaled vector
must follow, for sufficiently small δ, a zero-mean bivariate Gaussian distribution with
covariance matrix Σnet/2. The red dashed lines in the figure represent two confidence
regions [90] relative to the bivariate Gaussian density with covariance matrix Σnet/2.
Specifically, the smaller and larger ellipses correspond to confidence levels (i.e., integrals
of the bivariate density over the considered elliptical regions) equal to 0.68 and 0.95,
respectively. Examining the four panels of Figure 9.4, which display different values of δ,
we see that the empirical and limiting distributions tend to overlap.

The values of λ̄net and Σnet necessary to obtain Figure 9.4 have been computed
analytically. The mean λ̄k can be evaluated analytically by using the characterization
for the distribution of λk,t provided later in Example 9.6. Specifically, since the mean is
given by the first derivative of the log moment generating function (LMGF) evaluated
at zero, to compute the mean we exploited the explicit expressions obtained in (9.140)
and (9.141). The covariance matrix Σk has been evaluated by computing the expected
values in (6.23) through numerical integration, using the pertinent Laplace distributions.
Once λ̄k and Σk are computed for all agents, the desired network quantities, λ̄net and
Σnet, are computed through (6.10) and (6.24), respectively (further exploiting, for the
covariance, the independence across the agents).

190 Learning Accuracy under ASL

−0.10 −0.05 0.00 0.05 0.10
b6(1)−λ̄net(1)√

δ

−0.05

0.00

0.05

b 6
(2

)−
λ̄

n
et

(2
)

√
δ

δ = 0.5

−0.10 −0.05 0.00 0.05 0.10
b6(1)−λ̄net(1)√

δ

−0.05

0.00

0.05

b 6
(2

)−
λ̄

n
et

(2
)

√
δ

δ = 0.1

−0.10 −0.05 0.00 0.05 0.10
b6(1)−λ̄net(1)√

δ

−0.05

0.00

0.05

b 6
(2

)−
λ̄

n
et

(2
)

√
δ

δ = 0.01

data
samples

limiting
Gaussian

−0.10 −0.05 0.00 0.05 0.10
b6(1)−λ̄net(1)√

δ

−0.05

0.00

0.05
b 6

(2
)−
λ̄

n
et

(2
)

√
δ

δ = 0.001

Figure 9.4: Asymptotic normality under ASL, Example 9.3. The green circles represent 200
independent realizations of the shifted and scaled vector (δ×βk,T − λ̄net)/

√
δ ≈ (bk − λ̄net)/

√
δ,

for k = 6 and T = 10000. The red dashed lines represent two confidence ellipses relative to the
bivariate Gaussian density with covariance matrix Σnet/2. Specifically, the smaller and larger
ellipses correspond to confidence levels 0.68 and 0.95, respectively.

From Theorem 9.3 we can construct the following approximation for
small δ:

bk ≈ G

(
λ̄net ,

δ

2 Σnet

)
, (9.70)

which does not depend on the agent index k. However, we see from (9.52)
that the moments λ̄net and (δ/2)Σnet represent approximations, for small δ,
of the actual moments of bk. As a result, we can capture possible differences
across the agents by replacing λ̄net and (δ/2)Σnet in (9.70) with their exact
counterparts b̄k and Σbk , yielding the agent-dependent approximation

bk ≈ G
(
b̄k,Σbk

)
. (9.71)

Using Lemmas F.4 and F.6, the quantities b̄k and Σbk can be evaluated

9.4. Normal Approximation for Small δ 191

from the series in (9.4). For the mean, from Lemma F.4 we have

b̄k = Ebk = δ × Eβk = δ
∞∑
τ=1

K∑
j=1

(1− δ)τ−1[Aτ]jk λ̄j , (9.72)

whereas Lemma F.6 (applied to covariances in place of variances, see
footnote 3) allows us to write the covariance matrix as

Σbk = δ2
∞∑
τ=1

(1− δ)2(τ−1)

×E

 K∑
j=1

[Aτ]jk
(
λj,τ − λ̄j

) K∑
j′=1

[Aτ]j′k
(
λj′,τ − λ̄j′

)T . (9.73)

We see that Eq. (9.72) requires only knowledge of the mean of the log
likelihood ratios. In comparison, to evaluate analytically (9.73) one needs
also knowledge of the dependence across the agents. A simplified expression
holds when the observations are independent across the agents, in which
case Eq. (9.74) reduces to

Σbk = δ2
∞∑
τ=1

K∑
j=1

(1− δ)2(τ−1) ([Aτ]jk)2 Σj . (9.74)

In practice, the above computations are performed by truncating the series
appearing in (9.72), (9.73), and (9.74).

The next example focuses on the evaluation of the error probability by
means of approximations (9.70) and (9.71).

Example 9.4 (Error probabilities). We focus on the evaluation of the error probabilities
with reference to the setting used in the previous example. The results are shown in
Figure 9.5. Consider first the curves displaying the empirical error probabilities, which
are evaluated via Monte Carlo simulation. We see an interesting phenomenon emerging.
The curves corresponding to distinct agents, displayed as functions of the inverse of the
adaptation parameter, 1/δ, stay nearly parallel (in a logarithmic scale). This highlights
at least two facts. First, as δ → 0, the error probabilities decay exponentially with 1/δ,
approximately with the same slope in logarithmic scale. Second, distinct agents have
distinct error probabilities. Examining the network topology in Figure 9.2, we observe
that the ordering of the probability curves reflects the properties of the network graph.
For example, agent 5, which has fewer connections, features a higher error probability.
In contrast, agent 1, which has more connections, features a lower error probability.

Let us now focus on evaluating the error probabilities by using the Gaussian ap-
proximations (9.70) and (9.71). The mean λ̄k and the covariance matrix Σk can be
obtained as explained in the previous example. From λ̄k and Σk we compute the network

192 Learning Accuracy under ASL

20 40 60 80 100 120 140

1/δ

10−3

10−2

10−1

100

p k
(δ

)

markers: simulation
dashes: Gaussian approx.
dots: agent-dependent

Gaussian approx.

agent 1

agent 5

agent 10

Figure 9.5: Steady-state error probability pk(δ) as a function of 1/δ, for k = 1, 5, 10, in the
setting of Example 9.4. Markers refer to the empirical error probability estimated from 20000
Monte Carlo runs. The dashed line refers to the theoretical error probability in (9.21) computed
using the Gaussian approximation in (9.70). Dotted lines refer to the theoretical error probability
in (9.21) computed, for agents 1, 5, and 10, using the agent-dependent Gaussian approximation
in (9.71).

quantities λ̄net and Σnet necessary to evaluate (9.70). The moments necessary to evaluate
(9.71), b̄k and Σbk , have been computed by using truncated versions of the series in (9.72)
and (9.74), respectively (in particular, we resort to (9.74) because the model adopted in
Example 9.1 considers independence across the agents).

We see from Figure 9.5 that the error probabilities computed using approximation
(9.70) do not fit well the empirical error probabilities. On the other hand, once we
observed that the performance varies across the agents, we should have expected that
approximation (9.70) would not perform well, because it does not depend on the partic-
ular agent. In comparison, Figure 9.5 shows that the agent-dependent approximation in
(9.71) captures well the differences across the agents.

9.5 Large Deviations for Small δ

In Section 6.3 we exploited large deviations [59, 60] to characterize the decay
of the error probability pk,t in traditional social learning as t→∞. However,
we have learned from Section 9.1 that in adaptive social learning the error
probability does not vanish anymore as t → ∞; it converges instead to
a steady-state value pk(δ). Moreover, Corollary 9.2 guarantees that pk(δ)
vanishes as the adaptation parameter δ approaches 0. Accordingly, in this
section we use the theory of large deviations to characterize the decay
of the steady-state error probability as δ → 0. More formally, the large

9.5. Large Deviations for Small δ 193

deviation analysis will furnish the following type of representation [59, 60]:

pk(δ) = exp
{
−1
δ

[
Φ + o(1)

]}
(9.75)

for a certain error exponent Φ. We denote by o(1) a quantity that ap-
proaches zero as δ → 0 — see Table 1.1. We conclude from (9.75) that the
leading exponential order (as δ → 0) is given by the term −Φ/δ. Taking
logarithms, Eq. (9.75) can be equivalently written as

lim
δ→0

δ log pk(δ) = −Φ. (9.76)

In place of (9.75) or (9.76), we also use the following more compact notation
to indicate equality to the leading exponential order [52]:

pk(δ)
·= e−Φ/δ. (9.77)

As was the case for nonadaptive social learning in Chapter 6, also for
adaptive social learning the error exponent is a compact performance
descriptor, which is useful to compare different systems or to optimize
different parameters (e.g., the network graph, the likelihood models) [95].

The next theorem provides the large deviation characterization of the
ASL strategy. It is useful to recall that, according to Table 6.1, the LMGF
of λk,t is denoted by Λk(s; θ), whereas the LMGF of the average variable
λnet,t is denoted by Λnet(s; θ).

Theorem 9.4 (Error exponents under ASL). Let Assumptions 5.1, 5.2, and 6.1
be satisfied. Assume that, for k = 1, 2, . . . ,K and for all θ ̸= ϑ⋆,

Λk(s; θ) < ∞ ∀s ∈ R, (9.78)

and introduce the function

ϕ(s; θ) =
∫ s

0

Λnet(ς; θ)
ς

dς, (9.79)

along with its Fenchel-Legendre transform (see Appendix E.1.1)

ϕ∗(y; θ) = sup
s∈R

(
sy − ϕ(s; θ)

)
. (9.80)

Then

P [bk(θ) ≤ 0] ·= e−Φ(θ)/δ, Φ(θ) ≜ ϕ∗(0; θ) = − inf
s∈R

ϕ(s; θ) > 0. (9.81)

194 Learning Accuracy under ASL

Moreover, the error probability for each agent is dominated by the worst-case
(i.e., the smallest) exponent:

pk(δ) ·= e−Φ/δ, Φ = min
θ ̸=ϑ⋆

Φ(θ). (9.82)

Proof. We start by establishing the large deviation characterization of the probability
P [bk(θ) ≤ 0] provided by (9.81). To this end, we will call upon Lemma F.9. It is convenient
to introduce an ad-hoc notation that matches the notation used in Appendix F. Let us
set, for j = 1, 2, . . . ,K and τ ∈ N,

yj,τ = λj,τ (θ), yτ = [y1,τ ,y2,τ , . . . ,yK,τ], (9.83)
αj,τ = [Aτ]jk, ατ = [α1,τ , α2,τ , . . . , αK,τ], α = v, (9.84)

zt(δ) = δ

t∑
τ=1

(1 − δ)τ−1αT
τyτ , z(δ) = δ

∞∑
τ=1

(1 − δ)τ−1αT
τyτ , (9.85)

yave,τ = vTyτ = λnet,τ (θ), Λave(s) = logE exp
{
syave,τ

}
, (9.86)

Λzt (s) = logE exp
{
s zt(δ)

}
, Λδ(s) = logE exp

{
s z(δ)

}
. (9.87)

It is possible to verify that the random variables yj,τ in (9.83) satisfy the conditions
required by Lemma F.9. Applying Lemma F.9 to the random series z(δ) in (9.85), we
obtain

lim
δ→0

δΛδ(s/δ) =
∫ s

0

Λave(ς)
ς

dς. (9.88)

Exploiting definitions (9.83)–(9.87), it is possible to verify the identities

bk = z(δ), Λnet(ς; θ) = Λave(ς), (9.89)

which means that Eq. (9.88) is equivalent to

lim
δ→0

δΛbk (s/δ) =
∫ s

0

Λnet(ς; θ)
ς

dς = ϕ(s; θ), (9.90)

where Λbk denotes the LMGF of bk and in the last equality we used (9.79).
The convergence in (9.90) allows us to call upon the Gärtner-Ellis theorem (Theo-

rem E.2), implying that the following large deviation principle (see Definition E.2) holds
for all sets S (the infimum over an empty set is taken as ∞):

− inf
y∈int(S)

ϕ∗(y; θ) ≤ lim inf
δ→0

δ log P[bk(θ) ∈ S]

≤ lim sup
δ→0

δ log P[bk(θ) ∈ S] ≤ − inf
y∈cl(S)

ϕ∗(y; θ), (9.91)

where ϕ∗(y; θ) is the Fenchel-Legendre transform of ϕ(s; θ) — see (9.80). We recall that
the function ϕ∗(y; θ) is also referred to, in the theory of large deviations, as the rate
function — see Appendix F. Note that ϕ(s; θ) in (9.90) is the integral transformation
used in Lemma E.2, applied to the LMGF Λnet(s; θ) of the random variable λnet,t(θ).
Note also that Λnet(s; θ) is finite for all s ∈ R because so are by assumption the individual
LMGFs Λk(s; θ) — see footnote 6 in Appendix F. Accordingly, the function ϕ(s; θ) and

9.5. Large Deviations for Small δ 195

its Fenchel-Legendre transform ϕ∗(y; θ) possess all the regularity properties listed in
Lemma E.2. Consider the choice S = (−∞, 0], and observe that λ̄net(θ) > 0 due to
Assumption 6.1. Exploiting the aforementioned regularity properties, we conclude that
the infima appearing in (9.91) are given by (see also Figure E.3 for a typical shape of
the rate function)

inf
y∈int(S)

ϕ∗(y; θ) = inf
y∈cl(S)

ϕ∗(y; θ) = ϕ∗(0; θ), (9.92)

i.e., S = (−∞, 0] is a continuity set of the function ϕ∗(y; θ) or a ϕ⋆-continuity set — see
(E.155). Using (9.92) in (9.91), we get

lim
δ→0

δ log P [bk(θ) ≤ 0] = −ϕ∗(0; θ). (9.93)

Substituting the explicit definition of the rate function from (9.80), we have

ϕ∗(0; θ) = sup
s∈R

(
− ϕ(s; θ)

)
= − inf

s∈R
ϕ(s; θ) > 0, (9.94)

where the inequality holds because, in view of Lemma E.2, the rate function ϕ∗(y; θ) is
nonnegative and is equal to 0 only when y is equal to the mean of the random variable
whose LMGF is Λnet(s; θ). This random variable is λnet,t(θ) and its mean is λ̄net(θ). Since
we have 0 ̸= λ̄net(θ), we conclude that ϕ∗(0; θ) > 0. Combining (9.93), (9.94), and the
definition of Φ(θ) in (9.81), we have in fact established (9.81).

Let us move on to establishing (9.82). In light of (6.22), the error probability of not
choosing ϑ⋆ can be bounded as follows (with the lower bound holding for all θ ̸= ϑ⋆):

P
[
βk,t(θ) ≤ 0

]
≤ pk,t ≤

∑
θ ̸=ϑ⋆

P
[
βk,t(θ) ≤ 0

]
, (9.95)

where the upper bound is the union bound. In steady state, Eq. (9.95) implies

P [βk(θ) ≤ 0] ≤ pk(δ) ≤
∑
θ ̸=ϑ⋆

P [βk(θ) ≤ 0] (9.96)

or, equivalently, in terms of the vector of scaled log belief ratios bk,

P [bk(θ) ≤ 0] ≤ pk(δ) ≤
∑
θ ̸=ϑ⋆

P [bk(θ) ≤ 0] . (9.97)

Using the lower bound in (9.97), from (9.93) and the definition of Φ appearing in (9.82),
we readily conclude that

lim inf
δ→0

δ log pk(δ) ≥ max
θ ̸=ϑ⋆

(
− Φ(θ)

)
= − min

θ ̸=ϑ⋆
Φ(θ) = −Φ. (9.98)

Let us now focus on the upper bound in (9.97). By definition, for all θ ≠ ϑ⋆ we have
that Φ ≤ Φ(θ). Accordingly, the convergence in (9.93) implies that, given an arbitrary
ε > 0, for sufficiently small δ we can write

P [bk(θ) ≤ 0] ≤ e−(Φ−ε)/δ. (9.99)

Using (9.99) in the RHS of (9.97), we obtain

pk(δ) ≤
∑
θ ̸=ϑ⋆

e−(Φ−ε)/δ = (H − 1)e−(Φ−ε)/δ, (9.100)

196 Learning Accuracy under ASL

or
δ log pk(δ) ≤ δ log(H − 1) − Φ + ε. (9.101)

Due to the arbitrariness of ε, we have

lim sup
δ→0

δ log pk(δ) ≤ −Φ. (9.102)

Grouping (9.98) and (9.102), we obtain the desired claim.
■

The main message conveyed by Theorem 9.4 is that the steady-state
error probability of each individual agent converges to 0 as δ → 0, exponen-
tially fast as a function of 1/δ. This exponential law provides a universal
law for adaptive social learning, which is in line with the universal scal-
ing law for adaptive distributed detection — see [123]. The exponent Φ
governing the exponential decay depends on the statistical properties of
λnet,t(θ), the network average of log likelihood ratios defined by (6.7).

9.5.1 Finiteness of Error Exponents

The next corollary gives some useful information about the error exponents.

Corollary 9.4 (Useful properties of the error exponents). Let the same assump-
tions used in Theorem 9.4 be satisfied, and let, for θ ̸= ϑ⋆,

λinf(θ) ≜ inf
(

suppλnet(θ)

)
, (9.103)

where suppλnet(θ) denotes the support of the distribution of λnet,t(θ) (see Defini-
tion E.1). If λinf(θ) ≥ 0, the error exponent Φ(θ) is infinite.
Instead, if λinf(θ) < 0, then the error exponent is finite and can be computed as

Φ(θ) = − inf
s∈R

ϕ(s; θ) = −ϕ(s⋆θ ; θ), (9.104)

where s⋆θ < 0 is the unique nonzero solution to the equation

Λnet(s⋆θ ; θ) = 0. (9.105)

Moreover, in this case the exponent can be upper bounded by

Φ(θ) < |s⋆θ | λ̄net(θ). (9.106)

Proof. We have shown in the proof of Theorem 9.4 that the error exponent Φ(θ) is given
by the Fenchel-Legendre transform

ϕ∗(y; θ) = sup
s∈R

(
sy − ϕ(s; θ)

)
(9.107)

9.5. Large Deviations for Small δ 197

evaluated at y = 0. The characterization of the rate function provided in Lemma E.2
reveals that, if λinf(θ) ≥ 0, then ϕ∗(0; θ) = ∞, and the first claim of the lemma is proved.

Let us consider next the case λinf(θ) < 0. From (9.107) we can write

ϕ∗(0; θ) = sup
s∈R

(
− ϕ(s; θ)

)
= − inf

s∈R
ϕ(s; θ). (9.108)

Property Q0 from Lemma E.2 guarantees that ϕ(s; θ) (as a function of s) is strictly
convex and infinitely differentiable. In particular, from (E.105) we know that the first
derivative ϕ′(s; θ) satisfies

lim
s→0

ϕ′(s; θ) = lim
s→0

Λnet(s; θ)
s

= Λ′net(0; θ) = λ̄net(θ) > 0, (9.109)

where the last equality holds because the first derivative of the LMGF evaluated at s = 0
is equal to the mean (see (E.31)), and the inequality follows from (6.10). Moreover, as
shown in the proof of Lemma E.2 (see (E.122)), we have

lim
s→−∞

ϕ′(s; θ) = λinf(θ) < 0. (9.110)

Grouping (9.110) and (9.109), we conclude that ϕ′(s; θ) (which is strictly increasing
because ϕ(s; θ) is strictly convex) increases monotonically from negative to positive
values as s spans the interval (−∞, 0). As a result, there exists a unique value s⋆θ < 0
such that

ϕ′(s⋆θ ; θ) = 0. (9.111)
Moreover, exploiting the integral form of ϕ(s; θ) in (9.79), we observe that

ϕ′(s⋆θ ; θ) = 0 ⇐⇒ Λnet(s⋆θ ; θ)
s⋆θ

= 0 ⇐⇒ Λnet(s⋆θ ; θ) = 0. (9.112)

. The value s⋆θ is the unique value where the first derivative of the strictly convex function
ϕ(s; θ) is equal to 0. Therefore, s⋆θ is the unique minimizer of ϕ(s; θ), implying that

Φ(θ) = ϕ∗(0; θ) = − inf
s∈R

ϕ(s; θ) = −ϕ(s⋆θ ; θ), (9.113)

and (9.104) is proved. It remains to show that (9.106) holds. From the convexity
properties of the LMGF (see Appendix E.1.2) we know that Λnet(s; θ) is strictly convex
for all s ∈ R. Therefore, exploiting Lemma A.1, specifically (A.3a), for all s ̸= 0 we can
write

Λnet(s; θ) > sΛ′net(0; θ) = sλ̄net(θ). (9.114)
In particular, for s < 0 we will have the reverse inequality

Λnet(s; θ)
s

< λ̄net(θ). (9.115)

Recalling that s⋆θ < 0 and using (9.115) in (9.79), we obtain

Φ(θ) = −ϕ(s⋆θ ; θ) = −
∫ s⋆

θ

0

Λnet(ς; θ)
ς

dς =
∫ 0

−|s⋆
θ
|

Λnet(ς; θ)
ς

dς < |s⋆θ | λ̄net(θ), (9.116)

and the proof is complete.
■

198 Learning Accuracy under ASL

We see from Corollary 9.4 that when λnet,t(θ) ≥ 0, the error exponent
is infinite. This means that the convergence to 0 of the error probability is
super-exponential, i.e., more favorable. However, this case is seldom verified,
for the following reasons.

We focus for simplicity on the case where the observations are discrete
random variables. First, let θ ̸= ϑ⋆ and consider an agent k for which
ℓk,θ ̸= ℓk,ϑ⋆ . Such an agent must exist because, in view of Assumption 6.1,
the network divergence Dnet(θ) has a unique minimizer ϑ⋆. Letting

X= ≜
{
x : ℓk(x|θ) = ℓk(x|ϑ⋆)

}
, X̸= ≜

{
x : ℓk(x|θ) ̸= ℓk(x|ϑ⋆)

}
,

(9.117)
we can write∑
x∈X=

ℓk(x|θ) +
∑
x∈X ̸=

ℓk(x|θ) = 1 =
∑
x∈X=

ℓk(x|θ) +
∑
x∈X ̸=

ℓk(x|ϑ⋆), (9.118)

which implies ∑
x∈X ̸=

(
ℓk(x|ϑ⋆)− ℓk(x|θ)

)
= 0. (9.119)

As a result, the log likelihood ratio log(ℓk(x|ϑ⋆)/ℓk(x|θ)) must take on
positive and negative values. Therefore, excluding ad-hoc (and unrealistic)
interactions between the likelihoods and the true joint distribution of
the agents’ observations, the network average of log likelihood ratios
λnet,t(θ) takes on positive and negative values with nonzero probability,
implying that the point 0 is greater than the infimum of the support of
the distribution of λnet,t(θ).

9.5.2 Benefits of Cooperation

In Section 6.3.1 we discussed the benefits of cooperation for traditional
social learning (with geometric averaging). The next example shows that
cooperation is also rewarding in adaptive social learning.

Example 9.5 (Cooperation improves learning accuracy). We borrow the setup from
Example 6.2, which is summarized here. We consider a network of K agents. The
combination matrix is doubly stochastic and primitive, yielding a uniform Perron vector,
i.e., vk = 1/K for k = 1, 2, . . . ,K. The observations are assumed independent across
the agents. The likelihoods and the true distributions are equal across the agents, and
would allow each agent to learn the target hypothesis ϑ⋆ individually. Nevertheless, the
agents cooperate over the network by implementing the ASL strategy. We now show
that cooperation can boost the learning performance, which will be measured in terms
of the error exponents in (9.81).

9.5. Large Deviations for Small δ 199

To compute these exponents, we need to evaluate first the LMGF Λnet(s; θ) appear-
ing in (9.79). This LMGF was computed in (6.84); we repeat here the derivation for
convenience of presentation. According to definition (6.59), we have

Λnet(s; θ) ≜ logE exp
{
sλnet,t(θ)

}
, (9.120)

namely, Λnet(s; θ) is the LMGF of the network average of log likelihood ratios introduced
in (6.7), which, in the considered case where vk = 1/K for all k, is equal to

λnet,t(θ) = 1
K

K∑
k=1

λk,t(θ). (9.121)

We see that λnet,t(θ) is a linear combination of the log likelihood ratios. Since the LMGF
of the sum of independent random variables is the sum of the LMGFs of the individual
variables, the LMGF Λnet(s; θ) is given by

Λnet(s; θ) =
K∑
k=1

Λk(s/K; θ) = KΛk(s/K; θ), (9.122)

where
Λk(s; θ) = logE exp

{
sλk,t(θ)

}
(9.123)

denotes the LMGF of the log likelihood ratio λk,t(θ). We remark that Λk(s; θ) is one
and the same for all k because the likelihoods and the data distributions are identical
across the agents.

Using (9.122), the integral in (9.79) can be computed as

ϕ(s; θ) =
∫ s

0

Λnet(ς; θ)
ς

dς = K

∫ s

0

Λk(ς/K; θ)
ς

dς. (9.124)

As a particular case, we obtain from (9.124) the integral corresponding to the case
K = 1, i.e., to an individual agent working in isolation, namely,

ϕind(s; θ) =
∫ s

0

Λk(ς; θ)
ς

dς. (9.125)

Returning to the general case in (9.124) and performing the change of variable ς ′ = ς/K,
we get

ϕ(s; θ) = K

∫ s/K

0

Λk(ς ′; θ)
ς ′

dς ′︸ ︷︷ ︸
=ϕind(s/K;θ)

(9.126)

or
ϕ(s; θ) = Kϕind(s/K; θ). (9.127)

According to (9.81), the error exponents for the case of K agents and for the case of a
single agent are, respectively,

Φ(θ) = − inf
s∈R

ϕ(s; θ), Φind(θ) = − inf
s∈R

ϕind(s; θ). (9.128)

Exploiting (9.127) and (9.128), we obtain

Φ(θ) = − inf
s∈R

ϕ(s; θ) = −K inf
s∈R

ϕind(s/K; θ) = −K inf
s∈R

ϕind(s; θ) = KΦind(θ). (9.129)

200 Learning Accuracy under ASL

Referring to the worst-case exponent in (9.82), we finally obtain

Φ = KΦind, (9.130)

which reveals that, for the ASL strategy, the network error exponent Φ is K times larger
than the individual error exponent pertaining to a standalone agent. The same K-fold
increase was observed in (6.88). However, recall that (6.88) referred to traditional social
learning with geometric averaging. Specifically, the error exponents in (6.88) quantify
the decay rate, as t → ∞, of the error probabilities. In traditional social learning,
these probabilities vanish as t → ∞. In comparison, they do not vanish in the adaptive
strategy, but they converge to steady-state probabilities, which vanish as the adaptation
parameter δ approaches 0. The exponents in (9.130) quantify the decay rate of the
steady-state probabilities as δ → 0.

Therefore, the comparison between (6.88) and (9.130) leads to the following remark-
able conclusion: The learning mechanisms of traditional and adaptive social learning
are different, resulting in two different types of error exponents to quantify the per-
formance; nevertheless, under both scenarios, cooperation is rewarding, resulting in a
K-fold increase of the error exponents with respect to a standalone agent.

Example 9.6 (Error exponents). We now revisit Example 9.1 in terms of error exponents.
To this end, we need to compute first the LMGF of the log likelihood ratio λk,t(θ) in
(6.3). Since the likelihoods belong to the Laplace family described by (9.39), after some
straightforward algebra the log likelihood ratio is found to be

λk,t(θ) = |xk,t − x̄k(θ)| − |xk,t − x̄k(ϑo)|, (9.131)

where x̄k(θ) denotes the expectation of xk,t, computed under likelihood ℓk(x|θ). For
example, using Table 9.2, we see that

x̄1(1) = 0.1, x̄4(3) = 0.3, x̄7(2) = 0.2. (9.132)

Next, we introduce the auxiliary quantity, for θ ̸= ϑo,

ek,θ ≜ x̄k(θ) − x̄k(ϑo), (9.133)

as well as the centered variable

x̃k,t = xk,t − x̄k(ϑo). (9.134)

Recalling that xk,t is distributed according to the true underlying pdf ℓk(x|ϑo), the pdf
of the centered variable x̃k,t is given by ℓk(x+ x̄k(ϑo)|ϑo), which is a Laplace pdf with
zero mean and unit scale parameter, namely,

g0(x) = 1
2e
−|x|. (9.135)

Using (9.133) and (9.134) in (9.131), we obtain

λk,t(θ) = |x̃k,t − ek,θ| − |x̃k,t|. (9.136)

Consider first the case ek,θ > 0. The random variable λk,t(θ) can be represented as

λk,t(θ) =

ek,θ if x̃k,t < 0,
ek,θ − 2 x̃k,t if x̃k,t ∈ [0, ek,θ] ,
−ek,θ if x̃k,t > ek,θ.

(9.137)

9.5. Large Deviations for Small δ 201

In order to evaluate the error exponents, it is necessary to compute the LMGF of λk,t(θ).
From (6.58) we know that this LMGF is defined as

Λk(s; θ) = logE exp
{
sλk,t(θ)

}
. (9.138)

To compute the expectation in (9.138), i.e., the moment generating function of λk,t, we
can exploit (9.137) and (9.135) and write

Eesλk,t(θ)

=
∫ 0

−∞
es ek,θg0(x)dx+

∫ ek,θ

0
es (ek,θ−2x)g0(x)dx+

∫ ∞
ek,θ

e−s ek,θg0(x)dx

= es ek,θ

2

∫ 0

−∞
exdx+ es ek,θ

2

∫ ek,θ

0
e−(2s+1)xdx+ e−s ek,θ

2

∫ ∞
ek,θ

e−xdx

= es ek,θ

2 + es ek,θ

2
1 − e−(2s+1) ek,θ

2s+ 1 + e−s ek,θ e−ek,θ

2

= es ek,θ

2 + es ek,θ − e−(s+1) ek,θ

2 (2s+ 1) + e−(s+1) ek,θ

2

= (s+ 1)es ek,θ + se−(s+1) ek,θ

2s+ 1 (9.139)

to arrive at
Λk(s; θ) = log

(
(s+ 1)es ek,θ + se−(s+1) ek,θ

2s+ 1

)
. (9.140)

Following similar steps for the case ek,θ < 0, we would find the following expression for
the LMGF:

Λk(s; θ) = log
(
se(s−1) ek,θ + (s− 1)e−s ek,θ

2s− 1

)
. (9.141)

Now, to compute the error exponents Φ(θ) from (9.81), we need to compute the LMGF
Λnet appearing in (9.79). Recalling that Λnet is the LMGF of the network variable
λnet,t(θ) =

∑K

k=1 vkλk,t(θ), we can write (as we also showed before in (6.84))

Λnet(s; θ) =
K∑
k=1

Λk(vks; θ), (9.142)

which follows from the fact that the LMGF of the sum of independent random variables
is the sum of the LMGFs of the individual variables. The error exponent Φ(θ) is finally
evaluated by: i) substituting (9.141) into (9.142); ii) evaluating numerically the integral
in (9.79) to compute ϕ(0, θ); and iii) computing Φ(θ) from (9.81). Since the true state
is ϑo = 3, we need to evaluate Φ(θ) for θ = 1 and θ = 2. Performing the aforementioned
calculations, we obtain Φ(1) = 0.04778 and Φ(2) = 0.03589, which means that the
dominant exponent is given by

Φ = min
θ∈{1,2}

Φ(θ) = 0.03589. (9.143)

Now we illustrate the details of the numerical experiments. We let all agents execute
the ASL algorithm for T = 2000 iterations and for 15 values of δ uniformly spaced
in the interval [1/150, 1/10]. We run 20000 Monte Carlo experiments and compute

202 Learning Accuracy under ASL

20 40 60 80 100 120 140

1/δ

10−3

10−2

10−1

100

p k
(δ

)

markers: simulation
dashes: Gaussian approx.
dots: agent-dependent

Gaussian approx.
line: large deviations

agent 1

agent 5

agent 10

Figure 9.6: Steady-state error probability pk(δ) as a function of 1/δ, for k = 1, 5, 10, in the
setting of Example 9.6. Markers refer to the empirical error probability estimated from 20000
Monte Carlo runs. The dashed line refers to the theoretical error probability in (9.21) computed
using the Gaussian approximation in (9.70). Dotted lines refer to the theoretical error probability
in (9.21) computed, for agents 1, 5, and 10, using the agent-dependent Gaussian approximation
in (9.71). The solid line refers to the function e−Φ/δ, with error exponent Φ predicted by the
large deviation analysis in Theorem 9.4.

the steady-state empirical probability of error for each agent and each value of δ. In
Figure 9.6 the empirical probability curves of agents 1, 5, and 10 are compared against
the theoretical error probability in (9.21) computed using the Gaussian approximations
in (9.70) and (9.71). To highlight the exponential decay rate with error exponent Φ
predicted by Theorem 9.4, in the figure we also plot the function e−Φ/δ. We recall that
this function should not be intended as an approximation for the error probabilities, but
must be used only to capture the leading order exponential decay rate.

9.6 Main Performance Characteristics

The analysis carried out in this chapter revealed the following fundamental
features.

Consistent social learning. Thanks to the weak law of small adapta-
tion parameters proved in Theorem 9.2, we showed in Corollary 9.2 that
with the ASL strategy each agent learns consistently, i.e., with vanishing
probability of error as δ → 0. Moreover, we showed in Corollary 9.3 that a
stronger notion of consistency applies, that is, as δ → 0 the belief of each
agent about the target hypothesis ϑ⋆ tends to 1.

Gaussian approximation. Theorem 9.3 showed that the vector bk, when
properly shifted and scaled, is asymptotically normal. The theorem was

9.6. Main Performance Characteristics 203

exploited to derive the two Gaussian approximations in (9.70) and (9.71).
In particular, the second approximation is able to capture differences aris-
ing across the error probabilities of the agents.

Large deviations. Theorem 9.4 revealed that the error probabilities of
all agents decay exponentially fast, as δ → 0, with the inverse of the
adaptation parameter, 1/δ. The exponent ruling this decay is the same for
all agents.

Equivalence among agents? We saw in Figure 9.6 that the error proba-
bility curves of distinct agents stay nearly parallel (as functions of 1/δ, in
the logarithmic-scale representation), which confirms that they are equiva-
lent at the leading order in the exponent. On the other hand, we also saw
that the performance of distinct agents is not equalized as δ goes to 0.

Observe that this is not in conflict with the theory of large deviations.
Indeed, the equality to the leading exponential order in (9.77) does not
imply in any way that we can approximate the probability of error as e−Φ/δ,
i.e., pk(δ) ̸≈ e−Φ/δ. This is because the large deviation analysis neglects sub-
exponential corrections embodied in the o(1) term. For example, consider
two error probabilities, say p1(δ) = e−Φ/δ and p2(δ) = 100 e−Φ/δ. Since we
can write

p2(δ) = 100 e−Φ/δ = e−Φ/δ+log 100 = exp
{
− 1
δ

[
Φ− δ log 100︸ ︷︷ ︸

o(1)

]}
, (9.144)

we see that the leading exponent of p2(δ) is Φ. This is obviously the
same as in p1(δ). However, despite featuring the same error exponent as
p1(δ), probability p2(δ) is two orders of magnitude larger than p1(δ). In
our setting, higher-order corrections in the error probabilities can reflect
differences across the agents, arising due to various factors, for example,
due to the difference between “central” agents with a high number of
neighbors, as opposed to “peripheral” agents with few neighbors. For one
instance of this behavior, refer back to the difference between the error
probabilities of agents 1 and 5 in Figure 9.6, and to Figure 9.2 to see
that agent 5 is more peripheral than agent 1. This richer behavior is not
captured by the large deviation analysis, which is able to estimate only
the error exponent.

Interestingly, the Gaussian approximation (9.71) is able to capture the
discrepancies among the agents’ error probabilities. However, we know that

204 Learning Accuracy under ASL

this approximation is not guaranteed to track the exact error probabilities
as δ → 0. In order to find an approximation that captures the behavior
of distinct agents and is exact for vanishing δ, a refined large deviation
framework exists, usually referred to as “exact asymptotics” [8, 59, 60],
which has been applied to binary adaptive detection in [120, 123].

Chapter 10

Adaptation under ASL

In this chapter we study another important aspect of adaptive social learn-
ing, namely, the transient behavior during the early stages of adaptation.
To begin with, in Section 10.1 we provide a qualitative overview to il-
lustrate the main rationale and goal of the transient analysis. Then, in
Section 10.2 we quantify the adaptation capacity of the ASL strategy by
characterizing the time necessary for the instantaneous error probability to
get close to the steady-state value. Combining this characterization with
the results available from Chapter 9, we arrive at a revealing description
of the trade-off between learning and adaptation.

10.1 Qualitative Description of the Transient Phase

It is useful to provide a qualitative overview of the transient behavior of
adaptive social learning in comparison with the traditional social learning
strategy examined in Chapter 5. To this end, we consider the following
illustrative example. We have a single agent (and, therefore, in this example
we remove the subscript k from the notation) interested in solving a binary
hypothesis problem with Θ = {1, 2}. The likelihood models ℓ(x|1) and
ℓ(x|2) employed by the agent are exact, namely, the data can originate from
ℓ(x|1) or ℓ(x|2), depending on whether the true hypothesis is ϑo = 1 or
ϑo = 2. To simplify the presentation, we assume symmetric KL divergences,

206 Adaptation under ASL

i.e., we assume the validity of the following equality:1

Eℓ1 log ℓ(x|1)
ℓ(x|2) = Eℓ2 log ℓ(x|2)

ℓ(x|1) ≜ λ̄ > 0, (10.1)

where, as usual, the notation Eℓθ denotes expectation under ℓ(x|θ). We
assume that at time t = 1 the true underlying hypothesis is ϑo = 1, and
the situation remains stationary until a certain time T1, after which data
start being generated according to ϑo = 2. The purpose of the transient
analysis is to examine how the algorithm is able to react to drifts. In this
example, the drift is represented by the change in ϑo.

In order to study how the learning process progresses over time, it is
sufficient to consider the time evolution of the log belief ratio

qβt ≜ log µt(1)
µt(2) . (10.2)

Note that in (10.2) we use symbol qβt to denote the log belief ratio, in
place of the symbol βt that was used before. This choice is meant to avoid
confusion. Indeed, in our treatment the symbol βt is always defined with
the true hypothesis appearing in the numerator. Since in the following
analysis the true hypothesis will change during the observation interval,
using such a convention would require exchanging the numerator and
denominator, thus adding unnecessary complexity.

In contrast, in the log belief ratio qβt, we have hypothesis 1 in the
numerator and hypothesis 2 in the denominator, irrespective of which
hypothesis is true. This also means that, to classify correctly the hypotheses,
we would like to have positive values of qβt when ϑo = 1 and negative values
when ϑo = 2.

Applying the sequential Bayesian update strategy (2.21) to the consid-
ered single-agent binary setting, we obtain the following recursion (we use
the superscripts na and ad to distinguish the nonadaptive and adaptive
strategies, respectively):

qβ
na
t = qβ

na
t−1 + log ℓ(xt|1)

ℓ(xt|2) . (10.3)

1We remark that the qualitative argument in this section does not rely on condition (10.1),
which is made here only to simplify the example. It is interesting to note (and straightforward
to verify) that condition (10.1) is always satisfied for all shift-in-mean problems with symmetric
noise pdf, namely, when x = w +m1 under ℓ(x|1) and x = w +m2 under ℓ(x|2), where w is a
zero-mean continuous random vector in Rd with an even pdf f(w) = f(−w) (whose support is
equal to Rd to guarantee that x has the same support under the two hypotheses, otherwise the
detection problem becomes trivial).

10.1. Qualitative Description of the Transient Phase 207

Applying instead the adaptive update step of the ASL strategy (3.16) to
the same single-agent binary case, we obtain the recursion

qβ
ad
t = (1− δ)qβad

t−1 + log ℓ(xt|1)
ℓ(xt|2) . (10.4)

We assume flat priors for both (10.3) and (10.4), which implies qβna
0 = qβ

ad
0 =

0. We now examine separately the nonadaptive and adaptive strategies.

10.1.1 Nonadaptive Strategy

In order to appreciate the main trade-offs involved in the transient behavior,
let us focus on the time evolution of the expected log belief ratio. Iterating
(10.3) up to time T1 and taking expectations we get

Eqβ
na
T1 = λ̄T1, (10.5)

where λ̄ is the symmetric KL divergence introduced in (10.1). Equation
(10.5) shows that the expected value of the log belief ratio grows linearly
with the duration T1 of the stationarity interval. This linear growth is a
reflection of the increasing knowledge acquired by the agent as it aggregates
new information embodied in the log likelihood ratios. In the asymptotic
regime, this knowledge becomes a certainty. In fact, we already know from
Chapter 2 that qβ

na
T1 → ∞ almost surely as T1 → ∞, which implies that

if hypothesis 1 remains in force indefinitely, the belief of the agent about
this hypothesis converges to 1. Unfortunately, this increasing confidence
comes at the cost of an “elephant” memory that makes the algorithm slow
in adaptation, as we now show.

To this end, let us examine the behavior for t > T1, recalling that from
time T1 + 1 onward the true hypothesis switches to ϑo = 2. We have that

qβ
na
t = qβ

na
T1 +

t∑
τ=T1+1

log ℓ(xτ |1)
ℓ(xτ |2) , t > T1. (10.6)

Then, from (10.5) and (10.6) we have that

Eqβ
na
t = Eqβ

na
T1︸ ︷︷ ︸

=λ̄T1

+
t∑

τ=T1+1
E log ℓ(xτ |1)

ℓ(xτ |2)︸ ︷︷ ︸
= −λ̄ since ϑo = 2

= λ̄(2T1 − t), t > T1. (10.7)

We see from (10.7) that the earlier operation regime (i.e., for t ≤ T1)
results in an initial bias term λ̄T1 of positive sign. On the other hand, since

208 Adaptation under ASL

the true hypothesis is now ϑo = 2, we would like to observe a negative
value for Eqβ

na
t . Accordingly, the adaptation time can be roughly identified

by considering the time necessary to overcome the initial bias toward
hypothesis 1 once the true hypothesis switches from 1 to 2 at instant T1.
In terms of our mean-value analysis, this is the time necessary for the
expected log belief ratio Eqβ

na
t to become nonpositive. In view of (10.7),

this change happens at instant t0 = 2T1. The adaptation time is computed
as the difference between t0 and T1. Therefore, the adaptation time for
the traditional, sequential update strategy (2.21) is on the order of

Tna = T1. (10.8)

In other words, the time necessary to recover from an earlier wrong opinion
is proportional to the stationarity interval during which that opinion
was actually true! This behavior, illustrated in Figure 10.1, is clearly not
admissible for an adaptive algorithm.

10.1.2 Adaptive Strategy

Let us switch to the adaptive strategy. Developing the recursion in (10.4)
until time T1 we get

qβ
ad
T1 =

T1∑
τ=1

(1− δ)T1−τ log ℓ(xτ |1)
ℓ(xτ |2) , (10.9)

yielding

Eqβ
ad
T1 = λ̄

T1∑
τ=1

(1− δ)τ−1 = λ̄

δ

(
1− (1− δ)T1

)
≈ λ̄

δ
, (10.10)

where the approximation assumes a sufficiently large T1.
Likewise, developing the recursion in (10.4) from the time instant T1

(i.e., from the initial state qβ
ad
T1) until an instant t > T1, where the true

hypothesis becomes ϑo = 2, we obtain

qβ
ad
t = (1− δ)t−T1qβ

ad
T1 +

t∑
τ=T1+1

(1− δ)t−τ log ℓ(xτ |1)
ℓ(xτ |2) , t > T1, (10.11)

10.1. Qualitative Description of the Transient Phase 209

yielding

Eqβ
ad
t = (1− δ)t−T1Eqβ

ad
T1 +

t∑
τ=T1+1

(1− δ)t−τ E log ℓ(xτ |1)
ℓ(xτ |2)

(a)= (1− δ)t−T1 λ̄

δ

(
1− (1− δ)T1

)
− λ̄

t−T1∑
τ=1

(1− δ)τ−1

= (1− δ)t−T1 λ̄

δ

(
1− (1− δ)T1

)
− λ̄

δ

(
1− (1− δ)t−T1

)
= λ̄

δ

(
2(1− δ)t−T1 − 1− (1− δ)t

)
≈ λ̄

δ

(
2(1− δ)t−T1 − 1

)
, t > T1, (10.12)

where in step (a) we apply (10.10) (actually, the final equality, not the
approximation) to evaluate Eqβ

ad
T1 and we use the fact that E log ℓ(xτ |1)

ℓ(xτ |2) =
−λ̄ for τ > T1. The last approximation holds for sufficiently large t.
Equating (10.12) to 0 we obtain

t0 = log 2
log(1− δ)−1 + T1 ≈

log 2
δ

+ T1, (10.13)

where we used the fact that 1/ log(1− δ)−1 ≈ 1/δ for small δ. Evaluating
the adaptation time as Tad = t0 − T1, from (10.13) we get

Tad ≈
log 2
δ

. (10.14)

10.1.3 Comparison

A visual comparison between the nonadaptive and adaptive strategies
is shown in Figure 10.1, where the expected log belief ratios Eqβ

na
t and

Eqβ
ad
t are depicted as functions of t. Comparing (10.14) against (10.8),

we see that for the nonadaptive strategy the adaptation time diverges
as the duration T1 of the stationarity interval increases, whereas for the
adaptive strategy it is independent of T1, and is controlled by the parameter
δ, scaling roughly as 1/δ. One explanation for this difference is that the
expected log belief ratio of the adaptive strategy given by (10.10) converges
as T1 → ∞, to the stable value λ̄/δ that depends on δ. In contrast, for
the nonadaptive strategy the expected log belief ratio in (10.5), increases
linearly with T1. This implies that, after a relatively long stationarity

210 Adaptation under ASL

T1
<latexit sha1_base64="ni6YwR01lXL7ziKq/HaXCM0gMLI=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuix6MVjhX5Bu5Rsmm1Dk82SZJWy7M/wqF7Eq7/Gg//GtN2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNM7mZ+55EqzWTUNNOY+gKPIhYygo2Vemlfh6iZDVIvG5QrbtWdA60SLycVyNEYlL/6Q0kSQSNDONa657mx8VOsDCOcZqV+ommMyQSPaM/SCAuq/XR+cobOrDJEoVS2IoPm6u+JFAutpyK4CIRtFtiM9bI9E//zeokJb/yURXFiaEQWu8KEIyPRLAI0ZIoSw6eWYKKYPReRMVaYGBtUyebgLX+9Stq1qndZrT1cVeq3eSJFOIFTOAcPrqEO99CAFhCQ8Ayv8OY8OS/Ou/OxaC04+cwx/IHz+QP3cpIi</latexit>

Tad
<latexit sha1_base64="EnupRpUIrdU+ICdsK9/8wOo91Ok=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQKuiy6cVmhL2hDmEwm7dDJJMxMCiX0T9y4UMStf+LOv3GaZqGtBy73cM69zJ0TpJwp7Tjf1sbm1vbObmWvun9weHRsn5x2VZJJQjsk4YnsB1hRzgTtaKY57aeS4jjgtBdMHhZ+b0qlYolo61lKvRiPBIsYwdpIvm3nQxWh9twvOg7nvl1z6k4BtE7cktSgRMu3v4ZhQrKYCk04VmrgOqn2ciw1I5zOq8NM0RSTCR7RgaECx1R5eXH5HF0aJURRIk0JjQr190aOY6VmcWAmY6zHatVbiP95g0xHd17ORJppKsjyoSjjSCdoEQMKmaRE85khmEhmbkVkjCUm2oRVNSG4q19eJ91G3b2uN55uas37Mo4KnMMFXIELt9CER2hBBwhM4Rle4c3KrRfr3fpYjm5Y5c4Z/IH1+QM1aJNh</latexit>

Tna
<latexit sha1_base64="LKk33v6c8gjC4qVeJKZRSZMhqv4=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQKuiy6cVmhL2hDmEwn7dDJJMxMCiXkT9y4UMStf+LOv3GaZqGtBy73cM69zJ0TJJwp7Tjf1sbm1vbObmWvun9weHRsn5x2VZxKQjsk5rHsB1hRzgTtaKY57SeS4ijgtBdMHxZ+b0alYrFo63lCvQiPBQsZwdpIvm1nQxWidu4XXeDct2tO3SmA1olbkhqUaPn213AUkzSiQhOOlRq4TqK9DEvNCKd5dZgqmmAyxWM6MFTgiCovKy7P0aVRRiiMpSmhUaH+3shwpNQ8CsxkhPVErXoL8T9vkOrwzsuYSFJNBVk+FKYc6RgtYkAjJinRfG4IJpKZWxGZYImJNmFVTQju6pfXSbdRd6/rjaebWvO+jKMC53ABV+DCLTThEVrQAQIzeIZXeLMy68V6tz6WoxtWuXMGf2B9/gBEp5Nr</latexit>

t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

<latexit sha1_base64="D1+8Yl7dIfk5MYy8eRqjnRpWXbA=">AAACCnicbVA7T8MwGHTKq5RXgJHFUCExVQmqgLGChbFI9CE1UeU4TmvVsSPbQaqizCz8FRYGEGLlF7Dxb3DaDNBykqXT3X22vwsSRpV2nG+rsrK6tr5R3axtbe/s7tn7B10lUolJBwsmZD9AijDKSUdTzUg/kQTFASO9YHJT+L0HIhUV/F5PE+LHaMRpRDHSRhrax14kEc48YULFHZnHzHCI8jzzQsI0yod23Wk4M8Bl4pakDkq0h/aXFwqcxoRrzJBSA9dJtJ8hqSlmJK95qSIJwhM0IgNDOYqJ8rPZKjk8NUoIIyHN4RrO1N8TGYqVmsaBScZIj9WiV4j/eYNUR1d+RnmSasLx/KEoZVALWPQCQyoJ1mxqCMKSmr9CPEamG23aq5kS3MWVl0n3vOFeNJp3zXrruqyjCo7ACTgDLrgELXAL2qADMHgEz+AVvFlP1ov1bn3MoxWrnDkEf2B9/gAEyJvB</latexit>

�

�

<latexit sha1_base64="FjwdYG1WhdlCkxuM0/BPGXy1H0E=">AAACC3icbVA7T8MwGHR4lvIKMLJYrZBYqBJUAWMFC2OR6ENqospxnNaqY0e2g1RF2Vn4KywMIMTKH2Dj3+C0GaDlJEunu/tsfxckjCrtON/Wyura+sZmZau6vbO7t28fHHaVSCUmHSyYkP0AKcIoJx1NNSP9RBIUB4z0gslN4fceiFRU8Hs9TYgfoxGnEcVIG2lo1868SCKcecKkiksyj5npEOV55oWEaZQP7brTcGaAy8QtSR2UaA/tLy8UOI0J15ghpQauk2g/Q1JTzEhe9VJFEoQnaEQGhnIUE+Vns11yeGKUEEZCmsM1nKm/JzIUKzWNA5OMkR6rRa8Q//MGqY6u/IzyJNWE4/lDUcqgFrAoBoZUEqzZ1BCEJTV/hXiMTDfa1Fc1JbiLKy+T7nnDvWg075r11nVZRwUcgxo4BS64BC1wC9qgAzB4BM/gFbxZT9aL9W59zKMrVjlzBP7A+vwBdAyb+A==</latexit>

��

�

<latexit sha1_base64="DrEasl7Auvc4+MRKDvATDWz2C4U=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM1m0i7dbOLuplBK/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXpIJr47rfztr6xubWdmGnuLu3f3BYOjpu6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4N/NbI1SaJ/LRjFP0Y9qXPOKMGiu1aUhTw0fYK5XdijsHWSVeTsqQo94rfXXDhGUxSsME1brjuanxJ1QZzgROi91MY0rZkPaxY6mkMWp/Mr93Ss6tEpIoUbakIXP198SExlqP48B2xtQM9LI3E//zOpmJbvwJl2lmULLFoigTxCRk9jwJuUJmxNgSyhS3txI2oIoyYyMq2hC85ZdXSbNa8a4qlw/Vcu02j6MAp3AGF+DBNdTgHurQAAYCnuEV3pwn58V5dz4WrWtOPnMCf+B8/gBC55Af</latexit>

adaptive

<latexit sha1_base64="YuFOrudQ2PCB233bRnBtbh853bE=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgQkoiRV0W3bis0Bc0IUwmk3boZBJmJkIJWbnxV9y4UMSt3+DOv3HSZqGtBwYO59zDnXv8hFGpLOvbqKysrq1vVDdrW9s7u3vm/kFPxqnApItjFouBjyRhlJOuooqRQSIIinxG+v7ktvD7D0RIGvOOmibEjdCI05BipLTkmcdOrO0inTlMxwKUO+eZI0PYyT3bM+tWw5oBLhO7JHVQou2ZX04Q4zQiXGGGpBzaVqLcDAlFMSN5zUklSRCeoBEZaspRRKSbzc7I4alWAhjGQj+u4Ez9nchQJOU08vVkhNRYLnqF+J83TFV47WaUJ6kiHM8XhSmDKoZFJzCggmDFppogLKj+K8RjJBBWurmaLsFePHmZ9C4a9mWjed+st27KOqrgCJyAM2CDK9ACd6ANugCDR/AMXsGb8WS8GO/Gx3y0YpSZQ/AHxucPUB6ZBA==</latexit>

�T1

<latexit sha1_base64="3omrGXaHS+u1GhYiJFzWMX0YrP0=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgQcJuCOox6MVjhLwgu4TZyWwyZHZ2mYcQlvyGFw+KePVnvPk3TpI9aGJBQ1HVTXdXmHKmtOt+O4WNza3tneJuaW//4PCofHzSUYmRhLZJwhPZC7GinAna1kxz2kslxXHIaTec3M/97hOViiWipacpDWI8EixiBGsr+TX/KvNVhFqzgTcoV9yquwBaJ15OKpCjOSh/+cOEmJgKTThWqu+5qQ4yLDUjnM5KvlE0xWSCR7RvqcAxVUG2uHmGLqwyRFEibQmNFurviQzHSk3j0HbGWI/VqjcX//P6Rke3QcZEajQVZLkoMhzpBM0DQEMmKdF8agkmktlbERljiYm2MZVsCN7qy+ukU6t619X6Y73SuMvjKMIZnMMleHADDXiAJrSBQArP8ApvjnFenHfnY9lacPKZU/gD5/MHz0GQ5g==</latexit>

2 T1

ex
p
ec

te
d

lo
g

b
el

ie
f
ra

ti
o

<latexit sha1_base64="x4i1ahIaW6/bmO15tdHRTKtlWGY=">AAACIHicbVDLSgMxFM34rOOr6tJNsAiuykxd1GVBBJcV7AM6pWQyd6ahmcyQZMQy9FPc+CtuXCiiO/0aM20FbT0QOJxzbpJ7/JQzpR3n01pZXVvf2Cxt2ds7u3v75YPDtkoySaFFE57Irk8UcCagpZnm0E0lkNjn0PFHl4XfuQOpWCJu9TiFfkwiwUJGiTbSoFz3fIiYyCkIDXJiw30KVEPgeTZPIuybiyHEskjbHojgJzgoV5yqMwVeJu6cVNAczUH5wwsSmsVmnHKiVM91Ut3PidSMcpjYXqYgJXREIugZKkgMqp9PF5zgU6MEOEykOULjqfp7IiexUuPYN8mY6KFa9ArxP6+X6fCinzORZhoEnT0UZhzrBBdt4YBJUwcfG0KoZOavmA6JJKYiqWxTgru48jJp16ruebV2U6s0ruZ1lNAxOkFnyEV11EDXqIlaiKIH9IRe0Kv1aD1bb9b7LLpizWeO0B9YX9+y+qPs</latexit>

nonadaptive
<latexit sha1_base64="4ffMr5F4VpdmAaDcZ8kwtNpWOW4=">AAAB8nicbVBNS8NAEN34WetX1aOXYBE8laQe9Fj04rGC/YA2lMlm0y7d7IbdSaGE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTAU36Hnfzsbm1vbObmmvvH9weHRcOTltG5VpylpUCaW7IRgmuGQt5ChYN9UMklCwTji+n/udCdOGK/mE05QFCQwljzkFtFJPKgkRpMgnbFCpejVvAXed+AWpkgLNQeWrHymaJUwiFWBMz/dSDHLQyKlgs3I/MywFOoYh61kqIWEmyBcnz9xLq0RurLQtie5C/T2RQ2LMNAltZwI4MqveXPzP62UY3wY5l2mGTNLlojgTLip3/r8bcc0oiqklQDW3t7p0BBoo2pTKNgR/9eV10q7X/Ota/bFebdwVcZTIObkgV8QnN6RBHkiTtAglijyTV/LmoPPivDsfy9YNp5g5I3/gfP4AsZCRgw==</latexit>

Figure 10.1: Single-agent learning under nonstationary conditions. Time evolution of the
expected log belief ratios Eqβ

na
t (traditional nonadaptive strategy (10.3), in blue) and Eqβ

ad
t

(adaptive strategy (10.4), in red).

interval, the nonadaptive strategy accumulates an initial bias that is more
difficult to overcome.

In a nutshell, while the reaction capacity of traditional social learning
given by (10.3) is not controlled by design and is severely affected by the
duration of previous stationarity intervals, in the adaptive social learning
update (10.4) the adaptation time is not affected by previous stationarity
intervals, and the effective memory is controlled through the adaptation
parameter δ. This adaptation ability comes at the expense of learning
accuracy. In fact, as we have already established in the previous chapter,
the steady-state error probability does not converge to 0 as time elapses, but
converges to some stable value. However, this value vanishes exponentially
fast as a function of 1/δ, highlighting the fundamental trade-off of adaptive
social learning: The smaller the adaptation parameter δ is, the smaller the
error probability will be (i.e., better learning accuracy) and the larger the
adaptation time will be (i.e., slower adaptation).

10.2 Quantitative Transient Analysis

In this section we provide a more rigorous analysis to support the qualitative
arguments of Section 10.1. We assume that the ASL strategy (8.13) has
been in operation for a certain time t0. All the knowledge accumulated by
the agents until this time is summarized in the belief vectors {µk,t0}Kk=1. We

10.2. Quantitative Transient Analysis 211

remark that the evolution of the statistical models from t = 0 to t = t0 is
left completely arbitrary, that is, the system could have experienced several
drifts in the statistical conditions and/or other system parameters, e.g.,
the graph combination weights. From the viewpoint of the ASL algorithm,
all these effects are summarized in the belief vectors {µk,t0}Kk=1 that act
as initial state at time t0. In order to perform the transient analysis, we
assume that from t0 + 1 onward, some models {fk(x)}Kk=1 steadily govern
the data of the different agents, with some target hypothesis equal to ϑ⋆

— see Definition 8.1. We will establish how much time is necessary to get
sufficiently close to the steady-state learning performance starting from
the initial realization {µk,t0}Kk=1. As done before, to simplify the notation
we set t0 = 0 and the initial state becomes {µk,0}Kk=1.

In the theory of adaptation and learning, the focus is typically on
estimation of a continuous parameter, and the transient analysis is per-
formed by characterizing the time evolution of suitable moments of an
error variable, e.g., the second-order moment of a vector quantifying the
difference between the estimated and true parameters. In this setting, the
transient analysis ascertains how long it takes for the error to attain some
small value [151, 154]. In comparison, in the social learning setting the
adaptation time will be related to the time evolution of the instantaneous
error probability introduced in (9.20), and specifically to the time necessary
for this probability to approach the steady-state error probability.

The time evolution of the instantaneous error probability will be char-
acterized in terms of the upper bound provided in Theorem 10.1. As we
will see from the proof of the theorem, this bound relies on the logarithmic
moment generating function of the log belief ratios. Compare this approach
with the one adopted for the estimation of continuous parameters. In the
latter case we examine the time evolution of moments, while, in adaptive
social learning, it will be important to characterize the time evolution
of logarithmic moment generating functions. This fact admits the follow-
ing interesting interpretation: Since the logarithmic moment generating
function of a random variable incorporates dependence on all moments
of the variable, the transient analysis of adaptive social learning relies on
all moments, while in problems addressing the estimation of continuous
parameters we need only individual moments.

212 Adaptation under ASL

Theorem 10.1 (Bounds on the instantaneous error probability). Let Assump-
tions 5.1, 5.2, and 6.1 be satisfied. Let C and r be the constants defined in
(4.25), which are determined by the combination matrix. Assume that, for all
θ ≠ ϑ⋆, λinf(θ) ≜ inf

(
suppλnet(θ)

)
< 0, where suppλnet(θ) denotes the support

of the distribution of the network average of log likelihood ratios λnet,t(θ) (see
(6.7) and Definition E.1), and let s⋆θ be the quantity introduced in Corollary 9.4.
Define the scaled log belief ratios, for k = 1, 2, . . . ,K and t = 0, 1, . . .,

bk,t(θ) ≜ δ × βk,t(θ), (10.15)

and the following network average, corresponding to the (deterministic) initial
values bk,0(θ) weighted by the Perron vector entries {vk}:

bnet,0(θ) ≜
K∑
k=1

vkbk,0(θ), (10.16)

Let, for all θ ̸= ϑ⋆,

K1(θ) ≜ |s⋆θ |
[
λ̄net(θ) − bnet,0(θ)

]
, (10.17)

K2(θ) ≜ C |s⋆θ |
K∑
k=1

|bk,0(θ)|, (10.18)

where λ̄net(θ) is defined by (6.10). Then, for each agent k, the instantaneous
error probability pk,t defined by (9.20) is upper bounded as

pk,t ≤
∑
θ ̸=ϑ⋆

exp
{1
δ

[
− Φ(θ) + K1(θ)(1 − δ)t + K2(θ)(1 − δ)trt +O(δ)

]}
,

(10.19)
where Φ(θ) is defined by (9.81).

Proof. Recalling the representation in (9.5), we can write

βk,t(θ) = (1 − δ)t
K∑
j=1

[At]jkβj,0(θ) + β̂k,t(θ). (10.20)

Let us introduce the scaled quantity

b̂k,t(θ) ≜ δ × β̂k,t(θ) = δ

K∑
j=1

t∑
τ=1

(1 − δ)τ−1[Aτ]jk λj,t−τ+1(θ), (10.21)

where the equality follows from (9.6). Since bk,t(θ) = δ × βk,t(θ) by definition, from

10.2. Quantitative Transient Analysis 213

(10.20) and (10.21) we get

bk,t(θ) = b̂k,t(θ) + (1 − δ)t
K∑
j=1

[At]jkbj,0(θ)

= b̂k,t(θ) + (1 − δ)t
K∑
j=1

vjbj,0(θ) + (1 − δ)t
K∑
j=1

(
[At]jk − vj

)
bj,0(θ)

≥ b̂k,t(θ) + (1 − δ)t
K∑
j=1

vjbj,0(θ) − C(1 − δ)trt
K∑
j=1

|bj,0(θ)|

= b̂k,t(θ) + (1 − δ)tbnet,0(θ) − K2(θ)
|s⋆θ |

(1 − δ)trt, (10.22)

where the inequality follows from (4.25), and in the last equality we used (10.16) and
(10.18). In view of (10.22) we can write

P[bk,t(θ) ≤ 0] ≤ P
[
b̂k,t(θ) ≤ −(1 − δ)tbnet,0(θ) + K2(θ)

|s⋆θ |
(1 − δ)trt

]
(a)= P

[
s⋆θ
δ
b̂k,t(θ) ≥ |s⋆θ |

δ
(1 − δ)tbnet,0(θ) − K2(θ)

δ
(1 − δ)trt

]

(b)
≤

E exp
{
s⋆θ
δ
b̂k,t(θ)

}
exp
{

|s⋆θ |
δ

(1 − δ)tbnet,0(θ) − K2(θ)
δ

(1 − δ)trt
}

(c)= exp
{

1
δ

[
δΛ̂k,t

(
s⋆θ
δ

; θ
)

− (1 − δ)t|s⋆θ |bnet,0(θ) + K2(θ)(1 − δ)trt
]}

,

(10.23)

where (a) follows by multiplying by s⋆θ/δ both sides of the inequality within the probability
brackets and taking into account the fact that s⋆θ < 0 (see Corollary 9.4); (b) follows
by applying Chernoff’s bound (Theorem C.3); and in (c) we introduced the LMGF of
b̂k,t(θ), defined as

Λ̂k,t(s; θ) ≜ logE exp
{
s b̂k,t(θ)

}
. (10.24)

We now want to obtain a convenient expression for the LMGF Λ̂k,t(s; θ) in (10.24).
To this end, we will appeal to some results from Appendix F, which are more easily
illustrated by introducing the following ad-hoc notation. Let us set, for j = 1, 2, . . . ,K

214 Adaptation under ASL

and τ ∈ N,
yj,τ = λj,τ (θ), yτ = [y1,τ ,y2,τ , . . . ,yK,τ], (10.25)
αj,τ = [Aτ]jk, ατ = [α1,τ , α2,τ , . . . , αK,τ], α = v, (10.26)

zt(δ) = δ

t∑
τ=1

(1 − δ)τ−1αT
τyτ , z(δ) = δ

∞∑
τ=1

(1 − δ)τ−1αT
τyτ , (10.27)

yave,τ = vTyτ = λnet,τ (θ), Λave(s) = logE exp
{
syave,τ

}
, (10.28)

Λy(u) = logE exp
{
uTyt

}
, u ∈ RK , (10.29)

Λzt (s) = logE exp
{
s zt(δ)

}
, Λδ(s) = logE exp

{
s z(δ)

}
. (10.30)

Now, observe that from (F.107) we have the representation

Λzt (s) =
t∑

τ=1

Λave

(
s δ(1 − δ)τ−1

)
+

t∑
τ=1

[
Λy
(
s δ(1 − δ)τ−1ατ

)
− Λy

(
s δ(1 − δ)τ−1α

)]
, (10.31)

which, in view of (F.119) and (F.120), implies that

δΛzt (s/δ) = δ

t∑
τ=1

Λave

(
s(1 − δ)τ−1

)
+O(δ). (10.32)

On the other hand, in view of Eqs. (F.97), (F.100), and (F.123), the summation on the
RHS can be written as ∫ s

s(1−δ)t

Λave(ς)
ς

dς +O(δ), (10.33)

which combined with (10.32) yields

δΛzt (s/δ) =
∫ s

s(1−δ)t

Λave(ς)
ς

dς +O(δ). (10.34)

Exploiting (10.21), (10.24), and the chain of definitions (10.25)–(10.30), we arrive at the
identity

Λzt (s) = Λ̂k,t(s; θ). (10.35)
Likewise, using (10.28) and recalling from Table 6.1 that the LMGF of the average
variable λnet,t is denoted by Λnet(s; θ), we have

Λave(s) = Λnet(s; θ). (10.36)
Substituting (10.35) and (10.36) into (10.34), we obtain

δΛ̂k,t (s/δ; θ) =
∫ s

s(1−δ)t

Λnet(ς)
ς

dς +O(δ)

=
∫ s

0

Λnet(ς; θ)
ς

dς −
∫ s(1−δ)t

0

Λnet(ς; θ)
ς

dς +O(δ)

= ϕ(s; θ) −
∫ s(1−δ)t

0

Λnet(ς; θ)
ς

dς +O(δ), (10.37)

10.2. Quantitative Transient Analysis 215

where the last equality follows from the definition of ϕ(s; θ) in (9.79). Applying (10.37)
with the choice s = s⋆θ , we get

δΛ̂k,t (s⋆θ/δ; θ) = ϕ(s⋆θ ; θ) −
∫ s⋆

θ
(1−δ)t

0

Λnet(ς; θ)
ς

dς +O(δ)

(a)= −Φ(θ) −
∫ s⋆

θ
(1−δ)t

0

Λnet(ς; θ)
ς

dς +O(δ)

(b)= −Φ(θ) +
∫ 0

−|s⋆
θ
|(1−δ)t

Λnet(ς; θ)
ς

dς +O(δ)

(c)
≤ −Φ(θ) + (1 − δ)t |s⋆θ | λ̄net(θ) +O(δ), (10.38)

where (a) follows by using the definition of Φ(θ) from (9.104); (b) holds because s⋆θ is
negative; and (c) follows by observing that, in view of (A.3a) and the strict convexity of
the LMGF Λnet, for ς < 0 we have

Λnet(ς; θ)
ς

< Λ′net(0; θ) = λ̄net(θ). (10.39)

Using (10.38) in (10.23) along with the definition of K1(θ) from (10.17), we get the
upper bound in (10.19).

■

Theorem 10.1 reveals the main behavior of the instantaneous error
probability. Examining the exponent of the upper bound in (10.19) we see,
up to higher-order corrections embodied in the term O(δ), the emergence
of three terms: the steady-state error exponent Φ(θ) already identified in
Theorem 9.4, and two other terms that characterize the transient behavior.
The first transient term decays as (1− δ)t, and is thus influenced solely by
the adaptation parameter δ. The second transient term decays as (1−δ)trt,
which means it decays faster and is influenced also by the network through
the combination-matrix parameter r. According to (4.24), this parameter
is related to the second largest-magnitude eigenvalue of A, and is therefore
related to the mixing properties of A (i.e., the convergence rate of [At]jk
to the Perron vector entry vj).

It is important to make a remark in relation to the terms bnet,0 and bk,0
appearing in (10.17) and (10.18), respectively. In view of (10.15), we have

bk,0 = δ × βk,0 (10.40)

and, from (10.16), also bnet,0 implicitly contains the multiplying factor δ.
Accordingly, instead of including bnet,0 and bk,0 in (10.17) and (10.18), it
appears that we could have incorporated them into the O(δ) correction

216 Adaptation under ASL

in (10.19). We now explain why this is not the best choice and why it is
more useful to leave explicit the dependence on these two terms. Recall
that the time instant t = 0 in our analysis represents an arbitrary time
instant after which a stationary period begins. For example, t = 0 can
correspond to the end of a previous stationary period (learning cycle)
where the agents learned a certain model that has then changed at the
beginning (t = 1) of the subsequent learning cycle. In other words, the
“initial” state bk,0 can correspond to the steady state of the previous learning
cycle. In this case, bk,0 would contain an implicit dependence on δ, since it
would be the steady-state output of the ASL algorithm. More specifically,
from Theorem 9.2 we know that in steady state this scaled log belief ratio
approximates λ̄net for small δ. Therefore, when bk,0 is interpreted as the
steady-state vector of a previous learning cycle, from (9.28) we can write

bk,0 ≈ λ̄prev
net , bnet,0 ≈ λ̄prev

net , (10.41)

where we denote by λ̄prev
net the limiting value characterizing the previous

learning cycle. Note that (10.41) is not an O(δ) correction. For this reason,
it is more appropriate to leave explicit the dependence on bnet,0 and bk,0
and not to incorporate these terms into the O(δ) correction in (10.19).

10.3 Adaptation Time

In summary, Theorem 10.1 provides the upper bound in (10.19) on the
instantaneous error probability. As t→∞, this bound converges to∑

θ ̸=ϑ⋆
exp

{
−1
δ

[
Φ(θ) +O(δ)

]}
= exp

{
−1
δ

[
Φ +O(δ)

]}
, (10.42)

where Φ = minθ ̸=ϑ⋆ Φ(θ) is the error exponent in (9.82).2 In the theory
of adaptation and learning [151], adaptation times are usually defined in

2The equality in (10.42) can be obtained as follows. Since there exists at least one value
θ ̸= ϑ⋆ such that Φ = Φ(θ), we have∑

θ ̸=ϑ⋆

exp
{
−

1
δ

[
Φ(θ) +O(δ)

]}
≥ exp

{
−

1
δ

[
Φ +O(δ)

]}
. (10.43)

On the other hand, we can write∑
θ ̸=ϑ⋆

exp
{
−

1
δ

[
Φ(θ) +O(δ)

]}
≤ (H − 1) exp

{
−

1
δ

[
Φ +O(δ)

]}
= exp

{
−

1
δ

[
Φ +O(δ) + δ log(H − 1)

]}
= exp

{
−

1
δ

[
Φ +O(δ)

]}
. (10.44)

10.3. Adaptation Time 217

terms of the number of iterations necessary to get “sufficiently” close to
some limiting (i.e., steady-state) value. In our setting, we will apply this
concept to the available upper bounds on the error probability, with the
RHS of (10.42) being our limiting value. Specifically, we say that TASL is
a valid adaptation time when, for all t > TASL,

pk,t ≤ exp
{
−1
δ

[
(1− ε)Φ +O(δ)

]}
. (10.45)

In other words, we require that, after TASL, the instantaneous error prob-
ability pk,t is upper bounded by a quantity that matches the exponent
Φ on the RHS of (10.42), but for some small ε. This is made precise in
the following corollary, where we determine expressions for the adaptation
time by distinguishing the cases of “favorable” and “unfavorable” initial
states.

The favorable scenario is identified by the condition bnet,0(θ) ≥ λ̄net(θ)
for all θ ̸= ϑ⋆, which means that the initial states are larger than the
limiting values λ̄net(θ) to which the scaled log belief ratio converges in
view of Theorem 9.2. We see from (10.17) that when bnet,0(θ) ≥ λ̄net(θ),
the terms K1(θ) are all nonpositive. Examining (10.19), we conclude that
these terms contribute to reducing the value of the upper bound in (10.19)
(or are irrelevant if they are equal to 0). For this reason, we say that
when bnet,0(θ) ≥ λ̄net(θ) for all θ ≠ ϑ⋆ we are in a favorable scenario. The
situation is reversed when bnet,0(θ) < λ̄net(θ) for at least one θ ≠ ϑ⋆, since
in this case at least one of the terms K1(θ) is positive, thus contributing
to increase the value of the upper bound in (10.19).

Corollary 10.1 (Adaptation time). Under the same assumptions used in Theo-
rem 10.1, let

K1 ≜ max
θ ̸=ϑ⋆

K1(θ), K2 ≜ max
θ ̸=ϑ⋆

K2(θ), (10.46)

and let the adaptation time TASL be a time instant such that, for all t > TASL,

pk,t ≤ e−
1
δ

[(1−ε)Φ+O(δ)] (10.47)

for some small ε > 0. Then, we have the following two scenarios:

Favorable case (all initial states are good). If bnet,0(θ) ≥ λ̄net(θ) for all
θ ̸= ϑ⋆, then for ε < K2/Φ,

TASL = 1
log r−1 log K2

εΦ . (10.48)

218 Adaptation under ASL

Unfavorable case (at least one initial state is bad). If bnet,0(θ) < λ̄net(θ)
for at least one θ ̸= ϑ⋆, then for ε < K1/Φ,

TASL = 1
log(1 − δ)−1 log K1

εΦ . (10.49)

Proof. We determine the adaptation time as the critical instant after which we stay
close to the exponent Φ, in the precise sense specified by (10.47). For ease of reference,
it is useful to report here (10.50), namely,

pk,t ≤
∑
θ ̸=ϑ⋆

exp
{1
δ

[
− Φ(θ) + K1(θ)(1 − δ)t + K2(θ)(1 − δ)trt +O(δ)

]}
. (10.50)

Since Φ(θ) ≥ Φ (see (9.82)), K1(θ) ≤ K1 and K2(θ) ≤ K2 (see (10.46)), and since
0 < δ < 1, from (10.50) we can write

pk,t ≤
∑
θ ̸=ϑ⋆

exp
{1
δ

[
− Φ + K1(1 − δ)t + K2r

t +O(δ)
]}

= (H − 1) exp
{1
δ

[
− Φ + K1(1 − δ)t + K2r

t +O(δ)
]}

. (10.51)

The constant factor H − 1 can be incorporated into the O(δ) correction, yielding

pk,t ≤ exp
{1
δ

[
− Φ + K1(1 − δ)t + K2 r

t +O(δ)
]}

. (10.52)

We now use (10.52) to evaluate the adaptation time in the favorable and unfavorable
cases.

Let us consider first the favorable case, where bnet(θ) ≥ λ̄net(θ) for all θ ̸= ϑ⋆,
implying, in view of (10.17) and (10.46), that K1 ≤ 0, such that from (10.52) we have

pk,t ≤ exp
{1
δ

[
− Φ + K2r

t +O(δ)
]}

. (10.53)

On the other hand, with the choice of TASL in (10.48) we have

t > TASL ⇐⇒ t >
1

log r−1 log K2

εΦ ⇐⇒ K2 r
t < εΦ, (10.54)

which, when used in (10.53), yields (10.47). Thus, we have proved the claim for the case
where bnet(θ) ≥ λ̄net(θ) for all θ ̸= ϑ⋆.

We examine next the unfavorable case where bnet(θ) < λ̄net(θ) for at least one value
θ ≠ ϑ⋆. Observe that in this case we have K1 = maxθ ̸=ϑ⋆ K1(θ) > 0. If we set the
adaptation time TASL according to the law in (10.49), we have

t > TASL ⇐⇒ t >
1

log(1 − δ)−1 log K1

εΦ ⇐⇒ K1(1 − δ)t < εΦ, (10.55)

which, when used in (10.52), yields

pk,t ≤ exp
{1
δ

[
− (1 − ε)Φ + K2 r

t +O(δ)
]}

. (10.56)

10.3. Adaptation Time 219

Moreover, from the known bound log x ≤ x − 1, holding for all x > 0, we have the
inequality

log 1
1 − δ

≤ 1
1 − δ

− 1 = δ

1 − δ
, (10.57)

implying
1

log(1 − δ)−1 ≥ 1 − δ

δ
= 1
δ

− 1. (10.58)

In the range t > TASL, from (10.55) and (10.58) we obtain (recall that ε < K1/Φ)

t >
(1
δ

− 1
)

log K1

εΦ , (10.59)

which, since 0 < r < 1, also implies

rt ≤ r(
1
δ
−1) log K1

ε Φ , (10.60)

which implies that the quantity K2 r
t appearing in (10.56) can be incorporated into the

term O(δ), yielding (10.47), and the proof is complete.
■

We are now ready to examine the main parameters and phenomena
affecting the adaptation time TASL.

Memory. The memory from the past evolution of the algorithm is summa-
rized in the starting belief vectors {µk,0}Kk=1, which determine the initial
values {bk,0}Kk=1 and bnet,0.

As we observed before stating the corollary, when bnet,0(θ) ≥ λ̄net(θ)
we have K1(θ) ≤ 0, and the transient term K1(θ)(1 − δ)t reduces the
value of the error probability (bound) or is irrelevant. Therefore, when
bnet,0(θ) ≥ λ̄net(θ) for all θ ̸= ϑ⋆, we see from (10.19) that the dominant
transient term is the one scaling as (1−δ)trt; the corresponding adaptation
time in (10.48) is essentially determined by the mixing parameter r, i.e.,
by how fast the powers of the combination matrix converge to v 1T — see
Corollary 4.1. Under this regime, the adaptation time does not depend
critically on the adaptation parameter δ. Moreover, the adaptation time in
(10.48) increases for larger initial values |bk,0(θ)| — see (10.18).

In comparison, when bnet,0(θ) < λ̄net(θ) for at least one θ ̸= ϑ⋆, the
dominant transient term is the one scaling as (1 − δ)t; the correspond-
ing adaptation time in (10.49) scales with the adaptation parameter as
1/ log(1 − δ)−1. For small δ, this scaling law can be approximated by
1/δ, which means that the adaptation time grows as the inverse of the
adaptation parameter δ when δ → 0.

220 Adaptation under ASL

Within the unfavorable scenario, one particularly interesting case is
when bnet,0(θ) is negative. This happens, for example, when the initial state
comes from a previous learning cycle where the agents have converged to
some hypothesis that has then changed at the beginning of the subsequent
learning cycle. To see why in this situation we have bnet,0(θ) < 0, let us
examine a single learning cycle. Recall that we use the convention that
the data of the learning cycle under examination are collected from time
instant t = 1, and that the initial belief at time instant t = 0 collects all
the knowledge stored until the beginning of the learning cycle, that is, the
knowledge accumulated from previous learning cycles. Assume for instance
that in the previous learning cycle the algorithm had been converging
to some hypothesis θ, which has then switched to ϑ⋆ at the beginning
(t = 1) of the successive learning cycle. This means that the log belief ratio
between θ and ϑ⋆ was positive at the end of the previous learning cycle.
Actually, since in the new learning cycle we compute log belief ratios in the
reverse direction, i.e., between ϑ⋆ and θ, we have bnet,0(θ) < 0. Therefore,
the smaller bnet,0(θ) is, the worse the starting condition will be. We expect
that a worse starting condition has a negative impact on the adaptation
time. This is confirmed by (10.17), because smaller values of bnet,0(θ) < 0
imply larger values of K1(θ), which in turn correspond to increasing the
adaptation time in (10.49).

Finally, observe from (10.48) and (10.49) that the dependence of the
adaptation time on K1 and K2 is logarithmic. Since we see from (10.17)
and (10.18) that K1(θ) and K2(θ) embody the initial states, we conclude
that the past algorithm evolution does not have a critical impact on the
adaptation time.

Parameter s⋆θ. The parameter s⋆θ influences the adaptation time through
the constants K1(θ) and K2(θ) — see (10.17) and (10.18). Some insight into
the role of s⋆θ can be gained by focusing on the following setting. Consider
the objective evidence model in Section 5.3 and assume statistical inde-
pendence across the agents. Under this setting, the following inequalities
were proved in [25]:

1
vmax

≤ |s⋆θ| ≤
1
vmin

, (10.61)

where vmax and vmin denote the maximum and minimum entries of the
Perron vector of A. On the face of it, these bounds suggest a dependence
of the adaptation times in (10.48) and (10.49) on the network parameters

10.3. Adaptation Time 221

through the Perron vector.
However, we should recall that the network error exponent Φ, defined

in (9.82) and appearing in (10.48) and (10.49), depends on the network
as well. For example, when all likelihoods are equal across the agents and
the combination matrix is doubly stochastic (yielding a uniform Perron
vector), we showed in (9.130) that the network error exponent Φ is K
times the exponent Φind corresponding to an individual agent (i.e., to a
standalone implementation of the ASL algorithm), namely,

Φ = KΦind. (10.62)

Moreover, with a uniform Perron vector, Eq. (10.61) implies

s⋆θ = −K. (10.63)

Using (10.62) and (10.63) in (10.48) or (10.49), we find that the network
size appearing in the parameter s⋆θ = −K is compensated for and canceled
out by the network size embodied in the network exponent Φ = KΦind.
Accordingly, we expect the network parameters to have a reduced impact
on the adaptation time when the initial conditions are unfavorable — see
(10.49). In comparison, we see from (10.48) that the adaptation time under
favorable initial conditions would depend on the parameter r that is related
to the second largest-magnitude eigenvalue of A, and, hence, embodies a
dependence on the network features. However, note that the dependence
of the adaptation time in (10.48) on r is logarithmic.

KL divergences and error exponents. As explained before, in the
unfavorable scenario the dominant constant is K1(θ). We see from (10.17)
that this constant depends on the quantity λ̄net(θ) defined by (6.10),
which in turn depends on the KL divergences relevant to the considered
classification problem. To gain some insight into this dependence, we
consider the following simplified setting. First, we focus on the objective
evidence model in Section 5.3, where ϑ⋆ = ϑo for some true hypothesis ϑo,
implying, in view of (6.10), that

λ̄net(θ) = Dnet(θ)−Dnet(ϑo)︸ ︷︷ ︸
=0

= Dnet(θ). (10.64)

Second, we neglect the initial state bnet,0, so that Eq. (10.49) becomes

TASL = 1
log(1− δ)−1 log

maxθ ̸=ϑ⋆
{|s⋆θ|Dnet(θ)

}
εΦ . (10.65)

222 Adaptation under ASL

Under the objective evidence model, Dnet(θ) is a network average of the KL
divergences between the true likelihoods ℓk(x|ϑo) and the likelihoods ℓk(x|θ)
corresponding to a wrong hypothesis θ ≠ ϑo. As a result, larger values of
Dnet(θ) imply that the true hypothesis is more easily distinguishable, that
is, the decision problem is easier. Now, expression (10.65) may suggest
an increase of the adaptation time for larger Dnet(θ). This would imply
that easier decision problems require more time to decide reliably, which
is counterintuitive.

To see that this reasoning is incomplete, observe that the error exponent
Φ is also related to the difficulty of the decision problem; it measures how
fast the steady-state error probability converges to 0 as δ → 0. Therefore,
when the decision problem becomes easier, the error probability is smaller,
and Φ should also increase, resulting in a reduction of the adaptation time
in (10.65). In summary, since the KL divergences and the error exponents
have opposite effects on the adaptation time in (10.65), it is difficult to
anticipate their combined impact. This impact can be quantified by evalu-
ating the pertinent parameters for each particular learning problem. In any
case, we remark that the effect of the KL divergences and error exponents
is mitigated by the presence of the logarithm in (10.65).

Parameter ε. The adaptation time was defined as the time instant after
which the error probability decays with an error exponent necessary to
achieve The smaller ε is, the closer the error exponent to the steady-state
exponent Φ will be. Remarkably, the impact of this parameter on the
adaptation time is not critical, since we see from (10.48) and (10.49) that
TASL depends logarithmically on ε, namely, growing as log(1/ε).

Adaptation parameter δ. Observe that the adaptation time in (10.48)
does not depend on δ. This means that if we reduce the adaptation
parameter, we can achieve a higher learning accuracy (i.e., a smaller error
probability), without incurring an expense in terms of learning time. This
is due to the fact that the algorithm starts from a favorable initial condition
where it is already inclined toward the target hypothesis.

It is clear that this is not the correct setting to evaluate a “genuine”
adaptation time, i.e., the time needed by the algorithm to arrive at a correct
determination that was not true at the beginning of the learning cycle. Let
us focus instead on the case where the initial conditions are unfavorable,
where the adaptation time scales, for small δ, as 1/ log(1− δ)−1 ≈ 1/δ —

10.3. Adaptation Time 223

see (10.49). Comparing this result with (10.14), we see that this behavior
matches well the qualitative analysis of Section 10.1.

The last expression in Corollary 10.1 shows that the adaptation time
is reduced by increasing δ. However, this is not always desirable, since
increasing δ also reduces the accuracy in the decision-making process (recall
from Theorem 9.4 that we must instead reduce δ to obtain a small error
probability). These contrasting effects represent two sides of the same coin;
they show the trade-off between learning and adaptation that exists in
the ASL strategy. This trade-off can be better summarized by combining
Theorem 9.4 and Corollary 10.1 to conclude that the error probability
decays exponentially with the adaptation time, roughly scaling as

error prob. ∼ exp

− Φ
log

(
K1 × (εΦ)−1

) TASL

 for all agents. (10.66)

Stability over successive learning cycles. The characterization of the
transient phase provided by Theorem 10.1 and the related corollary are
valid under an arbitrary choice of the initial state bk,0. However, as we
observed above, if we start from an unfavorable state, then the adaptation
time is affected adversely. This gives rise to a fundamental issue that
we now illustrate in detail. Assume that the time axis is divided into
successive intervals (learning cycles) wherein the system evolves under
stationary conditions. At the beginning of each learning cycle the statistical
distributions and/or the likelihoods and/or other system parameters change,
and a new cycle starts where the system evolves in a stationary manner,
albeit under different conditions. Sufficient time to learn is given within
each individual learning cycle, so that the system reaches the steady state
for that learning cycle. Then, as explained before, the belief accumulated at
the end of a learning cycle will become the initial belief for the subsequent
learning cycle, which can be very different from the target belief for this new
cycle. Thus, it makes sense to ask how “wrong” can the initial beliefs be at
the beginning of a learning cycle. In particular, do errors accumulate over
time as the algorithm progresses, impairing the learning process? These
questions can be answered by combining the steady-state and transient
analyses.

To see how, consider the beginning of a learning cycle. As observed
in the last paragraph of Section 10.2, at the end of the previous learning
cycle, the agents’ belief vectors have converged to some vector λ̄prev

net — see

224 Adaptation under ASL

<latexit sha1_base64="RnAq8uD7WlmzLQJy60mbfH8nVGc=">AAACEHicbVDLSgMxFM3UV62vUZdugkVwVWZE1GXRjcsK9gHtMGTSTBuaZMY8CmXoT7h2q9/gTtz6B36Cf2GmnYVtPRA4nHMv9+REKaNKe963U1pb39jcKm9Xdnb39g/cw6OWSozEpIkTlshOhBRhVJCmppqRTioJ4hEj7Wh0l/vtMZGKJuJRT1IScDQQNKYYaSuFrvsUZj2O9FDyLDZiOg3dqlfzZoCrxC9IFRRohO5Pr59gw4nQmCGlur6X6iBDUlPMyLTSM4qkCI/QgHQtFYgTFWSz5FN4ZpU+jBNpn9Bwpv7dyBBXasIjO5mHVMteLv7ndY2Ob4KMitRoIvD8UGwY1AnMa4B9KgnWbGIJwpLarBAPkURY27IWrjAaEfsXYVTejb/cxCppXdT8q9rlw2W1flu0VAYn4BScAx9cgzq4Bw3QBBiMwQt4BW/Os/PufDif89GSU+wcgwU4X7+q1p56</latexit>qfun

<latexit sha1_base64="rrNKTtpFSLEz4nlJgFgLYmkagRE=">AAACEHicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqANYTK9aYfOTOLMpFBCf8K1W/0Gd+LWP/AT/AsnbRa29cIwh3Pu5Z57woRRpV332yqtrW9sbpW3Kzu7e/sH9uFRS8WpJNAkMYtlJ8QKGBXQ1FQz6CQSMA8ZtMPRXa63xyAVjcWjniTgczwQNKIEa0MFtv0UZD2O9VDyzHzTaWBX3Zo7K2cVeAWooqIagf3T68ck5SA0YViprucm2s+w1JQwmFZ6qYIEkxEeQNdAgTkoP5s5nzpnhuk7USzNE9qZsX8nMsyVmvDQdOYm1bKWk/9p3VRHN35GRZJqEGS+KEqZo2Mnj8HpUwlEs4kBmEhqvDpkiCUm2oS1sIXREMwtIlV5Nt5yEqugdVHzrmqXD5fV+m2RUhmdoFN0jjx0jeroHjVQExE0Ri/oFb1Zz9a79WF9zltLVjFzjBbK+voFn4Wecw==</latexit>qmat

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

<latexit sha1_base64="+nUr8H5Zq3d3e/vlo1yf2Xl82Ls=">AAACBXicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZWSEsOXv2qt/gTbz6HX6Cf+Ek2YNJLGgoqrrp7ooSzoz1/W9vbX1jc2u7sFPc3ds/OCwdHTeNSjWhDaK40u0IG8qZpA3LLKftRFMsIk5b0ehu6reeqDZMyUc7Tmgo8ECymBFsndSSSjCJea9U9iv+DGiVBDkpQ456r/TT7SuSCiot4diYTuAnNsywtoxwOil2U0MTTEZ4QDuOSiyoCbPZuRN07pQ+ipV2JS2aqX8nMiyMGYvIdQpsh2bZm4r/eZ3UxjdhxmSSWirJfFGccmQVmv6O+kxTYvnYEUw0c7ciMsQaE+sSWtjCWUTdLzI1E5dNsJzEKmlWK8FV5fKhWq7d5ikV4BTO4AICuIYa3EMdGkBgBC/wCm/es/fufXif89Y1L585gQV4X79L9Znt</latexit>

nominal
<latexit sha1_base64="74LLouz7/X9uDfNdGxI5HuOCRNk=">AAACB3icbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BLx4jmIckS5id7U2GzM4u8xDCkg/w7FW/wZt49TP8BP/CSbIHk1jQUFR1090VpJwp7brfTmFtfWNzq7hd2tnd2z8oHx61VGIkhSZNeCI7AVHAmYCmZppDJ5VA4oBDOxjdTv32E0jFEvGgxyn4MRkIFjFKtJUeU5DayADCfrniVt0Z8CrxclJBORr98k8vTKiJQWjKiVJdz021nxGpGeUwKfWMgpTQERlA11JBYlB+Njt4gs+sEuIokbaExjP170RGYqXGcWA7Y6KHatmbiv95XaOjaz9jIjUaBJ0vigzHOsHT73HIJFDNx5YQKpm9FdMhkYRqm9HCFs4Cmw0TRk1sNt5yEqukVat6l9WL+1qlfpOnVEQn6BSdIw9doTq6Qw3URBTF6AW9ojfn2Xl3PpzPeWvByWeO0QKcr18Cw5rg</latexit>

perturbed

<latexit sha1_base64="+wxgkmF0+9cJlr3muVyxebYwJIg=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4TMA9IljA76U2GzM4uM7NCWHLw7FW/wZt49VP8BP/CyeNgEgsaiqpuuruCRHBtXPfbyW1sbm3v5HcLe/sHh0fF45OmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCkb3U7/1hErzWD6acYJ+RAeSh5xRY6W61yuW3LI7A1kn3oKUYIFar/jT7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI6lkkao/Wx26IRcWKVPwljZkobM1L8TGY20HkeB7YyoGepVbyr+53VSE976GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZms7RF8ADtLzLVE5uNt5rEOmlelb3rcqVeKVXvFinl4QzO4RI8uIEqPEANGsAA4QVe4c15dt6dD+dz3ppzFjOnsATn6xf/4Zb2</latexit>

1
<latexit sha1_base64="dBUEq2iqi4zmb1atUUONcDab9GU=">AAAB/3icbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4hkUcCGzI7NDBhdnYzM2tCNhw8e9Vv8Ga8+il+gn/hAHtQsJJOKlXd6e4KYsG1cd0vJ7exubW9k98t7O0fHB4Vj09aOkoUwyaLRKQ6AdUouMSm4UZgJ1ZIw0BgO5jczf32IyrNI/lgpjH6IR1JPuSMGis1Kv1iyS27C5B14mWkBBnq/eJ3bxCxJERpmKBadz03Nn5KleFM4KzQSzTGlE3oCLuWShqi9tPFoTNyYZUBGUbKljRkof6eSGmo9TQMbGdIzVivenPxP6+bmOGNn3IZJwYlWy4aJoKYiMy/JgOukBkxtYQyxe2thI2poszYbP5sETxA+4tM9Mxm460msU5albJ3Va42qqXabZZSHs7gHC7Bg2uowT3UoQkMEJ7hBV6dJ+fNeXc+lq05J5s5hT9wPn8AAYuW9w==</latexit>

2
<latexit sha1_base64="ckOuSDquPgEYUqF1Yk2imTluY6Q=">AAAB/3icbVA9TwJBEJ3DL8Qv1NJmIzGxIndK1JJoYwmJIAlcyN4yBxv29i67eyaEUFjb6m+wM7b+FH+C/8IFrhDwJZO8vDeTmXlBIrg2rvvt5NbWNza38tuFnd29/YPi4VFTx6li2GCxiFUroBoFl9gw3AhsJQppFAh8DIZ3U//xCZXmsXwwowT9iPYlDzmjxkr1y26x5JbdGcgq8TJSggy1bvGn04tZGqE0TFCt256bGH9MleFM4KTQSTUmlA1pH9uWShqh9sezQyfkzCo9EsbKljRkpv6dGNNI61EU2M6ImoFe9qbif147NeGNP+YySQ1KNl8UpoKYmEy/Jj2ukBkxsoQyxe2thA2ooszYbBa2CB6g/UWmemKz8ZaTWCXNi7J3Va7UK6XqbZZSHk7gFM7Bg2uowj3UoAEMEF7gFd6cZ+fd+XA+5605J5s5hgU4X78DJpb4</latexit>

3

<latexit sha1_base64="rrNKTtpFSLEz4nlJgFgLYmkagRE=">AAACEHicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqANYTK9aYfOTOLMpFBCf8K1W/0Gd+LWP/AT/AsnbRa29cIwh3Pu5Z57woRRpV332yqtrW9sbpW3Kzu7e/sH9uFRS8WpJNAkMYtlJ8QKGBXQ1FQz6CQSMA8ZtMPRXa63xyAVjcWjniTgczwQNKIEa0MFtv0UZD2O9VDyzHzTaWBX3Zo7K2cVeAWooqIagf3T68ck5SA0YViprucm2s+w1JQwmFZ6qYIEkxEeQNdAgTkoP5s5nzpnhuk7USzNE9qZsX8nMsyVmvDQdOYm1bKWk/9p3VRHN35GRZJqEGS+KEqZo2Mnj8HpUwlEs4kBmEhqvDpkiCUm2oS1sIXREMwtIlV5Nt5yEqugdVHzrmqXD5fV+m2RUhmdoFN0jjx0jeroHjVQExE0Ri/oFb1Zz9a79WF9zltLVjFzjBbK+voFn4Wecw==</latexit>qmat

<latexit sha1_base64="RnAq8uD7WlmzLQJy60mbfH8nVGc=">AAACEHicbVDLSgMxFM3UV62vUZdugkVwVWZE1GXRjcsK9gHtMGTSTBuaZMY8CmXoT7h2q9/gTtz6B36Cf2GmnYVtPRA4nHMv9+REKaNKe963U1pb39jcKm9Xdnb39g/cw6OWSozEpIkTlshOhBRhVJCmppqRTioJ4hEj7Wh0l/vtMZGKJuJRT1IScDQQNKYYaSuFrvsUZj2O9FDyLDZiOg3dqlfzZoCrxC9IFRRohO5Pr59gw4nQmCGlur6X6iBDUlPMyLTSM4qkCI/QgHQtFYgTFWSz5FN4ZpU+jBNpn9Bwpv7dyBBXasIjO5mHVMteLv7ndY2Ob4KMitRoIvD8UGwY1AnMa4B9KgnWbGIJwpLarBAPkURY27IWrjAaEfsXYVTejb/cxCppXdT8q9rlw2W1flu0VAYn4BScAx9cgzq4Bw3QBBiMwQt4BW/Os/PufDif89GSU+wcgwU4X7+q1p56</latexit>qfun

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

Markov chain
transition diagram
for the functioning state s(t)

<latexit sha1_base64="ZVYxA8byK5Zdyw63eI9/voJgHi4=">AAACXHicbZHBb9MwFMadMKDLGJQhceFi0SGNS5WUAxwndtll0pDoNqmpqhfnJbXq2JH9MqmK+k9y24V/Beyuh7HxLv70fc96zz8XrZKO0vQuip/tPX/xcrCfHLw6fP1m+PboypnOCpwKo4y9KcChkhqnJEnhTWsRmkLhdbE6C/n1LVonjf5J6xbnDdRaVlIAeWsxdHmBtdR9pTq3VFjRJrkAuzK3XCxB6jxPyIJ2MnTzUkJtofFmZSynJfKq0yJEUtfcERDy47wwqnTrxh+925zQ5+MkR10+mLAYjtJxui3+VGQ7MWK7ulwMf+WlEV2DmoQC52ZZ2tK8B0tSKNwkeeewBbGCGmdeamjQzfstnA3/5J2Sh4Uro4lv3Yc3emhcWNd3NkBL9zgL5v+yWUfVt3kvddsRanE/qOoUJ8MDaU/LoiC1DtiE9QRFYGpBkP+PxEPIHj/5qbiajLMv48mPyej0+w7HgH1gH9kJy9hXdsrO2SWbMsHu2J9oEO1Hv+O9+CA+vG+No92dd+yfit//BbGatvI=</latexit>

Markov chain
transition diagram
for the graph G(t)

<latexit sha1_base64="G0bj0PlilkxWZpgGNJ50FURE+AE=">AAACUHicbZFNT9wwEIadhbaQfrBtj1wslkr0skqWAz2i9tBeKoHEAtJmtZo4k8Rax47sCdIq2p/YC7f+jl44tCrOskgUOpd5/c7YHj9OayUdRdHPoLex+ez5i63t8OWr1292+m/fnTvTWIFjYZSxlyk4VFLjmCQpvKwtQpUqvEjnX7r6xRVaJ40+o0WN0woKLXMpgLw16xdJioXUba4aVyrMaRl+Bzs3V1yUIHWShGRBO9l180xCYaHyZm4spxK5X9Yl309SozK3qHxqvy4P6ON+mKDOHpw66w+iYbQK/lTEazFg6ziZ9a+TzIimQk1CgXOTOKpp2oIlKRQuw6RxWIOYQ4ETLzVU6KbtCsiSf/BOxrshc6OJr9yHO1qoXDeu76yASve41pn/q00ayj9NW6nrhlCLu4vyRnEyvKPrCVkUpBYdKmE9NdFxtCDI/0HoIcSPn/xUnI+G8eFwdDoaHH9e49hiu2yPHbCYHbFj9o2dsDET7Af7xX6zP8F1cBP87QV3rfeZvWf/RC+8BfaqtXc=</latexit>

Markov chain
transition diagram
for the state of nature ✓(t)

<latexit sha1_base64="dk7NzIvsiwxoWQbpavkWkmtlsNU=">AAACX3icbZHBT9swFMadsA0IDDJ2mrhYFCR2qZLusB0Ru3CZxCQKSE1VvTgvrVXHjuyXSlXUf3K3SVz2n+CUHhjwLv70vc96zz/ntZKOkuRvEG69e/9he2c32tv/eHAYfzq6daaxAofCKGPvc3CopMYhSVJ4X1uEKld4l89/dv27BVonjb6hZY3jCqZallIAeWsSL7Icp1K3pWrcTGFJq+gX2LlZcDEDqbMsIgvayS7NCwlTC5U3S2M5zZA7AkJuSq6BGov8NMuNKtyy8keb+QTB6py+nkYZ6uLZkEncS/rJuvhrkW5Ej23qehL/yQojmgo1CQXOjdKkpnELlqRQuIqyxmENYg5THHmpoUI3btd8VvzMOwXvdi6NJr52n99ooXLdzj5ZAc3cy15nvtUbNVT+GLdS1w2hFk+DykZxMryD7YFZFKSWHTlhPUTRYbUgyH9J5CGkL5/8WtwO+um3/uD3oHdxucGxw47ZCTtnKfvOLtgVu2ZDJthDEAZ7wX7wL9wOD8L4KRoGmzuf2X8VfnkEvYe28A==</latexit>

G1
<latexit sha1_base64="SvP+ZoWN7PFEXZJSOlAu6vZdLfY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNvzeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+8Ur2/KNeu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfCSY1z</latexit>

G2
<latexit sha1_base64="go9JyZ8aQNe9uMvI/Mo7MmhpN3k=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh9tetVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/DzY10</latexit>

Figure 10.2: Illustration of the Markov chains corresponding to the sources of nonstationarity
in Example 10.1. (Top) Transition diagram for the underlying state of nature θ(t). (Center)
Transition diagram for the graph G(t). (Bottom) Transition diagram for the functioning state
s(t).

(10.41). Notably, this vector does not depend on the adaptation parameter
δ and, in particular, it does not diverge as δ becomes small. That is, the
initial conditions at the beginning of each learning cycle are not critically
affected by the choice of δ. These arguments apply provided that sufficient
time is given for learning within each cycle, namely, if the parameter δ
guarantees a sufficient adaptation time that is smaller than the duration
of the individual learning cycle. These aspects will be more quantitatively
illustrated in the forthcoming example.

Example 10.1 (Evolution over successive learning cycles). In this example we focus on
a specific nonstationary setting to illustrate the role of adaptation. We divide the time
axis into successive random intervals (learning cycles) wherein the system conditions
remain stationary. We examine an environment where there are three different sources of
nonstationarity, which will be modeled as (mutually independent) homogeneous Markov
chains, as specified below.

i) For t ∈ N, let θ(t) be a state of nature at time t, which is allowed to change over
time. We assume θ(t) follows a Markov chain with possible states in Θ = {1, 2, 3}
and with transition probability qhyp between any two different states, as represented
by the finite-state diagram in the top panel of Figure 10.2 (where only transition
probabilities are displayed, with the complementary probabilities of remaining in a
state being omitted).

ii) The graph connectivity can drift over time. We assume that the agents can be
connected according to two different undirected graphs G1 and G2, shown in
Figure 10.3. All agents are assumed to have a self-loop, not shown in the figure.

10.3. Adaptation Time 225

Even if both graphs are strong, the former graph has high connectivity, while
the latter has low connectivity. The combination matrix in both cases is designed
using the Metropolis rule reported in Table 4.1. For the graph G1, the resulting
combination matrix has second largest-magnitude eigenvalue equal to 0.212, whereas
for the graph G2, the combination matrix has second largest-magnitude eigenvalue
equal to 0.717. The graph in force at time t is denoted by G(t), and follows a
Markov chain with transition probability qmat — see the finite-state diagram shown
in the center panel of Figure 10.2. Note that this type of drift is contemplated by
our analysis. In fact, the characterization of the transient evolution for the error
probability in Theorem 10.1 is very general. It summarizes all previous behavior
until time instant t = 0 in the initial (scaled) log belief ratios {bk,0}. Whatever the
system parameters before that instant are (e.g., different combination matrices,
different true distributions), the algorithm evolution for t > 0 will depend only on
the initial beliefs (i.e., at t = 0) and on the system parameters ruling the current
learning cycle (i.e., in force for t > 0).

1

2

3

4

56

7

8

9
10

graph G1

1

2

3

4
5

6

7

8

9

10

graph G2

Figure 10.3: Network topologies used in Example 10.1. The graphs are undirected and all
agents are assumed to have a self-loop (not shown in the figure).

iii) The system can be in one of two possible functioning states, namely, nominal
(N) and perturbed (P). The functioning state at time t is denoted by s(t). Under
state “s(t) = nominal” the data are generated according to the true likelihood
corresponding to hypothesis θ(t), namely, we are under the objective evidence
model of Section 5.3 (given the true hypothesis, the observations are generated as
statistically independent across the agents). Specifically, the nominal likelihood
models are chosen from the following family of Laplace distributions:

gn(x) = 1
2e
−|x−n|, n = 1, 2, 3, (10.67)

in such a way that ℓk(x|θ) = gθ(x), for k = 1, 2, . . . ,K and θ = 1, 2, 3. Since the
nominal functioning state corresponds to the objective evidence model, the target
hypothesis ϑ⋆ that minimizes the network average of KL divergences Dnet(θ) is
equal to the underlying state of nature θ(t). Under state “s(t) = perturbed” we
adopt the following construction. First, we generate samples from the nominal
data model, and then contaminate them with iid zero-mean Gaussian noise having
variance equal to 100. For the choice of the system parameters used in this example,
the target hypothesis ϑ⋆ that minimizes the network average of KL divergences

226 Adaptation under ASL

Dnet(θ) (now computed under the modified data distributions corresponding to the
perturbed state) is still equal to the true underlying state of nature θ(t). Transitions
between the two functioning states occur according to a Markov chain ruled by
a transition probability qfun — see the finite-state diagram shown in the bottom
panel of Figure 10.2.

Duration of a learning cycle. A learning cycle is identified by a time interval where
all the conditions remain stationary. Let us evaluate the average duration of a learning
cycle. Technically, in terms of the above Markov chain formulation, we need to identify
the average time spent in each joint state {θ(t),G(t), s(t)}. In order to be conservative,
we focus on the worst case, i.e., on the shortest average duration, which is obtained
when the system is in the most unstable state (i.e., the state where transitions are
more frequent). Examining Figure 10.2, the most unstable state is obtained when the
hypothesis in force is θ(t) = 2 (since from such intermediate state we can move leftward
or rightward, while from the other states it cannot), whereas for the combination matrix
and the functioning state the particular choice is immaterial. Now, given that the overall
system is in the joint state {θ(t) = 2,G(t) = G1, s(t) = nominal}, the probability pmin
that the system does not change state for a single step is equal to

pmin = (1 − 2 qhyp)(1 − qmat)(1 − qfun). (10.68)

Likewise, the probability that the system remains in the considered state for exactly
t− 1 steps (which means that the learning cycle has duration t) is equal to

pt−1
min (1 − pmin), t ∈ N, (10.69)

which corresponds to the pmf of a geometric random variable. The expected value of a
random variable following the distribution in (10.69) can be computed as

(1 − pmin)
∞∑
t=1

pt−1
min t = (1 − pmin) d

dpmin

(
∞∑
t=0

ptmin

)
︸ ︷︷ ︸

1
1−pmin︸ ︷︷ ︸

1
(1−pmin)2

= 1
1 − pmin

, (10.70)

which means that the average duration for the worst-case (i.e., shortest) learning cycle
is equal to

TLC = 1
1 − pmin

. (10.71)

In order to model a nonstationary environment where the system parameters remain
stable during the learning cycles, we take inspiration from the Gilbert-Elliott model,
which is typically employed to describe random bursts of errors over communication
channels [67, 82]. According to the Gilbert-Elliott model, the transition probabilities
between states of the chain are kept small so as to ensure that the chain remains in the
same state for several contiguous time samples.

Adaptation time. We consider the perspective of a network designer who wants to select
the adaptation parameter δ. To make this choice in an informed manner, it is necessary
to make an estimate of the adaptation time corresponding to a given δ. We assume that

10.3. Adaptation Time 227

the network designer has no knowledge about the true underlying distributions when
they differ from the nominal likelihoods, i.e., when the system is in the (unpredictable)
perturbed functioning state. Accordingly, the following calculations are performed by
using the nominal likelihoods.

Let us first focus on a particular true hypothesis ϑ⋆. Then, we will repeat the com-
putation for all possible choices of ϑ⋆ and retain the highest, i.e., worst-case adaptation
time. We assume that in a given learning cycle the system has evolved from a previous
learning cycle where the agents converged to a hypothesis different from that in force
during the current learning cycle. Under this setting, as was explained before, we are in
the unfavorable case of Corollary 10.1, and thus we need to call upon (10.49) to evaluate
the adaptation time. To this end, we can first evaluate numerically the exponent Φ as
shown in Example 9.6. The evaluation of the constant K1 in (10.46) requires a separate
explanation.

We start by computing the constant K1(θ) in (10.17) for each θ ̸= ϑ⋆. Observe
that we need to evaluate the initial states bk,0(θ) to obtain the network average bnet,0.
Recalling that the initial states at t = 0 correspond to the final states at the end of the
previous learning cycle, their values will obviously depend on the particular previous
evolution. To compute K1(θ), we make a conservative choice and consider the worst-case
initial state. The specific calculations are as follows.

We denote by ϑ⋄ ̸= ϑ⋆ the true hypothesis in force during the previous learning
cycle, and by µprev

k the steady-state belief vector at the end of the previous learning cycle.
Assuming that this learning cycle had a sufficiently long duration, so that the beliefs
reached the steady state, for each agent k we can write

δ log µ
prev
k (ϑ⋄)
µprev
k (θ) ≈ 1

K

K∑
j=1

D(ℓj,ϑ⋄ ||ℓj,θ), (10.72)

For θ = ϑ⋄, Eq. (10.72) is actually a trivial equality, whereas for θ ̸= ϑ⋄ the approximation
follows from Theorem 9.2, once we make explicit the expressions for the scaled steady-
state log belief ratio bk(θ) and the expected network average of log likelihood ratios
λ̄net(θ) appearing in (9.28), computed under the hypothesis pertaining to the previous
learning cycle, and with uniform Perron vector entries vj = 1/K (since the combination
matrix is doubly stochastic).

On the other hand, for all θ ̸= ϑ⋆ we can write

bk,0(θ) = δ log µk,0(ϑ⋆)
µk,0(θ) = δ log µk,0(ϑ⋄)

µk,0(θ) − δ log µk,0(ϑ⋄)
µk,0(ϑ⋆) . (10.73)

Since the initial belief vector µk,0 coincides with the final value of the belief vector at the
end of the previous learning cycle, from (10.72) and (10.73) we obtain, for all θ ̸= ϑ⋆,

bk,0(θ) ≈ 1
K

K∑
j=1

(
D(ℓj,ϑ⋄ ||ℓj,θ) −D(ℓj,ϑ⋄ ||ℓj,ϑ⋆)

)
. (10.74)

Accordingly, since all agents converge to the same limit point, we can write

bnet,0(θ) ≈ bk,0(θ) ≈ 1
K

K∑
j=1

(
D(ℓj,ϑ⋄ ||ℓj,θ) −D(ℓj,ϑ⋄ ||ℓj,ϑ⋆)

)
(10.75)

228 Adaptation under ASL

and introduce the minimum value

bmin
net,0(θ) = min

ϑ⋄ ̸=ϑ⋆

1
K

K∑
j=1

(
D(ℓj,ϑ⋄ ||ℓj,θ) −D(ℓj,ϑ⋄ ||ℓj,ϑ⋆)

)
. (10.76)

Note that this minimum is negative since the function to be minimized is negative for
ϑ⋄ = θ. The value bmin

net,0(θ) can be inserted into (10.17) to compute the following upper
bound:

K1(θ) = |s⋆θ |
[
λ̄net(θ) − bnet,0(θ)

]
⪅ |s⋆θ |

[
λ̄net(θ) − bmin

net,0(θ)
]
. (10.77)

In view of (10.77), to compute an approximate upper bound on the maximum constant
K1 appearing in (10.46), we can maximize the RHS with respect to θ ̸= ϑ⋆. The result
would depend on ϑ⋆ since all our calculations have been performed for a given ϑ⋆.
Therefore, to obtain a worst-case bound, we consider the constant Kup

1 that is obtained
by further maximizing over all hypotheses ϑ⋆ and use this upper bound to obtain the
highest adaptation time

TASL ≈ 1
log(1 − δ)−1 log Kup

1
εΦ . (10.78)

Inserting into this relation the numerical values corresponding to our simulation setup,
the time necessary for the error exponent to reach half the value (i.e., we use ε = 0.5) of
Φ is equal to

TASL ≈ 3.1916
log(1 − δ)−1 ≈ 3.1916

δ
, (10.79)

where in the last step we use the approximation 1/ log(1 − δ)−1 ≈ 1/δ, holding for small
δ. We now examine two scenarios that differ in the duration of the learning cycle.

“Short” learning cycles. First, we consider the following setting:

qhyp = 5 × 10−3, qmat = 10−3, qfun = 10−3, (10.80)

yielding, in view of (10.68),
pmin = 0.9880. (10.81)

Using (10.71), the average duration of a learning cycle is approximated by

TLC ≈ 83 iterations. (10.82)

If we equate this value for TLC to the adaptation time in (10.79), we get δ ≈ 0.038. To
guarantee proper learning, we need an adaptation time sufficiently smaller than the
average duration of a learning cycle. In the experiments shown in Figure 10.4 we made
the choice

δ = 0.1, (10.83)
which, when substituted into (10.79), corresponds to the adaptation time

TASL ≈ 32 iterations. (10.84)

This value is approximately one third of the average worst-case learning cycle in (10.82).
Figure 10.4 shows the simulation results pertaining to the considered setup. The first

(top) row shows the transitions for the three sources of nonstationarity illustrated in
Figure 10.2, namely, true state of nature, functioning state, and network graph. In the
second row we display the time evolution of the beliefs of agent 1 obtained by running
the ASL strategy, whereas the third row shows the error probability achieved by this

10.3. Adaptation Time 229

0 200 400 600 800 1000

1 2 3

G1 G2

N P Nfunc. state

graph

state of nature

0 200 400 600 800 1000

t

0.0

0.5

1.0

µ
1,

t(
µ)

µ = 1 µ = 2 µ = 3

0 200 400 600 800 1000

t

0.0

0.5

1.0

p 1
,t

0 200 400 600 800 1000

t

0.0

0.5

1.0

µ
1,

t(
µ)

µ = 1 µ = 2 µ = 3

ASL
<latexit sha1_base64="JYw9KRj+4XjU43d2L4HL7GzAfzA=">AAAB8HicbVA9T8MwEL2Ur1K+CowsFhUSU5WUAcYCCwNDEfQDtVHluE5r1XYi20Gqov4KFgYQYuXnsPFvcNMM0PKkk57eu9PdvSDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML6e+e0nqjSL5IOZxNQXeChZyAg2VnpMe0GILu9vp/1yxa26GdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU39PpFhoPRGB7RTYjPSiNxP/87qJCS/8lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9buapX6VR5HEY7gGE7Bg3Ooww00oAkEBDzDK7w5ynlx3p2PeWvByWcO4Q+czx8cBI/y</latexit>

SL
<latexit sha1_base64="DCkGavxa19vxL1whvoadtgrf+Qk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0stAzaWFhENB+QHGFvs5cs2ds7d+eEcORP2FgoYuvfsfPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo+up33ri2ohYPeA44X5EB0qEglG0UjvrBiG5v530SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m907IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw0s+ESlLkis0XhakkGJPp86QvNGcox5ZQpoW9lbAh1ZShjahoQ/AWX14mzWrFO69U76rl2lUeRwGO4QTOwIMLqMEN1KEBDCQ8wyu8OY/Oi/PufMxbV5x85gj+wPn8AZH9j6c=</latexit>

Figure 10.4: Evolution over successive learning cycles (Example 10.1), with adaptation
parameter δ = 0.1 and average cycle duration TLC ≈ 83. (First (top) row) Observed transitions
for the three sources of nonstationarity illustrated in Figure 10.2, namely, true state of nature,
functioning state, and network graph. (Second row) Time evolution of the belief of agent 1 for
the adaptive social learning (ASL) strategy from listing (8.13). (Third row) Time evolution of
the error probability of agent 1 for the adaptive social learning strategy. (Fourth row) Time
evolution of the belief of agent 1 for the nonadaptive social learning (SL) strategy from listing
(3.16).

230 Adaptation under ASL

agent, estimated empirically from 1000 Monte Carlo runs. For comparison purposes, in
the fourth row we report the time evolution of the beliefs of agent 1 for the nonadaptive
social learning strategy from listing (3.16), which is labeled as SL.

First, we observe that, except for the learning cycle corresponding to the perturbed
functioning state, the ASL strategy exhibits good performance after a relatively short
transient at the beginning of each cycle. The learning ability is revealed by the time
evolution of the beliefs (second row), which shows how the maximum belief corresponds
to the true hypothesis, after relatively short adaptation intervals necessary to react
in the face of nonstationarities. More quantitatively, the learning ability is reflected
by the time evolution of the error probabilities (third row), where we see some peaks
(error probability close to 1) that clearly correspond to the changes, and that have a
short duration dictated by the adaptation times. In sharp contrast, the traditional social
learning strategy loses its learning ability after the first learning cycle.

Zooming in on Figure 10.4, we see that nonstationarities in the hypotheses induce a
perceivable change in the learning performance, whereas nonstationarities in the network
graph or in the functioning state deserve a separate analysis.

For what concerns the graph, we see that the learning ability is preserved in the
face of changes, i.e., the system does not undergo an interval of poor performance. This
behavior makes sense, since from the theoretical analysis we know that the ASL strategy
must learn consistently provided that the graph is primitive; this is the case for both
graphs G1 and G2 considered in our example.

Regarding the functioning state, we see that when “s(t) = perturbed” the system
undergoes an interval of worse performance (error probability ≈ 1/3), which sounds
reasonable since the observations are very noisy and thus provide unreliable information.
Remarkably, the adaptation capacity of the ASL strategy allows the agents to recover
from this failure state in the successive learning cycles.

In summary, we have seen that the log belief ratios at the beginning of each learning
cycle are stable, since they arise as steady-state limiting values at the end of the previous
learning cycle. In other words, the log belief ratios do not diverge as time elapses.
Contrast this behavior with what happens for traditional social learning, where, at the
end of a learning cycle, the log belief ratio tends to diverge with the length of the learning
cycle. As a result, the initial log belief ratio of the subsequent learning cycle becomes
very distant from the log belief ratio that should correspond to the new model, and the
system becomes unable to track variations over successive learning cycles. In comparison,
with adaptive social learning, the number of variations of the underlying statistical
conditions occurring during the entire algorithm evolution does not impair successful
learning by the ASL strategy. What really matters is that the duration of the learning
cycle is sufficiently large to allow a sufficiently small value of δ to enable accurate learning.

“Long” learning cycles. In Figure 10.5 we consider the more favorable situation where
the average duration of the learning cycle is increased by one order of magnitude, using
the following transition probabilities for the pertinent Markov chains:

qhyp = 5 × 10−4, qmat = 10−4, qfun = 10−4. (10.85)

Accordingly, we expect that the adaptation properties of the system will be preserved if
we reduce the adaptation parameter by one order of magnitude, yielding

δ = 0.01. (10.86)

Comparing Figure 10.5 against Figure 10.4, we see that the general behavior is perfectly
confirmed, and two notable effects emerge. First, the adaptation properties are preserved,

10.3. Adaptation Time 231

0 2000 4000 6000 8000 10000

3 2 1 2 1

G1 G2

P Nfunc. state

graph

state of nature

0 2000 4000 6000 8000 10000

t

0.0

0.5

1.0

µ
1,

t(
µ)

µ = 1 µ = 2 µ = 3

0 2000 4000 6000 8000 10000

t

0.0

0.5

1.0

p 1
,t

0 2000 4000 6000 8000 10000

t

0.0

0.5

1.0

µ
1,

t(
µ)

µ = 1 µ = 2 µ = 3

ASL
<latexit sha1_base64="JYw9KRj+4XjU43d2L4HL7GzAfzA=">AAAB8HicbVA9T8MwEL2Ur1K+CowsFhUSU5WUAcYCCwNDEfQDtVHluE5r1XYi20Gqov4KFgYQYuXnsPFvcNMM0PKkk57eu9PdvSDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML6e+e0nqjSL5IOZxNQXeChZyAg2VnpMe0GILu9vp/1yxa26GdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU39PpFhoPRGB7RTYjPSiNxP/87qJCS/8lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9buapX6VR5HEY7gGE7Bg3Ooww00oAkEBDzDK7w5ynlx3p2PeWvByWcO4Q+czx8cBI/y</latexit>

SL
<latexit sha1_base64="DCkGavxa19vxL1whvoadtgrf+Qk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0stAzaWFhENB+QHGFvs5cs2ds7d+eEcORP2FgoYuvfsfPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo+up33ri2ohYPeA44X5EB0qEglG0UjvrBiG5v530SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m907IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw0s+ESlLkis0XhakkGJPp86QvNGcox5ZQpoW9lbAh1ZShjahoQ/AWX14mzWrFO69U76rl2lUeRwGO4QTOwIMLqMEN1KEBDCQ8wyu8OY/Oi/PufMxbV5x85gj+wPn8AZH9j6c=</latexit>

Figure 10.5: Evolution over successive learning cycles (Example 10.1), with adaptation
parameter δ = 0.01 and average cycle duration TLC ≈ 833. (First (top) row) Observed transitions
for the three sources of nonstationarity illustrated in Figure 10.2, namely, true state of nature,
functioning state, and network graph. (Second row) Time evolution of the belief of agent 1 for
the adaptive social learning (ASL) strategy from listing (8.13). (Third row) Time evolution of
the error probability of agent 1 for the adaptive social learning strategy. (Fourth row) Time
evolution of the belief of agent 1 for the traditional social learning (SL) strategy from listing
(3.16).

232 Adaptation under ASL

i.e., the system is able to adapt to the changes sufficiently fast to guarantee a stable
evolution over successive learning cycles. Second, the fluctuations around the limiting
steady-state are reduced with respect to Figure 10.4, yielding a smaller error probability.
This confirms the theoretical analysis carried out in the previous sections, since we are
now using a smaller adaptation parameter δ = 0.01.

10.4 Summary: Learning and Adaptation under ASL

Equation (10.66) reveals the universal scaling law for adaptive social
learning:

error probability ∼ e−adaptation time (10.87)
We will now comment on this fundamental result in relation to different
aspects.

Learning and adaptation trade-off. Equation (10.87) summarizes the
learning/adaptation trade-off, since it implies that a better learning quality,
i.e., lower error probability, requires a reduced adaptation capacity, i.e.,
larger adaptation times. The trade-off between learning and adaptation
arises (albeit with different scaling laws, as discussed in the next paragraph)
in other research domains, such as adaptive filtering [154] or inference over
networks [155].

Adaptive social learning vs. adaptive distributed estimation. In the
distributed estimation or regression context the goal is to learn the value
of a continuous parameter. For this type of inference problem, adaptive
implementations based on distributed stochastic gradient approximations
have been shown to provide a mean-square estimation error that scales
proportionally to the inverse of the adaptation time [151, 152]. In the
social learning context, we observe that the error probabilities decay ex-
ponentially with the adaptation time. These scaling laws represent the
universal scaling laws governing errors of adaptive social learning and
adaptive distributed estimation.

Scaling laws for inference problems. We have observed that the
scaling laws governing adaptive social learning and adaptive distributed
estimation are rather different. The significance of this result emerges more
fully through an analogy with other traditional inference problems. As a
first example, consider a classic (i.e., centralized, nonadaptive) inference
setting with N iid data samples. If these samples are used to solve a

10.4. Summary: Learning and Adaptation under ASL 233

Table 10.1: Fundamental scaling laws of the learning performance with respect to the cost of
information for different types of inference problems. The symbol ∼ means “scales as”.

Scheme Cost Error
probability

Estimation
error (MSE)

Centralized No. of samples N ∼ e−N ∼ 1/N
Fusion center Bit-rate R ∼ e−R ∼ 1/R
Adaptive Adapt. time T ∼ e−T ∼ 1/T

classification problem (e.g., a binary detection problem), it is known that
the error probability of the best classifier decays exponentially with N [59],
whereas if we have to solve an estimation problem, the optimal mean-square
estimation error decays as 1/N [159]. As a second example, consider a
distributed (nonadaptive) inference problem with a fusion center. The
fundamental limits for such problem have been examined in the context
of rate-constrained multiterminal inference, and, more specifically, with
reference to the so-called CEO problem [18, 169]. In this setting, given a
bit-rate R, the error probability decays exponentially with R [18], whereas
the mean-square estimation error vanishes as 1/R [169]. Comparing the
scaling laws characterizing these two problems with the laws for adaptive
social learning and adaptive distributed estimation, we see that increasing
the adaptation time corresponds to increasing the number of independent
samples in the first inference problem, or increasing the bit-rate in the
second problem. This makes perfect sense, since the adaptation time rep-
resents the cost of information used by the network for inference purposes,
much as the number of samples N or the bit-rate R in the considered
examples. A summary of the aforementioned comparisons is provided in
Table 10.1.

Chapter 11

Partial Information Sharing

As explained in the previous chapters, the fundamental learning mechanism
of social learning is activated by the exchange of beliefs between neighboring
agents. In this chapter we examine the case where the agents are constrained
to share only partial beliefs. This limitation arises in practice for different
reasons.

For example, consider the following social dynamics. Some agents within
a group collect reviews and share opinions about a certain commercial
product. Assume that this product is released by brands 1, 2, or 3. During
their interactions, the agents focus on a specific brand of interest, say
brand 1. They share positive or negative impressions only about 1, without
sharing information regarding the other two brands. Despite this limited
exchange of information, the agents inherently update their opinions also
about the other brands. One fundamental question arising under partial
information sharing is the following: Would the agents be able to establish
whether brand 1 is the best among the three brands by exchanging opinions
concerning only brand 1?

Another motivation for partial information sharing relates to commu-
nication constraints. In fact, the growing interest in distributed learning
architectures has motivated the search for communication-efficient dis-
tributed algorithms for optimization and learning [6, 40, 41, 102, 127, 134].
This issue has been recently addressed also in the context of social learn-
ing [89, 128, 129, 149, 164]. Two main approaches have been considered to
guarantee communication efficiency in social learning: belief quantization,
where the belief vectors are represented with a prescribed number of bits to
cope with the communication constraints; and belief sparsification, where
the agents transmit a subset of the belief-vector entries or communicate

236 Partial Information Sharing

only when there is sufficient innovation in the beliefs.
Motivated by these considerations, we examine in this chapter the effect

of partial information sharing in social learning, and the impact it has
on the learning ability of the agents. In particular, we will constrain the
agents to share their belief about a single hypothesis of interest.

11.1 Partial Information Framework

Social learning under partial information sharing was briefly introduced in
Example 3.3, as a special case of the unifying framework for non-Bayesian
social learning shown in (3.77a)–(3.77d).

Figure 11.1 illustrates a block diagram of social learning under partial
information sharing, in terms of the four steps described by (3.77a)–(3.77d).
The core parts where partial information sharing acts are the encoding step
(3.77b) and the decoding step (3.77c). Let us examine in greater detail
these steps.

In the partial information framework, we assume that each agent k
shares its opinion regarding a single hypothesis of interest ϑ• ∈ Θ, which
means that only the entry ψk,t(ϑ•) of the intermediate belief vector ψk,t
is shared. In terms of step (3.77b), this corresponds to saying that each
agent k encodes its intermediate belief into a single scalar value ψk,t(ϑ•),
namely,

ψk,t
encode−→ ψk,t(ϑ•). (11.1)

Then, the agents must perform a decoding operation to turn the available
information into full belief vectors. To this end, each agent k can use its
own belief vector ψk,t and the intermediate beliefs ψj,t(ϑ•) (i.e., the beliefs
about the hypothesis of interest) received from the neighbors j ∈ Nk\{k}
to build an estimate ψ̂(k)

j,t of the full belief vectors for all agents j ∈ Nk
(including j = k if akk > 0). When akk > 0 and ψ̂

(k)
k,t = ψk,t, we say that

the strategy is self-aware.
According to the aforementioned description, the decoding step (3.77c)

can be specialized to(
ψk,t, {ψj,t(ϑ•)}j∈Nk\{k}

) decode−→
{
ψ̂

(k)
j,t

}
j∈Nk

. (11.2)

Finally, in the combination step (3.77d) the reconstructed beliefs can be
combined using one of the pooling rules (e.g., geometric or arithmetic
averaging) introduced in Section 3.3.

11.2. Decoding Strategies 237

<latexit sha1_base64="kZae5RVbwye8zvbkhDPJkxGTqAc=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9pQ9lsN+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGSxHxBgqUvJ1oTlUgeSsY3U791hPXRsTRA44T7is6iEQoGEUrPXZV2stG5zjplcpuxZ2BLBMvJ2XIUe+Vvrr9mKWKR8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y2lEFTd+Njt4Qk6t0idhrG1FSGbq74mMKmPGKrCdiuLQLHpT8T+vk2J47WciSlLkEZsvClNJMCbT70lfaM5Qji2hTAt7K2FDqilDm1HRhuAtvrxMmhcV77JSva+Wazd5HAU4hhM4Aw+uoAZ3UIcGMFDwDK/w5mjnxXl3PuatK04+cwR/4Hz+AOfmkH0=</latexit>µk,t
<latexit sha1_base64="VuTp/BU570lJFVwdxIqmYrbpfcY=">AAACFXicbVDLSsNAFJ34rPEVdekmWAQXUpIi6rLoxmUF+4AmlMnkJh06mYSZiVBCf8KNv+LGhSJuBXf+jdM2grYeGDiccw937gkyRqVynC9jaXlldW29smFubm3v7Fp7+22Z5oJAi6QsFd0AS2CUQ0tRxaCbCcBJwKATDK8nfucehKQpv1OjDPwEx5xGlGClpb516gUQU14Q4ArE2IyBg8DM88w8C7EC0wMe/rh9q+rUnCnsReKWpIpKNPvWpxemJE90nDAsZc91MuUXWChKGIxNL5eQYTLEMfQ05TgB6RfTq8b2sVZCO0qFflzZU/V3osCJlKMk0JMJVgM5703E/7xerqJLv6A8yxVwMlsU5cxWqT2pyA6pAKLYSBNMBNV/tckAC0x0B9LUJbjzJy+Sdr3mntfObuvVxlVZRwUdoiN0glx0gRroBjVRCxH0gJ7QC3o1Ho1n4814n40uGWXmAP2B8fENSBafhw==</latexit>

general
update

<latexit sha1_base64="B8jOydWT2UYvHL1eHbmY5YjxWIs=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8aNiVoB6DXjxGMA/YLGF2MkmGzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KE8Et+P63t7K6tr6xWdgqbu/s7u2XDg6bVqeGsgbVQpt2TCwTXLEGcBCsnRhGZCxYKx7dTf3WEzOWa/UI44RFkgwU73NKwElhR6bdbHQOF8GkWyr7FX8GvEyCnJRRjnq39NXpaZpKpoAKYm0Y+AlEGTHAqWCTYie1LCF0RAYsdFQRyWyUzU6e4FOn9HBfG1cK8Ez9PZERae1Yxq5TEhjaRW8q/ueFKfRvooyrJAWm6HxRPxUYNJ7+j3vcMApi7AihhrtbMR0SQyi4lIouhGDx5WXSvKwEV5XqQ7Vcu83jKKBjdILOUICuUQ3dozpqIIo0ekav6M0D78V79z7mrStePnOE/sD7/AHHKJDv</latexit>µk,t�1

<latexit sha1_base64="g/+KAc4jFarqjh3SukdCueRka18=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgQZbdTUziLejFYwTzgGQJs5PZZMjsg5lZMSz5CC8eFPHq93jzb5xNIqhoQUNR1U13lxdzJpVlfRi5ldW19Y38ZmFre2d3r7h/0JZRIghtkYhHouthSTkLaUsxxWk3FhQHHqcdb3KV+Z07KiSLwls1jakb4FHIfEaw0lLnfpBOztRsUCxZ5kW96pw7yDItq+aUqxlxahWnjGytZCjBEs1B8b0/jEgS0FARjqXs2Vas3BQLxQins0I/kTTGZIJHtKdpiAMq3XR+7gydaGWI/EjoChWaq98nUhxIOQ083RlgNZa/vUz8y+slyq+7KQvjRNGQLBb5CUcqQtnvaMgEJYpPNcFEMH0rImMsMFE6oYIO4etT9D9pO6ZdNSs3lVLjchlHHo7gGE7Bhho04Bqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0Czv2P5w==</latexit>xk,t

<latexit sha1_base64="XQTkkI5pTkmgVmzUTkr2ggnkuaA=">AAACGnicbVBNS8NAEN3Urxq/qh69LBbBU0mKqMeiF48V7Ac0oWw203bpZhN2N0IJ/R1e/CtePCjiTbz4b9ymEbR1YODx5g3z5gUJZ0o7zpdVWlldW98ob9pb2zu7e5X9g7aKU0mhRWMey25AFHAmoKWZ5tBNJJAo4NAJxtezeecepGKxuNOTBPyIDAUbMEq0ofoV1wtgyERGQWiQUzshUjPCPQ8zMYhllMtsD0T4I+lXqk7NyQsvA7cAVVRUs1/58MKYppFZp5wo1XOdRPvZ7BDlMLW9VEFC6JgMoWegIBEoP8tfm+ITw4TYODEtNM7Z3xsZiZSaRIFRGq8jtTibkf/NeqkeXPoZE0mqQdD5oUHKsY7xLCccMglU84kBhEpmvGI6IpJQk4GyTQju4svLoF2vuee1s9t6tXFVxFFGR+gYnSIXXaAGukFN1EIUPaAn9IJerUfr2Xqz3ufSklXsHKI/ZX1+A9hEogE=</latexit>

partial
information

<latexit sha1_base64="YE+upPI67fd2xQCRTv5vzbrv8PI=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVHruJEb1sdI6TXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR8S4r1ftquXaTx1GAYziBM/DgCmpwB3VoAAMFz/AKb45xXpx352PeuuLkM0fwB87nD7FPkPE=</latexit>

 k,t

<latexit sha1_base64="YE+upPI67fd2xQCRTv5vzbrv8PI=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVHruJEb1sdI6TXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR8S4r1ftquXaTx1GAYziBM/DgCmpwB3VoAAMFz/AKb45xXpx352PeuuLkM0fwB87nD7FPkPE=</latexit>

 k,t <latexit sha1_base64="jE0zAncjo2Jxym1lFYAybeOJ6tA=">AAAB73icbVBNSwMxFHxbv2r9qnr0EiyCp7JbRD0WvXis4LaFdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etHUgMMy8R95MmHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU1jJThPpEcqm6IdaUM0F9wwyn3VRRnIScdsLx7czvPFGlmRQPZpLSIMFDwWJGsLFSlwoiIyaGg2rNrbtzoFXiFaQGBVqD6lc/kiRLqDCEY617npuaIMfKMMLptNLPNE0xGeMh7VkqcEJ1kM/vnaIzq0Qolso+YdBc/b2R40TrSRLayQSbkV72ZuJ/Xi8z8XWQM5FmxiZbfBRnHBmJZuFRxBQlhk8swUQxeysiI6wwMbaiii3BW468StqNundZv7hv1Jo3RR1lOIFTOAcPrqAJd9ACHwhweIZXeHMenRfn3flYjJacYucY/sD5/AE4cZAY</latexit>

encoding
<latexit sha1_base64="KGzQkS9mzVOCv9vTFm6kyyD9vHs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWw2k3bpZhN3N0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnsgHM07Rj+lA8ogzaqzUCZElIZeDfrniVt05yCrxclKBHI1++asXJiyLURomqNZdz02NP6HKcCZwWuplGlPKRnSAXUsljVH7k/m9U3JmlZBEibIlDZmrvycmNNZ6HAe2M6ZmqJe9mfif181MdO1PuEwzg5ItFkWZICYhs+dJyBUyI8aWUKa4vZWwIVWUGRtRyYbgLb+8Slq1qndZvbivVeo3eRxFOIFTOAcPrqAOd9CAJjAQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QMpDJAO</latexit>

decoding

pooling
rule

<latexit sha1_base64="ULdcrks5fayPBbnJdKEXcZafDYs=">AAACEnicbVC7TsMwFHXKq4RXgZElokKCpUrKAGMFC2OR6ENqospxblKrjh3ZDlIV9RtY+BUWBhBiZWLjb3AfSNByJEtH59xj+54wY1Rp1/2ySiura+sb5U17a3tnd6+yf9BWIpcEWkQwIbshVsAoh5ammkE3k4DTkEEnHF5P/M49SEUFv9OjDIIUJ5zGlGBtpH7lzA8hobwgwDXIsZ0JYa5KfN+WOQMfePRj9StVt+ZO4SwTb06qaI5mv/LpR4LkqYkThpXqeW6mgwJLTQmDse3nCjJMhjiBnqEcp6CCYrrS2DkxSuTEQprDtTNVfycKnCo1SkMzmWI9UIveRPzP6+U6vgwKyrNcAyezh+KcOVo4k36ciEogmo0MwURS81eHDLDExHSgbFOCt7jyMmnXa955rX5brzau5nWU0RE6RqfIQxeogW5QE7UQQQ/oCb2gV+vRerberPfZaMmaZw7RH1gf35CNnqk=</latexit>

� b (k)
j,t

j2Nk

<latexit sha1_base64="U1eNYserD/3m1VfIzs2jGmJGEHw=">AAACI3icbZDLSsNAFIYn3q23qEs3wSJUkJKooLgS3biSCtYKTQ2TyaQdO5mEmROlDHkXN76KGxeKuHHhuzhpu/B2YODj/89hzvnDjDMFrvthTUxOTc/Mzs1XFhaXllfs1bUrleaS0CZJeSqvQ6woZ4I2gQGn15mkOAk5bYX909Jv3VGpWCouYZDRToK7gsWMYDBSYB/5Iev62r9nEe1h0H6mWHGja/3tItC3O1AM/ZJ9JvwEQ49grs+LoF8EdtWtu8Ny/oI3hioaVyOw3/woJXlCBRCOlWp7bgYdjSUwwmlR8XNFM0z6uEvbBgVOqOro4Y2Fs2WUyIlTaZ4AZ6h+n9A4UWqQhKaz3FL99krxP6+dQ3zY0UxkOVBBRh/FOXcgdcrAnIhJSoAPDGAimdnVIT0sMQETa8WE4P0++S9c7da9vfruxX71+GQcxxzaQJuohjx0gI7RGWqgJiLoAT2hF/RqPVrP1pv1PmqdsMYz6+hHWZ9f77umTg==</latexit>

� b (k)
j,t

j2Nk

<latexit sha1_base64="U1eNYserD/3m1VfIzs2jGmJGEHw=">AAACI3icbZDLSsNAFIYn3q23qEs3wSJUkJKooLgS3biSCtYKTQ2TyaQdO5mEmROlDHkXN76KGxeKuHHhuzhpu/B2YODj/89hzvnDjDMFrvthTUxOTc/Mzs1XFhaXllfs1bUrleaS0CZJeSqvQ6woZ4I2gQGn15mkOAk5bYX909Jv3VGpWCouYZDRToK7gsWMYDBSYB/5Iev62r9nEe1h0H6mWHGja/3tItC3O1AM/ZJ9JvwEQ49grs+LoF8EdtWtu8Ny/oI3hioaVyOw3/woJXlCBRCOlWp7bgYdjSUwwmlR8XNFM0z6uEvbBgVOqOro4Y2Fs2WUyIlTaZ4AZ6h+n9A4UWqQhKaz3FL99krxP6+dQ3zY0UxkOVBBRh/FOXcgdcrAnIhJSoAPDGAimdnVIT0sMQETa8WE4P0++S9c7da9vfruxX71+GQcxxzaQJuohjx0gI7RGWqgJiLoAT2hF/RqPVrP1pv1PmqdsMYz6+hHWZ9f77umTg==</latexit>

{ j,t(#
•)}j2Nk

<latexit sha1_base64="rTA/8n1PMSP3cczbJvpUvgxlQZ4=">AAACH3icbVBNS8NAEN34bf2qevQSLIKClERFPYpePImC/YBuDZvt1K7dbMLuRCgh/8SLf8WLB0XEm//GTduDXw8GHu/NMDMvTKQw6HmfzsTk1PTM7Nx8aWFxaXmlvLpWN3GqOdR4LGPdDJkBKRTUUKCEZqKBRaGERtg/K/zGPWgjYnWNgwTaEbtVois4QysF5UOa0cSIILvbxXyb3jONPUB2Q8NUSsAdmluLCkUjhj3OZHaRB/28FJQrXtUbwv1L/DGpkDEug/IH7cQ8jUAhl8yYlu8l2M7sOsEl5CWaGkgY77NbaFmqWASmnQ3/y90tq3TcbqxtKXSH6veJjEXGDKLQdhZnmt9eIf7ntVLsHrczoZIUQfHRom4qXYzdIiy3IzRwlANLGNfC3uryHtOMo420CMH//fJfUt+r+vvVvauDysnpOI45skE2yTbxyRE5IefkktQIJw/kibyQV+fReXbenPdR64QznlknP+B8fgHdDaQW</latexit>

 k,t(#
•)

<latexit sha1_base64="e3UxL8l3/NlW1fxNVzAoT6fDL74=">AAACBnicbVDLSgNBEJyNrxhfqx5FWAxCBAm7UdBj0IvHCOYB2TXMTjrJkNkHM72BsOTkxV/x4kERr36DN//GSbIHjRY0FFXdM93lx4IrtO0vI7e0vLK6ll8vbGxube+Yu3sNFSWSQZ1FIpItnyoQPIQ6chTQiiXQwBfQ9IfXU785Aql4FN7hOAYvoP2Q9zijqKWOeejGinfS4SlOSu6IShwA0nvXT4QAPOmYRbtsz2D9JU5GiiRDrWN+ut2IJQGEyARVqu3YMXqpfpczAZOCmyiIKRvSPrQ1DWkAyktnZ0ysY610rV4kdYVozdSfEykNlBoHvu4MKA7UojcV//PaCfYuvZSHcYIQsvlHvURYGFnTTKwul8BQjDWhTHK9q8UGVFKGOrmCDsFZPPkvaVTKzlm5cnterF5lceTJATkiJeKQC1IlN6RG6oSRB/JEXsir8Wg8G2/G+7w1Z2Qz++QXjI9vigOZKQ==</latexit>

Figure 11.1: Diagram of social learning under partial information sharing. In comparison with
Figure 3.3, the encoding/decoding operations are specialized as follows. For each agent k: i) the
encoding step outputs only ψk,t(ϑ•), i.e., the belief about the hypothesis of interest; and ii) the
decoding step is applied to the information available to agent k, i.e., to its own (entire) belief
vector ψk,t and the beliefs ψj,t(ϑ•) received from its neighbors j ∈ Nk\{k}.

It is clear how the agent must perform the encoding step in (11.1): It
should extract the entry corresponding to hypothesis ϑ• from its inter-
mediate belief vector. However, the decoding step in (11.2) is a design
choice and can therefore be tailored to different applications. The reasoning
behind this step is that, upon receiving the belief ψj,t(ϑ•), agent k will
seek to fill in the missing entries using some decoding strategy, thereby
reconstructing a complete belief vector ψ̂(k)

j,t to approximate the unknown
intermediate belief vector of its neighbor j.

The described partial information framework is valid under arbitrary
choices for the first and last blocks in the top panel of Figure 11.1. That is,
we are free to choose a general update and pooling rules. For the analysis
in this chapter, we will choose in particular a Bayesian update rule and a
geometric-average pooling rule.

11.2 Decoding Strategies

In this section we show how the decoding strategy can be derived from a
Bayesian approach. To avoid confusion, we remark that in the following
development, when we refer to a neighboring agent j ∈ Nk, the case j = k

is included whenever akk > 0.
For each agent j ∈ Nk, agent k possesses the intermediate belief ψj,t(ϑ•).

238 Partial Information Sharing

While reconstructing the full belief vector ψ̂(k)
j,t , agent k trusts agent j and,

hence, it sets
ψ̂

(k)
j,t (ϑ•) = ψj,t(ϑ•) ∀j ∈ Nk. (11.3)

Consider now the set of unshared hypotheses

U ≜ Θ\{ϑ•}. (11.4)

Once we assume the equality in (11.3), the remaining mass assigned to
the set U must necessarily be 1− ψj,t(ϑ•) in order to ensure that ψ̂(k)

j,t is a
valid belief vector, i.e., that its entries add up to 1. From Bayes’ rule, this
implies that ψ̂(k)

j,t must satisfy, for all θ ̸= ϑ•, the equation1

ψ̂
(k)
j,t (θ) = pk(θ|U)

(
1− ψj,t(ϑ•)

)
, (11.6)

where pk(θ|U) is the belief about θ conditioned on the set U , computed by
agent k. To complete the decoding strategy, it is necessary to choose the
form of pk(θ|U).

An agnostic, maximum-entropy choice for pk(θ|U) is given by

pk(θ|U) = 1
H − 1 , (11.7)

where agent k assumes no knowledge available to determine pk(θ|U) and
thus splits the remaining belief mass 1 − ψk,i(ϑ•) uniformly across the
H − 1 hypotheses belonging to U .

An alternative approach consists of leveraging the most up-to-date
knowledge that agent k has accumulated up to time t. As a matter of fact,
the most up-to-date belief vector available to agent k at time t is ψk,t,
which leads to the conditional belief given U :

pk(θ|U) = ψk,t(θ)
1− ψk,t(ϑ•)

. (11.8)

We see that (11.8) diversifies the allocation of the conditional-belief mass
across the unshared hypotheses, based on the available knowledge stored
in the intermediate belief vector ψk,t. In contrast, strategy (11.7) opts for a

1To interpret (11.6), consider a random variable θ ∈ Θ. For all θ ∈ U ,

P[θ = θ] = P[θ = θ, θ ∈ U] = P[θ = θ|θ ∈ U]P[θ ∈ U], (11.5)

where the first equality holds since θ ∈ U , while the second equality is Bayes’ rule. We see
from (11.5) that the probability of a particular value θ can be expressed as the product of a
conditional probability (the term pk(θ|U) in (11.6)) and the total probability assigned to the
set U (the term 1− ψj,t(ϑ•) in (11.6)).

11.2. Decoding Strategies 239

uniform allocation, thus forgetting any evidence that agent k accumulated
in the past. We refer to (11.7) as the memoryless strategy, and to (11.8)
as the memory-aware strategy.

Note that with strategy (11.8), when akk > 0 agent k is automatically
self-aware, in the sense that ψ̂(k)

k,t = ψk,t. Self-awareness is a compelling
property, which arises naturally from our Bayesian interpretation of the
decoding strategy once we allow it to incorporate the information contained
in ψk,t. In comparison, note that in strategy (11.7) agent k is not self-aware.

The two decoding strategies proposed in this chapter are summarized
as follows.

Memoryless decoding strategy.

ψ̂
(k)
j,t (θ) =

ψj,t(ϑ•) if θ = ϑ•,

1
H − 1

(
1− ψj,t(ϑ•)

)
if θ ̸= ϑ•.

(11.9)

Memory-aware decoding strategy.

ψ̂
(k)
j,t (θ) =

ψj,t(ϑ•) if θ = ϑ•,

ψk,t(θ)
1− ψk,t(ϑ•)

(
1− ψj,t(ϑ•)

)
if θ ̸= ϑ•.

(11.10)

Observe that both decoding strategies act as filling strategies, where
the unshared entries of ψj,t are filled in according to different approaches.
Another property of the two strategies is that the resulting belief vector
of agent j estimated by agent k depends only on the partial information
ψj,t(ϑ•) and (for the memory-aware approach) on the full belief vector
ψk,t. More general decoding strategies can be considered, e.g., taking into
account the information received from all neighbors and not only from
agent j. Note also that, in the binary case, for both filling strategies we have
ψ̂

(k)
j,t = ψj,t for k = 1, 2, . . . ,K and j ∈ Nk, which means that the agents

recover the exact intermediate beliefs from their neighbors. Therefore, in
the partial information setting the binary case corresponds to a trivial
case that boils down to traditional social learning under full information
sharing.

The social learning strategy with partial information is summarized in
listing (11.11). The decoding step is either (11.9) or (11.10), whereas for
the combination step we focus on the geometric-averaging rule.

240 Partial Information Sharing

Social learning with partial information
set variable memory=0 or memory=1
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
choose the hypothesis of interest ϑ• ∈ Θ
for t = 1, 2, . . .∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣

agent k observes xk,t
for θ = 1, 2, . . . , H∣∣∣∣∣ ψk,t(θ) = µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µk,t−1(θ′)ℓk(xk,t|θ′)

end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each j ∈ Nk

ψ̂
(k)
j,t (ϑ•) = ψj,t(ϑ•)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each θ ̸= ϑ•∣∣∣∣∣∣∣∣∣∣∣∣∣

if memory=0

ψ̂
(k)
j,t (θ) = 1

H − 1

(
1 − ψj,t(ϑ•)

)
elseif memory=1

ψ̂
(k)
j,t (θ) = ψk,t(θ)

1 − ψk,t(ϑ•)

(
1 − ψj,t(ϑ•)

)
end

end
end

for θ = 1, 2, . . . , H∣∣∣∣∣∣∣ µk,t(θ) =

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk

end

(decoding)

(cooperation)

end
end

(11.11)

Before going further, it is important to remark that, under Assump-
tions 5.1 and 5.3, the beliefs ψk,t(θ) and µk,t(θ) resulting from (11.11)
are almost-surely positive for all k, t, and θ. This property has already
been established in Chapters 5 and 7 for traditional social learning. To
show that the same property holds for strategy (11.11), one can proceed as
follows: i) repeat the same arguments used in these chapters to establish
that, starting from a belief µj,t−1(θ) that is nonzero at any θ, the update

11.3. Asymptotic Learning Objectives 241

rule yields intermediate beliefs that satisfy in particular the inequalities
ψj,t(ϑ•) < 1, ψk,t(ϑ•) < 1, and ψk,t(θ) > 0; ii) observe that, once fed
with these intermediate beliefs, the reconstructed beliefs ψ̂(k)

j,t (θ) preserve
the positivity property; and iii) finally note that, as was explained in in
Chapter 5, the geometric-average pooling rule also preserves positivity.

11.3 Asymptotic Learning Objectives

In this chapter we focus on the objective evidence model described in Sec-
tion 5.3, where, as t→∞, the learning system observes an infinite amount
of data supporting the true hypothesis ϑo. This increasing knowledge
should hopefully correspond to an increasing confidence gained about the
true hypothesis. Since the confidence about the veracity of a hypothesis is
quantified by the belief about that hypothesis, we expect that the learning
system ultimately places full mass on the true hypothesis. We will refer to
this type of truth learning as being traditional.

Definition 11.1 (Traditional truth learning). We say that traditional truth
learning is achieved when

µk,t(ϑ
o) a.s.−−−→

t→∞
1 ∀k = 1, 2, . . . ,K. (11.12)

Consider for example the sequential Bayesian update (2.21), where
the belief is constructed as a posterior probability given the knowledge
originating from a data stream. Under correct likelihood models, we know
this is the optimal construction. Lemma 2.2 showed that the resulting belief
is asymptotically concentrated on the true hypothesis. We conclude that
the optimal Bayesian strategy achieves traditional truth learning. Even in
the social learning setting, the agents observe increasing evidence over time
in the form of streaming data, and therefore it would be desirable to reach
the same kind of asymptotic certainty as in the optimal Bayesian strategy.
Notably, we showed before in Chapters 5 and 7 that, over connected graphs,
traditional truth learning is also achieved in non-Bayesian social learning.
In fact, it is guaranteed by Corollary 5.1 under geometric averaging and
by Theorem 7.1 under arithmetic averaging.

Within the partial information setting, one relevant objective is to
establish the validity of the hypothesis of interest ϑ•. Referring back to
the example mentioned at the beginning of the chapter, we note that

242 Partial Information Sharing

the agents there exchange opinions about a product by brand 1. That
is, the hypothesis of interest is ϑ• = 1. The best product in the market
is represented by hypothesis ϑo, which could be a different brand such
as ϑo = 2. By collecting multiple data over time (e.g., reviews about
the product of interest) and repeated exchanges of opinions, the agents
are interested in deciding whether or not brand 1 manufactures the best
product, without exchanging any opinions regarding brands 2 or 3. In
other words, upon exchanging information regarding ϑ•, the agents are
interested in deciding whether or not this hypothesis corresponds to the
truth ϑo. If an agent is successful in doing that, we say that this agent
achieves partial truth learning.

Definition 11.2 (Partial truth learning). We say that partial truth learning is
achieved when the nature of the hypothesis of interest ϑ• is correctly identified.
This entails two different definitions depending on whether or not the hypothesis
of interest is equal to the true hypothesis.

i) If ϑ• = ϑo, partial truth learning is achieved when

µk,t(ϑ
•) a.s.−−−→

t→∞
1 ∀k = 1, 2, . . . ,K. (11.13)

ii) If ϑ• ̸= ϑo, partial truth learning is achieved when

µk,t(ϑ
•) a.s.−−−→

t→∞
0 ∀k = 1, 2, . . . ,K. (11.14)

Note that traditional truth learning implies partial truth learning for any
ϑ•. However, the converse statement depends on ϑ•. If ϑ• = ϑo, traditional
truth learning is implied by partial truth learning. However, if ϑ• ̸= ϑo,
Eq. (11.14) only reveals that the hypothesis of interest will be discarded,
and traditional truth learning is not guaranteed. In summary,

traditional truth learning =⇒ partial truth learning

traditional truth learning ⇐= partial truth learning
with ϑ• = ϑo

(11.15)

11.4 Memoryless Strategy

In this section we investigate the convergence behavior of the partial infor-
mation algorithm in listing (11.11) when the decoding step is specialized
to the memoryless filling strategy in (11.9). In this case, at each instant t,

11.4. Memoryless Strategy 243

each agent k performs the following three steps for each θ ∈ Θ:

ψk,t(θ) =
µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µk,t−1(θ′)ℓk(xk,t|θ′)

, (11.16a)

ψ̂
(k)
j,t (θ) =

ψj,t(ϑ•) if θ = ϑ•,

1
H − 1

(
1−ψj,t(ϑ•)

)
if θ ̸= ϑ•,

j ∈ Nk, (11.16b)

µk,t(θ) =

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk
∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk . (11.16c)

It is useful to observe that, in the memoryless approach, the entries of
the belief vector corresponding to the unshared hypotheses evolve equally
over time. To see this, we substitute the decoding step (11.16b) into
the cooperation step (11.16c) and write the log belief ratios for any two
hypotheses θ, θ′ ∈ U as follows:

log
µk,t(θ)
µk,t(θ′)

=
∑
j∈Nk

ajk log
ψ̂j,t(θ)
ψ̂j,t(θ′)

=
∑
j∈Nk

ajk log
1−ψj,t(ϑ•)
1−ψj,t(ϑ•)

= 0,

(11.17)
which implies that

µk,t(θ) = µk,t(θ′). (11.18)

Since the entries of the vector µk,t add up to 1, we have∑
θ∈U

µk,t(θ) = 1− µk,t(ϑ•), (11.19)

and we can use (11.18) to conclude that

µk,t(θ) =
1− µk,t(ϑ•)
H − 1 (11.20)

for any unshared hypothesis θ ∈ U .
Before delving into the analysis of the learning performance under

partial information sharing, we consider the following assumptions. First,
we assume that the observations are generated under objective evidence,
i.e., under Assumption 5.3. Second, we assume that the network graph is
primitive according to Definition 4.5.

244 Partial Information Sharing

Next, we introduce some definitions that will be useful in the forthcom-
ing analysis. We start with the aggregate likelihood

ℓk(x|U) ≜ 1
H − 1

∑
θ∈U

ℓk(x|θ), (11.21)

which averages uniformly the likelihoods corresponding to the hypotheses
different from ϑ•. Then we consider the KL divergence between the true
likelihood and the aggregate likelihood, namely,

D(ℓk,ϑo ||ℓk,U) ≜ E log ℓk(xk,t|ϑ
o)

ℓk(xk,t|U) , (11.22)

where, according to our usual notation, the symbol ℓk,U is used to refer to
the entire pdf or pmf in (11.21), not to a particular value x. We now show
that this divergence is finite. We have that

log ℓk(x|ϑ
o)

ℓk(x|U) = log ℓk(x|ϑo)
1

H − 1
∑
θ∈U

ℓk(x|θ)

= log ℓk(x|ϑo)− log

 1
H − 1

∑
θ∈U

ℓk(x|θ)

(a)
≤ 1
H − 1

∑
θ∈U

log ℓk(x|ϑ
o)

ℓk(x|θ)
, (11.23)

where (a) follows from Jensen’s inequality (see Theorem C.5 and in particu-
lar (C.10) with uniform weights 1/(H − 1)) applied to the convex function
− log. Then, taking expectations in (11.23) with respect to the true likeli-
hood model ℓk(x|ϑo) allows us to bound the KL divergence D(ℓk,ϑo ||ℓk,U)
in terms of the KL divergences relative to the unshared hypotheses as
follows:

D(ℓk,ϑo ||ℓk,U) ≤ 1
H − 1

∑
θ∈U

D(ℓj,ϑo ||ℓj,θ) <∞, (11.24)

where the last inequality follows from (5.37). We have in fact proved that
D(ℓk,ϑo ||ℓk,U) is finite.

Finally, we introduce the following weighted quantity:

Dnet(U) ≜
K∑
k=1

vkD(ℓk,ϑo ||ℓk,U), (11.25)

which extends the definition in (5.24) to the aggregate likelihood in (11.21).

11.4. Memoryless Strategy 245

11.4.1 Convergence Results

The results illustrated in this section were originally presented in [24, 26].
The next theorem reveals that different types of convergence behavior
arise, depending on two quantities: the network average of KL divergences
relative to ϑ•, which, from (5.24), is defined by

Dnet(ϑ•) =
K∑
k=1

vkD(ℓk,ϑo ||ℓk,ϑ•), (11.26)

and the network average of KL divergences relative to the set of un-
shared hypotheses, which is the quantity Dnet(U) defined by (11.25). When
Dnet(ϑ•) is larger than Dnet(U), then hypothesis ϑ• will be discarded. If it
is smaller, the belief will be concentrated on ϑ•.

Theorem 11.1 (Memoryless strategy: Belief convergence). Let Assumptions 5.1
and 5.3 be satisfied. If the network graph is primitive, then for k = 1, 2, . . . ,K,

i) If Dnet(ϑ•) > Dnet(U),

µk,t(ϑ
•) a.s.−−−→

t→∞
0 and µk,t(θ)

a.s.−−−→
t→∞

1
H − 1 ∀θ ̸= ϑ•. (11.27)

ii) If Dnet(ϑ•) < Dnet(U),
µk,t(ϑ

•) a.s.−−−→
t→∞

1. (11.28)

Proof. From (11.16b) it follows that, for all θ ∈ U ,

log
ψ̂

(k)
j,t (θ)

ψ̂
(k)
j,t (ϑ•)

= log

1
H − 1

(
1 − ψj,t(ϑ

•)
)

ψj,t(ϑ•)

= log

1
H − 1

∑
θ′∈U

ψj,t(θ
′)

ψj,t(ϑ•)
. (11.29)

Using (11.16a) in (11.29) we obtain

log
ψ̂

(k)
j,t (θ)

ψ̂
(k)
j,t (ϑ•)

= log

1
H − 1

∑
θ′∈U

µj,t−1(θ′)ℓj(xj,t|θ′)

µj,t−1(ϑ•)ℓj(xj,t|ϑ•)
, (11.30)

246 Partial Information Sharing

and exploiting (11.18) we can write

log
ψ̂

(k)
j,t (θ)

ψ̂
(k)
j,t (ϑ•)

= log

µj,t−1(θ) 1
H − 1

∑
θ′∈U

ℓj(xj,t|θ′)

µj,t−1(ϑ•)ℓj(xj,t|ϑ•)

= log
µj,t−1(θ)
µj,t−1(ϑ•) + log

1
H − 1

∑
θ′∈U

ℓj(xj,t|θ′)

ℓj(xj,t|ϑ•)

= log
µj,t−1(θ)
µj,t−1(ϑ•) + log ℓj(xj,t|U)

ℓj(xj,t|ϑ•)
, (11.31)

where in the last equality we used the aggregate likelihood defined in (11.21). Substituting
(11.31) into (11.16c), we obtain the following recursion for the log belief ratios:

log
µk,t(θ)
µk,t(ϑ•)

=
∑
j∈Nk

ajk

[
log

µj,t−1(θ)
µj,t−1(ϑ•) + log ℓj(xj,t|U)

ℓj(xj,t|ϑ•)

]

=
K∑
j=1

ajk

[
log

µj,t−1(θ)
µj,t−1(ϑ•) + log ℓj(xj,t|U)

ℓj(xj,t|ϑ•)

]
, (11.32)

where the last equality follows from the definition of neighborhood in (4.1). Next, to
establish the claim of the theorem, we follow similar steps to those used in the proof of
Theorem 5.1, by exploiting Lemma D.3.

We start by noting that (11.32) can be cast in the vector form (D.57), namely,

zt = AT(zt−1 + yt), (11.33)

by setting

yt =
[

log ℓ1(x1,t|U)
ℓ1(x1,t|ϑ•)

, log ℓ2(x2,t|U)
ℓ2(x2,t|ϑ•)

, . . . , log ℓK(xK,t|U)
ℓK(xK,t|ϑ•)

]
, (11.34)

zt =
[

log
µ1,t(θ)
µ1,t(ϑ•)

, log
µ2,t(θ)
µ2,t(ϑ•)

, . . . , log
µK,t(θ)
µK,t(ϑ•)

]
, (11.35)

where we recall that in our notation all vectors are column vectors. Next, we note that
the network graph is assumed to be primitive, implying, in view of Corollary 4.1, that
(D.58) holds with A• = v 1T.

Now, to use the results from Lemma D.3, we must verify that the sequence {yt}
is formed by iid vectors whose entries have finite mean. The first condition is satisfied
under Assumption 5.3. Regarding the second condition, consider the jth entry of yt
expressed as follows:

log ℓj(xj,t|U)
ℓj(xj,t|ϑ•)

= log ℓj(xj,t|ϑ
o)

ℓj(xj,t|ϑ•)
− log ℓj(xj,t|ϑ

o)
ℓj(xj,t|U) , (11.36)

where we recall that ϑo denotes the true hypothesis. Under Assumption 5.3, the first term
on the RHS of (11.36) has finite mean. The same property holds for the second term in
view of (11.23). Thus, the jth entry of the vector yt has finite mean. We conclude that
the sequence {yt} satisfies the conditions required by Lemma D.3, where the vector ȳ

11.4. Memoryless Strategy 247

used in Lemma D.3 corresponds to Eyt. We can therefore apply the result of Lemma D.3
with A• = v1T to conclude that

1
t
zt

a.s.−−−→
t→∞

1 vT Eyt. (11.37)

In view of (11.34) and (11.35), we can rewrite (11.37) in terms of the kth entry as
follows:

1
t

log
µk,t(θ)
µk,t(ϑ•)

a.s.−−−→
t→∞

K∑
j=1

vjE log ℓj(x|U)
ℓj(x|ϑ•)

=
K∑
j=1

vj

[
D(ℓj,ϑo ||ℓj,ϑ•) −D(ℓj,ϑo ||ℓj,U)

]
= Dnet(ϑ•) −Dnet(U), (11.38)

where Dnet(U) and Dnet(ϑ•) are defined by (11.25) and (11.26), respectively. The above
result holds for all θ ∈ U . The sign of the quantity on the RHS of (11.38) will dictate
different convergence behaviors.

Consider first case i), namely,

Dnet(ϑ•) > Dnet(U), (11.39)

under which the RHS of (11.38) becomes positive. This implies that

log
µk,t(θ)
µk,t(ϑ•)

a.s.−−−→
t→∞

∞ ∀θ ∈ U . (11.40)

Since µk,t(θ) is bounded by 1 for any θ ∈ Θ, it follows from (11.40) that

µk,t(ϑ
•) a.s.−−−→

t→∞
0, (11.41)

which, in view of (11.20), implies that

µk,t(θ)
a.s.−−−→
t→∞

1
H − 1 ∀θ ∈ U , (11.42)

thus concluding the proof for case i).
Second, consider case ii), namely,

Dnet(ϑ•) < Dnet(U), (11.43)

under which the RHS of (11.38) becomes negative. Using similar arguments as before,
we deduce that

log
µk,t(θ)
µk,t(ϑ•)

a.s.−−−→
t→∞

−∞ ∀θ ∈ U , (11.44)

implying that
µk,t(θ)

a.s.−−−→
t→∞

0 ∀θ ∈ U . (11.45)

This, in turn, implies that
µk,t(ϑ

•) a.s.−−−→
t→∞

1, (11.46)

which concludes the proof for case ii).
■

248 Partial Information Sharing

Theorem 11.1 shows two types of convergence behavior for the beliefs
across the network. The critical condition necessary to establish which
behavior is activated involves the comparison between two network KL
divergences, specifically, Dnet(ϑ•) (which quantifies the difference between
the true likelihood and the likelihood relative to the hypothesis of interest
ϑ•) and Dnet(U) (which quantifies the difference between the true likelihood
and the fictitious likelihood from (11.21) corresponding to the ensemble of
unshared hypotheses).

Condition i) in Theorem 11.1, Dnet(ϑ•) > Dnet(U), means that the like-
lihood relative to ϑ• is sufficiently distinct from the true one in comparison
with the aggregate likelihood. This relatively high difference from ϑo drives
the agents to believe that ϑ• is not the true hypothesis — see the first
convergence result in (11.27).

Conversely, condition ii) in Theorem 11.1, Dnet(ϑ•) < Dnet(U), means
that the likelihood relative to ϑ• is closer to the true one than the aggregate
likelihood. As a result, in this case the agents tend to accept ϑ• as the true
hypothesis — see (11.28).

To gain further insight, it is useful to examine how the convergence
behavior changes under the possible choices of ϑ•. In particular, in the
next two sections we will consider the two possible scenarios: truth sharing,
i.e., ϑ• = ϑo, and false-hypothesis sharing, i.e., ϑ• ̸= ϑo.

11.4.2 Truth Sharing

When ϑ• = ϑo, from (11.26) we have

Dnet(ϑ•) = Dnet(ϑo) = 0, (11.47)

which implies that condition i) in Theorem 11.1 never holds, due to the
nonnegativity of the KL divergence Dnet(U). It is instead possible that
condition ii) is verified. This happens when Dnet(U) > 0. If this is the case,
Eq. (11.28) holds, which means that traditional truth learning is achieved.

Therefore, we are interested in establishing when Dnet(U) > 0. To this
end, we introduce the next assumption. Preliminarily, it is useful to recall
from (7.2) the definition of an indistinguishable set:

Ik ≜
{
θ ∈ Θ\{ϑo} such that D(ℓk,ϑo ||ℓk,θ) = 0

}
, (11.48)

and from (7.3) the definition of a distinguishable set:

Dk ≜ Θ\
(
Ik ∪ {ϑo}

)
. (11.49)

11.4. Memoryless Strategy 249

Assumption 11.1 (Average likelihood of distinguishable hypotheses). There
exists an agent k whose distinguishable set Dk is nonempty, and whose true
likelihood ℓk,ϑo is not a uniform combination of the likelihoods {ℓk,θ}θ∈Dk of
the distinguishable hypotheses. That is, we have

ℓk,ϑo ̸= 1
|Dk|

∑
θ∈Dk

ℓk,θ. (11.50)

Note that Assumption 11.1 is a relaxed version of Assumption 7.1. While
Assumption 7.1 requires that the true likelihood cannot take the form of
any convex combination of likelihoods {ℓk,θ}θ∈Dk , in Assumption 11.1 the
combination to be avoided is the one with uniform weights. This is not a
strong assumption, since the case where the true likelihood matches exactly
a mixture of the likelihoods relative to the distinguishable hypotheses
with uniform weights is deemed to be a rare coincidence. Moreover, for
Assumption 11.1 to hold, the existence of a single agent k satisfying (11.50)
is sufficient, while in Assumption 7.1 the required condition of convex
independence must be satisfied by all agents with nonempty distinguishable
sets.

The next corollary shows that Assumption 11.1 is equivalent to the
condition Dnet(U) > 0, and, hence, that when ϑ• = ϑo the memoryless
filling strategy achieves traditional truth learning.

Corollary 11.1 (Memoryless strategy: Truth sharing implies traditional truth
learning). Under the same assumptions used in Theorem 11.1 and under As-
sumption 11.1, if ϑ• = ϑo, then for k = 1, 2, . . . ,K,

µk,t(ϑ
o) a.s.−−−→

t→∞
1. (11.51)

Proof. It suffices to show that condition ii) of Theorem 11.1 holds, namely, that

Dnet(ϑ•) < Dnet(U) (11.52)

when ϑ• = ϑo. First, under ϑ• = ϑo, it follows from (11.26) that

Dnet(ϑ•) =
K∑
k=1

vkD(ℓk,ϑo ||ℓk,ϑo) = 0. (11.53)

Therefore, condition (11.52) will be verified if we establish that

Dnet(U) > 0. (11.54)

250 Partial Information Sharing

In view of the positivity of the Perron vector entries and the nonnegativity of the KL
divergence, we see from (11.25) that condition (11.54) is violated if, and only if,

D(ℓk,ϑo ||ℓk,U) = 0 ∀k = 1, 2, . . . ,K. (11.55)

We now proceed to show that, under Assumption 11.1, Eq. (11.55) is not verified
for at least one agent k. Specifically, it is not verified for the agent k mentioned in
Assumption 11.1, which has as nonempty distinguishable set Dk and satisfies (11.50).
To this end, observe that by using the definition of ℓk,U from (11.21), Eq. (11.55) is
equivalent to

ℓk(x|ϑo) = 1
H − 1

∑
θ∈U

ℓk(x|θ). (11.56)

We recall that when xk,t happens to be a continuous random vector, then the equality
between pdfs in (11.56) is intended to hold for all x ∈ Xk, except possibly for sets with
zero Lebesgue measure.

Now note that, when ϑ• = ϑo, we have

U = Θ\{ϑo} = Ik ∪ Dk, (11.57)

namely, U is equivalent to the union of the disjoint sets of indistinguishable and distin-
guishable hypotheses defined by (11.48) and (11.49), respectively. Thus, we can rewrite
(11.56) as

(H − 1) ℓk(x|ϑo) =
∑
θ∈Dk

ℓk(x|θ) +
∑
θ∈Ik

ℓk(x|θ), (11.58)

which in turn is equivalent to

(H − 1) ℓk(x|ϑo) =
∑
θ∈Dk

ℓk(x|θ) + |Ik| ℓk(x|ϑo), (11.59)

or
ℓk(x|ϑo) = 1

|Dk|
∑
θ∈Dk

ℓk(x|θ), (11.60)

where in the last step we used the fact that |Dk| = H − 1 − |Ik|. Since (11.60) violates
Assumption 11.1, we conclude that (11.55) cannot hold, which in turn implies (11.52),
and the proof is complete.

■

It is interesting to draw a parallel between memoryless partial informa-
tion sharing and traditional social learning. In view of (11.50), Assump-
tion 11.1 has the interpretation that at least one agent k has the capability
to discount Dk as a whole, i.e., to discount all θ ∈ Dk. On the other hand,
in (11.20) we showed that, under the memoryless approach, the beliefs
about the unshared hypotheses evolve equally, i.e., µk,t(θ) takes on the
same value for all θ ≠ ϑ• during the algorithm evolution. Accordingly, once
agent k is able to discount all θ ∈ Dk, it is also able to discount all θ ≠ ϑ•.

11.4. Memoryless Strategy 251

Finally, this possibility is extended to all the other agents by propagation
of information across the primitive graph.

We can now compare the described learning mechanism with the one
occurring in traditional social learning. There we required global identifi-
ability, which implies that, for each θ ̸= ϑo there must be an agent that
distinguish θ from ϑo. This condition is stronger than Assumption 11.1. In
other words, Assumption 11.1 can be satisfied even if global identifiability
is violated. For example, consider Θ = {1, 2, 3} with ϑo = 1. Assume that
θ = 2 is indistinguishable from ϑo = 1 for all agents. Then it follows that
global identifiability cannot hold. Consider furthermore that no agent can
distinguish hypothesis θ = 3 from ϑo = 1, except for agent k, for which
ℓk,3 ̸= ℓk,1. Therefore, the distinguishable set of agent k is Dk = {3}. Then,
Assumption 11.1 requires ℓk,3 ̸= ℓk,1, which is true.2 Then, due to this
single informative agent k, Assumption 11.1 holds, even though global
identifiability does not.

This phenomenon might appear puzzling, since it seems to imply that
learning under partial information sharing is easier! However, we must
keep in mind that we are considering only the truth sharing scenario. In
practice, the agents of course cannot decide to share the true hypothesis.
Therefore, the learning performance must always be examine by taking
also into account what happens under false-hypothesis sharing. In the next
section, we will in fact argue that the advantage (of memoryless partial
information sharing over traditional social learning) observed when ϑ• = ϑo

occurs at the expense of a disadvantage in the case ϑ• ̸= ϑo.

11.4.3 False-Hypothesis Sharing

When θ ≠ ϑ•, both conditions i) and ii) in Theorem 11.1 can occur, as we
illustrate later in Example 11.1, depending on the choice of ϑ• among the
wrong hypotheses. If condition i) is satisfied, then partial truth learning
is achieved, since the first convergence result in (11.27) reveals that the
hypothesis of interest is correctly discarded. Moreover, from the second
convergence result in (11.27) we see that µk,t(ϑo)

a.s.−−−→
t→∞

1/(H − 1), which
implies that traditional truth learning can only take place in the binary case
(which, as already discussed, is a trivial case within the partial information
setting).

Alternatively, if condition ii) is satisfied, we see from (11.28) that the full
2This example also shows that Assumption 11.1 is automatically satisfied whenever Dk

contains a single element.

252 Partial Information Sharing

belief mass is ultimately concentrated on the hypothesis of interest, which
however is wrong and, hence, partial truth learning cannot be achieved.

To sum up, under false-hypothesis sharing partial truth learning is
achieved when condition i) holds. One necessary condition for it to hold is
that

Dnet(ϑ•) > 0, (11.61)

which implies that some agent must be able to distinguish ϑ• from ϑo.
Since the true hypothesis can be any hypothesis, condition (11.61) should
be required for any hypothesis ϑ• ̸= ϑo, which is equivalent global identifi-
ability — see Assumption 5.4. We conclude that, under false-hypothesis
sharing, global identifiability is necessary but not sufficient and it can only
guarantee partial truth learning. Therefore, as anticipated in the previous
section, under false-hypothesis sharing we end up with a disadvantage with
respect to traditional social learning.

Example 11.1 (Memoryless strategy: False-hypothesis sharing). Consider K = 10
agents interested in solving a social learning problem. The agents operate under partial
information sharing, and adopt a memoryless filling strategy. They are connected
according to the strong graph shown in the left panel of Figure 11.2 (the graph is
undirected and all agents have a self-loop, not shown in the figure). On top of this graph,
a combination matrix is designed using the uniform-averaging rule — see Table 4.1. The
set of hypotheses is Θ = {1, 2, 3} and the true hypothesis is ϑo = 1. All agents possess
the same family of likelihood models, denoted by ℓ(x|θ), and illustrated in the right
panel of Figure 11.2. These are Gaussian models with unit variance and means 1, 2, and
5. Moreover, in the simulations the observations are drawn as statistically independent
across the agents.

1

2 3
4

5

6

7

8

9

10

−4 −2 0 2 4 6 8 10

x

0.0

0.2

0.4

`(
x
|θ)

θ = 1 θ = 2 θ = 3

Figure 11.2: (Left) Network topology used in Example 11.1. The graph is undirected and all
agents are assumed to have a self-loop, not shown in the figure. (Right) Family of Gaussian
likelihood models used in the example.

Evaluating (5.24) with ℓk,θ = ℓθ for all θ ∈ Θ (because the likelihood models are the
same for all agents) and with fk = ℓϑo (because in this chapter we are focusing on the

11.4. Memoryless Strategy 253

°4 °2 0 2 4 6 8 10

x

0.0

0.2

0.4

0.6

D(`#o||`#•) = 7.99

`#o `#•

°4 °2 0 2 4 6 8 10

x

0.0

0.2

0.4

0.6

D(`#o||`U) = 0.11

`#o

`U

>

#o = 1

#• = 3

U = {1, 2}

0 10 20

t

0.0

0.5

1.0

µ
1
,t
(#

•)

°4 °2 0 2 4 6 8 10

x

0.0

0.2

0.4

0.6

D(`#o||`#•) = 0.50

`#o

`#•

°4 °2 0 2 4 6 8 10

x

0.0

0.2

0.4

0.6
`#o

`U

< D(`#o||`U) = 0.63

#o = 1

#• = 2

U = {1, 3}

0 50 100

t

0.0

0.5

1.0

µ
1
,t
(#

•)

likelihoods
<latexit sha1_base64="ipZlbYmNbYJo0AOan1g7w4RBDIM=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWFRITFVSBhgrWBiLRB9SG1WO47RWHTuyHaQS9UtYGECIlU9h429w2wzQcqQrHZ1zr33vCVPOtPG8b6e0sbm1vVPereztHxxW3aPjjpaZIrRNJJeqF2JNORO0bZjhtJcqipOQ0244uZ373UeqNJPiwUxTGiR4JFjMCDZWGrrVQRgjzib2gbGUkR66Na/uLYDWiV+QGhRoDd2vQSRJllBhCMda930vNUGOlWGE01llkGmaYjLBI9q3VOCE6iBfLD5D51aJUCyVLWHQQv09keNE62kS2s4Em7Fe9ebif14/M/F1kDORZoYKsvwozjgyEs1TQBFTlBg+tQQTxeyuiIyxwsTYrCo2BH/15HXSadT9y3rjvlFr3hRxlOEUzuACfLiCJtxBC9pAIINneIU358l5cd6dj2VrySlmTuAPnM8ftW2THg==</latexit>

beliefs
<latexit sha1_base64="8xkOvNylhmNvTpvjF+PP1pP02ko=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiR1ocuiG5cV7APSUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctllo64GBwzn3MPeeMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7uZ+94lrIxL1iNOUBzEdKREJRtFKfj+MSGjDPDKDas2tuwuQdeIVpAYFWoPqV3+YsCzmCpmkxviem2KQU42CST6r9DPDU8omdMR9SxWNuQnyxcozcmGVIYkSbZ9CslB/J3IaGzONQzsZUxybVW8u/uf5GUY3QS5UmiFXbPlRlEmCCZnfT4ZCc4ZyagllWthdCRtTTRnaliq2BG/15HXSadS9q3rjoVFr3hZ1lOEMzuESPLiGJtxDC9rAIIFneIU3B50X5935WI6WnCJzCn/gfP4A86SRCA==</latexit>

Figure 11.3: Likelihood models and belief evolution for agent 1 in Example 11.1. (Left and
center) Actual likelihood models (solid line) and aggregate likelihood models defined in (11.21)
(dashed line). (Right) Time evolution of the belief about the hypothesis of interest for agent 1.

objective evidence model) it follows that

Dnet(ϑ•) =
K∑
k=1

vkD(ℓϑo ||ℓϑ•) = D(ℓϑo ||ℓϑ•). (11.62)

Likewise, evaluating (11.25) we have

Dnet(U) =
K∑
k=1

vkD(ℓϑo ||ℓU) = D(ℓϑo ||ℓU), (11.63)

where ℓU is the aggregate likelihood defined in (11.21), with subscript k omitted since
the likelihoods are equal across the agents. Using (11.62) and (11.63), we see that in the
example under consideration the Perron vector does not play a role in the convergence
behavior in Theorem 11.1, and only the following two quantities will determine the
behavior of all agents:

D(ℓϑo ||ℓϑ•) and D(ℓϑo ||ℓU). (11.64)
We now examine how the learning behavior changes depending on the particular choice
of the hypothesis of interest from among the wrong hypotheses. Consider first the
case ϑ• = 2. This case is examined in the top panels of Figure 11.3. We see that
D(ℓϑo ||ℓϑ•) < D(ℓϑo ||ℓU), which means that the likelihood relative to the hypothesis
of interest is closer to the true likelihood in comparison with the aggregate likelihood.
Accordingly, condition ii) in Theorem 11.1 is satisfied, which implies that all agents
are fooled into believing that ϑ• is the true state. This behavior is confirmed by the
experiment (obtained by running the algorithm in (11.11) with the memoryless filling
strategy in (11.9)) shown in the top right panel of Figure 11.3, where we display in
particular the beliefs of agent 1.

We switch to the case ϑ• = 3, examined in the bottom panels of Figure 11.3. Now we
have D(ℓϑo ||ℓϑ•) > D(ℓϑo ||ℓU), i.e., the likelihood relative to the hypothesis of interest is
farther from the true likelihood in comparison with the aggregate likelihood. Accordingly,

254 Partial Information Sharing

Table 11.1: Identifiability setup for the learning problem in Example 11.2. We highlight in lilac
the distributions corresponding to the distinguishable hypotheses, and in pink the distributions
corresponding to the indistinguishable hypotheses.

Likelihood model: ℓk(x|θ)

k
θ

ϑo = 1 2 3 4 5 6 7 8 9 10

1 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
2 g1 g1 g3 g4 g5 g6 g7 g8 g9 g10
3 g1 g1 g1 g4 g5 g6 g7 g8 g9 g10
4 g1 g1 g1 g1 g5 g6 g7 g8 g9 g10
5 g1 g1 g1 g1 g1 g6 g7 g8 g9 g10
6 g1 g1 g1 g1 g1 g1 g7 g8 g9 g10
7 g1 g1 g1 g1 g1 g1 g1 g8 g9 g10
8 g1 g1 g1 g1 g1 g1 g1 g1 g9 g10
9 g1 g1 g1 g1 g1 g1 g1 g1 g1 g10
10 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1
11 g1 g2 g1 g1 g1 g1 g1 g1 g1 g1
12 g1 g2 g3 g1 g1 g1 g1 g1 g1 g1

condition i) in Theorem 11.1 is satisfied, which implies that the agents correctly classify
the hypothesis of interest as being false. This behavior is confirmed by the experiment
shown in the bottom right panel of Figure 11.3, where we focus again on the beliefs of
agent 1.

Example 11.2 (Memoryless strategy: Convergence behavior). Consider a network of
K = 12 agents connected according to the strong graph displayed in the top left panel of
Figure 11.4. The graph is undirected and all agents are assumed to have a self-loop (not
shown in the figure). The combination matrix A is designed according to the Metropolis
rule (see Table 4.1), resulting in a doubly stochastic matrix, and, hence, the entries of the
Perron vector are vk = (1/12) — see (4.18). The set of hypotheses is Θ = {1, 2, . . . , 10},
and the true hypothesis is ϑo = 1. The observations are statistically independent over
time and across the agents.

Before describing the likelihoods of each agent, let us consider the following family
of unit-variance Gaussian pdfs with different means:

gn(x) = 1√
2π

exp
{

−1
2

(
x− 0.5(n− 1)

)2
}
, n = 1, 2, . . . , 10. (11.65)

The distributions are depicted in the top right panel of Figure 11.4. We assume that the
likelihoods are taken from this family of distributions as detailed in Table 11.1.

Note from Table 11.1 that{
Ik = ∅ if k = 1,
Ik ̸= ∅ if k = 2, 3, . . . , 12,

(11.66)

which means that only agent 1 is able to solve the inference problem alone, while for the
other agents there always exist some hypotheses indistinguishable from ϑo. For example,
for agent 4 we have

I4 = {2, 3, 4} and D4 = {5, 6, 7, 8, 9, 10}, (11.67)

11.4. Memoryless Strategy 255

whereas for agent 10 we have

I10 = Θ\{ϑo} and D10 = ∅. (11.68)

To determine the belief convergence for different hypotheses, we can use Theorem 11.1
and Corollary 11.1. To illustrate how these results can be used, we consider three different
cases.

Case ϑ• = ϑo = 1. In the truth sharing case, we resort to Corollary 11.1 to claim that
all agents learn the truth in the traditional sense. To be able to do so, we must show
that Assumption 11.1 holds, i.e., for each agent k such that Dk is nonempty, it should
hold that

ℓk,1 ̸= 1
|Dk|

∑
θ∈Dk

ℓk,θ. (11.69)

Let us focus on one agent, for example agent 11. We see from Table 11.1 that D11 = {2},
so that condition (11.69) becomes

ℓ11,1 ̸= ℓ11,2. (11.70)

Observing from the table that ℓ11,1 = g1 and ℓ11,2 = g2, we conclude that agent 11
satisfies (11.69). If we consider now agent 12, we see that D12 = {2, 3} and condition
(11.69) becomes

ℓ12,1 ̸= 1
2
(
ℓ12,2 + ℓ12,3

)
. (11.71)

Observing from the table that ℓ12,2 = g2 and ℓ12,3 = g3, we see that Eq. (11.71) is
equivalent to

g1 ̸= 1
2
(
g2 + g3

)
, (11.72)

which holds since the Gaussian mixture on the RHS cannot be equal to the Gaussian pdf
on the LHS. The above reasoning can be extended to all other agents for which Dk is
nonempty. This implies that Assumption 11.1 holds. Therefore, in view of Corollary 11.1,
all agents must place their full belief mass on the true hypothesis. This behavior is
confirmed by the experiment shown in the bottom left panel of Figure 11.4, where
we focus on the beliefs of agent 1. This experiment, as well as the other experiments
shown in the bottom panels, are obtained by running the algorithm in (11.11) with the
memoryless filling strategy in (11.9).

Case ϑ• = 4. To determine the asymptotic behavior of the memoryless strategy when
ϑ• ̸= 1, we resort to Theorem 11.1 and compute the quantities Dnet(ϑ•) and Dnet(U).
The first quantity can be evaluated as follows:

Dnet(4) =
12∑
k=1

vkD(ℓk,1||ℓk,4)

(a)=
3∑
k=1

vkD(g1||g4) +
12∑
k=4

vkD(g1||g1)

=
3∑
k=1

vkD(g1||g4)

(b)= 3
12

(0 − 0.5 × 3)2

2 = 0.2812, (11.73)

256 Partial Information Sharing

1

2

3

4

5
6

7

8

9

10
11

12

−2 0 2 4 6 8

x

0.0

0.2

0.4 g1(x)
g2(x) . . .

g10(x)

0 5 10 15 20

t

0.0

0.5

1.0

µ
1
,t
(θ

)

ϑ• = 1

θ = ϑ• {θ 6= ϑ•}

0 20 40 60

t

0.0

0.5

1.0
ϑ• = 4

θ = ϑ• {θ 6= ϑ•}

0 5 10 15 20

t

0.0

0.1

0.2
ϑ• = 7

θ = ϑ• {θ 6= ϑ•}

Figure 11.4: (Top left) Network topology used in Example 11.2. The graph is undirected
and all agents are assumed to have a self-loop, not shown in the figure. (Top right) Family of
Gaussian distributions used in the example. (Bottom) Belief evolution over time for agent 1.
The bottom panels correspond to different hypotheses of interest ϑ•.

where in (a) we used the information from Table 11.1, and in (b) we used the formula
for the KL divergence between Gaussian distributions with different means reported in
(2.45).

The second quantity, namely Dnet(U), is given by

Dnet(U) = 1
12

12∑
k=1

D (ℓk,1∥ℓk,U) , (11.74)

where U = Θ\{4} and

ℓk,U = 1
9
∑

θ∈Θ\{4}

ℓk,θ. (11.75)

Using Table 11.1, we find numerically that

Dnet(U) = 0.4521, (11.76)

which is smaller than the value of Dnet(4) obtained in (11.73). It follows that condition ii)
in Theorem 11.1 holds. Therefore, all agents must mistakenly place their full belief mass
on the hypothesis of interest ϑ• = 4. This behavior is in fact observed in the bottom
center panel of Figure 11.4, with reference to agent 1.

Case ϑ• = 7. Similarly to the previous case, we will compute the quantities Dnet(ϑ•)

11.5. Memory in Partial Information 257

and Dnet(U), obtaining

Dnet(7) =
12∑
k=1

vkD(ℓk,1||ℓk,7)

(a)=
6∑
k=1

vkD(g1||g7) +
12∑
k=7

vkD(g1||g1)

=
6∑
k=1

vkD(g1||g7)

(b)= 6
12

(0 − 0.5 × 6)2

2 = 2.25, (11.77)

and (now U = Θ\{7})
Dnet(U) = 0.3817. (11.78)

We see that in this case condition i) in Theorem 11.1 holds and therefore all agents must
correctly discard the hypothesis of interest ϑ• = 7. This behavior is confirmed by the
experiment shown in the bottom right panel of Figure 11.4, where we focus again on the
beliefs of agent 1.

11.5 Memory in Partial Information

We next study the asymptotic behavior of algorithm (11.11) under the
memory-aware filling strategy in (11.10). Preliminarily, we introduce the
following notation:

µk,t(S) ≜
∑
θ∈S

µk,t(θ), ψk,t(S) ≜
∑
θ∈S

ψk,t(θ), (11.79)

for any subset of hypotheses S ⊆ Θ, with the convention

µk,t(∅) = ψk,t(∅) = 0. (11.80)

Furthermore, we define for each agent k the prior confusion ratio

Γk ≜
µk,0(Ik)
µk,0(ϑo) , (11.81)

namely, the ratio between the mass assigned by agent k to the indistin-
guishable set and the mass assigned to the true hypothesis. Observe that
Γk increases as agent k assigns more mass to the indistinguishable set
and/or less mass to the true hypothesis, i.e., when it is more confused at
the beginning of the learning process.

Exploiting (11.79), we see that the uniform prior assignment, µk,0(θ) =
1/H for all θ ∈ Θ, leads to

Γk = µk,0(Ik)
µk,0(ϑo) =

∑
θ∈Ik(1/H)
(1/H) = |Ik| ≜ Jk. (11.82)

258 Partial Information Sharing

In other words, with a flat prior, the ratio Γk coincides with the cardinality
of the indistinguishable set |Ik|, which we denote by Jk. In this case, higher
values of Jk correspond to agents whose local inference abilities are worse,
i.e., whose indistinguishable set is larger.

In the social learning framework, it is also useful to consider a measure
of confusion at the network level. We accordingly introduce the network
average of prior confusion ratios,

Γ ≜
K∏
k=1

Γvkk , (11.83)

which is a weighted geometric average of the individual confusion ratios
{Γk}, with weights given by the entries of the Perron vector. Likewise, we
introduce the network average of the cardinalities of the indistinguishable
sets,

J ≜
K∏
k=1

Jvkk . (11.84)

11.5.1 Convergence Results

The results illustrated in this section originally appeared in [46]. Our first
theorem examines the learning behavior of the memory-aware strategy
when ϑ• ̸= ϑo. In this case, we note that for each agent k the hypothesis
of interest ϑ• can belong to either the subset Ik or the subset Dk. In
view of this fact and before introducing the forthcoming result, we define
the sets of indistinguishable and distinguishable hypotheses excluding the
hypothesis of interest, namely,

I•k ≜ Ik\{ϑ•}, D•k ≜ Dk\{ϑ•}. (11.85)

Clearly, if ϑ• belongs to Ik, then D•k = Dk, whereas if ϑ• belongs to Dk,
then I•k = Ik. It is also convenient to introduce the set

Iok ≜ I•k ∪ {ϑo}. (11.86)

Theorem 11.2 (Memory-aware strategy: Convergence when ϑ• ̸= ϑo). Let
Assumptions 5.1, 5.3, 5.4, and 7.1 be satisfied. Let ϑ• ̸= ϑo and assume that the
network graph is connected. Then, for k = 1, 2, . . . ,K, we have the following
three behaviors depending on the particular hypothesis:

11.5. Memory in Partial Information 259

i) Hypothesis of interest ϑ•:

µk,t(ϑ
•) a.s.−−−→

t→∞
0. (11.87)

ii) Hypotheses θ ∈ D•k:
µk,t(θ)

a.s.−−−→
t→∞

0. (11.88)

iii) Hypotheses θ ∈ Iok :
For all t ∈ N, the conditional belief given that θ ∈ Iok remains equal to the
same conditional belief at t = 0, namely,

µk,t(θ)
µk,t(Iok) = µk,0(θ)

µk,0(Iok) . (11.89)

Since µk,t(Iok) a.s.−−−→
t→∞

1 in view of (11.87) and (11.88), we also have

µk,t(θ)
a.s.−−−→
t→∞

µk,0(θ)
µk,0(Iok) . (11.90)

Proof. See Appendix 11.B.
■

The fundamental message from Theorem 11.2 is that all agents are able
to learn well when ϑ• ̸= ϑo, since they ultimately place zero mass on the
(false) hypothesis ϑ•. That is, the algorithm achieves partial truth learning
for ϑ• ̸= ϑo — see Definition 11.2.

In addition, the theorem shows that all distinguishable hypotheses are
discarded. Indeed, when ϑ• ∈ Dk, then Eqs. (11.87) and (11.88) imply that
both ϑ• and the set D•k are discarded, which corresponds to rejecting all
the distinguishable hypotheses. If otherwise ϑ• ∈ Ik, then not only Dk is
rejected, but also ϑ•.

The remaining belief mass is distributed over the set Iok (i.e., over the
true hypothesis and the indistinguishable hypotheses different from ϑ•)
according to the ratio µk,0(θ)/µk,0(Iok) in (11.90). This ratio represents
a conditional belief given that θ belongs to Iok . Specifically, it is the
prior conditional belief, i.e., corresponding to t = 0. The fact that for
θ ∈ Iok the asymptotic beliefs depend exclusively on this prior conditional
belief makes perfect sense since: i) the observations cannot help agent k
distinguish between the true and the indistinguishable hypotheses; and
ii) no information about the unshared hypotheses is diffused across the
network. Therefore, the information available to agent k about the true

260 Partial Information Sharing

and the indistinguishable unshared hypotheses does not increase over time,
i.e., it is the same information available at the beginning of the learning
process.

Equation (11.90) also reveals that, for ϑ• ̸= ϑo, traditional truth learning
is possible if, and only if, Iok = {ϑo} for all k. In view of (11.86), this
condition is equivalent to the condition I•k = ∅, which, in view of (11.85),
is satisfied when

Ik = {ϑ•} or Ik = ∅ ∀k = 1, 2, . . . ,K. (11.91)

In other words, for ϑ• ̸= ϑo, traditional truth learning is achieved if,
and only if, for each agent k either the hypothesis of interest is the only
indistinguishable hypothesis (i.e., Ik = {ϑ•}) or the problem is locally
identifiable (i.e., Ik = ∅).

Let us switch to the case ϑ• = ϑo, which is covered by the next theorem.

Theorem 11.3 (Memory-aware strategy: Convergence when ϑ• = ϑo). Let
Assumptions 5.1, 5.3, 5.4, and 7.1 be satisfied. Let ϑ• = ϑo and assume that
the network graph is primitive. Then, for k = 1, 2, . . . ,K, we have the following
three behaviors depending on the particular hypothesis:

i) Hypothesis of interest ϑ•:

µk,t(ϑ
•) a.s.−−−→

t→∞

1
1 + Γ , (11.92)

where Γ is the network confusion ratio defined in (11.83).
ii) Hypotheses θ ∈ Dk:

µk,t(θ)
a.s.−−−→
t→∞

0. (11.93)

iii) Hypotheses θ ∈ Ik:
For all t ∈ N, the conditional belief given that θ ∈ Iok remains equal to the
same conditional belief at t = 0, namely,

µk,t(θ)
µk,t(Ik) = µk,0(θ)

µk,0(Ik) . (11.94)

Since µk,t(Ik) a.s.−−−→
t→∞

Γ/(1 + Γ) in view of (11.92) and (11.93), we also have

µk,t(θ)
a.s.−−−→
t→∞

Γ
1 + Γ

µk,0(θ)
µk,0(Ik) . (11.95)

Proof. See Appendix 11.C.
■

11.5. Memory in Partial Information 261

The results in Theorem 11.3 can be summarized as follows. From (11.93)
we see that all the distinguishable hypotheses are correctly discarded.
Moreover, from (11.92) we see that the belief about the true hypothesis
converges to 1 if, and only if, the network confusion ratio Γ is zero. In
other words, for ϑ• = ϑo, the memory-aware strategy achieves traditional
truth learning (see Definition 11.1) if, and only if, Γ = 0.

Since Γ is a weighted geometric average of the single-agent confusion
ratios {Γk} defined in (11.81), then Γ = 0 provided that at least one
agent k has Γk = 0. Moreover, since the initial beliefs are assumed to
be positive (see Assumptions 5.1), Γk can only admit value 0 when the
indistinguishable set Ik is empty. Therefore, we conclude that traditional
truth learning is achieved if, and only if,

∃k ∈ {1, 2, . . . ,K} such that Ik = ∅. (11.96)

It is important to note that (11.96) does not mean that the problem must
be locally identifiable for all agents; this must be the case for at least one
powerful agent k. In other words, when such an agent exists, we can also
have a problem that is locally unidentifiable for the other K − 1 agents,
which would be therefore unable to discriminate ϑo from some of the other
hypotheses if they worked in isolation. However, by exploiting cooperation
across the network, they can profit from the powerful agent and overcome
their individual limitations.

When the problem is locally unidentifiable for all agents, we have
instead Γ > 0. In this case, while (11.93) reveals that zero mass is still
assigned to the distinguishable hypotheses, the residual mass is now split
between ϑo and the indistinguishable hypotheses, since the belief about the
true hypothesis converges to a value strictly less than 1. This splitting is
ruled by (11.95), implying that the behavior of the memory-aware strategy
depends on the initial beliefs and in particular that if two agents start to
learn with different initial beliefs, they can also learn differently in the
long run. This conclusion is in contrast with traditional social learning,
whose asymptotic behavior is instead independent of the initial beliefs.

Example 11.3 (Memory-aware strategy: Convergence behavior). In this example we
consider the same setting used in Example 11.2.

In Table 11.2 we report the cardinality of the indistinguishable sets for each agent
according to the likelihoods in Table 11.1. From Table 11.2 we can compute the network
average of cardinalities according to (11.84), resulting in J = 0.

262 Partial Information Sharing

Table 11.2: Cardinality of the indistinguishable set Ik for each k = 1, 2, . . . , 12 according to
the likelihoods in Table 11.1.

Agent k 1 2 3 4 5 6 7 8 9 10 11 12
Jk 0 1 2 3 4 5 6 7 8 9 8 7

Let us examine first the truth sharing scenario (ϑ• = ϑo = 1). Observe from the
table that the indistinguishable set of agent 1 is empty, i.e., the problem is locally
identifiable for agent 1. In this case (see the discussion that led to (11.96)), it follows
from Theorem 11.3 that all agents achieve traditional truth learning. This is confirmed by
the experiments (obtained by running the algorithm in (11.11) with the memory-aware
approach in (11.10)) shown in Figure 11.5, where we focus on the beliefs of agents 1, 4,
and 10.

0 250 500 750 1000

t

0.00

0.25

0.50

0.75

1.00

µ
1,
t(
θ)

agent 1

ϑ• = ϑo = 1

0 250 500 750 1000

t

0.00

0.25

0.50

0.75

1.00

µ
4,
t(
θ)

agent 4

ϑ• = ϑo = 1

θ = ϑ• = ϑo θ ∈ I•k θ ∈ D•k

0 250 500 750 1000

t

0.00

0.25

0.50

0.75

1.00

µ
10
,t
(θ

)

agent 10

ϑ• = ϑo = 1

Figure 11.5: Truth sharing. Belief evolution over time for agents 1, 4, and 10 in Example 11.3.

Note that agents 1, 4, and 10 have different characteristics: For agent 1 the decision
problem is locally identifiable; agent 4 is able to distinguish some hypotheses from ϑo,
but not all of them, so that the problem is locally unidentifiable for it; for agent 10 all
hypotheses θ ≠ ϑo are indistinguishable from ϑo, i.e., agent 10 has totally uninformative
data. Despite these differences, under truth sharing they all achieve traditional truth
learning.

We will now see that the situation changes under false-hypothesis sharing (ϑ• ̸= ϑo).
More specifically, Eqs. (11.87) and (11.93) reveal that the hypothesis of interest and
the distinguishable hypotheses are all discarded. The asymptotic behavior of the beliefs
about the remaining hypotheses (i.e., about θ ∈ Iok) is instead governed by (11.90).
Since this behavior depends in general on the particular agent k, it is convenient to
examine agents 1, 4, and 10 separately. Moreover, since the behavior is also dependent on
the particular value chosen for ϑ•, we will examine two cases, namely, ϑ• = 4 and ϑ• = 7.

Agent 1. As already observed, the indistinguishable set of agent 1 is empty. Then, from
(11.86) we have Io1 = {1}, and from (11.90) we conclude that, whatever the choice of
ϑ• ̸= ϑo,

µ1,t(ϑ
o) a.s.−−−→

t→∞
1. (11.97)

This is confirmed by the evolution of the beliefs of agent 1, for ϑ• = 4 and ϑ• = 7, shown
in Figure 11.5. We conclude that, thanks to local identifiability, agent 1 is able to learn

11.5. Memory in Partial Information 263

0 20 40 60 80

t

0.00

0.25

0.50

0.75

1.00

µ
1
,t
(θ

)

agent 1

ϑ• = 4

0 20 40 60 80

t

0.00

0.25

0.50

0.75

1.00

µ
1,
t(
θ)

ϑ• = 7

0 10 20 30 40

t

0.0

0.1

0.2

0.3

0.4

µ
4
,t
(θ

)

agent 4

ϑ• = 4

θ = ϑo θ = ϑ• θ ∈ I•k θ ∈ D•k

0 10 20 30 40

t

0.0

0.1

0.2

0.3

0.4

µ
4,
t(
θ)

ϑ• = 7

θ = ϑo θ = ϑ• θ ∈ I•k θ ∈ D•k

0 10 20 30 40

t

0.00

0.05

0.10

0.15

0.20

µ
10
,t
(θ

)

agent 10

ϑ• = 4

0 10 20 30 40

t

0.00

0.05

0.10

0.15

0.20

µ
10
,t
(θ

)

ϑ• = 7

Figure 11.6: False-hypothesis sharing. Belief evolution over time for agents 1, 4, and 10 in
Example 11.3. We consider two cases for the hypothesis of interest ϑ•: The top panels refer to
ϑ• = 4, whereas the bottom panels refer to ϑ• = 7.

properly even under false-hypothesis sharing.

Agent 4. Let us consider the case ϑ• = 4. Recalling that ϑo = 1, from Table 11.1 we see
that I4 = {2, 3, 4}, and thus we have

I•4 = I4\{4} = {2, 3}, Io4 = I•4 ∪ {1} = {1, 2, 3}. (11.98)

Using (11.90), and since in the experiments we considered uniform initial beliefs for all
agents, we can write

µ4,t(θ)
a.s.−−−→
t→∞

µ4,0(θ)
µ4,0(Io4) = 1

|Io4 | = 1
3 ∀θ ∈ Io4 = {1, 2, 3}. (11.99)

Examining Figure 11.6 (top center), we see that the black dashed curve, which corre-
sponds to hypothesis 1, converges to 1/3. Moreover, there are also some pink curves
that converge to 1/3. We have verified that these curves correspond to hypotheses 2 and
3. Thus, the numerical experiments confirm the behavior predicted by (11.99). We see
that, differently from agent 1, agent 4 is not able to place full belief mass on the true
hypothesis. Due to the lack of local identifiability, the belief mass is instead uniformly
distributed over the true hypothesis and the indistinguishable hypotheses different from
ϑ•.

Consider next the choice ϑ• = 7. Since this hypothesis is distinguishable for agent 4,
we have

I•4 = I4\{7} = I4 = {2, 3, 4}, Io4 = I•4 ∪ {1} = {1, 2, 3, 4}, (11.100)

264 Partial Information Sharing

yielding

µ4,t(θ)
a.s.−−−→
t→∞

µ4,0(θ)
µ4,0(Io4) = 1

|Io4 | = 1
4 ∀θ ∈ Io4 = {1, 2, 3, 4}. (11.101)

This convergence result matches the experiments in Figure 11.6 (bottom center), where
the black dashed curve (hypothesis 1) and some other pink curves (hypotheses 2, 3, and
4) all converge to 1/4.

Agent 10. Consider again the case ϑ• = 4. From Table 11.1 we see that I10 =
{2, 3, . . . , 10}, and thus we have

I•10 = I10\{4} = {2, 3, 5, 6, . . . , 10}, Io10 = I•10 ∪ {1} = {1, 2, 3, 5, 6, . . . , 10}, (11.102)

and using (11.90) we obtain

µ10,t(θ)
a.s.−−−→
t→∞

µ10,0(θ)
µ10,0(Io10) = 1

|Io10| = 1
9 ∀θ ∈ Io10 = {1, 2, 3, 5, 6, . . . , 10}. (11.103)

This convergence result is confirmed by the pertinent experiment in Figure 11.6 (top
right), where we see that the beliefs of agent 10 pertaining to all hypotheses different
from ϑ• = 4 converge to 1/9. In comparison with agent 4, we see that agent 10 has a
higher degree of uncertainty. In fact, the belief mass is uniformly distributed on more
hypotheses. This happens because the indistinguishable set of agent 10 is larger than
the indistinguishable set of agent 4. However, note that agent 10 is initially in a state of
complete ignorance, since all hypotheses are indistinguishable from the true hypothesis.
Thanks to social learning, agent 10 is able to understand that ϑ• = 4 is false, and
then it distributes the residual mass evenly across the remaining hypotheses. Similar
consideration apply to the experiment referring to ϑ• = 7 in Figure 11.6 (bottom right).

We will discuss next the case where the agents initialize their beliefs
in a uniform manner, from which we can derive interesting conclusions
regarding the learning mechanism of the memory-aware approach.

11.5.2 Unbiased Initialization

An interesting scenario that captures the learning mechanism of the
memory-aware strategy is the unbiased case, i.e., when the initial be-
liefs are all uniform. It is useful to summarize the results for this case in
the following corollary.

Corollary 11.2 (Memory-aware strategy: Uniform initial beliefs). Let the same
assumptions used in Theorem 11.2 be satisfied and consider, for each agent
k = 1, 2, . . . ,K, the uniform prior assignment

µk,0(θ) = 1
H

∀θ ∈ Θ. (11.104)

11.5. Memory in Partial Information 265

When ϑ• ̸= ϑo, Eqs. (11.87) and (11.88) hold as they are, whereas in Eqs. (11.89)
and (11.90) we must set, for k = 1, 2, . . . ,K,

µk,0(θ)
µk,0(Iok) = 1

|Iok | . (11.105)

In particular, Eq. (11.90) becomes

µk,t(θ)
a.s.−−−→
t→∞

1
|Iok | , (11.106)

which means that the mass is asymptotically equipartitioned over the set com-
prising ϑo and the indistinguishable hypotheses different from ϑ•.
When ϑ• = ϑo, we have the following three behaviors depending on the particular
hypothesis:

i) Hypothesis of interest ϑ•:

µk,t(ϑ
o) a.s.−−−→

t→∞

1
1 + J

. (11.107)

ii) Hypotheses θ ∈ Dk:
µk,t(θ)

a.s.−−−→
t→∞

0. (11.108)

iii) Hypotheses θ ∈ Ik:
For all t ∈ N, the conditional belief given that θ ∈ Ik remains equal to the
same conditional belief at t = 0, namely,

µk,t(θ)
µk,t(Ik) = 1

Jk
. (11.109)

Since µk,t(Ik) a.s.−−−→
t→∞

J/(1 + J) in view of (11.107) and (11.108), we also
have

µk,t(θ)
a.s.−−−→
t→∞

(
J

Jk

) 1
1 + J

. (11.110)

Proof. The claims follow from Theorems 11.2 and 11.3 by setting µk,0(θ) = 1/H for
k = 1, 2, . . . ,K and for all θ ∈ Θ.

■

Under false-hypothesis sharing, Eq. (11.106) shows that the belief mass
is asymptotically equipartitioned over the set Iok , namely, over the true
hypothesis and the indistinguishable hypotheses different from ϑ•. Such
asymptotic equipartition is perfectly coherent with the uniform prior
assignment and the fact that no information about these hypotheses
propagates across the network.

Consider now the truth sharing scenario. The particular case J = 0,
which, in view of (11.82), (11.83), and (11.84), corresponds to Γ = 0, has

266 Partial Information Sharing

been discussed in the comments on Theorem 11.2. We have seen that in
this case the memory-aware strategy achieves traditional truth learning.
Let us now focus on the case J > 0, where, as we are going to show,
Corollary 11.2 allows us to investigate more closely the role of cooperation
in the memory-aware strategy.

Observe that the geometric average of a set of numbers is bounded by
the minimum and maximum values in the set. Since, in view of (11.84), J
is a geometric average of the individual cardinalities Jk, for each agent k
we have either Jk > J or Jk ≤ J . Consider first the agents with a number
of indistinguishable hypotheses Jk larger than the network average J , i.e.,
with (J/Jk) < 1. In view of (11.108) and (11.110), it follows that, with
probability 1,

Jk > J =⇒ lim
t→∞

µk,t(θ) <
1

1 + J
∀θ ∈ Θ\{ϑo}. (11.111)

Combining this result with (11.107), we conclude that for a sufficiently
large t, with probability 1,

Jk > J =⇒ µk,t(ϑo) > µk,t(θ) ∀θ ∈ Θ\{ϑo}. (11.112)

Conversely, for agents with (J/Jk) > 1, it follows that, with probability 1,

Jk < J =⇒ lim
t→∞

µk,t(θ) >
1

1 + J
∀θ ∈ Ik, (11.113)

which, along with (11.107) and (11.108), implies that for a sufficiently large
t, with probability 1,

Jk < J =⇒
µk,t(ϑo) < µk,t(θ) ∀θ ∈ Ik,
µk,t(ϑo) > µk,t(θ) ∀θ ∈ Dk.

(11.114)

This behavior has an interesting implication for the role of cooperation.
From (11.112) we see that, after cooperation, the agents that were indi-
vidually more confused at time t = 0 (i.e., the agents featuring Jk > J)
truly benefit from cooperation and end up with a belief that is maximized
at the true hypothesis. However, Eq. (11.114) reveals that the situation
is reversed for the agents that were individually less confused (i.e., with
Jk < J); they end up with a belief that is no longer maximized at the true
hypothesis since it is smaller than the belief about any indistinguishable
hypothesis.

In summary, in the memory-aware strategy altruism is not rewarding. In
other words, cooperation is not beneficial for all agents, since agents do not

11.5. Memory in Partial Information 267

necessarily increase their confidence about the true hypothesis. However,
the aforementioned discussion is based on the implicit assumption that
maximization of the beliefs is what one should aim for in order to discover
the true state of nature. Is maximization of the belief necessary to classify
correctly ϑ•? The next section provides an unexpected answer to this
question.

11.5.3 Correct Decision under the Memory-Aware Approach

From Theorems 11.2 and 11.3 we obtain the following corollary, which
reveals a fundamental dichotomy arising between the cases ϑ• ̸= ϑo and
ϑ• = ϑo.

Corollary 11.3 (Memory-aware strategy: Asymptotic classification of ϑ•). Under
the same assumptions used in Theorem 11.3, for k = 1, 2, . . . ,K,

µk,t(ϑ•)
a.s.−−−→
t→∞

0 if ϑ• ̸= ϑo,

µk,t(ϑ•)
a.s.−−−→
t→∞

1
1 + Γ if ϑ• = ϑo.

(11.115)

Proof. The claim follows from (11.87) and (11.92).
■

We see from (11.115) that the belief about ϑ• converges to 0 when
ϑ• ̸= ϑo and to a positive number when ϑ• = ϑo. The gap between these
limiting values suggests that it is possible to devise a decision rule that
makes each agent k capable of classifying ϑ• correctly (with probability 1
as t→∞). More precisely, we need to define a decision rule for each time
t, and examine the online behavior of the resulting decisions as t → ∞.
Note that, when the belief about ϑ• converges to 1 if ϑ• = ϑo and to 0
otherwise, correct classification of the hypothesis of interest is obviously
achieved by the standard rule that selects the hypothesis maximizing the
belief.

However, we have observed that if µk,t(ϑ•) does not converge to 1 when
ϑ• = ϑo, the rule maximizing the belief can fail since the maximum belief
may correspond to one of the indistinguishable hypotheses. To overcome

268 Partial Information Sharing

this issue, one can employ the following threshold test:µk,t(ϑ•) ≤ η =⇒ reject ϑ•,
µk,t(ϑ•) > η =⇒ accept ϑ•,

0 < η <
1

1 + Γ , (11.116)

which, in view of (11.115), guarantees that the probability of classifying
correctly ϑ• converges to 1 as t→∞.

Note that the decision rule (11.116) requires η < 1/(1 + Γ). From
(11.83) we see that, to compute Γ, each agent needs to know the initial
belief assignments of all agents, as well as the Perron vector. When this
knowledge is available, the threshold can be surely set. However, there are
several situations where this knowledge is not available. We now show that
it is possible to set a threshold η < 1/(1 + Γ) with a much coarser prior
information. To this end, we start by observing from (11.81) that we can
write

Γk = µk,0(Ik)
µk,0(ϑo) ≤

1− µk,0(ϑo)
µk,0(ϑo) = 1

µk,0(ϑo) − 1 ≤ 1
µmin,0

− 1, (11.117)

where
µmin,0 = min

k∈{1,2,...,K}
θ∈Θ

µk,0(θ). (11.118)

The network average of prior confusion ratios Γ is upper bounded by the
maximum prior confusion ratio across the agents, which in view of (11.117)
yields

Γ ≤ 1
µmin,0

− 1, (11.119)

which is equivalent to
µmin,0 ≤

1
1 + Γ , (11.120)

further implying that the choice

η = µmin,0 − ε, with 0 < ε < µmin,0, (11.121)

guarantees that η < 1/(1 + Γ). Accordingly, with (11.121) the hypothesis
of interest is accepted provided that the observed belief exceeds (but for a
small ε) the smallest initial belief across all agents and all hypotheses. In
particular, in the case of unbiased initialization, Eq. (11.121) becomes

η = 1
H
− ε, with 0 < ε <

1
H
, (11.122)

which essentially means that a belief larger than the uniform belief is
sufficient to accept the hypothesis of interest.

11.5. Memory in Partial Information 269

Note that to implement (11.121), the agents must know µmin,0. This
requires, for example, that the agents share their initial beliefs in a prelim-
inary phase of the algorithm, or that the initial beliefs are assigned with a
protocol known to all agents beforehand. Remarkably, from (11.122) we
see that, with an unbiased initialization, the only quantity necessary to set
the threshold is the number of hypotheses, which is obviously known to all
agents.

Before concluding this section, it is useful to contrast the truth-learning
concept employed in traditional social learning with the decision rule
(11.116). In both cases, each agent is able to make the right choice with
probability 1 as t → ∞. However, there is a difference that can emerge
depending on the particular application context. Following traditional
social learning, we might require that the belief µk,t(ϑ•) converges to 1 or
0 if the hypothesis of interest is true or false, respectively. This viewpoint
is important, e.g., in applications where the agents are humans, since it
reflects the natural behavior by which individuals express the strength of
their opinions, and this strength is expected to increase as more evidence
is collected. In particular, the choice of accepting the hypothesis of interest
can be naturally formulated in terms of selecting the maximum belief.

On the other hand, when allowing Γ > 0 in Theorem 11.3, the situation
changes, since the limiting belief about the hypothesis of interest is allowed
to be even smaller than the belief about some indistinguishable hypothesis.
This notwithstanding, we showed that the decision rule (11.116) allows to
achieve correct decisions. This is because to accept ϑ• this rule neither
requires µk,t(ϑ•) to converge to 1, nor that it is the maximum belief! We
showed that it is sufficient to fulfill the milder requirement that µk,t(ϑ•)
exceeds the minimum initial belief. One explanation for this behavior
is as follows. When ϑ• = ϑo, the hypothesis of interest is by definition
not statistically different from the indistinguishable hypotheses. However,
what makes the hypothesis of interest different from the indistinguishable
hypotheses is the way it is treated by the social learning algorithm, since it
is the only hypothesis the agents exchange information about. This induces
the agents to treat ϑ• in a “privileged” way. In other words, by using
the decision rule (11.116) in place of the maximum-belief rule, the agents
introduce a bias in favor of ϑ•, which is used to overcome the limitations of
partial information sharing. This requires that the agents are aware of how
the underlying algorithm works, since to learn correctly they must combine
this additional knowledge with their beliefs. From a practical viewpoint,

270 Partial Information Sharing

this is definitely possible when the agents are programmable devices.

11.6 Comparing Strategies

In the previous sections we have characterized the learning behavior of
social learning under partial information sharing, for both the memoryless
and the memory-aware filling strategies. In this section we want to exploit
the obtained results to examine two aspects. First, we discuss the role of the
social exchange of information as opposed to a standalone implementation.
Second, we consider the advantages of leveraging the agents’ memory.

Standalone vs. social algorithms. One fundamental aspect is to estab-
lish how social collaboration influences the agents’ beliefs. To this end, we
study next the standalone algorithm, i.e., the sequential Bayesian scheme
presented in Chapter 2, where there is no information exchange and the
agents iteratively update their beliefs as

µk,t(θ) ∝ µk,t−1(θ)ℓk(xk,t|θ). (11.123)

The following theorem characterizing the standalone scheme is proved
by using similar analytical tools to those used in Lemma 2.2. However,
the results in Lemma 2.2 are obtained by assuming that the decision
problem is identifiable, which in the multi-agent setting would correspond
to assuming local identifiability for any agent. In contrast, the following
theorem assumes an arbitrary identifiability setup for each agent k.

Theorem 11.4 (Standalone learning algorithm). Let Assumption 5.3 be satisfied,
and assume initial belief vectors with positive entries for all agents. Then, with
the standalone learning algorithm (11.123), all agents asymptotically discard
the distinguishable hypothesis. Regarding the other hypotheses, for all t ∈ N,
the conditional belief given that θ /∈ Dk remains equal to the same conditional
belief at t = 0, namely, for k = 1, 2, . . . ,K and for all θ ∈ Ik ∪ {ϑo},

µk,t(θ)
µk,t(ϑo) + µk,t(Ik) = µk,0(θ)

µk,0(ϑo) + µk,0(Ik) . (11.124)

Since µk,t(ϑo) + µk,t(Ik) a.s.−−−→
t→∞

1 because the distinguishable hypotheses are
asymptotically discarded, we also have

µk,t(θ)
a.s.−−−→
t→∞

µk,0(θ)
µk,0(ϑo) + µk,0(Ik) ∀θ ∈ Ik ∪ {ϑo}. (11.125)

By using the definition of Γk in (11.81), the above results can be schematically
summarized as follows.

11.6. Comparing Strategies 271

i) True hypothesis ϑo:

µk,t(ϑ
o) a.s.−−−→

t→∞

1
1 + Γk

. (11.126)

ii) Hypotheses θ ∈ Dk:
µk,t(θ)

a.s.−−−→
t→∞

0. (11.127)

iii) Hypotheses θ ∈ Ik:

µk,t(θ)
a.s.−−−→
t→∞

Γk
1 + Γk

µk,0(θ)
µk,0(Ik) . (11.128)

Proof. Under Assumption 5.3, we can follow the same steps used in the proof of
Lemma 2.2 up to (2.39), obtaining, for all θ ∈ Θ,

1
t

log
µk,t(ϑo)
µk,t(θ)

a.s.−−−→
t→∞

D(ℓk,ϑo ||ℓk,θ). (11.129)

For θ ∈ Dk the RHS of (11.129) is positive. This implies that

log
µk,t(ϑo)
µk,t(θ)

a.s.−−−→
t→∞

∞ ∀θ ∈ Dk, (11.130)

further yielding
µk,t(θ)

a.s.−−−→
t→∞

0 ∀θ ∈ Dk, (11.131)

and condition (11.127) is proved. Now, Eq. (11.127) implies that

µk,t(Ik ∪ {ϑo}) a.s.−−−→
t→∞

1. (11.132)

Taking, for any pair of hypotheses θ, θ′ ∈ Ik ∪ {ϑo}, the ratio between µk,t(θ′) and
µk,t(θ), and using (11.123), we obtain

µk,t(θ′)
µk,t(θ)

=
µk,t−1(θ′)
µk,t−1(θ) = . . . = µk,0(θ′)

µk,0(θ) . (11.133)

Summing over θ′ ∈ Ik ∪ {ϑo}, from the first definition in (11.79) we have

µk,t(Ik ∪ {ϑo})
µk,t(θ)

= µk,0(Ik ∪ {ϑo})
µk,0(θ) , (11.134)

which, in view of (11.132), implies

µk,t(θ)
a.s.−−−→
t→∞

µk,0(θ)
µk,0(Ik ∪ {ϑo}) = µk,0(θ)

µk,0(Ik) + µk,0(ϑo) (11.135)

for all θ ∈ Ik ∪ {ϑo}. From the definition of Γk in (11.81), we can rewrite (11.135) as

µk,t(θ)
a.s.−−−→
t→∞

Γk
1 + Γk

µk,0(θ)
µk,0(Ik) (11.136)

for all θ ∈ Ik ∪ {ϑo}, thus corresponding to (11.128). When θ = ϑo, the result specializes
to (11.126).

■

272 Partial Information Sharing

We see a nice symmetry between Theorems 11.3 and 11.4, with the
network confusion ratio Γ (in memory-aware social learning) being replaced
by the individual confusion ratio Γk (in standalone learning). Despite
this symmetry, there exist substantial differences between the standalone
algorithm and the social learning algorithms with either the memoryless
or the memory-aware filling strategy, as we now explain.

Theorem 11.4 reveals that, as t → ∞, agent k in isolation can place
full mass on ϑo only if Γk = 0, i.e., if the problem is locally identifiable for
agent k. When there are instead indistinguishable hypotheses, the obser-
vations collected by a standalone agent do not convey useful information
to discriminate between ϑo and the indistinguishable hypotheses. The
only ability given to a standalone agent is to discard the distinguishable
hypotheses. Other than that, the agent can redistribute the belief mass
over the true and the indistinguishable hypotheses according to the only
information it has to discriminate among them, that is, the initial belief
vector. This behavior is summarized by (11.124). In particular, if the initial
beliefs are uniform, from (11.124) we conclude that the belief about ϑo
and the belief about the indistinguishable hypotheses converge to the same
value 1/(1 + Jk), i.e., indistinguishability persists in the long term. No
matter which decision rule is used, the standalone algorithm will be unable
to discern in this case.

The situation is different for the memoryless or memory-aware social
learning algorithms, where, thanks to cooperation, proper learning can
be attained in different circumstances examined in detail in the previous
sections.

Memoryless vs. memory-aware. For the memoryless strategy (11.9),
it was shown in Theorem 11.1 that the belief about the hypothesis of
interest converges either to 0 or 1. The conditions under which any of
the two asymptotic behaviors take place depend on the comparison of the
network KL divergences Dnet(ϑ•) and Dnet(U), whose role was discussed
in Section 11.4.1. The following behavior was established: Under truth
sharing, traditional truth learning is always achieved; under false-hypothesis
sharing, partial truth learning is achieved when Dnet(ϑ•) > Dnet(U), but
an undesirable behavior emerges when Dnet(ϑ•) < Dnet(U), since the belief
about ϑ• converges to 1, i.e., the agents are completely fooled and end up
placing full mass on the wrong hypothesis.

For the memory-aware strategy (11.10), we ascertained that: Under

11.6. Comparing Strategies 273

false-hypothesis sharing, partial truth learning is always guaranteed; under
truth sharing, traditional truth learning is achieved when there exists
at least one powerful agent in the network that can solve the problem
on its own, i.e., an agent endowed with local identifiability. Moreover, in
Section 11.5.3 we showed that, even if no agent in the network satisfies
local identifiability, there exists a decision rule, namely (11.116), under
which agents are always able to classify correctly the hypothesis of interest.

274 Partial Information Sharing

11.A Appendix: Preliminary Results

The appendices at the end of this chapter are devoted to the proof of
Theorems 11.2 and 11.3. We start in this section by presenting a series of
auxiliary results.

For ease of reference, we report here the algorithm from listing (11.11),
specialized to the memory-aware approach. In this case, at each instant t,
each agent k performs the following three steps for each θ ∈ Θ:

ψk,t(θ) =
µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µk,t−1(θ′)ℓk(xk,t|θ′)

, (11.137a)

ψ̂
(k)
j,t (θ) =

ψj,t(ϑ•) if θ = ϑ•,

ψk,t(θ)
1−ψk,t(ϑ•)

(
1−ψj,t(ϑ•)

)
if θ ̸= ϑ•,

j ∈ Nk,

(11.137b)

µk,t(θ) =

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk
∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk . (11.137c)

The first auxiliary result introduces two submartingales related to the
belief vectors.

Lemma 11.1 (Useful submartingales). Let Assumptions 5.1 and 5.3 be satisfied,
and assume that the network graph is connected, with a combination matrix
A having Perron vector v. Let Sk be any nonempty agent-dependent set of
hypotheses satisfying

Sk ⊆
(

Ik ∪ {ϑo}
)
\{ϑ•}, (11.138)

and let S ≜ {S1,S2, . . . ,SK}. Define the random variables, for t = 0, 1, . . .,

mt ≜
K∑
k=1

vk logµk,t(ϑ
o), nt(S) ≜

K∑
k=1

vk logµk,t(Sk), (11.139)

where the notation for beliefs computed over subsets, like µk,t(Sk), was intro-
duced in (11.79). Moreover, recall the definition of dk(q) from (7.7),

dk(q) ≜ E log ℓk(xk,t|ϑo)∑
θ∈Θ

q(θ)ℓk(xk,t|θ)
, (11.140)

where q is a convex combination vector (i.e., it has nonnegative entries that add
up to 1) of dimension H. The following properties hold for any choice of ϑ•:

11.A. Appendix: Preliminary Results 275

i) For t = 1, 2, . . .,

E[mt|Ft−1] ≥ mt−1 +
K∑
k=1

vkdk(µk,t−1), (11.141)

E[nt(S)|Ft−1] ≥ nt−1(S) +
K∑
k=1

vkdk(µk,t−1), (11.142)

where, given the underlying probability space (Ω,F ,P), we introduce the
filtration (see Definition D.5) generated by the belief vectors of all agents,
namely, the sequence of sub-σ-fields

Ft ≜ σ
(

{µk,0}Kk=1, {µk,1}Kk=1, . . . , {µk,t}
K
k=1

)
, t = 0, 1, . . . (11.143)

Note that F0 = σ
(
{µk,0}Kk=1

)
= {∅,Ω} is the trivial σ-field, since we are

modeling the initial beliefs as deterministic.
ii) Both sequences {mt}∞t=0 and {nt(S)}∞t=0 are negative submartingales with

respect to {Ft}∞t=0, and there exist random variables m∞ and n∞(S) such
that

mt
a.s.−−−→
t→∞

m∞, nt(S) a.s.−−−→
t→∞

n∞(S). (11.144)

iii) The sequences of expected values Emt and Ent(S) have finite limits.

Proof. We first prove the claims for mt. Applying the arithmetic/geometric mean
inequality we can write [37]

∑
θ∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

≤
∑
θ∈Θ

∑
j∈Nk

ajkψ̂
(k)
j,t (θ) = 1. (11.145)

Grouping (11.137c) and (11.145) we get

µk,t(ϑ
o) =

∏
j∈Nk

[
ψ̂

(k)
j,t (ϑo)

]ajk

∑
θ∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk
≥
∏
j∈Nk

[
ψ̂

(k)
j,t (ϑo)

]ajk

, (11.146)

which, using the definition of ψ̂
(k)
j,t from (11.137b), yields

µk,t(ϑ
o) ≥

∏
j∈Nk

[
ψj,t(ϑ

o)
]ajk if ϑ• = ϑo,

ψk,t(ϑo)

∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

1 − ψk,t(ϑ•)
if ϑ• ̸= ϑo.

(11.147)

276 Partial Information Sharing

Taking the logarithm we get

logµk,t(ϑ
o) ≥

∑
j∈Nk

ajk logψj,t(ϑ
o) if ϑ• = ϑo,

logψk,t(ϑo) +
∑
j∈Nk

ajk log
1 − ψj,t(ϑ•)
1 − ψk,t(ϑ•)

if ϑ• ̸= ϑo,

(11.148)

which, from the definition of neighborhood in (4.1), is equivalently written as

logµk,t(ϑ
o) ≥

K∑
j=1

ajk logψj,t(ϑo) if ϑ• = ϑo,

logψk,t(ϑo) +
K∑
j=1

ajk log
1 − ψj,t(ϑ•)
1 − ψk,t(ϑ•)

if ϑ• ̸= ϑo.

(11.149)

Since the network graph is assumed to be connected, with a left stochastic combination
matrix A, it follows from Definition 4.6 and Lemma 4.3 that A is an irreducible matrix
with spectral radius ρ(A) = 1. From the Perron-Frobenius theorem (Theorem 4.1) it
follows that we can define the Perron vector v, which has positive entries adding up to
1, and satisfies

Av = v. (11.150)

Equation (11.150) can be expanded in terms of the individual entries of Av and v,
yielding the following identities:

K∑
k=1

ajkvk = vj , j = 1, 2, . . . ,K. (11.151)

Let us now focus on the RHS of (11.149). Consider first the term corresponding to
ϑ• = ϑo, namely,

∑K

j=1 ajk logψj,t(ϑo). Multiplying this quantity by vk and summing
over k, we obtain the following expression:

K∑
k=1

vk

K∑
j=1

ajk logψj,t(ϑ
o)

=
K∑
j=1

K∑
k=1

ajkvk︸ ︷︷ ︸
=vj from (11.151)

logψj,t(ϑ
o) =

K∑
k=1

vk logψk,t(ϑ
o). (11.152)

Consider next the term corresponding to ϑ• ̸= ϑo. Multiplying this term by vk and

11.A. Appendix: Preliminary Results 277

summing over k, we get

K∑
k=1

vk logψk,t(ϑ
o) +

K∑
k=1

vk

K∑
j=1

ajk log
1 − ψj,t(ϑ•)
1 − ψk,t(ϑ•)

=
K∑
k=1

vk logψk,t(ϑ
o)

+
K∑
j=1

K∑
k=1

vkajk︸ ︷︷ ︸
= vj from (11.151)

log
(
1 − ψj,t(ϑ

•)
)

−
K∑
j=1

ajk︸ ︷︷ ︸
=1

K∑
k=1

vk log
(
1 − ψk,t(ϑ

•)
)

=
K∑
k=1

vk logψk,t(ϑ
o) +

K∑
j=1

vj log
(
1 − ψj,t(ϑ

•)
)

−
K∑
k=1

vk log
(
1 − ψk,t(ϑ

•)
)

=
K∑
k=1

vk logψk,t(ϑ
o). (11.153)

Multiplying both sides of (11.149) by vk and summing over k, from (11.152) and (11.153)
we obtain the following inequality:

mt =
K∑
k=1

vk logµk,t(ϑ
o) ≥

K∑
k=1

vk logψk,t(ϑ
o), (11.154)

where we used the definition of mt from (11.139). Furthermore, substituting (11.137a)
into (11.154) yields

mt ≥ mt−1 +
K∑
k=1

vk log ℓk(xk,t|ϑo)∑
θ∈Θ

µk,t−1(θ)ℓk(xk,t|θ)
. (11.155)

Now, taking the conditional expectation E [· |Ft−1] of both sides of (11.155), we obtain,
for t = 1, 2, . . . ,

E [mt|Ft−1] ≥ mt−1 +
K∑
k=1

vkdk(µk,t−1), (11.156)

where dk(q), for a convex combination vector q of dimension H, is defined in (11.140).
This proves part i) for mt. Observe from (11.140) that dk(q) corresponds to the KL
divergence between the true model ℓk,ϑo and the mixture model

∑
θ∈Θ q(θ)ℓk,θ. From

the nonnegativity of the KL divergence it follows that dk(µk,t−1) ≥ 0, which, in view of
(11.156), implies

E [mt|Ft−1] ≥ mt−1. (11.157)
Observe that mt is a negative random variable since the entries of the Perron vector are
positive and all the beliefs are almost surely strictly less than 1 — see the discussion at
the end of Section 11.2. Taking the expectation of both sides of (11.157), we can further
write

0 > Emt ≥ Emt−1 ≥ · · · ≥ m0, (11.158)

278 Partial Information Sharing

which shows that mt has finite mean for t = 0, 1, . . . (note that m0 is finite since the
initial beliefs are nonzero in view of point ii) in Assumption 5.1). In view of (11.157),
we see that the sequence {mt}∞t=0 is a negative submartingale. Thus, we can call upon
the martingale convergence theorem (in particular, Corollary D.1) to conclude that mt

converges almost surely. This proves part ii) for mt. Finally, part iii) for mt follows
from (11.158), which implies that the sequence of expectations converges (since it is
nondecreasing and bounded from above).

Now we focus on nt(S). In view of (11.137c), (11.79), and (11.145),

µk,t(Sk) =
∑
θ∈Sk

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk
≥
∑
θ∈Sk

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

. (11.159)

From the definition of Sk in (11.138) we see that ϑ• /∈ Sk for any agent k. Therefore,
the term ψ̂

(k)
j,t (θ) must be evaluated by applying the expression in (11.137b) that is valid

for the case θ ̸= ϑ•. Substituting this expression into the RHS of (11.159) yields

µk,t(Sk) ≥
∑
θ∈Sk

ψk,t(θ)
1 − ψk,t(ϑ•)

∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

=
ψk,t(Sk)

1 − ψk,t(ϑ•)

K∏
j=1

[
1 − ψj,t(ϑ

•)
]ajk , (11.160)

where in the equality we apply the definition of ψk,t(Sk) from (11.79) and extend the
product to all j by exploiting the definition of neighborhood from (4.1). Taking the
logarithm in (11.160), multiplying by vk, and summing over k gives

K∑
k=1

vk logµk,t(Sk) ≥
K∑
k=1

vk logψk,t(Sk) +
K∑
k=1

vk

K∑
j=1

ajk log
1 − ψj,t(ϑ•)
1 − ψk,t(ϑ•)

=
K∑
k=1

vk logψk,t(Sk), (11.161)

where the equality follows by applying the same steps used to obtain (11.153). Substi-
tuting the definition of nt(S) from (11.139) into (11.161), we obtain

nt(S) ≥
K∑
k=1

vk logψk,t(Sk)

= nt−1(S) +
K∑
k=1

vk log ℓk(xk,t|ϑo)∑
θ∈Θ

µk,t−1(θ)ℓk(xk,t|θ)
, (11.162)

where the equality follows from (11.137a) and the fact that for θ ∈ Sk we have ℓk,θ = ℓk,ϑo .
The proof can be completed by repeating the same steps used to prove (11.156)–(11.158)
starting from (11.155), replacing mt with the submartingale nt(S) defined in (11.139).

■

11.A. Appendix: Preliminary Results 279

From Lemma 11.1 we can derive the following corollary, which provides
bounds on the expectation of the logarithm of the intermediate beliefs.

Corollary 11.4 (Expectation of log beliefs). Consider the same assumptions used
in Lemma 11.1. Then, for k = 1, 2, . . . ,K and for all t ∈ N,

E log 1
ψk,t(ϑo)

<
|m0|
vk

, (11.163)

E log 1
ψk,t(Sk) <

|n0(S)|
vk

. (11.164)

Proof. Let us first prove (11.163). Using (11.137a) and (11.140), we have that

E log 1
ψk,t(ϑo)

= E log 1
µk,t−1(ϑo) − Edk(µk,t−1)

≤ E log 1
µk,t−1(ϑo) , (11.165)

where the inequality follows from the fact that dk(µk,t−1) ≥ 0 in view of the nonnegativity
of the KL divergence. Moreover, from the explanation at the end of Section 11.2, we
know that logµk,t−1(ϑo) is a negative random variable. On the other hand, since vk > 0,
it follows that

vk logµk,t−1(ϑo) >
K∑
k=1

vk logµk,t−1(ϑo), (11.166)

which, from definition (11.139), is equivalent to

logµk,t−1(ϑo) > mt−1

vk
. (11.167)

Then, taking expectations and using (11.158), we obtain

E logµk,t−1(ϑo) > Emt−1

vk
≥ m0

vk
, (11.168)

or
E log 1

µk,t−1(ϑo) < −m0

vk
= |m0|

vk
, (11.169)

where in the last step we use the fact that m0 < 0. Using (11.169) in (11.165) we get
(11.163). It remains to prove (11.164).

To this end, observe that ℓk,θ = ℓk,ϑo for θ ∈ Sk. As a result, from (11.137a) and
(11.79) we have

E log 1
ψk,t(Sk) = E log 1

µk,t−1(Sk) − Edk(µk,t−1). (11.170)

Then, Eq. (11.164) is obtained by repeating the same steps used to get (11.169) from
(11.165), replacing mt with the submartingale nt(S) defined in (11.139).

■

280 Partial Information Sharing

Lemma 11.1 is also useful to prove the following intermediate result,
where we show that all agents in the network discard the distinguishable
hypotheses in probability.

Lemma 11.2 (All agents discard the distinguishable hypotheses). Let Assump-
tions 5.1, 5.3, and 7.1 be satisfied, and assume that the network graph is
connected, with a combination matrix A having Perron vector v. Then, for
k = 1, 2, . . . ,K and for all θ ∈ Dk,

µk,t(θ)
p−−−→

t→∞
0. (11.171)

Proof. Taking expectations in (11.141), we can write

0 ≤
K∑
k=1

vkEdk(µk,t−1) ≤ Emt − Emt−1. (11.172)

Then, in view of part iii) of Lemma 11.1, and using the squeeze theorem [144, Thm. 3.19],
we have

lim
t→∞

K∑
k=1

vkEdk(µk,t−1) = 0. (11.173)

From Theorem 4.1, which can be invoked since the network graph is connected (hence,
the associated combination matrix A is irreducible) it follows that the entries of the
Perron vector are positive, i.e., vk > 0 for k = 1, 2, . . .K. Since dk(µk,t−1) is nonnegative,
the positivity of vk implies that each individual summand in (11.173) must converge
to 0. This means that, for each k, dk(µk,t−1) converges to 0 in the 1st mean — see
Definition D.3. In view of (D.17), convergence in the 1st mean implies convergence in
probability. Therefore, for all agents we have

dk(µk,t−1) p−−−→
t→∞

0. (11.174)

We will use the above result to conclude that (11.171) holds. Applying Pinsker’s inequality
(Theorem C.7), we can lower bound the KL divergence dk(µk,t−1) as follows:

dk(µk,t−1) ≥ 1
2D

2
TV

(
ℓk,ϑo ,

∑
θ∈Θ

µk,t−1(θ)ℓk,θ

)
, (11.175)

where the symbol DTV denotes the total variation distance, whose expression is provided
in Definition C.1.

11.A. Appendix: Preliminary Results 281

Consider now an agent k for which |Dk| > 0. We can write

ℓk(x|ϑo) −
∑
θ∈Θ

µk,t−1(θ)ℓk(x|θ)

= ℓk(x|ϑo) −
∑

θ∈Ik∪{ϑo}

µk,t−1(θ)ℓk(x|θ) −
∑
θ∈Dk

µk,t−1(θ)ℓk(x|θ)

=

(
1 −

∑
θ∈Ik∪{ϑo}

µk,t−1(θ)︸ ︷︷ ︸
=
∑

θ∈Dk

µk,t−1(θ)

)
ℓk(x|ϑo) −

∑
θ∈Dk

µk,t−1(θ)ℓk(x|θ)

=

(
ℓk(x|ϑo) −

∑
θ∈Dk

q(θ)ℓk(x|θ)

) ∑
θ′∈Dk

µk,t−1(θ′), (11.176)

where in the second equality we used the fact that within the indistinguishable set we
have ℓk(x|θ) = ℓk(x|ϑo), whereas in the last equality we introduced the notation

q(θ) =
µk,t−1(θ)∑

θ′∈Dk

µk,t−1(θ′)
. (11.177)

Then, in view of the formulas for the total variation distance in Definition C.1, Eq.
(11.176) implies that

DTV

(
ℓk,ϑo ,

∑
θ∈Θ

µk,t−1(θ)ℓk,θ

)

=

∣∣∣∣∣ ∑
θ∈Dk

µk,t−1(θ)

∣∣∣∣∣×DTV

(
ℓk,ϑo ,

∑
θ∈Dk

q(θ)ℓk,θ

)
. (11.178)

By repeating the same arguments used in the proof of Lemma 7.2 (see the discussion
following (7.30)), we arrive at the inequality

DTV

(
ℓk,ϑo ,

∑
θ∈Θ

µk,t−1(θ)ℓk,θ

)
≥ dmin

∣∣∣∣∣ ∑
θ∈Dk

µk,t−1(θ)

∣∣∣∣∣, (11.179)

for a certain dmin > 0. Using this result in (11.175) yields

dk(µk,t−1) ≥ d2
min
2

(∑
θ∈Dk

µk,t−1(θ)

)2

. (11.180)

In view of (11.174), the above result implies (11.171).
■

Using Eqs. (11.137a)–(11.137c), we can establish the following addi-
tional result, which provides a condition under which an agent is able to
discard the distinguishable unshared hypotheses almost surely.

282 Partial Information Sharing

Lemma 11.3 (Belief convergence for the distinguishable unshared hypotheses).
Let Assumptions 5.1 and 5.3 be satisfied. If ϑ• ̸= ϑo or I•k ̸= ∅, then

µk,t(θ)
a.s.−−−→
t→∞

0 ∀θ ∈ D•k. (11.181)

Proof. By assumption, ϑo is unshared or there exists at least one indistinguishable
unshared hypothesis. Let θ′ be equal to ϑo if ϑo is unshared, or to an indistinguishable
unshared hypothesis. Let θ be distinguishable and unshared. Using (11.137a)–(11.137c),
we can write

µk,t(θ′)
µk,t(θ)

(11.137c)=

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

(11.137b)=

∏
j∈Nk

[
ψk,t(θ′)

1 − ψk,t(ϑ•)

(
1 − ψj,t(ϑ

•)
)]ajk

∏
j∈Nk

[
ψk,t(θ)

1 − ψk,t(ϑ•)

(
1 − ψj,t(ϑ

•)
)]ajk

=
ψk,t(θ′)
ψk,t(θ)

(11.137a)=
µk,t−1(θ′)
µk,t−1(θ)

ℓk(xk,t|θ′)
ℓk(xk,t|θ)

=
µk,t−1(θ′)
µk,t−1(θ)

ℓk(xk,t|ϑo)
ℓk(xk,t|θ)

, (11.182)

where in the step that applies (11.137b) we use the fact that both θ′ and θ are unshared
hypotheses, while in the last equality we replace ℓk(xk,t|θ′) with ℓk(xk,t|ϑo) since θ′ is
equal to ϑo or is indistinguishable from ϑo. Taking the logarithm of the LHS and the
RHS of (11.182), we obtain the recursion

log
µk,t(θ′)
µk,t(θ)

= log
µk,t−1(θ′)
µk,t−1(θ) + log ℓk(xk,t|ϑo)

ℓk(xk,t|θ)
, (11.183)

and unfolding it we get

log
µk,t(θ′)
µk,t(θ)

= log µk,0(θ′)
µk,0(θ) +

t∑
τ=1

log ℓk(xk,τ |ϑo)
ℓk(xk,τ |θ) . (11.184)

Under Assumption 5.3, the random variables ℓk(xk,τ |ϑo)/ℓk(xk,τ |θ) are iid, and their
expectation is given by the KL divergence D(ℓk,ϑo ||ℓk,θ) < ∞. Therefore, after dividing
(11.184) by t we can call upon the strong law of large numbers (Theorem D.7) to conclude
that

1
t

log
µk,t(θ′)
µk,t(θ)

a.s.−−−→
t→∞

E log ℓk(xk,τ |ϑo)
ℓk(xk,τ |θ) = D(ℓk,ϑo ||ℓk,θ) ∀θ ∈ D•k. (11.185)

Note that D(ℓk,ϑo ||ℓk,θ) is positive because θ is a distinguishable hypothesis. Therefore,
Eq. (11.185) implies

log
µk,t(θ′)
µk,t(θ)

a.s.−−−→
t→∞

∞ ∀θ ∈ D•k, (11.186)

11.A. Appendix: Preliminary Results 283

from which we conclude that

µk,t(θ)
a.s.−−−→
t→∞

0 ∀θ ∈ D•k, (11.187)

since the entries of the belief vector are bounded. Thus, we have established the claim
of the lemma.

■

It is worth commenting on the differences between Lemmas 11.2 and 11.3.
Lemma 11.2 allows us to conclude that all agents discard the distinguishable
hypotheses in probability, irrespective of the choice of ϑ•. Meanwhile,
Lemma 11.3 ensures that an agent k can discard the distinguishable
unshared hypotheses almost-surely, under the additional assumption that
ϑ• ̸= ϑo or I•k ̸= ∅. In order to prove almost-sure convergence of the beliefs
according to Theorems 11.2 and 11.3, we will resort to a combination of
both results.

Before we present the proofs of Theorems 11.2 and 11.3, we characterize
in the following lemma the ratios between intermediate beliefs correspond-
ing to distinguishable and indistinguishable hypotheses.

Lemma 11.4 (Intermediate belief ratios between distinguishable and indis-
tinguishable hypotheses). Let Assumptions 5.1, 5.3, and 7.1 be satisfied. Let
ϑ• = ϑo, Dk ̸= ∅, and Ik ̸= ∅, and assume that the network graph is connected,
with a combination matrix A having Perron vector v. Then, for k = 1, 2, . . . ,K:

i) The sequence defined, for t ∈ N, by the intermediate belief ratios

ψk,t(Dk)
ψk,t(Ik) (11.188)

is a positive martingale with respect to the filtration (see Definition D.5)
formed by the sub-σ-fields

Ft ≜ σ
(
{µk,0}Kk=1, {µk,1}Kk=1, . . . , {µk,t}

K
k=1
)
, t ∈ N. (11.189)

ii) This martingale vanishes almost surely.

Proof. To begin with, observe that ψk,t(Dk) and ψk,t(Ik) are positive random variables,
since the sets Dk and Ik are nonempty and the intermediate beliefs are almost surely
positive — see the discussion at the end of Section 11.2.

284 Partial Information Sharing

We first establish property i). The following chain of identities holds:

ψk,t(Dk)
ψk,t(Ik)

(a)=

∑
θ∈Dk

ψk,t(θ)∑
θ∈Ik

ψk,t(θ)

(b)=

∑
θ∈Dk

µk,t−1(θ)ℓk(xk,t|θ)∑
θ∈Ik

µk,t−1(θ)ℓk(xk,t|θ)

(c)=

∑
θ∈Dk

µk,t−1(θ)ℓk(xk,t|θ)

ℓk(xk,t|ϑo)
∑
θ∈Ik

µk,t−1(θ)

(d)= 1
µk,t−1(Ik)

∑
θ∈Dk

µk,t−1(θ) ℓk(xk,t|θ)
ℓk(xk,t|ϑo)

, (11.190)

where in (a) and (d) we apply definitions (11.79) for beliefs computed over subsets;
(b) follows from (11.137a); and (c) holds since, within the indistinguishable set Ik, all
likelihood models are equal to ℓk,ϑo . Since E[ℓk(xk,t|θ)/ℓk(xk,t|ϑo)] = 1 for each θ ∈ Θ,
from (11.190) we can write, for t = 2, 3, . . . ,

E
[
ψk,t(Dk)
ψk,t(Ik)

∣∣∣∣Ft−1

]
= 1
µk,t−1(Ik)

∑
θ∈Dk

µk,t−1(θ)E
[
ℓk(xk,t|θ)
ℓk(xk,t|ϑo)

]
(11.79)=

µk,t−1(Dk)
µk,t−1(Ik)

(11.137c)=

∑
θ∈Dk

∏
j∈Nk

[
ψ̂

(k)
j,t−1(θ)

]ajk

∑
θ∈Ik

∏
j∈Nk

[
ψ̂

(k)
j,t−1(θ)

]ajk

(11.137b)=

∑
θ∈Dk

∏
j∈Nk

[
ψk,t−1(θ)

1 − ψk,t−1(ϑ•)

(
1 − ψj,t−1(ϑ•)

)]ajk

∑
θ∈Ik

∏
j∈Nk

[
ψk,t−1(θ)

1 − ψk,t−1(ϑ•)

(
1 − ψj,t−1(ϑ•)

)]ajk

=

∑
θ∈Dk

∏
j∈Nk

[
ψk,t−1(θ)

]ajk

∑
θ∈Ik

∏
j∈Nk

[
ψk,t−1(θ)

]ajk
=

∑
θ∈Dk

[
ψk,t−1(θ)

] ∑
j∈Nk

ajk

∑
θ∈Ik

[
ψk,t−1(θ)

] ∑
j∈Nk

ajk

=

∑
θ∈Dk

ψk,t−1(θ)∑
θ∈Ik

ψk,t−1(θ)

(11.79)=
ψk,t−1(Dk)
ψk,t−1(Ik) . (11.191)

11.A. Appendix: Preliminary Results 285

Note that since Dk and Ik do not contain ϑo, and since ϑ• = ϑo, the hypotheses belonging
to Dk or Ik are all unshared hypotheses. Accordingly, in (11.191), the reconstructed
beliefs ψ̂

(k)
j,t (θ) have been computed from (11.137b) using the formula corresponding to

θ ̸= ϑ•. In summary, we have shown that

E
[
ψk,t(Dk)
ψk,t(Ik)

∣∣∣∣Ft−1

]
=
ψk,t−1(Dk)
ψk,t−1(Ik) . (11.192)

Moreover, specializing (11.190) to the case t = 1 we get

E
[
ψk,1(Dk)
ψk,1(Ik)

]
= 1
µk,0(Ik)

∑
θ∈Dk

µk,0(θ)E
[
ℓk(xk,t|θ)
ℓk(xk,t|ϑo)

]
︸ ︷︷ ︸

=1

= µk,0(Dk)
µk,0(Ik) < ∞, (11.193)

where the last inequality holds because µk,0(Ik) > 0 in view of point ii) in Assumption 5.1.
Taking the expectation of both sides of (11.192), we obtain

E
[
ψk,t(Dk)
ψk,t(Ik)

]
= E

[
ψk,t−1(Dk)
ψk,t−1(Ik)

]
= · · · = E

[
ψk,1(Dk)
ψk,1(Ik)

]
= µk,0(Dk)
µk,0(Ik) , (11.194)

which shows that ψk,t(Dk)/ψk,t(Ik) has finite mean for all t ∈ N. We conclude from
(11.192) that the sequence {ψk,t(Dk)/ψk,t(Ik)}t∈N is a nonnegative martingale. We can
therefore call upon the martingale convergence theorem (in particular, Corollary D.1),
to establish that ψk,t(Dk)/ψk,t(Ik) converges almost surely. This means that, to prove
property ii) in the lemma, it suffices to show the following convergence in probability:

ψk,t(Dk)
ψk,t(Ik)

p−−−→
t→∞

0. (11.195)

The convergence in (11.195) results from Lemma D.2, applied with the choices

wt = ψk,t(Dk), yt = 1
ψk,t(Ik) . (11.196)

We now verify that with these choices the conditions of Lemma D.2 are satisfied.
Specifically, condition (D.27) holds because wt = ψk,t(Dk) converges to 0 in prob-

ability in view of Lemma 11.2 (actually, the lemma refers to beliefs µk,t(θ), but the
claim of the lemma can be readily extended to the intermediate beliefs ψk,t(θ) by using
(11.137a)).

Conditions (D.28) and (D.29) are satisfied since, by using Markov’s inequality
(Theorem C.1), we have the following upper bounds holding for any y > 1:

P
[

1
ψk,t(Ik) > y

]
= P

[
log 1

ψk,t(Ik) > log y
]

≤ 1
log y E log 1

ψk,t(Ik)

<
1

log y
|n0(I)|
vk

y→∞−→ 0, (11.197)

286 Partial Information Sharing

where I = {I1, I2, . . . , IK}, and the last inequality follows from Corollary 11.4 applied
with the choice Sk = Ik for all k (note that this choice satisfies condition (11.138) since,
for ϑ• = ϑo, (Ik ∪ {ϑo})\ϑ• = Ik). Thus, Lemma D.2 allows us to claim (11.195), which
in turn implies that the martingale {ψk,t(Dk)/ψk,t(Ik)}t∈N vanishes almost surely.

■

11.B Appendix: Proof of Theorem 11.2

Proof. We need to establish (11.87), (11.88), and (11.89).
Equation (11.88) follows directly from Lemma 11.3, once we observe that ϑ• ̸= ϑo.
Let us focus on (11.89). Observe that, in the considered case ϑ• ̸= ϑo, the set Iok

defined by (11.86) contains only unshared hypotheses. If Ik = ∅, then Iok contains only
ϑo, and Eq. (11.89) trivially yields the identity 1 = 1. Consider then the case Ik ̸= ∅, and
let θ, θ′ ∈ Iok . Note that these hypotheses are the true hypothesis or indistinguishable
hypotheses. We have the following chain of identities:

µk,t(θ′)
µk,t(θ)

(a)=
∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

ψ̂
(k)
j,t (θ)

]ajk

(b)=
∏
j∈Nk

[
ψk,t(θ′)
ψk,t(θ)

]ajk
(c)=
ψk,t(θ′)
ψk,t(θ)

(d)=
µk,t−1(θ′)ℓk(xk,t|θ′)
µk,t−1(θ)ℓk(xk,t|θ)

(e)=
µk,t−1(θ′)ℓk(xk,t|ϑo)
µk,t−1(θ)ℓk(xk,t|ϑo)

=
µk,t−1(θ′)
µk,t−1(θ) , (11.198)

where (a) follows from (11.137c); in (b) we use the expression for the reconstructed
beliefs from (11.137b) holding for unshared hypotheses; (c) follows from the fact that A
is left stochastic; (d) from (11.137a); and (e) holds because θ and θ′ are indistinguishable.
From (11.198) we see that

µk,t(θ′)
µk,t(θ)

=
µk,t−1(θ′)
µk,t−1(θ) = · · · = µk,0(θ′)

µk,0(θ) . (11.199)

Summing over θ′ ∈ Iok , from the first definition in (11.79) we obtain, for any θ ∈ Iok ,

µk,t(Iok)
µk,t(θ)

= µk,0(Iok)
µk,0(θ) , (11.200)

which is equivalent to (11.89).
It remains to prove (11.87). To this end, we first establish that µk,t(ϑ•) vanishes

in probability, and then use this result to show that it vanishes almost surely. Under
global identifiability (Assumption 5.4) we have ϑ• ∈ Dh for some agent h, and since the
network is assumed to be connected, we can use Lemma 11.2 to conclude that

µh,t(ϑ
•) p−−−→

t→∞
0. (11.201)

We want to show that the same result holds for all agents in the network. To this end,
we start by showing that Eq. (11.201) implies that the intermediate belief ψh,t(ϑ•)
converges to 0 in probability.

11.B. Appendix: Proof of Theorem 11.2 287

From (11.137a) we can write (note that, as usual, the likelihood ratios are well
defined with probability 1 due to Assumption 5.3)

ψh,t(ϑ
•) =

µh,t−1(ϑ•)∑
θ∈Θ

µh,t−1(θ) ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

ℓh(xh,t|ϑ•)
ℓh(xh,t|ϑo)

=
µh,t−1(ϑ•)∑

θ∈Dh

µh,t−1(θ) ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

+
∑

θ∈Ih∪{ϑo}

µh,t−1(θ)︸ ︷︷ ︸
=1−µh,t−1(Dh)

ℓh(xh,t|ϑ•)
ℓh(xh,t|ϑo)

=
µh,t−1(ϑ•)

1 +
∑
θ∈Dh

µh,t−1(θ)
(
ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

− 1
) ℓh(xh,t|ϑ•)

ℓh(xh,t|ϑo)
, (11.202)

where in the second equality we used the fact that ℓh,θ = ℓh,ϑo for all θ ∈ Ih ∪ {ϑo}. By
introducing the definitions

s′t =
µh,t−1(ϑ•)

1 +
∑
θ∈Dh

µh,t−1(θ)
(
ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

− 1
) , (11.203)

s′′t = ℓh(xh,t|ϑ•)
ℓh(xh,t|ϑo)

, (11.204)

we see from (11.202) that we have the identity

ψh,t(ϑ
•) = s′t s

′′
t . (11.205)

We want to show that ψh,t(ϑ•) vanishes in probability and, for this purpose, we start
by examining the first term in the denominator of s′t, namely,∑

θ∈Dh

µh,t−1(θ)
(
ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

− 1
)
. (11.206)

Observe that (11.88) and (11.201) imply that µh,t−1(θ) vanishes almost surely (hence,
in probability) for all θ ∈ Dh. Moreover, the term ℓh(xh,t|θ)/ℓh(xh,t|ϑo) has constant
distribution over time. Calling upon Slutsky’s theorem (in particular, Eq. (D.38) in
Theorem D.4), we obtain the following convergence holding for all summands in (11.206):

µh,t−1(θ)
(
ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

− 1
)

p−−−→
t→∞

0, (11.207)

which implies that the denominator of s′t converges to 1 in probability. Since the
numerator of s′t vanishes in probability in view of (11.201), s′t vanishes in probability.3

3When we have two random sequences converging in probability, Theorem D.3 implies that
their ratio converges in probability to the ratio between the limiting variables, provided that
the limiting variable in the denominator is zero with zero probability.

288 Partial Information Sharing

From this convergence result and from the fact that the term s′′t in (11.204) has constant
distribution over time, by invoking again Slutsky’s theorem we obtain

ψh,t(ϑ
•) = s′t s

′′
t

p−−−→
t→∞

0. (11.208)

We now proceed to show that, if agent h is a neighbor of agent k, then the condition
ψh,t(ϑ•)

p−−−→
t→∞

0 implies that µk,t(ϑ•)
p−−−→

t→∞
0. Consider then an agent k for which

ahk > 0, that is, an agent k such that h ∈ Nk. In view of (11.137c) we can write

µk,t(ϑ
•) =

∏
j∈Nk

[
ψj,t(ϑ

•)
]ajk

∑
θ∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk
≤

∏
j∈Nk

[
ψj,t(ϑ

•)
]ajk

∑
θ∈U

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk
, (11.209)

where we recall that U is the set collecting the unshared hypotheses. Let us examine
the denominator on the RHS of (11.209). Exploiting (11.137b) we obtain the following
equalities:∑

θ∈U

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

=
∑
θ∈U

∏
j∈Nk

[
ψk,t(θ)

1 − ψk,t(ϑ•)

]ajk [
1 − ψj,t(ϑ

•)
]ajk

=
∑
θ∈U

[
ψk,t(θ)

1 − ψk,t(ϑ•)

] ∑
j∈Nk

ajk ∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

=

∑
θ∈U

ψk,t(θ)

1 − ψk,t(ϑ•)
∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

=
∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk . (11.210)

Substituting (11.210) into (11.209), we obtain

µk,t(ϑ
•) ≤

∏
j∈Nk

[
ψj,t(ϑ•)

1 − ψj,t(ϑ•)

]ajk

(a)
≤

(∏
j∈Nk

[
ψj,t(ϑ

•)
]ajk

)
×

(∏
j∈Nk

[
1

ψj,t(ϑo)

]ajk

)
(b)
≤
[
ψh,t(ϑ

•)
]ahk

∏
j∈Nk

[
1

ψj,t(ϑo)

]ajk

, (11.211)

where (a) follows because (recall that ϑ• ̸= ϑo, i.e., ϑo ∈ U)

1 − ψj,t(ϑ
•) =

∑
θ∈U

ψj,t(θ) ≥ ψj,t(ϑ
o) (11.212)

and from the fact that the beliefs and combination weights are nonnegative; whereas (b)
holds because the beliefs are bounded by 1 and, hence,∏

j∈Nk
j ̸=h

[
ψj,t(ϑ

•)
]ajk ≤ 1. (11.213)

11.B. Appendix: Proof of Theorem 11.2 289

Now we apply Lemma D.2 to the RHS of (11.211), where: i) [ψh,t(ϑ•)]ahk plays the
role of wt since it converges in probability to 0 in view of (11.208) (recall that ahk > 0);
and ii)

∏
j∈Nk

[ψj,t(ϑo)]−ajk plays the role of yt since, by exploiting Markov’s inequality
(Theorem C.1) and Corollary 11.4, for any y > 1 we have

P

[∏
j∈Nk

[
1

ψj,t(ϑo)

]ajk

> y

]
= P

[∑
j∈Nk

ajk log 1
ψj,t(ϑo)

> log y

]
≤ 1

log y
∑
j∈Nk

ajkE log 1
ψj,t(ϑo)

<
|m0|
log y

∑
j∈Nk

ajk
vj

y→∞−→ 0, (11.214)

which means that conditions (D.28) and (D.29) are satisfied. Thus, from Lemma D.2 we
conclude that the RHS of (11.211) vanishes in probability, implying that µk,t(ϑ•)

p−−−→
t→∞

0
for any agent k such that h ∈ Nk.

In summary, we have shown that µh,t
p−−−→

t→∞
0 implies µk,t

p−−−→
t→∞

0 when h is a
neighbor of k. Since the network is assumed to be connected, we can iterate the reasoning
so as to extend the result to all agents in the network. In other words, we have established
that µk,t(ϑ•)

p−−−→
t→∞

0 for all k. Note that this result does not correspond to (11.87)
since we only established convergence in probability. We now show how to extend the
result to almost-sure convergence.

To this end, observe that the belief vector is a probability vector, and, hence,

µk,t(ϑ
•) + µk,t(I

o
k) + µk,t(D

•
k) = 1, (11.215)

which, combined with (11.88), yields

µk,t(I
o
k) p−−−→

t→∞
1 for k = 1, 2, . . . ,K. (11.216)

Consider now the submartingale nt(S) defined in (11.139). By choosing the set S as
S = {Io1 , Io2 , . . . , IoK}, from (11.216) we get

nt(S) =
K∑
k=1

vk logµk,t(I
o
k) p−−−→

t→∞
0. (11.217)

From (11.217) and part ii) of Lemma 11.1, we conclude that the convergence of nt(S)
must take place almost surely, that is,

K∑
k=1

vk logµk,t(I
o
k) a.s.−−−→

t→∞
0, (11.218)

Since vk > 0 and logµk,t(Iok) < 0 for all k, we conclude that µk,t(Iok) a.s.−−−→
t→∞

1, which,
in view of (11.215), finally implies (11.87), and the proof is complete.

■

290 Partial Information Sharing

11.C Appendix: Proof of Theorem 11.3

Proof. We start by focusing on point iii). If Ik = ∅, there are no indistinguishable
hypotheses, and this point is not present. We consider then the case Ik ̸= ∅ and prove
that (11.94) holds. If Ik contains only one hypothesis, Eq. (11.94) trivially yields the
identity 1 = 1. It remains to examine the case where Ik contains at least two hypotheses.
Observe that all the hypotheses belonging to Ik are indistinguishable by definition, and
are also unshared since they are distinct from ϑ• (recall that we are considering the case
ϑ• = ϑo). Accordingly, Eq. (11.199) holds for any θ, θ′ ∈ Ik. Summing over θ′ ∈ Ik the
LHS and the RHS of (11.199), and applying the first definition in (11.79), we conclude
that

µk,t(Ik)
µk,t(θ)

= µk,0(Ik)
µk,0(θ) , (11.219)

which is equivalent to (11.94).
Next, we prove (11.93). Since we are considering the case ϑ• = ϑo, from (11.85) we

have
I•k = Ik\{ϑo} = Ik, D•k = Dk\{ϑo} = Dk, (11.220)

which hold because Ik and Dk do not contain ϑo.
Now, if Ik = ∅, then Γ = 0 in view of (11.81) and (11.83). Under this condition, the

limit in (11.92) would be equal to 1, which would in turn imply (11.93). Thus, if Ik = ∅
it would suffice to prove (11.92).

On the other hand, if Ik ̸= ∅, we can invoke Lemma 11.3 (along with the fact that
I•k = Ik and D•k = Dk) to see that (11.93) holds. Also in this case, to complete the
proof we need to establish (11.92). To this end, it is convenient to consider separately
the cases Γ = 0 and Γ > 0.

Case Γ = 0. In view of (11.83), when Γ = 0 we must have an agent h with Γh = 0,
a condition that, from (11.81) and the assumption that the initial beliefs are positive,
is equivalent to Ih = ∅. This means that all hypotheses θ ̸= ϑo are distinguishable,
implying, in view of Lemma 11.2,

µh,t(ϑ
o) p−−−→

t→∞
1. (11.221)

We now want to show that the same convergence result holds for all agents in the
network. To this end, we will first establish that the intermediate belief ψh,t(ϑo) also
converges to 1 in probability. Observe that from (11.137a) we can write

ψh,t(ϑ
o) =

µh,t−1(ϑo)

µh,t−1(ϑo) +
∑
θ ̸=ϑo

µh,t−1(θ) ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

. (11.222)

Since the ratios ℓh(xh,t|θ)/ℓh(xh,t|ϑo) are identically distributed over time, and µh,t−1(θ)
vanishes in probability for θ ̸= ϑo in view of (11.221), from Slutsky’s theorem (see in
particular (D.38) in Theorem D.4) we have∑

θ∈U

µh,t−1(θ) ℓh(xh,t|θ)
ℓh(xh,t|ϑo)

p−−−→
t→∞

0, (11.223)

which, when used in (11.222) along with (11.221), yields

ψh,t(ϑ
o) p−−−→

t→∞
1. (11.224)

11.C. Appendix: Proof of Theorem 11.3 291

The next step is to show that (11.224) implies that µk,t(ϑo)
p−−−→

t→∞
1 if h is a neighbor of

k, i.e., if ahk > 0. Obviously, we already know that µk,t(ϑo)
p−−−→

t→∞
1 if Γk = 0. Therefore,

it suffices to focus on an agent k with Γk > 0. The following chain of relations holds:

µk,t(Ik) (a)=

∑
θ∈Ik

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk

(b)=

∑
θ∈Ik

ψk,t(θ)
1 − ψk,t(ϑ•)

∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

∑
θ′∈Θ

∏
j∈Nk

[
ψ̂

(k)
j,t (θ′)

]ajk

≤

∑
θ∈Ik

ψk,t(θ)
1 − ψk,t(ϑ•)

∏
j∈Nk

[
1 − ψj,t(ϑ

•)
]ajk

∏
j∈Nk

[
ψ̂

(k)
j,t (ϑo)

]ajk

(c)=

∑
θ∈Ik

ψk,t(θ)
1 − ψk,t(ϑo)

∏
j∈Nk

[
1 − ψj,t(ϑ

o)
]ajk

∏
j∈Nk

[
ψ

(k)
j,t (ϑo)

]ajk

(d)=
ψk,t(Ik)

1 − ψk,t(ϑo)
∏
j∈Nk

(
1 − ψj,t(ϑo)
ψj,t(ϑo)

)ajk

(e)
≤
∏
j∈Nk

(
1 − ψj,t(ϑo)
ψj,t(ϑo)

)ajk

(f)
≤
[
1 − ψh,t(ϑ

o)
]ahk

∏
j∈Nk

[
1

ψj,t(ϑo)

]ajk

, (11.225)

where (a) follows from (11.79) and (11.137c); in (b) we apply (11.137b); (c) holds because
ϑ• = ϑo; (d) follows from (11.79); (e) follows from

ψk,t(Ik)
1 − ψk,t(ϑo)

=
ψk,t(Ik)

ψk,t(Ik) + ψk,t(Dk) ≤ 1, (11.226)

whereas (f) holds since the beliefs are bounded by 1 and, hence,∏
j∈Nk
j ̸=h

[
1 − ψj,t(ϑ

o)
]ajk ≤ 1. (11.227)

Next, we show that the RHS of (11.225) vanishes in probability. This conclusion fol-
lows from Lemma D.2, where the sequence [1 − ψh,t(ϑo)]ahk plays the role of wt,
since it converges in probability to 0 according to (11.224); and where the sequence

292 Partial Information Sharing

∏
j∈Nk

[ψj,t(ϑo)]−ajk plays the role of yt, since this sequence satisfies (11.214) and,
hence, satisfies conditions (D.28) and (D.29).

Since the RHS of (11.225) converges in probability to 0, we have that µk,t(Ik) p−−−→
t→∞

0.
Recalling that µk,t(ϑo) = 1 −µk,t(Ik) −µk,t(Dk), and that we have already shown that
µk,t(Dk) p−−−→

t→∞
0, we conclude that µk,t(ϑo)

p−−−→
t→∞

1. In summary, we have shown that

µh,t(ϑo)
p−−−→

t→∞
1 implies µk,t(ϑo)

p−−−→
t→∞

1 when h is a neighbor of k. Since the network

is connected, by iterating the above reasoning we conclude that µk,t(ϑo)
p−−−→

t→∞
1 for all

k, which implies

mt =
K∑
k=1

vk logµk,t(ϑ
o) p−−−→

t→∞
0. (11.228)

From part ii) of Lemma 11.1, this convergence must take place almost surely, i.e.,
K∑
k=1

vk logµk,t(ϑ
o) a.s.−−−→

t→∞
0. (11.229)

Since vk > 0 and logµk,t(ϑo) < 0 for all k, we must have µk,t(ϑo)
a.s.−−−→
t→∞

1 for any agent
k, which concludes the proof for the case Γ = 0.

Case Γ > 0. For k = 1, 2, . . . ,K, we have the following chain of equalitites

µk,t(Ik)
µk,t(ϑo)

(11.79)=

∑
θ∈Ik

µk,t(θ)

µk,t(ϑo)
(11.137c)=

∑
θ∈Ik

∏
j∈Nk

[
ψ̂

(k)
j,t (θ)

]ajk

∏
j∈Nk

[
ψ

(k)
j,t (ϑo)

]ajk

(11.137b)=

∑
θ∈Ik

ψk,t(θ)
1 − ψk,t(ϑo)

∏
j∈Nk

[
1 − ψj,t(ϑ

o)
]ajk

∏
j∈Nk

[
ψ

(k)
j,t (ϑo)

]ajk

=
ψk,t(Ik)

1 − ψk,t(ϑo)
∏
j∈Nk

[
1 − ψj,t(ϑo)
ψj,t(ϑo)

]ajk

=
ψk,t(Ik)

1 − ψk,t(ϑo)

(
K∏
j=1

[
ψj,t(Ij)
ψj,t(ϑo)

]ajk

)
×

(
K∏
j=1

[
1 − ψj,t(ϑo)
ψj,t(Ij)

]ajk

)
,

(11.230)

where in the last step we multiplied and divided by
∏K

j=1[ψj,t(Ij)]ajk , and applied the
definition of neighborhood from (4.1). Using (11.137a) and (11.48) we get

ψj,t(Ij)
ψj,t(ϑo)

=
µj,t−1(Ij)ℓj(xj,t|ϑo)
µj,t−1(ϑo)ℓj(xj,t|ϑo)

=
µj,t−1(Ij)
µj,t−1(ϑo) . (11.231)

Likewise, exploiting (11.48) and (11.49) we have
1 − ψj,t(ϑo)
ψj,t(Ij)

=
ψj,t(Ij) + ψj,t(Dj)

ψj,t(Ij)
= 1 +

ψj,t(Dj)
ψj,t(Ij)

. (11.232)

11.C. Appendix: Proof of Theorem 11.3 293

Subtituting (11.231) and (11.232) into (11.230) and taking the logarithm we obtain

log
µk,t(Ik)
µk,t(ϑo)

=
K∑
j=1

ajk log
µj,t−1(Ij)
µj,t−1(ϑo)

+ log

([
1 +

ψk,t(Dk)
ψk,t(Ik)

]−1 K∏
j=1

[
1 +

ψj,t(Dj)
ψj,t(Ij)

]ajk

)
. (11.233)

It is now convenient to introduce the vectors

zt ≜ col
{

log
µk,t(Ik)
µk,t(ϑo)

}K
k=1

, (11.234)

yt ≜ col

{
log

([
1 +

ψk,t(Dk)
ψk,t(Ik)

]−1 K∏
j=1

[
1 +

ψj,t(Dj)
ψj,t(Ij)

]ajk

)}K
k=1

, (11.235)

where col{xk}Kk=1 denotes the K × 1 vector obtained by stacking into a single column
the entries x1, x2, . . . , xK . Using (11.234) and (11.235), we can recast (11.233) in the
vector form

zt = ATzt−1 + yt. (11.236)

Unfolding the recursion we get

zt = (At)Tz0 +
t−1∑
τ=0

(Aτ)Tyt−τ . (11.237)

Let V be the K × K matrix whose columns are all equal to the Perron vector, i.e.,
V = v1T. We now show that the vectors yt in (11.235) are in the null space of V T:

V Tyt = 0. (11.238)

Since V has equal columns, Eq. (11.238) is equivalent to the relation
∑K

k=1 vkyk,t = 0,
where yk,t corresponds to the kth entry of the vector yt. Exploiting the definition of yt
from (11.235), we have

K∑
k=1

vkyk,t = −
K∑
k=1

vk log
(

1 +
ψk,t(Dk)
ψk,t(Ik)

)

+
K∑
k=1

vk

K∑
j=1

ajk log
(

1 +
ψj,t(Dj)
ψj,t(Ij)

)
= 0, (11.239)

where the final equality follows from the identity
∑K

k=1 ajkvk = vj .
In view of (11.238) we can rewrite (11.237) as

zt = (At)Tz0 +
t−1∑
τ=0

(Aτ − V)T yt−τ +
t−1∑
τ=0

V Tyt−τ︸ ︷︷ ︸
=0

(At)Tz0 +
t−1∑
τ=0

FT
τ yt−τ , (11.240)

294 Partial Information Sharing

where Fτ ≜ Aτ − V . The next step of the proof is to establish that the vector defined
by the sum on the RHS of (11.240) vanishes almost surely as t → ∞, namely, in terms
of the kth entry of this vector, we want to show that

t−1∑
τ=0

K∑
j=1

[Fτ]jk yj,t−τ
a.s.−−−→
t→∞

0. (11.241)

To this end, observe that since the graph is primitive, in view of Corollary 4.1 there exist
two constants C > 0 and r ∈ (0, 1) such that, for t = 0, 1, . . ., the following condition is
satisfied:4

max
j,k∈{1,2,...,K}

∣∣∣[At − V]jk
∣∣∣ ≤ Crt. (11.243)

We can write∣∣∣∣∣
t−1∑
τ=0

K∑
j=1

[Fτ]jk yj,t−τ

∣∣∣∣∣ ≤
t−1∑
τ=0

∣∣∣[Fτ]jk
∣∣∣ K∑
j=1

|yj,t−τ | ≤
t−1∑
τ=0

rτwt−τ , (11.244)

where in the last step we used the bound from (11.243) and introduced the definition

wt = C

K∑
j=1

|yj,t|. (11.245)

When Dj = ∅, we see from (11.235) that yj,t = 0. Consider then the agents j for which
Dj ≠ ∅ (there must be at least one such an agent in view of global identifiability). For
these agents, part ii) of Lemma 11.4 implies that yj,t

a.s.−−−→
t→∞

0 for any j, and, hence,

wt
a.s.−−−→
t→∞

0. This implies that, almost surely, for any ε > 0 there exists a (random) value
tε such that for all t > tε we have wt < ε(1 − r). Therefore, for t > tε, the following
relations hold (almost surely):

t−1∑
τ=0

rτwt−τ =
t−tε−1∑
τ=0

rτwt−τ +
t−1∑

τ=t−tε

rτwt−τ

< ε(1 − r)
t−tε−1∑
τ=0

rτ +
t−1∑

τ=t−tε

rτwt−τ

< ε(1 − r)
∞∑
τ=0

rτ +
t−1∑

τ=t−tε

rτwt−τ

= ε+
t−1∑

τ=t−tε

rτwt−τ , (11.246)

4Actually, Corollary 4.1 does not consider the case t = 0. However, including the case t = 0
in (11.243) is possible by defining the constant C as the maximum between the constant valid
for t > 1 and the value

max
j,k∈{1,2,...,K}

∣∣∣[IK − V]jk
∣∣∣, (11.242)

which corresponds to t = 0.

11.C. Appendix: Proof of Theorem 11.3 295

where in the final equality we used the fact that
∑∞

τ=0 r
τ = 1/(1 − r). Moreover, since

rτ is decreasing and wt−τ is nonnegative, we get

t−1∑
τ=t−tε

rτwt−τ ≤ rt−tε

t−1∑
τ=t−tε

wt−τ = rt

(
1
rtε

tε∑
τ=1

wτ

)
. (11.247)

We argue now that the quantity within brackets is almost-surely finite. Recalling the
discussion following (11.137a)–(11.137c), we know that, almost surely, ψk,t(θ) is positive
for all k and θ. From the definition of yt in (11.235), it follows that all entries yk,t are
almost-surely finite. This implies that wt defined in (11.245) is almost-surely finite, and
so is the quantity within brackets appearing in (11.247).

Thus, from (11.246) we obtain

lim sup
t→∞

t−1∑
τ=0

rτwt−τ ≤ ε almost surely, (11.248)

which proves (11.241) in view of (11.244) and the arbitrariness of ε.
We have therefore shown that the second term on the RHS of (11.240) vanishes

almost surely as t → ∞. It remains to characterize the first term on the RHS of (11.240).
To this end, observe that (11.243) implies

lim
t→∞

(At)Tz0 = V Tz0. (11.249)

Considering the explicit form of the entries of the vector z0 available from (11.234), we
can write [

V Tz0
]
k

=
K∑
j=1

vj log µj,0(Ij)
µj,0(ϑo) =

K∑
j=1

vj log Γj = log Γ, (11.250)

where, in the last equality, we further apply the definition of Γj and Γ from (11.81) and
(11.83), respectively. Using (11.241), (11.249), and (11.250) in (11.240) and exploiting
the definition of zt from (11.234), we get

µk,t(Ik)
µk,t(ϑo)

a.s.−−−→
t→∞

Γ. (11.251)

On the other hand, from (11.93) we have

µk,t(ϑ
o) + µk,t(Ik) a.s.−−−→

t→∞
1, (11.252)

and since we can write

µk,t(ϑ
o) + µk,t(Ik) = µk,t(ϑ

o)
(

1 +
µk,t(Ik)
µk,t(ϑo)

)
, (11.253)

by using (11.251) and (11.252), we conclude that

µk,t(ϑ
o) a.s.−−−→

t→∞

1
1 + Γ , (11.254)

which corresponds to (11.92), and the proof is complete.
■

Chapter 12

Social Machine Learning

We have seen in the previous chapters that in social learning the agents
employ some locally available statistical models represented by the likeli-
hoods, which are meant to approximate the possible true models. However,
in many cases the likelihoods are not known beforehand, and the analysis
so far in the text has not addressed the problem of how the agents can
select them. We explain in this chapter how the agents can address this
important issue by learning from training data, and carry out a detailed
performance analysis to show that, under reasonable conditions, correct
decision-making continues to be attained. We start with a motivating
example.

Assume a certain classification problem must be solved to distinguish
between some hypotheses or classes. It is useful to describe first a single-
agent setting. To solve the classification problem, the agent would resort to
some standard machine learning strategy, for example, a logistic regression
classifier or a neural network [155]. Under supervised learning, the operation
of these structures would involve two distinct phases. One is the training
phase, where the agent (i.e., the classifier) learns how to construct the
decision statistics necessary to perform the classification task. The agent is
trained over a dataset containing several examples, which provide clues on
the statistical relation between the observation x and the corresponding
hypothesis θ. Borrowing a standard terminology from machine learning,
in the following we refer to the observation x as the feature1 and to the
hypothesis θ as the label. Each clue in the training data therefore consists
of a feature x marked with a label θ that denotes the particular hypothesis
that gave rise to x. At the end of the training phase, the classifier would

1Note that a feature x can be a vector collecting different attributes.

298 Social Machine Learning

have learned some decision statistics that allow it to construct a decision
rule, i.e., a mapping from the feature space to the label space. Thus, the
classifier can now switch to the prediction phase, where it uses the learned
decision rule to predict the label θ′ of any new feature x′, i.e., to classify
new (unlabeled) observations.

In the social machine learning (SML) paradigm to be discussed in this
chapter, we will be dealing with a group of agents, rather than with a
single agent. We will have a distributed ensemble of spatially dispersed
datasets. Each dataset will be used to train a local learning machine at the
corresponding agent location. Once training is concluded, the individual
learning machines switch into a social learning mode where they cooperate
with each other over a graph topology. For example, we can have an
ensemble of mobile phones distributed over a certain geographic area.
These phones would have embedded into them some local routines to
learn individual weather forecasting models from training data consisting,
for instance, of air humidity, atmospheric pressure, or temperature data
collected at their respective locations. These routines are fixed, and can be
chosen from among classic machine learning procedures. Subsequently, the
phones would be able to interact with each other by means of a certain
app that allows them to use their individual knowledge to accomplish a
social weather forecasting task with enhanced accuracy.

To avoid confusion, it is important to compare this new setting with
the settings described in the previous chapters. There, the local statistical
models ℓk(x|θ) for each agent k were taken for granted and there was no
need for a training phase. In other words, in the context of social learning,
the term “learning” referred to prediction only, while in social machine
learning we have two learning stages, which are conveniently represented by
the two concentric circles in future Figure 12.1. The outer circle corresponds
to the memory layer, where each agent builds its individual memory by
storing the likelihood2 models learned during training; and the inner circle
corresponds to the processing layer, where the agents cooperatively solve
the classification problem over the graph by using streaming observations
during the prediction phase.

The material presented in this chapter is based on [28, 29]. The study
of social learning under uncertain likelihood models was also addressed
in [87, 88], albeit from a different perspective. The approach in the latter

2Technically, as we will see from Lemma 12.1 further ahead, to construct the beliefs it would
be sufficient to learn likelihood ratios, rather than the likelihoods themselves.

12.1. Social Machine Learning Model 299

references requires the selection of suitable families of likelihood models
(e.g., Gaussian, multinomial, or Poisson) that must be amenable to analyt-
ical manipulations, such as the construction of conjugate priors. Moreover,
the chosen family must also match the underlying physics of the observed
phenomenon.

In contrast, in the SML approach we abandon the idea of relying on
analytical models and rely instead on a data-driven approach by using some
arbitrary machine learning architecture at each node. Machine learning
architectures are particularly appropriate when the designer has limited
knowledge about the statistical models that describe the data distributions
and even when these models exhibit a high degree of complexity. For
example, neural networks involving the concatenation of nonlinear functions
with millions of parameters have been proved to learn efficiently from
training data the “shape” of very sophisticated models. This property
is important for several learning applications, e.g., in the distributed
classification of images or videos where it is hard to encode the data
distribution into some classic statistical distributions. We will present
useful instances of this type of problems in Section 12.6.

12.1 Social Machine Learning Model

We now introduce the details of the SML model.
The prediction phase corresponds to the belief formation problem that

the agents want to solve. In other words, it corresponds to the same type of
problem addressed in earlier chapters in the text. We conveniently collect
in the next assumption the details and conditions for the prediction phase
that will be used in this chapter.

Assumption 12.1 (Prediction phase). The feature observed by agent k at instant
t of the prediction phase is denoted by xk,t ∈ Xk. We will work under the
following conditions:

i) During the prediction phase we are under the objective evidence model
considered in Section 5.3, i.e., there exists one true underlying hypothesis
ϑo ∈ Θ that gives rise to the collections of observations {xk,t}Kk=1 across
the K agents, which are iid over time.

ii) We consider a family of likelihood models ℓk,θ, for k = 1, 2, . . . ,K and
θ ∈ Θ. The agents do not know these models and they should learn them
during a training phase, as described next. The feature observed by agent
k at time t, xk,t, is (marginally) distributed according to the model ℓk,ϑo

that corresponds to the true underlying hypothesis ϑo.

300 Social Machine Learning

iii) The likelihoods are assumed to satisfy Assumption 5.4, so that the classifi-
cation problem to be solved in the prediction phase is globally identifiable.

iv) The likelihoods are assumed to satisfy

D(ℓk,θ||ℓk,θ′) < ∞, (12.1)

for k = 1, 2, . . . ,K and for all θ and θ′ belonging to Θ.
v) Prediction is performed cooperatively by all agents, and cooperation takes

place over a primitive graph — see Definition 4.5.

Since the likelihoods are assumed to be unknown, the agents must be
trained before the prediction phase takes place. The aim of the training
phase is to learn suitable decision models based on a set of available
examples. The next assumption introduces the notation and describes the
conditions relative to the training phase.

Assumption 12.2 (Training phase). During the training phase, each agent k has
access to Ek clues consisting of (feature, label) pairs and forming the training
set

Tk ≜
{
x̂k,n, θ̂k,n

}Ek

n=1
, with x̂k,n ∈ Xk and θ̂k,n ∈ Θ. (12.2)

The pairs from (12.2) are assumed to be iid over n and distributed as follows.
Given a label θ̂k,n = θ, the feature x̂k,n is generated according to some (unknown)
model ℓk(x|θ). We further assume that, during training, the labels θ̂k,n are
uniformly distributed:

P
[
θ̂k,n = θ

]
= 1
H

∀θ ∈ Θ. (12.3)

Training is performed individually by each agent. Furthermore, the mechanisms
governing the training and prediction phases are statistically independent.

Each agent k is trained to approximate the unknown local likelihood
model ℓk(x|θ). More precisely, as explained in the forthcoming sections,
agent k will instead learn some decision statistics, denoted by hk(x; θ), to
approximate log likelihood ratios.

Note that the data samples in the training sets are topped with the
symbol ̂. This is done to avoid confusion between features used in the
training phase and features used in the prediction phase. We also emphasize
that subscripts n and t have a different meaning.

12.1. Social Machine Learning Model 301

outer layer: memory (training from clues)
<latexit sha1_base64="1i3YyQMJUDvAfHLFXNEMBmDVtXM=">AAACEnicbVC7SgNBFJ2NrxhfUUubwSAkTdiNhWIVtLGMYB6QhDA7uZsMmccyMyssId9g46/YWChia2Xn3zh5FJp4YOBwzr3cOSeMOTPW97+9zNr6xuZWdju3s7u3f5A/PGoYlWgKdaq40q2QGOBMQt0yy6EVayAi5NAMRzdTv/kA2jAl720aQ1eQgWQRo8Q6qZcvqcSCxpykoK+wAKF0iotWEyaZHOBIK4EpT8CUevmCX/ZnwKskWJACWqDWy391+oomAqSlnBjTDvzYdsdEW0Y5THKdxEBM6IgMoO2oJAJMdzyLNMFnTunjSGn3pMUz9ffGmAhjUhG6SUHs0Cx7U/E/r53Y6LI7ZjJ2uSWdH4oSjq3C035wn2mglqeOEKqZ+yumQ6IJdTWZnCshWI68ShqVcnBertxVCtXrRR1ZdIJOUREF6AJV0S2qoTqi6BE9o1f05j15L9679zEfzXiLnWP0B97nD8OLnYM=</latexit>

inner layer: processing (social learning)
<latexit sha1_base64="yeT10OHxZhQGQfIpiC6tnqR5bZc=">AAACEnicbVC7TkJBEN2LL8QXammzkZhAQ+7FQmNFtLHERB4JEDJ3GWDD3t2b3b0mhPANNv6KjYXG2FrZ+Tcuj0LBk0xycs5MZuaEseDG+v63l1pb39jcSm9ndnb39g+yh0c1oxLNsMqUULoRgkHBJVYttwIbsUaIQoH1cHgz9esPqA1X8t6OYmxH0Je8xxlYJ3WyBS4laipghPqKxloxNIbLPs0bxTgIKhC0dEKhk835RX8GukqCBcmRBSqd7Ferq1gSobRMgDHNwI9tewzaciZwkmklBmNgQ+hj01EJEZr2ePbShJ45pUt7SruSls7U3xNjiIwZRaHrjMAOzLI3Ff/zmontXbbHXMaJRcnmi3qJoFbRaT60yzUyK0aOANPc3UrZADQw61LMuBCC5ZdXSa1UDM6LpbtSrny9iCNNTsgpyZOAXJAyuSUVUiWMPJJn8krevCfvxXv3PuatKW8xc0z+wPv8AdvunZM=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

n
bx5,n, b✓5,n

o
<latexit sha1_base64="lSBnSk7d4ukSSb5QCFC+EzG8/Xw=">AAACHXicbVBNS8NAFNz4WetX1aOXYBE8lJJoRY+lXjxWsK3QlLLZvraLm03YfVFLyB/x4l/x4kERD17Ef+O2DaLWgYVhZh5v3/iR4Bod59Oam19YXFrOreRX19Y3Ngtb200dxopBg4UiVFc+1SC4hAZyFHAVKaCBL6DlX5+N/dYNKM1DeYmjCDoBHUje54yikbqFilfjAy/xbnkPhhSTu7SbHJdkWvpWPBwC0kyepNNuoeiUnQnsWeJmpEgy1LuFd68XsjgAiUxQrduuE2EnoQo5E5DmvVhDRNk1HUDbUEkD0J1kcl1q7xulZ/dDZZ5Ee6L+nEhooPUo8E0yoDjUf72x+J/XjrF/2km4jGIEyaaL+rGwMbTHVdk9roChGBlCmeLmrzYbUkUZmkLzpgT378mzpHlYdo/KhxeVYrWW1ZEju2SPHBCXnJAqOSd10iCM3JNH8kxerAfryXq13qbROSub2SG/YH18AQF7oxk=</latexit>

h5(x; ✓)
<latexit sha1_base64="ChmfxY+dW4buq4SQ0XWPuS31TRY=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJViEeilJVRS8FL14rGA/oA1hs900SzebsDsRa+gv8eJBEa/+FG/+G7dtDtr6YODx3gwz8/yEMwW2/W0UVlbX1jeKm6Wt7Z3dsrm331ZxKgltkZjHsutjRTkTtAUMOO0mkuLI57Tjj26mfueBSsVicQ/jhLoRHgoWMIJBS55ZDr3sfFJ9vOpDSAGfeGbFrtkzWMvEyUkF5Wh65ld/EJM0ogIIx0r1HDsBN8MSGOF0UuqniiaYjPCQ9jQVOKLKzWaHT6xjrQysIJa6BFgz9fdEhiOlxpGvOyMMoVr0puJ/Xi+F4NLNmEhSoILMFwUptyC2pilYAyYpAT7WBBPJ9K0WCbHEBHRWJR2Cs/jyMmnXa85prX53Vmlc53EU0SE6QlXkoAvUQLeoiVqIoBQ9o1f0ZjwZL8a78TFvLRj5zAH6A+PzBwqQkq8=</latexit>

{x5,t}
<latexit sha1_base64="l7NLi/iKoPNrMtT8kRul9c8/1CE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgQUpSFT0WvXisYD8gCWWz3bRLN7thdyKWkJ/hxYMiXv013vw3btsctPXBwOO9GWbmhQlnGhzn2yqtrK6tb5Q3K1vbO7t71f2DjpapIrRNJJeqF2JNORO0DQw47SWK4jjktBuOb6d+95EqzaR4gElCgxgPBYsYwWAkz8+e+tnlGeR+3q/WnLozg71M3ILUUIFWv/rlDyRJYyqAcKy15zoJBBlWwAinecVPNU0wGeMh9QwVOKY6yGYn5/aJUQZ2JJUpAfZM/T2R4VjrSRyazhjDSC96U/E/z0shug4yJpIUqCDzRVHKbZD29H97wBQlwCeGYKKYudUmI6wwAZNSxYTgLr68TDqNunteb9xf1Jo3RRxldISO0Sly0RVqojvUQm1EkETP6BW9WWC9WO/Wx7y1ZBUzh+gPrM8fSEKRQA==</latexit>

Figure 12.1: Schematic illustration of the social machine learning problem. The outer layer
corresponds to the memory of the network, where each agent k uses the clues {x̂k,n, θ̂k,n} in
its training set to learn some decision statistics hk(x; θ), as described in Section 12.2. Once
training is completed, the agents enter the inner layer, i.e., the processing stage where they
perform cooperatively the social learning task by applying the learned decision statistics to the
streaming observations {xk,t} during the prediction phase.

Subscript n refers to a training observation x̂k,n that was generated
under hypothesis θ̂k,n. As a result, the observations aggregated over differ-
ent values of n correspond to different hypotheses. In particular, condition
(12.3) means that the hypotheses in the training set are drawn uniformly,
i.e., the training set is balanced so that all classes are sufficiently explored.

In comparison, subscript t is a time index that refers to a prediction
observation xk,t arising from the true hypothesis ϑo. This means that the
observations aggregated over time are generated under one and the same
hypothesis.

Figure 12.1 summarizes the description of the SML paradigm in terms of
the two “concentric” layers of memory and processing. During the training
phase, each individual learning machine k uses the clues, i.e., (feature,
label) pairs, available in its local training set to build its individual memory,
where information about the learned decision statistics is stored. Once

302 Social Machine Learning

training is performed, the learning machines enter the processing layer,
where they are fed by the streaming observations collected during the
prediction phase, and apply the learned models to these observations in a
social manner by cooperating over a network.

It is worth pointing out the distinguishing attributes of social machine
learning, as opposed to more traditional machine learning problems. In a
nutshell, the SML architecture is dispersed in both space and time and is
capable of handling heterogeneous data more directly. Regarding dispersion
in space, it results from the simultaneous presence of multiple remotely
dispersed classifiers (i.e., agents). Moreover, the features at these agents can
be of different type, size, or quality, and therefore heterogeneous. Regarding
dispersion in time, it arises from the possibility in the prediction phase
to base the classification decision on observations streaming over time,
which enables increasingly more reliable decisions as time elapses (as would
happen, for instance, in applications involving image or video sequences).

12.2 General Decision Statistics

In order to describe the social machine learning problem, it is necessary to
introduce a framework and some notation to deal with classification under
general decision statistics. For clarity of presentation, in this chapter the
set of hypotheses will be represented as follows:

Θ = {θ1, θ2, . . . , θH}. (12.4)

We start with a useful observation summarized in the next lemma, where we
show that, in general, social learning algorithms do not require knowledge
of the individual likelihood models, but only of likelihood ratios relative to
an arbitrary hypothesis.

Since in the following treatment we will deal with both the nonadaptive
and adaptive social learning updates, it is convenient to treat them in a
unified manner. To this end, recall that the adaptive update strategy in
listing (8.13) is given by, for 0 < δ < 1,

ψk,t(θ) =
µ1−δ
k,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)ℓk(xk,t|θ′)

. (12.5)

If we set δ = 0 in (12.5), we recover the classic nonadaptive Bayesian
update in listing (3.16). Accordingly, in the following we will use (12.5)

12.2. General Decision Statistics 303

with 0 < δ < 1 when we refer to the adaptive strategy, and with δ = 0 for
the nonadaptive strategy.

Lemma 12.1 (Sufficiency of log likelihood ratios). Assume that ℓk(xk,t|θ) > 0
for all θ ∈ Θ and consider the belief update (12.5) for 0 ≤ δ < 1. Then, this
update requires only knowledge of the log likelihood ratios log ℓk(xk,t|θ)

ℓk(xk,t|θH) . The
choice of θH in the denominator is customary, and the same result continues to
hold if θH is replaced by any other hypothesis belonging to Θ.

Proof. If we divide the numerator and denominator in (12.5) by the term ℓk(xk,t|θH),
we obtain

ψk,t(θ) =
µ1−δ
k,t−1(θ) ℓk(xk,t|θ)

ℓk(xk,t|θH)∑
θ′∈Θ

µ1−δ
k,t−1(θ′) ℓk(xk,t|θ′)

ℓk(xk,t|θH)

=
µ1−δ
k,t−1(θ) exp

{
log ℓk(xk,t|θ)

ℓk(xk,t|θH)

}
∑
θ′∈Θ

µ1−δ
k,t−1(θ′) exp

{
log ℓk(xk,t|θ′)

ℓk(xk,t|θH)

} , (12.6)

implying that the intermediate belief ψk,t(θ) can be computed only from knowledge of
the (log) likelihood ratios appearing in the numerator and denominator.

■

To avoid confusion, observe that in previous chapters (e.g., in (6.3)) we
used likelihood ratios taken with respect to the target hypothesis ϑ⋆. This
hypothesis is obviously unknown at the design stage, so that the social
learning algorithms cannot depend on it in their computations; we only
use it in our analytical developments to carry out performance analysis. In
contrast, in Lemma 12.1 we take likelihood ratios with respect to a reference
hypothesis that has no special meaning; it is set to θH for concreteness,
but can be any arbitrary hypothesis. As a result, these ratios can be used
by the agents during the implementation of the social learning algorithms.
Note also that, under condition iv) from Assumption 12.1, the numerator
or denominator of the likelihood ratios are nonzero with probability 1, and,
hence, the log likelihood ratios are well defined.

The next step to specify the SML procedure is to generalize the social
learning strategy by replacing the exact, unknown log likelihood ratios
with general decision statistics learned during the training phase.

304 Social Machine Learning

Accordingly, in place of (12.6), the SML algorithm will compute the
intermediate belief ψk,t(θ) through the following update step:

ψk,t(θ) =
µ1−δ
k,t−1(θ)ehk(xk,t;θ)∑

θ′∈Θ
µ1−δ
k,t−1(θ′)ehk(xk,t;θ′)

, (12.7)

where the exact log likelihood ratio log ℓk(x|θ)
ℓk(x|θH) is replaced by a general

decision statistic denoted by hk(x; θ). As we explain later, the agents
select some optimized decision statistic by learning from training data. For
convenience, we set by definition

hk(x; θH) = 0 ∀x ∈ Xk. (12.8)
Listing (12.11) describes the social learning algorithm that results from us-
ing the general decision statistics hk(x; θ) in place of the true log likelihood
ratios.

For later use, it is convenient to collect the functions hk(x; θ) for all
θ ̸= θH into a vector-valued function

hk : Xk 7→ RH−1, (12.9)
namely,

hk(x) = [hk(x; θ1), hk(x; θ2), . . . , hk(x; θH−1)]. (12.10)
For brevity, sometimes we will simply refer to hk(x) as decision statistic
or function.

Social learning with general decision statistics hk(x; θ)
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
choose δ = 0 for a nonadaptive update and 0 < δ < 1 otherwise
for t = 1, 2, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣∣

agent k observes xk,t
for θ = θ1, θ2, . . . , θH∣∣∣∣∣ ψk,t(θ) =

µ1−δ
k,t−1(θ)ehk(xk,t;θ)∑

θ′∈Θ µ
1−δ
k,t−1(θ′)ehk(xk,t;θ′)

end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣
for θ = θ1, θ2, . . . , θH∣∣∣∣ µk,t(θ) =

∏
j∈Nk

[ψj,t(θ)]ajk∑
θ′∈Θ

∏
j∈Nk

[ψj,t(θ′)]ajk

end

(cooperation)

end
end

(12.11)

12.2. General Decision Statistics 305

12.2.1 Conditions for Consistent Learning

Recall first that for the nonadaptive implementation (δ = 0), consistency
means that the belief of any agent places unit mass on the true hypothesis
ϑo, almost surely as t→∞; for the adaptive implementation (0 < δ < 1),
consistency refers to the fact that, at any agent, the steady-state belief
about the true hypothesis converges in probability to 1 as the adaptation
parameter δ approaches zero.

In order to examine under which conditions the functions hk(x; θ)
achieve consistent learning, we start with the nonadaptive setting. For
the case where the likelihood models are known, Corollary 5.1 establishes
that the belief about the true hypothesis converges to 1. To establish
this result we assumed finite KL divergences between the true model and
the likelihood models (see Assumption 5.3) and positivity of the network
average of KL divergences (see Assumption 5.4). The former condition can
be written as

Eℓk,ϑo log ℓk(xk,t|ϑ
o)

ℓk(xk,t|θ)
<∞, (12.12)

which is verified in view of Assumption 12.1, point iv).
The latter condition can be written, for all θ ̸= ϑo, as

K∑
k=1

vk Eℓk,ϑo log ℓk(xk,t|ϑ
o)

ℓk(xk,t|θ)
> 0, (12.13)

where vk is the kth entry of the Perron vector associated with the combi-
nation matrix A (the Perron vector exists because the combination matrix
is irreducible in view of Assumption 12.1, point v). Condition (12.13) is
verified since from Assumption 12.1, point iii), we have global identifiability.

We now observe that

log ℓk(xk,t|ϑ
o)

ℓk(xk,t|θ)
= log ℓk(xk,t|ϑo)

ℓk(xk,t|θH) − log ℓk(xk,t|θ)
ℓk(xk,t|θH) (12.14)

and the proof of Theorem 5.1 remains unaltered if we replace the log
likelihood ratios

log ℓk(xk,t|θ)
ℓk(xk,t|θH) (12.15)

with a general decision statistic

hk(xk,t; θ) (12.16)

for all θ ∈ Θ. Along with this replacement, we also need to rephrase
accordingly conditions (12.12) and (12.13). Specifically, it is sufficient to

306 Social Machine Learning

substitute condition (12.12) with the assumption that hk(x; θ) has finite
mean under ℓk,ϑo . Likewise, in view of (12.14), condition (12.13) becomes

K∑
k=1

vk Eℓk,ϑo [hk(xk,t;ϑo)− hk(xk,t; θ)] > 0 ∀θ ̸= ϑo. (12.17)

Applying the same argument to Corollary 9.2 and considering the adaptive
social learning strategy with general decision statistics hk(x; θ), we conclude
that under the same condition (12.17), the steady-state belief about the
true hypothesis converges to 1 as the adaptation parameter vanishes. These
results are summarized in the next lemma without proof.

Lemma 12.2 (Consistent learning under general decision statistics). Let As-
sumptions 5.1 and 12.1 be satisfied and let v be the Perron vector associated
with the combination matrix A. Consider, for k = 1, 2, . . . ,K, the vector-valued
decision statistic hk(x) defined by (12.10), along with condition (12.8). Assume
that, for all θ ∈ Θ, the mean of hk(xk,t; θ) is finite. If the following condition is
satisfied:

K∑
k=1

vk Eℓk,ϑo [hk(xk,t;ϑo) − hk(xk,t; θ)] > 0 for all pairs (ϑo, θ), θ ̸= ϑo,

(12.18)
then, whatever the true hypothesis ϑo is, consistent learning is achieved under
both nonadaptive and adaptive social learning, in the following precise sense:

i) The nonadaptive social learning algorithm (δ = 0) learns consistently in
the sense that, for each agent, the belief about ϑo converges almost surely
to 1 as t → ∞.

ii) The adaptive social learning algorithm (0 < δ < 1) learns consistently in
the sense that, for each agent, the steady-state belief about ϑo converges
in probability to 1 as δ → 0.

12.3 Training Phase

We now explain how the decision statistics hk(x; θ) necessary to implement
the social learning algorithm from listing (12.11) are selected by the agents.
Since training is performed individually by each agent, we do not need to
refer to a particular agent k in this section. Therefore, the subscript k will
be omitted for now.

In classification problems, there are two main training paradigms. In
the generative paradigm, the agent first learns a generative model, i.e., an
approximation for the likelihood ℓ(x|θ), and then constructs a posterior

12.3. Training Phase 307

distribution for θ given x from this learned model. In comparison, in the
discriminative paradigm (which we consider in our treatment), the agent
learns directly posterior probabilities. That is, the agent constructs some
posterior

q(θ|x), θ ∈ Θ = {θ1, θ2, . . . , θH}, (12.19)

to approximate the true (unknown) posterior p(θ|x).
From (12.3) we know that the labels in the training set are uniformly

distributed, which in view of Bayes’ rule implies that the true posterior
satisfies

p(θ|x) ∝ ℓ(x|θ) (12.20)

and, hence,
log p(θ|x)

p(θH |x) = log ℓ(x|θ)
ℓ(x|θH) . (12.21)

Recall now that the social learning algorithm from listing (12.11) was
constructed by replacing the log likelihood ratios with general decision
statistics. Accordingly, if we replace the true (unknown) posterior p(θ|x)
in (12.21) with its approximation q(θ|x), we obtain the following decision
statistic:

h(x; θ) ≜ log q(θ|x)
q(θH |x) . (12.22)

Using (12.22), we can map q(θ|x) and h(x; θ) into each other by using the
softmax expression

q(θ|x) = eh(x;θ)∑
θ′∈Θ

eh(x;θ′) , θ ∈ Θ. (12.23)

Note that, while q(θ|x) is constrained to the interval [0, 1], the function
h(x; θ) plays the role of a decision statistic whose domain can be the entire
real axis.

In practice, the manner in which the decision statistics are learned is as
follows. First, the designer chooses some admissible family of functions for
h(x; θ). Then, an optimal function ĥ(x; θ) is selected from this family in
accordance with suitable criteria that incorporate information contained
in the training data. For example, as we will see later, one could select
the decision statistic that maximizes the similarity between the candidate
posterior q(θ|x) and the true posterior p(θ|x). Two popular families of
decision statistics are illustrated in the next examples.

308 Social Machine Learning

Example 12.1 (Logistic multiclass regression). In logistic regression with multiple classes,
we have a feature x ∈ Rd, and the family of admissible functions h(x; θ), with θ ̸= θH , is
chosen to consist of linear regression functions parameterized by some weight vectors
wθ ∈ Rd:

h(x; θ) = wT
θx, θ ̸= θH . (12.24)

An intercept or bias can be added in the regression model by extending the feature
vector x to incorporate an additional unit entry. Using (12.24) in (12.23) allows us to
parameterize the posterior probabilities in the following manner:

q(θ|x) =

ew
T
θ
x

1 +
∑

θ′ ̸=θH

e
wT

θ′x
if θ ̸= θH ,

1
1 +

∑
θ′ ̸=θH

e
wT

θ′x
if θ = θH .

(12.25)

Example 12.2 (Multilayer perceptron). Consider a basic neural network architecture,
that is, a multilayer perceptron (MLP) deployed to solve an H-ary classification problem.
This architecture is illustrated in Figure 12.2. The input feature x ∈ Rd feeds the
cascade of L layers, followed by the last layer that applies the softmax function (12.23)
to compute the posterior probabilities from the decision statistics. Each layer l consists
of nl nodes. At each node m = 1, 2, . . . , nl of layer l = 2, 3, . . . , L, the following function
g

(l)
m (x) is implemented:

g(l)
m (x) =

nl−1∑
i=1

w
(l)
im σa

(
g

(l−1)
i (x)

)
, (12.26)

where σa is an activation function. The parameters w(l)
im correspond to the elements of a

weight matrix Wl of dimension nl−1 × nl. For layer l = 1, the function implemented at
node m is of the form

g(1)
m (x) =

d∑
i=1

w
(1)
im x(i), (12.27)

where x(i) denotes the ith entry of x. Bias variables can be incorporated at one or more
layers by adding one node at the pertinent layer and placing a dummy feature equal to
1 on this node.

The final layer, i.e., layer L, is deployed to produce the decision statistic h(x).
Accordingly, it has nL = H − 1 nodes, with

g(L)
m (x) = h(x; θm), m = 1, 2, . . . , H − 1. (12.28)

The final output of the classifier must be a posterior distribution q(θ|x) over the H
classes, and is accordingly obtained from (12.28) by applying a softmax function, namely,
by applying (12.23), with the usual convention h(x; θH) = 0. This convention motivates
the addition of the dummy input 0 in Figure 12.2.

12.3. Training Phase 309

w(2)
n1n2

<latexit sha1_base64="9N/3ab216iQ9j4fxzpvO1EC+hqA=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69BItQLyWJgp6k4MVjBfsBbQyb7aZdutmE3U2lhPwTLx4U8eo/8ea/cdvmoK0PBh7vzTAzL0gYlcq2v43S2vrG5lZ5u7Kzu7d/YB4etWWcCkxaOGax6AZIEkY5aSmqGOkmgqAoYKQTjG9nfmdChKQxf1DThHgRGnIaUoyUlnzTfPIz7jvcd/PHrOae575Ztev2HNYqcQpShQJN3/zqD2KcRoQrzJCUPcdOlJchoShmJK/0U0kShMdoSHqachQR6WXzy3PrTCsDK4yFLq6sufp7IkORlNMo0J0RUiO57M3E/7xeqsJrL6M8SRXheLEoTJmlYmsWgzWggmDFppogLKi+1cIjJBBWOqyKDsFZfnmVtN26c1F37y+rjZsijjKcwCnUwIEraMAdNKEFGCbwDK/wZmTGi/FufCxaS0Yxcwx/YHz+AI0kku8=</latexit>

.
.

.

.
.

.

.
.

.

.
.

.

<latexit sha1_base64="cEgFc6UzLZkdWoFwzJJ9DEc8J4A=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkoiRT0WvXisYD+gjWGz3bRLN5u4uymUkN/hxYMiXv0x3vw3btsctPXBwOO9GWbm+TFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3449uZ35lQqVgkHvQ0pm6Ih4IFjGBtJHf4mFad88xLhedkXrli1+w50CpxclKBHE2v/NUfRCQJqdCEY6V6jh1rN8VSM8JpVuonisaYjPGQ9gwVOKTKTedHZ+jMKAMURNKU0Giu/p5IcajUNPRNZ4j1SC17M/E/r5fo4NpNmYgTTQVZLAoSjnSEZgmgAZOUaD41BBPJzK2IjLDERJucSiYEZ/nlVdK+qDmXtfp9vdK4yeMowgmcQhUcuIIG3EETWkDgCZ7hFd6sifVivVsfi9aClc8cwx9Ynz/57JGZ</latexit>

g(1)
n1

<latexit sha1_base64="dvLtq6qNqEA8Umw46FNMo3+RBRU=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0lKUY9FLx4r2A9oY9hsN+3SzSbubgol5Hd48aCIV3+MN/+N2zYHbX0w8Hhvhpl5fsyZ0rb9ba2tb2xubRd2irt7+weHpaPjtooSSWiLRDySXR8rypmgLc00p91YUhz6nHb88e3M70yoVCwSD3oaUzfEQ8ECRrA2kjt8TCu1i8xLhVfLvFLZrtpzoFXi5KQMOZpe6as/iEgSUqEJx0r1HDvWboqlZoTTrNhPFI0xGeMh7RkqcEiVm86PztC5UQYoiKQpodFc/T2R4lCpaeibzhDrkVr2ZuJ/Xi/RwbWbMhEnmgqyWBQkHOkIzRJAAyYp0XxqCCaSmVsRGWGJiTY5FU0IzvLLq6RdqzqX1fp9vdy4yeMowCmcQQUcuIIG3EETWkDgCZ7hFd6sifVivVsfi9Y1K585gT+wPn8A/P2Rmw==</latexit>

g(2)
n2

<latexit sha1_base64="bwRtqhHPLOplxy+ygWEBCOj/uT8=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyWoh6LXjxWsB/QriWbZtvQbLIks0JZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5QSy4Adf9dtbWNza3tgs7xd29/YPD0tFx26hEU9aiSijdDYhhgkvWAg6CdWPNSBQI1gkmtzO/88S04Uo+wDRmfkRGkoecErBSb/SYVmoX2SCtZYNS2a26c+BV4uWkjHI0B6Wv/lDRJGISqCDG9Dw3Bj8lGjgVLCv2E8NiQidkxHqWShIx46fzkzN8bpUhDpW2JQHP1d8TKYmMmUaB7YwIjM2yNxP/83oJhNd+ymWcAJN0sShMBAaFZ//jIdeMgphaQqjm9lZMx0QTCjalog3BW355lbRrVe+yWr+vlxs3eRwFdIrOUAV56Ao10B1qohaiSKFn9IreHHBenHfnY9G65uQzJ+gPnM8fdAyQug==</latexit>

g
(2)
2

<latexit sha1_base64="dStnCsLiK4odTfCA0UykHnMjzig=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o0e00rtIhukXjYold2qOwdaJV5OypCjOSh99YeSJBEVhnCsdc9zY+OnWBlGOM2K/UTTGJMJHtGepQJHVPvp/OQMnVtliEKpbAmD5urviRRHWk+jwHZG2Iz1sjcT//N6iQmv/ZSJODFUkMWiMOHISDT7Hw2ZosTwqSWYKGZvRWSMFSbGplS0IXjLL6+Sdq3qXVbr9/Vy4yaPowCncAYV8OAKGnAHTWgBAQnP8ApvjnFenHfnY9G65uQzJ/AHzucPcoeQuQ==</latexit>

g
(2)
1

<latexit sha1_base64="r3LPgvz4Wl8o1n1UZDMgp4H78i4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBHqpSRSVPBS9OKxgv2ANpTNdtMs3Wzi7qRYSn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ5yeCa3Scb2tldW19YzO3ld/e2d3bLxwcNnScKsrqNBaxavlEM8ElqyNHwVqJYiTyBWv6g9up3xwypXksH3CUMC8ifckDTgkayQtLT9cdDBmSrnvWLRSdsjODvUzcjBQhQ61b+Or0YppGTCIVROu26yTojYlCTgWb5DupZgmhA9JnbUMliZj2xrOjJ/apUXp2ECtTEu2Z+ntiTCKtR5FvOiOCoV70puJ/XjvF4Mobc5mkyCSdLwpSYWNsTxOwe1wximJkCKGKm1ttGhJFKJqc8iYEd/HlZdI4L7sX5cp9pVi9yeLIwTGcQAlcuIQq3EEN6kDhEZ7hFd6sofVivVsf89YVK5s5gj+wPn8AwV2Rcw==</latexit>

h(x; ✓1)

<latexit sha1_base64="zqdjges32F54cFuX8m1enS9N9JE=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoMQm3AnQS2DNhYWEcyHJGfY2+wlS3b3jt09IRz5FTYWitj6c+z8N26SKzTxwcDjvRlm5gUxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH11G89UaVZJO/NOKa+wAPJQkawsdLDoOc9puXb00mvWHIr7gxomXgZKUGGeq/41e1HJBFUGsKx1h3PjY2fYmUY4XRS6CaaxpiM8IB2LJVYUO2ns4Mn6MQqfRRGypY0aKb+nkix0HosAtspsBnqRW8q/ud1EhNe+imTcWKoJPNFYcKRidD0e9RnihLDx5Zgopi9FZEhVpgYm1HBhuAtvrxMmmcV77xSvauWaldZHHk4gmMogwcXUIMbqEMDCAh4hld4c5Tz4rw7H/PWnJPNHMIfOJ8/0YSPxw==</latexit>

g
(L)
1

<latexit sha1_base64="Wv8oIa3xTvCLMUCwIKtxk/rAezU=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+5CUMugjYVFBPMhyRn2NnvJkt29Y3dPCEd+hY2FIrb+HDv/jZvkCk18MPB4b4aZeUHMmTau++2srK6tb2zmtvLbO7t7+4WDw6aOEkVog0Q8Uu0Aa8qZpA3DDKftWFEsAk5bweh66reeqNIskvdmHFNf4IFkISPYWOlh0Ks8pqXbs0mvUHTL7gxomXgZKUKGeq/w1e1HJBFUGsKx1h3PjY2fYmUY4XSS7yaaxpiM8IB2LJVYUO2ns4Mn6NQqfRRGypY0aKb+nkix0HosAtspsBnqRW8q/ud1EhNe+imTcWKoJPNFYcKRidD0e9RnihLDx5Zgopi9FZEhVpgYm1HehuAtvrxMmpWyd16u3lWLtassjhwcwwmUwIMLqMEN1KEBBAQ8wyu8Ocp5cd6dj3nripPNHMEfOJ8/0w6PyA==</latexit>

g
(L)
2 <latexit sha1_base64="CV1YY04z6qNiGMls3DlzAveQT18=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBahXkpSigpeil48VrAf0Iay2W6apZtN3J0US+jv8OJBEa/+GG/+G7dtDtr6YODx3gwz87xYcA22/W3l1tY3Nrfy24Wd3b39g+LhUUtHiaKsSSMRqY5HNBNcsiZwEKwTK0ZCT7C2N7qd+e0xU5pH8gEmMXNDMpTc55SAkdyg/HTdg4AB6VfP+8WSXbHnwKvEyUgJZWj0i1+9QUSTkEmggmjddewY3JQo4FSwaaGXaBYTOiJD1jVUkpBpN50fPcVnRhlgP1KmJOC5+nsiJaHWk9AznSGBQC97M/E/r5uAf+WmXMYJMEkXi/xEYIjwLAE84IpREBNDCFXc3IppQBShYHIqmBCc5ZdXSatacS4qtftaqX6TxZFHJ+gUlZGDLlEd3aEGaiKKHtEzekVv1th6sd6tj0VrzspmjtEfWJ8/wuKRdA==</latexit>

h(x; ✓2)

.
.

.

. . .

<latexit sha1_base64="a3TSRFJW4Zme6UEwCd8MLJYr3qc=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZD5rHM9IphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTEcsEV6wJHATrJIYRGQnWjsa3M7/9yIzlWj3AJGGhJEPFY04JOKltdQySPPXLFb/qz4FXSZCTCsrR6Je/egNNU8kUUEGs7QZ+AmFGDHAq2LTUSy1LCB2TIes6qohkNszm507xmVMGONbGlQI8V39PZERaO5GR65QERnbZm4n/ed0U4usw4ypJgSm6WBSnAoPGs9/xgBtGQUwcIdRwdyumI2IIBZdQyYUQLL+8Slq1anBZvbivVeo3eRxFdIJO0TkK0BWqozvUQE1E0Rg9o1f05iXei/fufSxaC14+c4z+wPv8Aah8j8k=</latexit>

softmax

x(1)
<latexit sha1_base64="2hCOGwQGl6dHz+IWrLVZgqBmgWY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFfQkBS8eK9gPaJeSTbNtaJJdkqxYlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxmfueRKs0i+WCmMfUFHkkWMoJNJj1VvfNBueLW3DnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhNe+ymTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7XrNu6jV7y8rjZs8jiKcwClUwYMraMAdNKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/ABwUjZw=</latexit>

w
(1)
11

<latexit sha1_base64="50LJPl8iGzNRc8z+TliklZjvE9Q=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9lUQU9S8OKxgv2Adi3ZNNuGZrNLklXKsn/DiwdFvPpnvPlvTNs9aOuDgcd7M8zM82PBtXHdb2dldW19Y7OwVdze2d3bLx0ctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj2+mfvuRKc0jeW8mMfNCMpQ84JQYK/We+inG2UNawWdZv1R2q+4MaJngnJQhR6Nf+uoNIpqETBoqiNZd7MbGS4kynAqWFXuJZjGhYzJkXUslCZn20tnNGTq1ygAFkbIlDZqpvydSEmo9CX3bGRIz0oveVPzP6yYmuPJSLuPEMEnni4JEIBOhaQBowBWjRkwsIVRxeyuiI6IINTamog0BL768TFq1Kj6v1u4uyvXrPI4CHMMJVADDJdThFhrQBAoxPMMrvDmJ8+K8Ox/z1hUnnzmCP3A+fwD67pD6</latexit>

w
(1)
21

<latexit sha1_base64="Irao2Z1ToH1XvHpebQkoT9a4Mc0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9lUQU9S8OKxgv2Adi3ZNNuGZrNLklXKsn/DiwdFvPpnvPlvTNs9aOuDgcd7M8zM82PBtXHdb2dldW19Y7OwVdze2d3bLx0ctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj2+mfvuRKc0jeW8mMfNCMpQ84JQYK/We+mkNZw9pBZ9l/VLZrbozoGWCc1KGHI1+6as3iGgSMmmoIFp3sRsbLyXKcCpYVuwlmsWEjsmQdS2VJGTaS2c3Z+jUKgMURMqWNGim/p5ISaj1JPRtZ0jMSC96U/E/r5uY4MpLuYwTwySdLwoSgUyEpgGgAVeMGjGxhFDF7a2Ijogi1NiYijYEvPjyMmnVqvi8Wru7KNev8zgKcAwnUAEMl1CHW2hAEyjE8Ayv8OYkzovz7nzMW1ecfOYI/sD5/AH8epD7</latexit>

w
(1)
d1

<latexit sha1_base64="GCZ3e39Zfa0UKvKxdY2/T/Bi9l8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkrSCnqSghePFewHtLFsNpt26WYTdjdKCfkbXjwo4tU/481/47bNQVsfDDzem2FmnhdzprRtf1uFtfWNza3idmlnd2//oHx41FFRIgltk4hHsudhRTkTtK2Z5rQXS4pDj9OuN7mZ+d1HKhWLxL2extQN8UiwgBGsjTR4Gqa+kz2kVec8G5Yrds2eA60SJycVyNEalr8GfkSSkApNOFaq79ixdlMsNSOcZqVBomiMyQSPaN9QgUOq3HR+c4bOjOKjIJKmhEZz9fdEikOlpqFnOkOsx2rZm4n/ef1EB1duykScaCrIYlGQcKQjNAsA+UxSovnUEEwkM7ciMsYSE21iKpkQnOWXV0mnXnMatfrdRaV5ncdRhBM4hSo4cAlNuIUWtIFADM/wCm9WYr1Y79bHorVg5TPH8AfW5w9J4ZEt</latexit>

g
(L)
H�1<latexit sha1_base64="NUcr9Yc84M+KcBGck7rFArtfhac=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUgyWpgp6k4KUHDxXsB7SxbLabdulmE3c3hRLyO7x4UMSrP8ab/8Ztm4O2Phh4vDfDzDwv4kxp2/62VlbX1jc2c1v57Z3dvf3CwWFThbEktEFCHsq2hxXlTNCGZprTdiQpDjxOW97oduq3xlQqFooHPYmoG+CBYD4jWBvJHfSS2rmTPialu7O0VyjaZXsGtEycjBQhQ71X+Or2QxIHVGjCsVIdx460m2CpGeE0zXdjRSNMRnhAO4YKHFDlJrOjU3RqlD7yQ2lKaDRTf08kOFBqEnimM8B6qBa9qfif14m1f+0mTESxpoLMF/kxRzpE0wRQn0lKNJ8Ygolk5lZEhlhiok1OeROCs/jyMmlWys5FuXJ/WazeZHHk4BhOoAQOXEEValCHBhB4gmd4hTdrbL1Y79bHvHXFymaO4A+szx+a4pFT</latexit>

h(x; ✓H�1)
<latexit sha1_base64="ug7CXb5bWF4LIKKtJkgaL3XZW14=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahHixJFRQEKXjpsYL9gDaEzXbTLt1swu5ELbE/xYsHRbz6S7z5b9y2OWjrg4HHezPMzPNjzhTY9reRW1ldW9/Ibxa2tnd298zifktFiSS0SSIeyY6PFeVM0CYw4LQTS4pDn9O2P7qZ+u17KhWLxB2MY+qGeCBYwAgGLXlmcVh+vOrBkAL20vqpMznxzJJdsWewlomTkRLK0PDMr14/IklIBRCOleo6dgxuiiUwwumk0EsUjTEZ4QHtaipwSJWbzk6fWMda6VtBJHUJsGbq74kUh0qNQ193hhiGatGbiv953QSCSzdlIk6ACjJfFCTcgsia5mD1maQE+FgTTCTTt1pkiCUmoNMq6BCcxZeXSatacc4q1dvzUu06iyOPDtERKiMHXaAaqqMGaiKCHtAzekVvxpPxYrwbH/PWnJHNHKA/MD5/AAj0kzA=</latexit>

w
(2)
2 n2<latexit sha1_base64="JLZxHEjjFlFQzqzIPyMBENFpSK0=">AAAB+XicbVBNS8NAEJ34WetX1KOXYBEqSEmioCcpePFYwX5AG8Nmu2mXbjZhd1MpIf/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMCxJGpbLtb2NldW19Y7O0Vd7e2d3bNw8OWzJOBSZNHLNYdAIkCaOcNBVVjHQSQVAUMNIORrdTvz0mQtKYP6hJQrwIDTgNKUZKS75pPvmZ2zvnvps/ZlX3LPfNil2zZ7CWiVOQChRo+OZXrx/jNCJcYYak7Dp2orwMCUUxI3m5l0qSIDxCA9LVlKOISC+bXZ5bp1rpW2EsdHFlzdTfExmKpJxEge6MkBrKRW8q/ud1UxVeexnlSaoIx/NFYcosFVvTGKw+FQQrNtEEYUH1rRYeIoGw0mGVdQjO4svLpOXWnIuae39Zqd8UcZTgGE6gCg5cQR3uoAFNwDCGZ3iFNyMzXox342PeumIUM0fwB8bnDyLxkqs=</latexit>

w
(2)
1 n2<latexit sha1_base64="Hw6Uy6gSJY04y2OU8v2/Nwz6kuY=">AAAB+XicbVBNS8NAEJ34WetX1KOXYBEqSEmioCcpePFYwX5AG8Nmu2mXbjZhd1MpIf/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMCxJGpbLtb2NldW19Y7O0Vd7e2d3bNw8OWzJOBSZNHLNYdAIkCaOcNBVVjHQSQVAUMNIORrdTvz0mQtKYP6hJQrwIDTgNKUZKS75pPvmZ0zvnvps/ZlX3LPfNil2zZ7CWiVOQChRo+OZXrx/jNCJcYYak7Dp2orwMCUUxI3m5l0qSIDxCA9LVlKOISC+bXZ5bp1rpW2EsdHFlzdTfExmKpJxEge6MkBrKRW8q/ud1UxVeexnlSaoIx/NFYcosFVvTGKw+FQQrNtEEYUH1rRYeIoGw0mGVdQjO4svLpOXWnIuae39Zqd8UcZTgGE6gCg5cQR3uoAFNwDCGZ3iFNyMzXox342PeumIUM0fwB8bnDyFhkqo=</latexit>

q(✓1|x)
<latexit sha1_base64="LCQBHlpzLsSFP9yjjmbf65Cf3ig=">AAAB9HicbVBNT8JAEN3iF+IX6tFLIzHBC2nRRE+GxItHTOQjgYZslwE2bLdld0okld/hxYPGePXHePPfuEAPCr5kkpf3ZjIzz48E1+g431ZmbX1jcyu7ndvZ3ds/yB8e1XUYKwY1FopQNX2qQXAJNeQooBkpoIEvoOEPb2d+YwxK81A+4CQCL6B9yXucUTSSNyq2cQBIO+7T43knX3BKzhz2KnFTUiApqp38V7sbsjgAiUxQrVuuE6GXUIWcCZjm2rGGiLIh7UPLUEkD0F4yP3pqnxmla/dCZUqiPVd/TyQ00HoS+KYzoDjQy95M/M9rxdi79hIuoxhBssWiXixsDO1ZAnaXK2AoJoZQpri51WYDqihDk1POhOAuv7xK6uWSe1Eq318WKjdpHFlyQk5JkbjkilTIHamSGmFkRJ7JK3mzxtaL9W59LFozVjpzTP7A+vwBL92RtA==</latexit>

q(✓2|x)
<latexit sha1_base64="NkY5RCI0uTGRg5rnLeqrh+bDgUU=">AAAB9HicbVBNT8JAEN3iF+IX6tFLIzHBC2nRRE+GxItHTOQjgYZslwE2bLdld0okld/hxYPGePXHePPfuEAPCr5kkpf3ZjIzz48E1+g431ZmbX1jcyu7ndvZ3ds/yB8e1XUYKwY1FopQNX2qQXAJNeQooBkpoIEvoOEPb2d+YwxK81A+4CQCL6B9yXucUTSSNyq2cQBIO+Wnx/NOvuCUnDnsVeKmpEBSVDv5r3Y3ZHEAEpmgWrdcJ0IvoQo5EzDNtWMNEWVD2oeWoZIGoL1kfvTUPjNK1+6FypREe67+nkhooPUk8E1nQHGgl72Z+J/XirF37SVcRjGCZItFvVjYGNqzBOwuV8BQTAyhTHFzq80GVFGGJqecCcFdfnmV1Msl96JUvr8sVG7SOLLkhJySInHJFamQO1IlNcLIiDyTV/Jmja0X6936WLRmrHTmmPyB9fkDMWSRtQ==</latexit>

q(✓H |x)
<latexit sha1_base64="VUANmmrQNXYaXWXanyYBSUGtnKc=">AAAB9HicbVDJSgNBEK1xjXGLevTSGIR4CTNR0JMEvOQYwSyQDKGn05M06VnSXRMMY77DiwdFvPox3vwbO8tBEx8UPN6roqqeF0uh0ba/rbX1jc2t7cxOdndv/+Awd3Rc11GiGK+xSEaq6VHNpQh5DQVK3owVp4EnecMb3E39xogrLaLwAccxdwPaC4UvGEUjucNCG/scaafy9HjRyeXtoj0DWSXOguRhgWon99XuRiwJeIhMUq1bjh2jm1KFgkk+ybYTzWPKBrTHW4aGNODaTWdHT8i5UbrEj5SpEMlM/T2R0kDrceCZzoBiXy97U/E/r5Wgf+OmIowT5CGbL/ITSTAi0wRIVyjOUI4NoUwJcythfaooQ5NT1oTgLL+8SuqlonNZLN1f5cu3izgycApnUAAHrqEMFahCDRgM4Rle4c0aWS/Wu/Uxb12zFjMn8AfW5w9S/pHL</latexit>

x(2)
<latexit sha1_base64="s2vv26M3BfUh+N0A9ftHJfsx+ss=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFfQkBS8eK9gPaJeSTbNtaJJdkqxYlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxmfueRKs0i+WCmMfUFHkkWMoJNJj1V6+eDcsWtuXOgVeLlpAI5moPyV38YkURQaQjHWvc8NzZ+ipVhhNNZqZ9oGmMywSPas1RiQbWfzm+doTOrDFEYKVvSoLn6eyLFQuupCGynwGasl71M/M/rJSa89lMm48RQSRaLwoQjE6HscTRkihLDp5Zgopi9FZExVpgYG0/JhuAtv7xK2vWad1Gr319WGjd5HEU4gVOoggdX0IA7aEILCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AB2ZjZ0=</latexit>

x(d)
<latexit sha1_base64="rkWu14zYkGf3bXLHrFIWI9UuDbw=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFfQkBS8eK9gPaJeSzWbb0CS7JFmxLP0LXjwo4tU/5M1/Y9ruQVsfDDzem2FmXpBwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/O/M4jVZrF8sFMEuoLPJQsYgSbmfRUDc8H5Ypbc+dAq8TLSQVyNAflr34Yk1RQaQjHWvc8NzF+hpVhhNNpqZ9qmmAyxkPas1RiQbWfzW+dojOrhCiKlS1p0Fz9PZFhofVEBLZTYDPSy95M/M/rpSa69jMmk9RQSRaLopQjE6PZ4yhkihLDJ5Zgopi9FZERVpgYG0/JhuAtv7xK2vWad1Gr319WGjd5HEU4gVOoggdX0IA7aEILCIzgGV7hzRHOi/PufCxaC04+cwx/4Hz+AGmTjc8=</latexit>

�a
<latexit sha1_base64="OV2ZX1/zb8TUprEPlLhtQe/dBwg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFYwX5AG8pku2mX7iZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsOgFqJnjEmoYbwTqJYigDwdrB+Hbmt5+Y0jyOHswkYb7EYcRDTtFYqdPTfCixj/1yxa26c5BV4uWkAjka/fJXbxDTVLLIUIFadz03MX6GynAq2LTUSzVLkI5xyLqWRiiZ9rP5vVNyZpUBCWNlKzJkrv6eyFBqPZGB7ZRoRnrZm4n/ed3UhNd+xqMkNSyii0VhKoiJyex5MuCKUSMmliBV3N5K6AgVUmMjKtkQvOWXV0mrVvUuqrX7y0r9Jo+jCCdwCufgwRXU4Q4a0AQKAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ADq6P9w==</latexit>

<latexit sha1_base64="88GpS+9f9LrxS23BOTnE9ljRuKk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9RpVkk780kpr7AQ8lCRrCx0sPwMS1759O+1y+W3Io7B1olXkZKkKHRL371BhFJBJWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LJRZU++n84Ck6s8oAhZGyJQ2aq78nUiy0nojAdgpsRnrZm4n/ed3EhFd+ymScGCrJYlGYcGQiNPseDZiixPCJJZgoZm9FZIQVJsZmVLAheMsvr5LWRcWrVap31VL9OosjDydwCmXw4BLqcAsNaAIBAc/wCm+Ocl6cd+dj0Zpzsplj+APn8weoso+s</latexit>

g
(1)
1

�a
<latexit sha1_base64="OV2ZX1/zb8TUprEPlLhtQe/dBwg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFYwX5AG8pku2mX7iZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsOgFqJnjEmoYbwTqJYigDwdrB+Hbmt5+Y0jyOHswkYb7EYcRDTtFYqdPTfCixj/1yxa26c5BV4uWkAjka/fJXbxDTVLLIUIFadz03MX6GynAq2LTUSzVLkI5xyLqWRiiZ9rP5vVNyZpUBCWNlKzJkrv6eyFBqPZGB7ZRoRnrZm4n/ed3UhNd+xqMkNSyii0VhKoiJyex5MuCKUSMmliBV3N5K6AgVUmMjKtkQvOWXV0mrVvUuqrX7y0r9Jo+jCCdwCufgwRXU4Q4a0AQKAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ADq6P9w==</latexit>

<latexit sha1_base64="shrsqYUvJhwS/BrhxJ1J4kOMZb0=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9RpVkk780kpr7AQ8lCRrCx0sPwMS1759N+tV8suRV3DrRKvIyUIEOjX/zqDSKSCCoN4VjrrufGxk+xMoxwOi30Ek1jTMZ4SLuWSiyo9tP5wVN0ZpUBCiNlSxo0V39PpFhoPRGB7RTYjPSyNxP/87qJCa/8lMk4MVSSxaIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGBD8JZfXiWtasW7qNTuaqX6dRZHHk7gFMrgwSXU4RYa0AQCAp7hFd4c5bw4787HojXnZDPH8AfO5w+qNo+t</latexit>

g
(1)
2

�a
<latexit sha1_base64="OV2ZX1/zb8TUprEPlLhtQe/dBwg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFYwX5AG8pku2mX7iZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsOgFqJnjEmoYbwTqJYigDwdrB+Hbmt5+Y0jyOHswkYb7EYcRDTtFYqdPTfCixj/1yxa26c5BV4uWkAjka/fJXbxDTVLLIUIFadz03MX6GynAq2LTUSzVLkI5xyLqWRiiZ9rP5vVNyZpUBCWNlKzJkrv6eyFBqPZGB7ZRoRnrZm4n/ed3UhNd+xqMkNSyii0VhKoiJyex5MuCKUSMmliBV3N5K6AgVUmMjKtkQvOWXV0mrVvUuqrX7y0r9Jo+jCCdwCufgwRXU4Q4a0AQKAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ADq6P9w==</latexit>

h(x; ✓H) = 0
<latexit sha1_base64="NISIvPBygv4Z6Rl4pnhfaUZF8Uk=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0Wom5JUQUGUgpsuK9gHtCFMppNm6OTBzI1YQ7/EjQtF3Pop7vwbp20W2nrgwuGce7n3Hi8RXIFlfRsrq2vrG5uFreL2zu5eydw/aKs4lZS1aCxi2fWIYoJHrAUcBOsmkpHQE6zjjW6nfueBScXj6B7GCXNCMoy4zykBLblmKag8XvUhYEDcxum15Zplq2rNgJeJnZMyytF0za/+IKZpyCKggijVs60EnIxI4FSwSbGfKpYQOiJD1tM0IiFTTjY7fIJPtDLAfix1RYBn6u+JjIRKjUNPd4YEArXoTcX/vF4K/qWT8ShJgUV0vshPBYYYT1PAAy4ZBTHWhFDJ9a2YBkQSCjqrog7BXnx5mbRrVfusWrs7L9dv8jgK6Agdowqy0QWqowZqohaiKEXP6BW9GU/Gi/FufMxbV4x85hD9gfH5A1HEkjM=</latexit>

layer 1
<latexit sha1_base64="aJeixfPx63E2JcFZtJmvblpT7Ww=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LLaCp5LUgx4LInisYFulLWWznbRLd5OwuxFC6K/w4kERr/4cb/4bt20O2vpg4PHeDDPz/FhwbVz32ymsrW9sbhW3Szu7e/sH5cOjto4SxbDFIhGpB59qFDzEluFG4EOskEpfYMefXM/8zhMqzaPw3qQx9iUdhTzgjBorPQqaoiJVrzooV9yaOwdZJV5OKpCjOSh/9YYRSySGhgmqdddzY9PPqDKcCZyWeonGmLIJHWHX0pBK1P1sfvCUnFllSIJI2QoNmau/JzIqtU6lbzslNWO97M3E/7xuYoKrfsbDODEYssWiIBHERGT2PRlyhcyI1BLKFLe3EjamijJjMyrZELzll1dJu17zLmr1u3qlcZPHUYQTOIVz8OASGnALTWgBAwnP8ApvjnJenHfnY9FacPKZY/gD5/MHguCPjw==</latexit>

layer 2
<latexit sha1_base64="9F20ST+xoaLSXZ301ihgFLEsx9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgx4LInisYFulDWWz3bRLdzdhdyOE0F/hxYMiXv053vw3btsctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsHkKsKWeStg0znD4kimIRctoNJ9czv/tElWaxvDdZQgOBR5JFjGBjpUeOM6pQ3a8PqjW34c6BVolXkBoUaA2qX/1hTFJBpSEca93z3MQEOVaGEU6nlX6qaYLJBI9oz1KJBdVBPj94is6sMkRRrGxJg+bq74kcC60zEdpOgc1YL3sz8T+vl5roKsiZTFJDJVksilKOTIxm36MhU5QYnlmCiWL2VkTGWGFibEYVG4K3/PIq6fgN76Lh3/m15k0RRxlO4BTOwYNLaMIttKANBAQ8wyu8Ocp5cd6dj0VrySlmjuEPnM8fhGWPkA==</latexit>

layer L
<latexit sha1_base64="IVkD1CGil6RMYbz1VGEC8YU23CI=">AAAB8HicbVA9SwNBEN2LXzF+RS1tFhPBKtzFQsuACBYWEcyHJEfY28wlS3b3jt094TjyK2wsFLH159j5b9wkV2jig4HHezPMzAtizrRx3W+nsLa+sblV3C7t7O7tH5QPj9o6ShSFFo14pLoB0cCZhJZhhkM3VkBEwKETTK5nfucJlGaRfDBpDL4gI8lCRomx0iMnKShcvasOyhW35s6BV4mXkwrK0RyUv/rDiCYCpKGcaN3z3Nj4GVGGUQ7TUj/REBM6ISPoWSqJAO1n84On+MwqQxxGypY0eK7+nsiI0DoVge0UxIz1sjcT//N6iQmv/IzJODEg6WJRmHBsIjz7Hg+ZAmp4agmhitlbMR0TRaixGZVsCN7yy6ukXa95F7X6fb3SuMnjKKITdIrOkYcuUQPdoiZqIYoEekav6M1Rzovz7nwsWgtOPnOM/sD5/AGr54+q</latexit>

input
<latexit sha1_base64="4JfGOw0yuAIQCfMhvQSLXsQBB38=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5LUgx4LInisYNpCG8pm+9ou3WzC7kYoob/BiwdFvPqDvPlv3KY5aOvAwjDzHvtmwkRwbVz32yltbG5t75R3K3v7B4dH1eOTto5TxdBnsYhVN6QaBZfoG24EdhOFNAoFdsLp7cLvPKHSPJaPZpZgENGx5CPOqLGSz2WSmkG15tbdHGSdeAWpQYHWoPrVH8YsjVAaJqjWPc9NTJBRZTgTOK/0U40JZVM6xp6lkkaogyw/dk4urDIko1jZJw3J1d8bGY20nkWhnYyomehVbyH+5/VSM7oJsjwRSrb8aJQKYmKySE6GXCEzYmYJZYrbWwmbUEWZsf1UbAneauR10m7Uvat646FRa94VdZThDM7hEjy4hibcQwt8YMDhGV7hzZHOi/PufCxHS06xcwp/4Hz+ABrJjuE=</latexit>

output
<latexit sha1_base64="XsJccYhguFSokG1XN+mFJGD8yNQ=">AAAB7XicbVDLSgMxFL3js9ZX1aWbYBFclZm60GVBBJcV7APaoWTStI3NJENyRyhD/8GNC0Xc+j/u/BvTdhbaeiBwOOdecs+JEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+mfmtJ26s0OoBJwkPYzpUYiAYRSc1dYpJir1S2a/4c5BVEuSkDDnqvdJXt69ZGnOFTFJrO4GfYJhRg4JJPi12U8sTysZ0yDuOKhpzG2bza6fk3Cl9MtDGPYVkrv7eyGhs7SSO3GRMcWSXvZn4n9dJcXAdZkK5RFyxxUeDVBLUZBad9IXhDOXEEcqMcLcSNqKGMnQFFV0JwXLkVdKsVoLLSvW+Wq7d5nUU4BTO4AICuIIa3EEdGsDgEZ7hFd487b14797HYnTNy3dO4A+8zx8FtY9s</latexit>

Figure 12.2: Illustration of the neural network architecture from Example 12.2.

We see that the MLP architecture is determined by the number of layers L, the
number of nodes nl for each layer l = 1, 2, . . . , L, the activation function σa, and the
number of hypotheses H. Once an architecture is chosen, the space of possible outputs
of the MLP classifier is spanned by varying the matrices {Wl} within some admissible
family. Therefore, learning the final posterior or, equivalently, the final decision statistic
h(x), amounts to learning the matrices {Wl} that minimize a suitable risk function, as
we will see in the forthcoming sections.

Note that, compared with Example 12.1, here the family of functions allows to
explore a variety of models significantly more general than a linear regression model.

The design of the classifier structure (i.e., the choice of its parameters
{wθ} in the logistic regression case or {Wl} in the neural network case) is
guided by the desire to minimize the “distance” between the true posterior
p(θ|x) and the approximate posterior q(θ|x) (which depends on the decision
statistic h(x; θ) via (12.23)). This discrepancy is usually measured by the
KL divergence ∑

θ∈Θ
p(θ|x) log p(θ|x)

q(θ|x) . (12.29)

Averaging this sum over the distribution of the feature data x, we get the
conditional KL divergence (see Definition B.6)

Dθ|x(p||q) = E log p(θ|x)
q(θ|x)

= E log 1
q(θ|x) − E log 1

p(θ|x)
= Hθ|x(p, q)−Hθ|x(p), (12.30)

310 Social Machine Learning

where we introduced the conditional cross-entropy Hθ|x(p, q) and the con-
ditional entropy Hθ|x(p) — see Definitions B.5 and B.2, respectively. We
remark that the expectations are relative to all bold quantities, i.e., they
are computed under the true joint distribution of x and θ.

A critical observation here is that the second term in (12.30), namely,
the conditional entropy Hθ|x(p), does not depend on the classifier structure;
it depends only on the true distribution, which cannot be controlled by
the designer. This implies that minimizing the conditional KL divergence
over q amounts to minimizing the conditional cross-entropy

Hθ|x(p, q) = E log 1
q(θ|x) . (12.31)

Substituting (12.23) into (12.31), the conditional cross-entropy can be
expressed as a function of the decision statistic h(x, θ) in the following
form:

Hθ|x(p, q) = E log
∑
θ′∈Θ exp

{
h(x; θ′)

}
exp

{
h(x;θ)

} . (12.32)

Since from now on we return to examining the training of the individual
agents, we restore the subscript k. We recall that the decision statistic of
agent k is denoted by hk(x, θ). Choosing as risk function the conditional
cross-entropy and exploiting (12.32), the risk function of agent k is given
by

Rk(hk) ≜ E log
∑
θ∈Θ exp

{
hk(x̂k,n; θ)

}
exp

{
hk(x̂k,n; θ̂k,n)

} , (12.33)

where the expectation in (12.33) is computed over the distribution of
the (x̂k,n, θ̂k,n) pairs belonging to the training set of agent k.3 Since this
distribution is unknown, the exact risk value is in practice replaced by the
empirical risk function

R̂k(hk) = 1
Ek

Ek∑
n=1

log
∑
θ∈Θ exp

{
hk(x̂k,n; θ)

}
exp

{
hk(x̂k,n; θ̂k,n)

} . (12.34)

That is, the expectation in (12.33) is replaced by an empirical average
computed over the Ek samples available in the training set of agent k.

3Due to the identical distribution across the clues (i.e., across n), the risk does not depend
on n, but only on the agent index k.

12.3. Training Phase 311

#o
<latexit sha1_base64="sYEIXVl5eMB1ncw2Q5LPsMPIKVo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2FroriWbzrah2WRJsoWy9G948aCIV/+MN/+N2XYP2vpg4PHeTDLzwoQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapotCmkkvVDYkGzgS0DTMcuokCEoccHsPxbe4/TkBpJsWDmSYQxGQoWMQoMVby/QlRZgSGPMlKv1pz6+4ceJV4BamhAq1+9csfSJrGIAzlROue5yYmyOyLjHKYVfxUQ0LomAyhZ6kgMeggm+88w2dWGeBIKlvC4Ln6eyIjsdbTOLSdMTEjvezl4n9eLzXRdZAxkaQGBF18FKUcG4nzAPCAKaCGTy0hVDG7K6Yjogg1NqY8BG/55FXSadS9i3rj/rLWvCniKKMTdIrOkYeuUBPdoRZqI4oS9Ixe0ZuTOi/Ou/OxaC05xcwx+gPn8wfQ3ZGI</latexit>

#o
<latexit sha1_base64="sYEIXVl5eMB1ncw2Q5LPsMPIKVo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2FroriWbzrah2WRJsoWy9G948aCIV/+MN/+N2XYP2vpg4PHeTDLzwoQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapotCmkkvVDYkGzgS0DTMcuokCEoccHsPxbe4/TkBpJsWDmSYQxGQoWMQoMVby/QlRZgSGPMlKv1pz6+4ceJV4BamhAq1+9csfSJrGIAzlROue5yYmyOyLjHKYVfxUQ0LomAyhZ6kgMeggm+88w2dWGeBIKlvC4Ln6eyIjsdbTOLSdMTEjvezl4n9eLzXRdZAxkaQGBF18FKUcG4nzAPCAKaCGTy0hVDG7K6Yjogg1NqY8BG/55FXSadS9i3rj/rLWvCniKKMTdIrOkYeuUBPdoRZqI4oS9Ixe0ZuTOi/Ou/OxaC05xcwx+gPn8wfQ3ZGI</latexit>

Figure 12.3: The optimized decision statistics learned during the training phase depend on
the particular realization of the training set.

Note that the empirical risk function depends on the training set Tk =
{x̂k,n, θ̂k,n}Ekn=1, which explains the bold notation for R̂k(hk).

Now, during training, each agent k collects a training set Tk and chooses
an admissible family for the vector-valued decision statistic hk in (12.10).
After training, an optimal decision statistic ĥk is selected from this family:

Tk
training−→ ĥk. (12.35)

Note that the learned function ĥk is written in bold since it embodies the
randomness of the training set Tk.

One way to learn a decision statistic is by minimizing the empirical risk
from (12.34):

hok = arg min
hk∈Hk

R̂k(hk), (12.36)

where Hk denotes the function family where the search is performed. We
can use the minimizer hok as the learned decision statistic, i.e., ĥk = hok.
However, this is not the only way in which a decision statistic can be
learned. In some cases it is convenient to replace the risk function R̂k(hk)
with a regularized version thereof, by adding a suitable regularization
term [155]. Another possibility useful for binary classification problems,
which is suggested in [29] and exploited in the next section, is to perform
a de-biasing operation after minimizing the risk.

312 Social Machine Learning

The dependence of the learned decision statistics on the training set
has important implications, as illustrated in Figure 12.3. This is because,
depending on the particular realization of the training sets, the learned
functions ĥk may or may not satisfy the conditions for consistent learning
from Lemma 12.2. For instance, the agents may have access to some “good”
realizations T ′k of the training sets (see the top panel of Figure 12.3),
for which the learned functions ĥ′k satisfy condition (12.18). Under this
condition, all agents learn well and place their full belief mass on the
true hypothesis ϑo. However, the agents may also observe some “bad”
realizations T ′′k (see the bottom panel of Figure 12.3), for which the learned
functions ĥ′′k would not satisfy (12.18) and the prediction performance will
not be satisfactory.

As a result, in the social machine learning framework, the occurrence
of consistent learning during the prediction phase depends on the ran-
domness of the agents’ training sets. Therefore, a proper way to assess
the learning guarantees of the system is to evaluate the probability of
consistent learning [62, 155, 167], that is, the probability that the decision
statistics produced at the end of the training phase allow all agents to
classify consistently the underlying hypothesis through the algorithm in
listing (12.11). According to Lemma 12.2, this probability of consistent
learning can be formulated as

Pc ≜ P
[
the functions

{
ĥk
}K
k=1

satisfy (12.18)
]
, (12.37)

where the probability is computed with respect to the randomness in the
training sets.

12.4 Performance Guarantees

In this section we characterize the performance of the social machine
learning strategy for binary classification problems, for which H = 2. Pre-
liminarily, we introduce a convenient representation for the risk functions in
the binary case, and four useful quantities: the target risks, the complexity
of the decision statistics, a descriptor quantifying the role of the training
set sizes, and the de-biased decision statistics.

Risk representation in the binary case. When H = 2, the vector-
valued decision statistic hk(x) becomes a scalar, namely, we have

hk(x) = hk(x; θ1) [binary case, H = 2]. (12.38)

12.4. Performance Guarantees 313

Using (12.22), the relation between the function hk(x) and the posterior
qk(θ|x) of agent k is

hk(x) = log qk(θ1|x)
1− qk(θ1|x) . (12.39)

The function hk(x) written in the form (12.39) is often referred to as the
logit statistic. For convenience, we adopt the convention

θ1 = +1, θ2 = −1, (12.40)

and from (12.39) we conclude that

qk(+1|x) = ehk(x)

ehk(x) + 1
= 1

1 + e−hk(x) , (12.41)

qk(−1|x) = 1− qk(+1|x) = 1
1 + ehk(x) . (12.42)

These two relations can be combined into the following single equation,
for θ ∈ {+1,−1}:

qk(θ|x) = 1
1 + e−θ hk(x) . (12.43)

Using (12.43) in (12.33), we find that the cross-entropy risk of agent k
reduces to

Rk(hk) = E log
(
1 + exp

{
−θ̂k,n hk(x̂k,n)

})
, (12.44)

where the expectation is computed over the distribution characterizing the
iid (feature, label) pairs (x̂k,n, θ̂k,n) in the training set. The corresponding
empirical risk (12.34) becomes

R̂k(hk) = 1
Ek

Ek∑
n=1

log
(
1 + exp

{
−θ̂k,n hk(x̂k,n)

})
. (12.45)

Target risks. As happens in classic statistical learning frameworks (e.g.,
in the Vapnik-Chervonenkis theory), the interplay between empirical and
exact risks is critical to ascertain the learning and prediction ability of the
classifiers [62, 155, 167]. In particular, one summary descriptor is the target
risk, which is defined as the infimum of the exact risk over all possible
decision statistics. However, differently from what is obtained in classic
statistical learning theory, our results will depend on the graph properties.
In particular, a major role will be played by weighted combinations of the

314 Social Machine Learning

individual risks. The combination weights turn out to be the entries of
the Perron vector associated with the combination matrix that governs
the social learning interactions between the agents. This property leads
to phenomena that are not observed in traditional machine learning. For
example, consistent classification can be achieved even if some of the agents
learn bad models, but the plurality of the agents is able to reach a satisfying
aggregate risk value. The next definition introduces the target risks of every
agent k and the aggregate target risk of the entire network.

Definition 12.1 (Target risks). Given a family Hk from which agent k can pick
its decision statistic hk, we introduce the individual target risk

Rok ≜ inf
hk∈Hk

Rk(hk) (12.46)

and the network target risk

Ronet ≜
K∑
k=1

vkRok, (12.47)

where v is the Perron vector associated with the combination matrix A.

We will assume that the network target risk Ronet is strictly smaller than
log 2. This condition is in a sense the counterpart of global identifiability
in terms of risk functions. To understand why, consider the following
uninformative posterior at agent k:

qk(θ|x) = 1
2 ∀x ∈ Xk, ∀θ ∈ Θ. (12.48)

In this case we have Rk(hk) = log 2, since the cross-entropy between any
pmf and a binary uniform pmf is equal to log 2, as can be immediately
verified from Definition B.3. A posterior in the form (12.48) would not
be useful for classification, since it corresponds to randomly assigning
labels +1 and −1 with equal probability. Situations of this type occur in
practice when the features do not carry information about the labels, or
the classifier structure is not complex enough to address the classification
task at hand. Requiring Rok < log 2 rules out the possibility that the risk
is minimized by uninformative decision statistics of this type. Requiring
the network target risk to satisfy Ronet < log 2 is a weaker assumption,
since it imposes this bound on the risk values averaged over the graph. For
example, the global condition Ronet < log 2 can be achieved even if K − 1

12.4. Performance Guarantees 315

uninformed agents have target risks equal to log 2, while one informed
agent k fulfills the inequality Rok < log 2.

Complexity of the decision statistics. The complexity of the deci-
sion structure, namely, of the family Hk of decision statistics hk, will be
seen to play an important role in the performance of the SML strategy.
This complexity will be quantified through a statistical descriptor called
Rademacher complexity, introduced in Definition G.1. Specifically, we will
denote by ρk the Rademacher complexity associated with the kth agent,
and by

ρnet ≜
K∑
k=1

vkρk (12.49)

the network Rademacher complexity obtained as an average of the individ-
ual Rademacher complexities, weighted by the Perron vector entries.

Training set sizes. Assume that all agents have at least one clue in their
training set, i.e., Ek > 0 for all k, and define the ratios

ek ≜
Emax
Ek

, (12.50)

with
Emax ≜ max

k∈{1,2,...,K}
Ek. (12.51)

The individual imbalance penalty ek quantifies the dissimilarity between
the number of training samples of agent k and the maximum number of
training samples.

De-biased decision statistics. To prove our consistency result, we will
construct the decision statistics with a two-step procedure. First, we will
minimize the empirical risk R̂k(hk) to obtain an intermediate function hok.
Then we will obtain a decision statistic h̃k through a de-biasing operation
that subtracts from hok its empirical average computed over the training
set. This operation is useful to favor consistency in the binary case, as we
explain in Appendix 12.A.

Definition 12.2 (De-biased decision statistics). The learned decision statistic is
computed as follows. First, an intermediate decision statistic hok(x) is obtained

316 Social Machine Learning

by minimizing the empirical risk:

hok = arg min
hk∈Hk

R̂k(hk). (12.52)

Then, a de-biased decision statistic h̃k(x) is computed by subtracting the empir-
ical average:

h̃k(x) = hok(x) − 1
Ek

Ek∑
n=1

hok(xk,n). (12.53)

The learned decision statistic is then chosen as ĥk(x) = h̃k(x).

12.4.1 Consistency with High Probability

The next theorem characterizes the consistency of the SML strategy in
terms of a lower bound on the probability of consistent learning (12.37).

Theorem 12.1 (SML consistency). Let Assumptions 5.1, 12.1, and 12.2 be
satisfied. For k = 1, 2, . . . ,K, consider a family Hk of bounded functions hk :
Xk 7→ R:

|hk(x)| ≤ hk,max ∀x ∈ Xk, with 0 < hk,max < ∞, (12.54)
and assume that each agent k employs as learned decision statistic ĥk(x) the
de-biased4 decision statistic h̃k(x) introduced in Definition 12.2. Assume that
the network target risk from (12.47) fulfills the inequality Ronet < log 2 and that
the network Rademacher complexity from (12.49) is bounded as

ρnet < E (Ronet), (12.55)

where the function E (Ronet) is computed exactly in Appendix 12.C (see (12.146))
and can be approximated as (see Figure 12.10)

E (Ronet) ≈ 0.1406
(

1 − Ronet
log 2

)
. (12.56)

Then, we have the following lower bound for the probability of consistent learning
defined in (12.37):

Pc ≥ 1 − 2 exp

{
−2Emax

(
E (Ronet) − ρnet

hnet

)2
}
, (12.57)

where the parameter

hnet ≜
K∑
k=1

vk ek hk,max (12.58)

4Note that the de-biased function in (12.53) satisfies the looser constraint
∣∣h̃k(x)

∣∣ ≤ 2hk,max

and, hence, the final family to which the learned functions h̃k(x) belong is different from the
original family Hk over which the risk was minimized.

12.4. Performance Guarantees 317

globally accounts for the graph structure (through the Perron vector entries
{vk}), the imbalance penalties {ek} from (12.50), and the function families Hk

of the individual agents (through the bounding constants {hk,max}).

Proof. See Appendix 12.C.
■

Theorem 12.1 reveals that, if the network Rademacher complexity
ρnet is smaller than E (Ronet), then the probability of consistent learning
converges to 1 exponentially with the number of training samples, i.e.,
as Emax →∞ (with the proportion between Emax and Ek kept fixed, i.e.,
ek kept constant). The exponent ruling this convergence (actually, the
convergence of the bound in (12.57)) is

2
(

E (Ronet)− ρnet
hnet

)2
. (12.59)

Larger values of this exponent are preferable, since they imply that the
probability of consistent learning converges faster.

We see from (12.59) that three main factors determine how fast the
probability of consistent learning approaches 1, namely, E (Ronet), ρnet, and
hnet. Let us examine their meaning separately.

Term E (Ronet) is a function of the network target risk Ronet — see the
definition in (12.146). A good approximation for this function is given by
(12.56), which reveals that E (Ronet) quantifies the difference between Ronet
and the value log 2. As already discussed, the value log 2 corresponds to a
“blind” decision system that classifies the observed features by randomly
assigning labels +1 and −1 with equal probability. The closer the net-
work target risk is to log 2, the smaller the value of E (Ronet) will be. In
other words, smaller values of E (Ronet) are symptomatic of more difficult
classification problems. In fact, the error exponent in (12.59) decreases
when E (Ronet) decreases. More precisely, what matters is the difference
between E (Ronet) and the network Rademacher complexity ρnet. Therefore,
Eq. (12.59) reveals a remarkable interplay between the inherent difficulty
of the classification problem, quantified inversely by E (Ronet), and the com-
plexity of the decision statistics, quantified by ρnet. Ideally, we would like
to have simple classification problems (i.e., high values of E (Ronet)) and
low classifier complexity (i.e., low values of ρnet). Notably, both indices are
network indices, that is, they embody the graph structure.

318 Social Machine Learning

The third parameter appearing in (12.59) is the constant hnet defined
by (12.58), which consists of a weighted average (with weights given by
the Perron vector entries vk) of the product hk,max ek. Constant hk,max is a
bound on the admissible values for the decision statistic of agent k.5 Thus,
this constant reflects the “breadth” of the decision-statistic family employed
by agent k. Constant ek quantifies the relative level of “ignorance” of agent
k, in the sense that agents with a small number of training examples Ek
with respect to the maximum number Emax exhibit large values of ek.
Accordingly, the product hk,max ek is another measure of the complexity of
the classification problem, in terms of the family of decision statistics and
the training set sizes. The role of vk, as usual, is to obtain a network index
where the contribution of the individual agents is weighted according to
their centrality in the network. As a result, the global constant hnet is an
average measure of complexity across the network. Accordingly, we see
from (12.59) that large values of hnet reduce the exponent, i.e., they slow
down the convergence of the probability of consistent learning to 1.

12.5 Sample Complexity

It is useful to evaluate the sample complexity of the SML strategy, namely,
how many training examples are sufficient to achieve a desired value for
the probability of consistent learning. To this end, we can exploit (12.57).
However, it is necessary to account for the fact that the quantity ρnet itself
depends on the number of training examples.

For typical families of decision functions, the Rademacher complexity
ρk is upper bounded by Ck/

√
Ek for some positive constant Ck [137]. One

popular structure satisfying this property is a norm-constrained MLP, as
we show in Lemma G.2.

Now, assuming that ρk ≤ Ck/
√
Ek, the network Rademacher complexity

from (12.49) will be bounded as

ρnet ≤
K∑
k=1

vk
Ck√
Ek

= 1√
Emax

K∑
k=1

vkCk
√
ek︸ ︷︷ ︸

≜Cnet

, (12.60)

5The assumption of bounded decision statistics is met in several relevant cases. For instance,
consider the logistic regression formulation from Example 12.1. In many practical applications,
the values that the feature x can take are bounded. In this case, as seen from (12.24), the
decision statistic is bounded if the weight vectors wθ are bounded. Similarly, with bounded
features, the multilayer perceptron from Example 12.2 meets the condition |hk(x)| ≤ hk,max for
norm-constrained neural networks [137], where the weight matrices Wl are bounded.

12.5. Sample Complexity 319

where in the last step we used (12.50). The global constant Cnet mixes
the individual complexity constants Ck, the Perron vector entries vk, and
the imbalance penalties ek. Assuming that (Cnet/

√
Emax) < E (Ronet) to

guarantee condition (12.55), and substituting (12.60) into (12.57), we
obtain the bound

Pc ≥ 1− 2 exp
{
−2Emax

h2
net

(
E (Ronet)−

Cnet√
Emax

)2}
. (12.61)

which can be used to carry out a sample-complexity analysis of the SML
strategy, as stated in the forthcoming theorem.

Theorem 12.2 (SML sample complexity). Let the same assumptions used in
Theorem 12.1 be satisfied. Assume, for k = 1, 2, . . . ,K, that ρk ≤ Ck/

√
Ek for

some constants Ck > 0 and let

Cnet ≜
K∑
k=1

vkCk
√
ek. (12.62)

If the maximum number of training samples across the agents satisfies the
condition

Emax ≥
(

Cnet
E (Ronet)

)2
(

1 + hnet
Cnet

√
1
2 log

(2
ε

))2

, (12.63)

then consistent learning takes place with probability at least 1 − ε.

Proof. See Appendix 12.D.
■

We now examine how the relevant system parameters appearing in
(12.63) influence the sample complexity.

Target performance. The desired probability of consistent learning, 1−ε,
influences the bound in (12.63) through the logarithmic term log(2/ε) and,
hence, has a mild effect on the number of training samples.

Imbalance penalties. The imbalance penalty ek appearing in the global
parameter hnet in (12.58) quantifies how far the individual agent k is from
the maximum size Emax. Larger values for ek imply that agent k has less
training data, and thus require that Emax be increased to compensate for
this deficiency.

320 Social Machine Learning

Decision statistic bounds. The term hk,max corresponds to the bound on
the output of the decision statistic hk(x) and, hence, other conditions being
equal, increasing hk,max corresponds to increasing the possible functions to
choose from. Accordingly, from (12.63) we see that the larger hk,max is, the
larger the number of training samples must be to guarantee a probability
of consistent learning Pc ≥ 1− ε.

Term Cnet. The constant Cnet quantifies the average complexity of the
decision statistics across the network. The number of training samples
grows quadratically with Cnet.

Term E (Ronet). As explained before, the term E (Ronet) quantifies (inversely)
the difficulty of the classification problem. Smaller values of E (Ronet) are
representative of more difficult classification problems, and accordingly
necessitate the use of more training samples.

Role of the network. Given the networked nature of our inference
problem, it is expected that the network structure plays a significant role
in the results of Theorems 12.1 and 12.2. The network influence is captured
through the terms Ronet, ρnet, and hnet appearing in (12.57). All these terms
contain the Perron vector entries vk.

The Perron vector entries reveal the influence of each agent. For example,
we see from (12.47) that an agent k with higher weight vk has more power
to steer the value of the network target risk Ronet toward its own private
target risk Rok. We recall that vk is an index of the centrality of agent k —
see the discussion following Theorem 4.4. In the previous chapters, we have
already observed how the agent centrality plays a role in social learning.
For example, in traditional social learning (Chapter 5) we encountered the
network average of KL divergences Dnet(θ) defined in Table 6.1. Likewise, to
characterize the performance of both traditional (Chapter 6) and adaptive
(Chapter 9) strategies, we worked with statistical descriptors (e.g., the
covariance matrix or the logarithmic moment generating function) of the
network average of log likelihood ratios λnet,t(θ) — see again Table 6.1.
Notably, the dependence on the graph structure is generally not found
in the literature on statistical bounds for ensembles of classifiers [30, 50],
while we see that in social machine learning the graph (in particular, the
Perron vector) matters.

12.6. Illustrative Examples 321

12.6 Illustrative Examples

In this section we illustrate the application of social machine learning
to practical classification problems, and compare it against a traditional
learning approach employed to aggregate multiple classifiers.

Example 12.3 (MNIST dataset). We consider the MNIST dataset [108], which contains
several realizations of images representing digits 0, 1, . . . , 9. We focus on the first two
digits, and build a binary classification problem aimed at distinguishing digits 0 and
1. In terms of our notation, we have a hypothesis θ ∈ Θ = {+1,−1}, where we map
digit 1 into hypothesis θ = +1 and digit 0 into θ = −1. We employ a network of K = 9
spatially distributed agents, where each agent observes only a part of the image (see
Figure 12.4). These agents wish to collaborate and discover which digit corresponds to
the image they are collectively observing.

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="pukKC4/a/4Vumdv9C1rDgxpFPro=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFS/bJXLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lW5Uq+UqrdZHHk4gVM4Bw+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYObjMI=</latexit>

5

<latexit sha1_base64="wMKM+H6UcEZchZAcKMuU2sfTmmM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNSr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFUpe1flaqNaqt1mceThDM7hEjy4hhrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB3ynjLc=</latexit>

2
<latexit sha1_base64="Rz9IAhHyBFfLSzdjbOKrKDA9oBM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqUPEU8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9q7KlXqlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD34rjLg=</latexit>

3

<latexit sha1_base64="Hsdtdy2wmvV1Saj1LpUxTuu0TXs=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIpKp4KXjxWsB/QhrLZTtq1m03Y3Qgl9Bd48aB49Td589+4bXPQ1gcDj/dmmJkXpoJr43nfTmljc2t7p7zr7u0fHB5V3OO2TjLFsMUSkahuSDUKLrFluBHYTRXSOBTYCSd3c7/zjErzRD6aaYpBTEeSR5xRY6WH+qBS9WreAmSd+AWpQoHmoPLVHyYsi1EaJqjWPd9LTZBTZTgTOHP7mcaUsgkdYc9SSWPUQb44dEbOrTIkUaJsSUMW6u+JnMZaT+PQdsbUjPWqNxf/83qZiW6CnMs0MyjZclGUCWISMv+aDLlCZsTUEsoUt7cSNqaKMmOzcW0I/urL66R9WfOvavVq47YIowyncAYX4MM1NOAemtACBggv8AbvzpPz6nwsG0tOMXECf+B8/gAVRYuP</latexit>

4
<latexit sha1_base64="7CY0nDzFXvaFv4p49LwDwWvoN3w=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9qrlSqNSqt1mceThDM7hEjy4hhrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4K3jLs=</latexit>

6

<latexit sha1_base64="myJQwAx8e8hCijeBNuIUItEJmSI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVLvN4sjDGZzDJXhQhRrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4Q7jLw=</latexit>

7
<latexit sha1_base64="IuUcNcOOCTERBIMnTY/iXRzGWEo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK0OAp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCqj/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10roqe9flSqNSqt1mceThDM7hEjy4gRrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4W/jL0=</latexit>

8
<latexit sha1_base64="P20EQ2hW1drGg7DDnB8pnlQ55no=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK8HUKePGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhtT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe5flSr1Sqt5mceThBE7hHDy4gircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB4dDjL4=</latexit>

9

<latexit sha1_base64="pQgSibTlgdo3/y1aZLJB0rminqs=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KkkRFU8FLx4r2A9oQ9lsN+3SzSbuTgol9Hd48aCIV3+MN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFx08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupv5rTHXRsTqEScJ9yM6UCIUjKKV/KwbhKQvBgKJO+2Vym7FnYOsEi8nZchR75W+uv2YpRFXyCQ1puO5CfoZ1SiY5NNiNzU8oWxEB7xjqaIRN342P3pKzq3SJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrME7LuaM5QTSyjTwt5K2JBqytDmVLQheMsvr5JmteJdVS4fquXabR5HAU7hDC7Ag2uowT3UoQEMnuAZXuHNGTsvzrvzsWhdc/KZE/gD5/MHBrWRmA==</latexit>

digit 0

<latexit sha1_base64="Hsdtdy2wmvV1Saj1LpUxTuu0TXs=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIpKp4KXjxWsB/QhrLZTtq1m03Y3Qgl9Bd48aB49Td589+4bXPQ1gcDj/dmmJkXpoJr43nfTmljc2t7p7zr7u0fHB5V3OO2TjLFsMUSkahuSDUKLrFluBHYTRXSOBTYCSd3c7/zjErzRD6aaYpBTEeSR5xRY6WH+qBS9WreAmSd+AWpQoHmoPLVHyYsi1EaJqjWPd9LTZBTZTgTOHP7mcaUsgkdYc9SSWPUQb44dEbOrTIkUaJsSUMW6u+JnMZaT+PQdsbUjPWqNxf/83qZiW6CnMs0MyjZclGUCWISMv+aDLlCZsTUEsoUt7cSNqaKMmOzcW0I/urL66R9WfOvavVq47YIowyncAYX4MM1NOAemtACBggv8AbvzpPz6nwsG0tOMXECf+B8/gAVRYuP</latexit>

4

<latexit sha1_base64="kE1dUGqeUPpMWUUn/UE88+Pvrds=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KkkRFU8FLx4r2A9oQ9lsN+3SzSbuTgol9Hd48aCIV3+MN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFx08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupv5rTHXRsTqEScJ9yM6UCIUjKKV/KwbhKQvBgKJN+2Vym7FnYOsEi8nZchR75W+uv2YpRFXyCQ1puO5CfoZ1SiY5NNiNzU8oWxEB7xjqaIRN342P3pKzq3SJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrME7LuaM5QTSyjTwt5K2JBqytDmVLQheMsvr5JmteJdVS4fquXabR5HAU7hDC7Ag2uowT3UoQEMnuAZXuHNGTsvzrvzsWhdc/KZE/gD5/MHCDqRmQ==</latexit>

digit 1

<latexit sha1_base64="Rz9IAhHyBFfLSzdjbOKrKDA9oBM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqUPEU8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9q7KlXqlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD34rjLg=</latexit>

3
<latexit sha1_base64="wMKM+H6UcEZchZAcKMuU2sfTmmM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNSr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFUpe1flaqNaqt1mceThDM7hEjy4hhrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB3ynjLc=</latexit>

2

<latexit sha1_base64="pukKC4/a/4Vumdv9C1rDgxpFPro=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFS/bJXLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lW5Uq+UqrdZHHk4gVM4Bw+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYObjMI=</latexit>

5

<latexit sha1_base64="P20EQ2hW1drGg7DDnB8pnlQ55no=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK8HUKePGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhtT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe5flSr1Sqt5mceThBE7hHDy4gircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB4dDjL4=</latexit>

9

<latexit sha1_base64="7CY0nDzFXvaFv4p49LwDwWvoN3w=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9qrlSqNSqt1mceThDM7hEjy4hhrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4K3jLs=</latexit>

6

<latexit sha1_base64="IuUcNcOOCTERBIMnTY/iXRzGWEo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK0OAp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCqj/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10roqe9flSqNSqt1mceThDM7hEjy4gRrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4W/jL0=</latexit>

8
<latexit sha1_base64="myJQwAx8e8hCijeBNuIUItEJmSI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOIp4MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv77SdUmsfywUwS9CM6lDzkjBorNar9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVLvN4sjDGZzDJXhQhRrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4Q7jLw=</latexit>

7

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

Figure 12.4: Each fraction of the image is observed by a different agent. Agents 1 and 9,
highlighted in blue and purple, respectively, correspond to the least informed agents.

As we can see in Figure 12.4, different agents will observe data with different levels
of informativeness, e.g., agents 1 and 9 will dispose of little or no information, within
their attributed image patch, to distinguish digits 0 and 1. To overcome this lack of
local information, the agents are allowed to cooperate by interacting over a network.
Specifically, they are linked according to the strong undirected graph in Figure 12.5
(all nodes have a self-loop, not shown in the figure), and equipped with a combination
matrix generated using the uniform-averaging rule — see Table 4.1.

In the training phase, each agent is trained independently over a balanced set of 200
labeled images, using an MLP (see Example 12.2) with activation function σa = tanh
and L = 2 layers. The first layer has n1 = 64 nodes. The second layer has n2 = 1 node,
conforming with the binary classification problem.

To minimize the empirical risk from (12.45), we use a mini-batch stochastic gradient
algorithm over multiple epochs (also called runs) [155]. Specifically, we consider a batch
size equal to 10, a learning rate equal to 0.001, and 30 epochs. At each iteration of the
algorithm, the samples belonging to the batch are randomly selected.

322 Social Machine Learning

4

5

6

7
8

1

2

3

9

Figure 12.5: Network topology used in Example 12.3. The graph is undirected and all agents
are assumed to have a self-loop (not shown in the figure).

The evolution over the training epochs of the empirical risk for each agent is shown
in the left panel of Figure 12.6. We repeated the process over 5 training sessions. Each
risk curve shown in the figure is obtained as an average over the training sessions. As
expected, we see that classifiers 1 and 9 exhibit the least reliable training performance;
their empirical risks are indeed higher than the risks of the other agents, and also exhibit
a higher variability across the epochs. This could be problematic if these agents were to
solve the classification problem on their own, but we will see that their individual poor
classification performance is mitigated when collaborating within the network.

At the end of the training phase, each agent k is equipped with a learned decision
statistic, in the de-biased form — see (12.53). Then, in the prediction phase, the agents
observe unlabeled images over time. The nature of the images changes every 1000 time
instants. Specifically, the agents observe images representing digit 0 for t ∈ [1, 1000], and
digit 1 for t ∈ [1001, 2000]. Then, from instant t = 2001 the images switch back to digits
0, and so on.

We implement the social learning strategy (12.11) in its adaptive version, i.e., with
nonzero adaptation parameter δ. Specifically, we set δ = 0.01. In the right panel
of Figure 12.6, we display the evolution over time of the log belief ratio of agent 9,
log µ9,t(+1)

µ9,t(−1) . According to the MAP criterion, each agent k chooses the hypothesis that
maximizes its belief, which is tantamount to saying that agent k opts for θ = +1 (i.e.,
digit 1) or θ = −1 (i.e., digit 0) depending on whether the log belief ratio stays above or
below 0 (the dashed line in the right panel of Figure 12.6). The instantaneous decision
of each agent k at time t can be represented as

θSML
k,t = sign

(
log µk,t(+1)

µk,t(−1)

)
. (12.64)

We see how, despite the limited information available during training, agent 1 is able to
clearly distinguish digits 0 and 1.

Example 12.4 (Comparison with AdaBoost). We compare the performance of the
social machine learning strategy (12.11) with a classic strategy to aggregate multiple

12.6. Illustrative Examples 323

5 10 15 20 25 30

epoch

0.3

0.4

0.5

0.6

av
er

ag
e

em
p

ir
ic

al
ri

sk

training

agent 1

agent 9

0 1000 2000 3000 4000 5000

t

−500

−250

0

250

500

lo
g
µ

9
,t
(+

1)

µ
9
,t
(−

1)

digit 0

digit 1

prediction

Figure 12.6: Training and prediction phases of the SML strategy, under the setting described
in Example 12.3. (Left) Evolution over the training epochs of the empirical risk of all agents.
Each curve is obtained by averaging the risk over 5 training sessions. The risks corresponding
to agents 1 and 9 are highlighted in blue and purple, respectively. (Right) Evolution during
the prediction phase of the log belief ratio log µk,t(+1)

µk,t(−1) , for agent k = 9, obtained by running
the SML strategy (12.11) in its adaptive version, with adaptation parameter δ = 0.01. The
observed images represent digit 0 within interval [1, 1000], then the digit changes every 1000
time instants.

classifiers known as AdaBoost [73, 155]. In the AdaBoost strategy, the agents are trained
sequentially in a series. The training of one agent is performed by taking into account the
performance estimated for the previous agents in the series. This is done to motivate the
current agent to pay particular attention to the samples for which the previous agents
perform worse. After training, each agent k is endowed with a decision statistic hboost

k (x)
and a weight wboost

k representing the accuracy of its classification performance over the
training set. Then, during the prediction phase, each agent makes an individual decision
with the learned decision statistic. These local decisions, scaled by the aforementioned
weights, are then aggregated in a centralized manner — see [73, 155] for details on the
implementation of the AdaBoost strategy. In order to perform a fair comparison with
the SML strategy considered in the previous example, we apply the AdaBoost strategy
by considering that the decision structures used by the agents are MLPs with the same
architecture described before.

During the prediction phase, each agent k at time t observes the unlabeled data xk,t
and computes a decision

θboost
k,t = sign

(
hboost
k (xk,t)

)
. (12.65)

The collective decision at time t, denoted by θboost
t , is performed by using the boosting

weights determined during training, according to the fusion rule

θboost
t = sign

(
K∑
k=1

wboost
k θboost

k,t

)
. (12.66)

Note that computing θboost
t requires centralized information, i.e., knowledge of the

instantaneous decisions of all agents. We compare this centralized boosting decision with
the decision of agent 1 from the SML strategy, whose log belief ratio was seen in the
right panel of Figure 12.6.

In Figure 12.7 we compare the SML and Adaboost strategies, under the same
setting used in Example 12.3. We see that the SML strategy makes wrong decisions only
during short periods after state transitions occur, whereas the AdaBoost strategy makes

324 Social Machine Learning

0 1000 2000 3000 4000 5000

observed
image

digit 0 digit 1 digit 0 digit 1 digit 0

0 1000 2000 3000 4000 5000

−1

+1

decision
θSML

1,t

0 1000 2000 3000 4000 5000

t

−1

+1

decision
θboost
t

Figure 12.7: Comparison between SML and Adaboost as described in Example 12.4. (Top)
Sequence of digits occurring during the prediction phase. The observed images represent digit 0
within interval [1,1000], then the digit changes every 1000 time instants. (Center) Decision of
agent 1 when using the adaptive SML strategy. (Bottom) AdaBoost decision.

mistakes throughout the prediction phase. The improvement achieved with the SML
strategy is examined and explained in the next example.

Example 12.5 (SML performance). In this example we examine the SML performance
under two prediction scenarios: a stationary scenario over 20 time instants, where the
true underlying digit is 0 throughout the prediction horizon; and a nonstationary scenario
over 40 time instants, where the true underlying digit is initially 0 and switches to digit
1 at instant t = 20. For the stationary setting we implement the SML strategy in the
nonadaptive version that corresponds to the algorithm in listing (12.11) with δ = 0. For
the nonstationary setting we consider instead the adaptive version that corresponds to
using 0 < δ < 1 in the same listing (in this example, we set δ = 0.1). In both cases we
also implement the AdaBoost strategy. For all the considered strategies, the preliminary
training phase is implemented as described in the previous examples, with the following
two differences: For each agent, the number of labeled images in its training set is 40,
and the number of first-layer nodes in its MLP is n1 = 10.

In Figure 12.8 we display the error probabilities, estimated from 1000 Monte Carlo
runs, achieved by the AdaBoost strategy and by agent 1 under the SML strategies.
Specifically, the left panel refers to the stationary setting, where we see that the SML
strategy in the nonadaptive version quickly surpasses AdaBoost and attains a significantly
improved accuracy over time. The right panel focuses on the nonstationary setting,
where we see that the SML strategy in the adaptive version successfully adapts its
predictive behavior in view of the change in the underlying class of digits, surpassing
the performance of the AdaBoost strategy after a relatively short adaptation time.

The improved performance attained by the SML strategy can be explained as follows.

12.6. Illustrative Examples 325

5 10 15

time

10−2

10−1

100

er
ro

r
p

ro
b

ab
il
it

y

stationary

SML – nonadaptive AdaBoost

10 20 30 40

time

10−2

10−1

100

er
ro

r
p

ro
b

ab
il
it

y

nonstationary

SML – adaptive AdaBoost

Figure 12.8: Evolution over time of the error probabilities, estimated from 1000 Monte Carlo
runs, for SML (agent 1) and AdaBoost (centralized decision), as described in Example 12.5.
(Left) Nonadaptive case: SML algorithm (12.11) run with δ = 0. Here the true state corresponds
to digit 0. (Right) Adaptive case: SML algorithm (12.11) run with adaptation parameter δ = 0.1.
Here, the true state corresponds to digit 0 until instant t = 19, and to digit 1 afterwards.

As was repeatedly observed, social learning strategies introduce a combination over time,
where streaming data are continually incorporated into the beliefs; and a combination
over the network, where each agent aggregates locally the information received from
its neighbors. In contrast, AdaBoost does not perform any kind of combination over
time (since it does not aggregate information sequentially) or over the network (since
the solution is centralized) and therefore there is no adaptation time associated with
its behavior. Note that the fact that AdaBoost makes instantaneous decisions without
aggregating information over time results in an error probability that does not change
over time if the underlying hypothesis does not change. For this reason, in the stationary
case represented in the left panel of Figure 12.8, the performance is constant over time,
whereas in the nonstationary case represented in the right panel, the error probability
drifts when the true hypothesis changes, i.e., at time 20. Remarkably, in both the
stationary and nonstationary scenarios, AdaBoost is significantly outperformed by the
SML strategy as time elapses. This is because the SML strategy benefits from integrating
information over time. Moreover, we observe that a small delay is present in the SML
strategy, at the beginning of the learning process or right after a change. The delay
at t = 0 is related to belief aggregation over space, i.e., to the time necessary for the
agents to converge to a coordinated solution. The delay after the hypothesis change is
the adaptation time characterized by Corollary 10.1. While also including a transient
related to the network, the adaptation time is mainly determined by the number of
iterations necessary to delete the memory accumulated from the observations before the
change.

As a concluding example, we now show that the SML strategy can
also be employed successfully to solve classification problems with more
than two hypotheses. Referring back to the general classification setting
of Section 12.3, in the H-ary case with H > 2 we assume that the agents
run the social learning algorithm from listing (12.11), with the (H − 1)-
dimensional decision statistic ĥk(x) estimated during the training phase

326 Social Machine Learning

by minimizing the empirical risk from (12.34) over a given function family
Hk, namely,

ĥk = hok = arg min
hk∈Hk

R̂k(hk). (12.67)

Example 12.6 (Multiclass MNIST). Let us consider a similar setup to the one presented
in Example 12.3, except that now we take into account all classes contained in the
MNIST dataset, that is, H = 10 classes representing the digits 0, 1, 2, . . . , 9. Specifically,
class θ = 1 corresponds to “digit 0,” class θ = 2 corresponds to “digit 1,” and so on. We
consider the same network shown in Figure 12.5, where each agent sees a patch of the
handwritten image according to Figure 12.4.

In the training phase, each agent is trained independently over a balanced set of 1000
labeled images (100 images per digit), using an MLP (see Example 12.2) with activation
function σa = tanh and L = 2 layers. The first layer has n1 = 64 nodes. The second
layer has n2 = 9 nodes, conforming with a classification problem with 10 hypotheses.

Minimization of the empirical risk from (12.34) is performed with a mini-batch
stochastic gradient algorithm with multiple epochs, and with randomly selected batch
samples [155]. Specifically, the batch size is equal to 10, the learning rate is equal to
0.001, and the algorithm is run over 30 epochs. The top panel of Figure 12.9 shows the
evolution over the training epochs of the empirical training risk of each agent, averaged
over 5 training sessions.

In the prediction phase, the agents observe unlabeled images over time. The nature
of the images changes every 100 samples. The agents observe images representing digit
0 for t ∈ [1, 100], digit 1 for t ∈ [101, 200], and so on. We implement the SML strategy
based on the social learning algorithm from listing (12.11), in its adaptive version with
the choice δ = 0.1. The bottom panel of Figure 12.9 displays the time evolution of the
beliefs of agent 1. We see that the algorithm is able to learn well under the considered
nonstationary scenario, exhibiting remarkable adaptation properties. In fact, all the
belief mass is placed on the true hypothesis that changes dynamically over time.

12.6. Illustrative Examples 327

0 100 200 300 400 500 600 700 800 900 1000

observed
image

digit 0 digit 1 digit 2 digit 3 digit 4 digit 5 digit 6 digit 7 digit 8 digit 9

prediction

0 100 200 300 400 500 600 700 800 900 1000

t

0.00

0.25

0.50

0.75

1.00

µ
1
,t
(θ

)

θ = 1

θ = 2

θ = 3

θ = 4

θ = 5

θ = 6

θ = 7

θ = 8

θ = 9

θ = 10

5 10 15 20 25 30

epoch

1.8

2.0

2.2

2.4

av
er

ag
e

em
p

ir
ic

al
ri

sk

training

agent 1

agent 9

Figure 12.9: Adaptive social machine learning strategy (with adaptation parameter δ = 0.1)
operating under the setting in Example 12.6, with digits 0, 1, . . . , 9. (Top) Evolution over the
training epochs of the empirical risk for all agents, averaged over 5 training sessions. The risks
corresponding to agents 1 and 9, the least informed agents, are highlighted in blue and purple,
respectively. (Bottom) Belief evolution over time for agent 1. The bar displayed at the top shows
the evolution of the true state, which changes every 100 time instants. Specifically, the agents
observe images representing digit 0 (corresponding to hypothesis θ = 1) for t ∈ [1, 100], then
digit 1 (corresponding to hypothesis θ = 2) for t ∈ [101, 200], and so on.

328 Social Machine Learning

12.A Appendix: Notation for Binary Decision Problems

The appendices at the end of this chapter are devoted to the proof of
Theorems 12.1 and 12.2. We start by focusing on Theorem 12.1, where
we claim the consistency of the social machine learning strategy for the
binary case (H = 2). We recall that in this case the set of hypotheses is
chosen for convenience as Θ = {+1,−1}, and the decision statistic of any
agent k is scalar, with hk(x) = hk(x; +1) — see (12.38).

The first step to prove Theorem 12.1 is to specialize to the case H = 2
the condition for consistency that was formulated in Lemma 12.2 for an
arbitrary number H of hypotheses. It is convenient to introduce some
notation to carry out the analysis.

We stack the individual agent functions hk into a vector-valued function
h, namely,

h ≜ [h1, h2, . . . , hK] : X1 ×X2 × · · · × XK 7→ RK . (12.68)

Recall that Hk denotes the function family from which hk can be selected.
The function family to which h belongs, resulting from (12.68), will be
denoted by H. In other words, when we write h ∈ H, we mean that hk ∈ Hk
for each k.

In the next definition we introduce a compact notation to describe some
useful averaging operators.

Definition 12.3 (Averaging operators applied to a decision statistic hk). Given
a function hk defined on a space Xk:

hk : Xk 7→ R, (12.69)

the expected values (assumed to be finite) of hk(x) computed under the likelihood
models corresponding to ϑo = +1 and ϑo = −1 are denoted, respectively, by

η+
k (hk) ≜ Eℓk,+1hk(x), η−k (hk) ≜ Eℓk,−1hk(x), (12.70)

where the subscripts on E emphasize that the expectation is computed assuming
that x is distributed according to ℓk,+1 or ℓk,−1.
It is also convenient to introduce the statistical and empirical means computed
over the training set. Since the classes in the training set are balanced in view of
(12.3), the statistical mean of hk(x̂k,n) computed over the training set can be
evaluated as

ηk(hk) ≜ Ehk(x̂k,n) = 1
2

(
η+
k (hk) + η−k (hk)

)
, (12.71)

where the expectation is computed with respect to the random quantity x̂k,n,
i.e., with respect to the distribution of the features in the training set. The

12.A. Appendix: Notation for Binary Decision Problems 329

empirical mean over the training set is instead given by

η̂k(hk) ≜ 1
Ek

Ek∑
n=1

hk(x̂k,n). (12.72)

Finally, we define the network counterparts of the above quantities, namely,

η+(h) ≜
K∑
k=1

vk η
+
k (hk), η−(h) ≜

K∑
k=1

vk η
−
k (hk) (12.73)

and

η(h) ≜
K∑
k=1

vkηk(hk), η̂(h) ≜
K∑
k=1

vk η̂k(hk), (12.74)

where, as usual, vk denotes the kth entry of the Perron vector of the combination
matrix A.

The notation introduced in Definition 12.3 allows us to write the con-
sistency condition (12.18), specialized to the binary case, as

η+(h) > 0, η−(h) < 0. (12.75)

In particular, in Theorem 12.1 we are interested in establishing the con-
sistency of the de-biased decision statistic introduced in Definition 12.2.
Recall that to construct this statistic, we first compute an intermediate
function by minimizing the empirical risk in (12.34):

hok = arg min
hk∈Hk

R̂k(hk), (12.76)

and subsequently shift it by subtracting its empirical average η̂k(hok) (see
definition (12.72)) to produce the final de-biased statistic

h̃k(x) = hok(x)− η̂k(hok). (12.77)

If we now apply the consistency condition (12.75) to the function h̃ =
[h̃1, h̃2, . . . , h̃K], we obtain

η+
(
h̃
)
> 0, η−

(
h̃
)
< 0, (12.78)

which, using (12.77), corresponds to

η+(ho)− η̂(ho) > 0, η−(ho)− η̂(ho) < 0, (12.79)

resulting in the following alternative expression for the probability of
consistent learning in (12.37):

Pc = P
[
η+(ho) > η̂(ho), η−(ho) < η̂(ho)

]
. (12.80)

330 Social Machine Learning

We note in passing that the averaging operator η is deterministic, while
its argument is random since the function ho results from an optimization
procedure performed over the (random) training set. In comparison, the
averaging operator η̂ is random since it depends on the training set, and
is also applied to the random argument ho.

Before concluding this section, it is useful to examine the rationale
behind the de-biasing operation. Consider first the optimized decision
statistic ho without de-biasing. For this statistic, the consistency conditions
in (12.79) amount to

η+(ho) > 0, η−(ho) < 0. (12.81)

In other words, we require η+(ho) to be positive and η−(ho) to be negative
in order to attain consistent learning. However, it might happen that the
estimated statistics are biased toward one class, for example, we might
have η−(ho) > 0. In this case it would be reasonable to expect that we
could still make reliable decisions provided that η+(ho) > η−(ho). This is
in fact possible by using the de-biased decision statistic from (12.77).

To see why, observe that for sufficiently large training set sizes the
empirical and true means are close to each other, namely,

η̂(ho) ≈ 1
2
(
η+(ho) + η−(ho)

)
. (12.82)

Under this approximation, the two conditions in (12.79) become

η+(ho) > η−(ho). (12.83)

We see from (12.83) that, due to de-biasing, consistent learning is satisfied
by requiring that the expectation under ϑo = +1 is greater than the
expectation under ϑo = −1, regardless of the sign of the individual terms
η+(ho) and η−(ho). Therefore, consistent learning becomes possible even
when the trained decision statistics are biased, for example, when η+(ho) >
η−(ho) > 0.

12.B Appendix: Bounds for Consistent Learning

In the next two sections, we establish two results useful to prove Theo-
rem 12.1. First, in Lemma 12.3 we obtain a lower bound on the probability
of consistent learning, which is composed of the two probability terms
appearing on the RHS of (12.85). The first term depends on the distance
between the empirical and true means, whereas the second term depends

12.B. Appendix: Bounds for Consistent Learning 331

on the risk function. Both terms can be bounded by using the uniform
laws of large numbers established in Lemma 12.4, which characterize the
discrepancy between the empirical and true means/risks. The combination
of the results from Lemmas 12.3 and 12.4 is exploited in Section 12.C to
prove Theorem 12.1.

12.B.1 Probability of Consistent Learning

Lemma 12.3 (Bound for the probability of consistent learning). Let Assump-
tions 5.1, 12.1, and 12.2 be satisfied. Let Rk(hk) be the exact risk of agent k
associated with the decision statistic hk, as defined in (12.44), and introduce the
network risk associated with the vector-valued function h defined in (12.68):

R(h) ≜
K∑
k=1

vk Rk(hk). (12.84)

Then, for any y > 0, the probability of consistent learning in (12.80) obeys the
following lower bound:

Pc ≥ 1 − P
[∣∣η̂(ho) − η(ho)

∣∣ > y
]

− P
[
R(ho) ≥ log

(
1 + e−y

)]
. (12.85)

Proof. To begin with, we introduce two events that will be useful in the proof:

A ≜
{∣∣∣η̂(ho) − η(ho)

∣∣∣ ≥ 1
2

(
η+(ho) − η−(ho)

)}
, (12.86)

B ≜
{1

2

(
η+(ho) − η−(ho)

)
> y
}
. (12.87)

The following chain of equalities holds, where the notation Ec denotes the complement
of event E :

1 − Pc
(a)= 1 − P

[
{η+(ho) > η̂(ho)} ∩ {η−(ho) < η̂(ho)}

]
= P
[{

{η+(ho) > η̂(ho)} ∩ {η−(ho) < η̂(ho)}
}c
]

(b)= P
[{

η+(ho) ≤ η̂(ho)
}

∪
{
η−(ho) ≥ η̂(ho)

}]
= P
[
{η+(ho) − η(ho) ≤ η̂(ho) − η(ho)}

∪ {η−(ho) − η(ho) ≥ η̂(ho) − η(ho)}
]

(c)= P
[{
η̂(ho) − η(ho) ≥ 1

2

(
η+(ho) − η−(ho)

)}
∪
{
η̂(ho) − η(ho) ≤ −1

2

(
η+(ho) − η−(ho)

)}]

332 Social Machine Learning

(d)= P [A] (e)= P [A ∩ B] + P [A ∩ Bc] , (12.88)

where (a) follows from (12.80); (b) holds because, in view of De Morgan’s law [21], the
complement of the intersection of two sets is the union of the complements of the sets;
(c) follows from the identities

η+(ho) − η(ho) = 1
2

(
η+(ho) − η−(ho)

)
, (12.89)

η−(ho) − η(ho) = −1
2

(
η+(ho) − η−(ho)

)
, (12.90)

which are obtained by using (12.71), (12.73), and (12.74); in step (d) we apply the
definition of absolute value and the definition of A from (12.86); and in (e) we introduce
the event B defined in (12.87) and apply the law of total probability. We now focus on
the two probabilities obtained after step (e) in (12.88). Regarding the first probability,
from (12.86) and (12.87) we obtain the relation

A ∩ B =⇒
{∣∣∣η(ho) − η̂(ho)

∣∣∣ > y
}
, (12.91)

which implies
P [A ∩ B] ≤ P

[
|η(ho) − η̂(ho)| > y

]
. (12.92)

For the second probability on the RHS of (12.88), recalling that the probability of the
intersection of two events cannot be larger than the probability of any of the individual
events, and using the definition of B from (12.87), we can write

P [A ∩ Bc] ≤ P [Bc] = P
[1

2

(
η+(ho) − η−(ho)

)
≤ y
]
. (12.93)

Using (12.92) and (12.93) in (12.88), we get

1 − Pc ≤ P
[

|η(ho) − η̂(ho)| > y
]

+ P
[1

2

(
η+(ho) − η−(ho)

)
≤ y
]
. (12.94)

To complete the proof of the lemma, we need to focus on the second term on the RHS
of (12.94). Consider the network risk in (12.84), applied to the vector-valued function h
defined by (12.68):

R(h) =
K∑
k=1

vk Rk(hk)

=
K∑
k=1

vk E log

(
1 + exp

{
−θ̂k,n hk(x̂k,n)

})
(a)
≥

K∑
k=1

vk log

(
1 + exp

{
−E
[
θ̂k,n hk(x̂k,n)

]})
(b)
≥ log

(
1 + exp

{
−

K∑
k=1

vk E
[
θ̂k,n hk(x̂k,n)

]})
(c)= log

(
1 + exp

{
−1

2

(
η+(h) − η−(h)

)})
, (12.95)

12.B. Appendix: Bounds for Consistent Learning 333

where in (a) and (b) we apply Jensen’s inequality (Theorem C.5) to the convex function
log(1 + ex), specifically, with respect to the expectation operator E in inequality (a),
and with respect to the convex combination with weights {vk} in inequality (b) — see
(C.10). In (c), we compute the expectation by using the assumption of uniform priors
during training and the definitions in (12.73) and (12.73).

Exploiting (12.95) we obtain the following implication:

1
2

(
η+(h) − η−(h)

)
≤ y =⇒ R(h) ≥ log

(
1 + e−y

)
, (12.96)

which, when applied to the optimized functions hok, implies the following bound:

P
[1

2

(
η+(ho) − η−(ho)

)
≤ y
]

≤ P
[
R(ho) ≥ log

(
1 + e−y

)]
. (12.97)

Using (12.97) in (12.94) yields the bound in (12.85), which completes the proof of the
lemma.

■

12.B.2 Uniform Laws of Large Numbers

In this section we establish two concentration bounds to quantify the
proximity between the true and empirical risks, as well as the true and
empirical means. Regarding the risks, we consider the following general
form, which includes the binary cross-entropy as a special case:

Rk(hk) = EQ
(
θ̂k,n hk(x̂k,n)

)
, (12.98a)

R̂k(hk) = 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)
, (12.98b)

where Q : R 7→ R is an L -Lipschitz loss function. The network true and
empirical risk functions will be, respectively,

R(h) =
K∑
k=1

vk Rk(hk), (12.99a)

R̂(h) =
K∑
k=1

vk R̂k(hk). (12.99b)

The following theorem characterizes the deviations between the empirical
and true risks, and the deviations between the empirical and true means.
In particular, the theorem provides bounds on the probability that these
deviations exceed some threshold.

334 Social Machine Learning

Lemma 12.4 (Uniform laws of large numbers). Let Assumptions 5.1, 12.1,
and 12.2 be satisfied. Assume that the loss function Q : R 7→ R is L −Lipschitz
and that, for k = 1, 2, . . . ,K, the decision statistic hk : Xk 7→ R belongs to a
family Hk of bounded functions:

|hk(x)| ≤ hk,max ∀x ∈ Xk, with 0 < hk,max < ∞. (12.100)

Let ρk be the Rademacher complexity (see Definition G.1) associated with the
family Hk, and let ρnet be the network Rademacher complexity defined in (12.49).
Denote by h the vector-valued function defined in (12.68) and by H the resulting
family to which h belongs. Then, we have the following two results:

P
[

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y

]
≤ exp

{
−Emax (y − 2 L ρnet)2

2h2
netL 2

}
(12.101)

for all y > 2 L ρnet, and

P
[

sup
h∈H

|η̂(h) − η(h)| ≥ y

]
≤ exp

{
−Emax (y − 2ρnet)2

2h2
net

}
(12.102)

for all y > 2ρnet, where
Emax ≜ max

k∈{1,2,...,K}
Ek (12.103)

and hnet is defined in (12.58).

Proof. We develop the proofs of (12.101) and (12.102) separately.

Bound (12.101). Consider the difference between the network empirical and true risks,

R̂(h) −R(h) = χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)
, (12.104)

where we introduced the auxiliary functional

χ(h) =
K∑
k=1

vk EQ
(
θ̂k,n hk(x̂k,n)

)
. (12.105)

Our focus is on the supremum of the absolute risk deviation taken over the function
family H, namely, on

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ = sup

h∈H

∣∣∣∣∣χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ . (12.106)

In order to bound the probability that this maximum deviation exceeds some threshold,
we will call upon McDiarmid’s inequality — see Theorem C.4. To this end, it is necessary
to choose the random vectors zn and the function g mentioned in Theorem C.4. The
vectors zn are constructed as follows. First, we stack the features x̂k,n and the labels
θ̂k,n from across the agents k = 1, 2, . . . ,K into the vectors

x̂n ≜ col
{
x̂k,n

}K
k=1

, θ̂n ≜ col
{
θ̂k,n

}K
k=1

, (12.107)

12.B. Appendix: Bounds for Consistent Learning 335

where n = 1, 2, . . . , Emax and where, we recall, col{xk}Kk=1 denotes the K × 1 vector
obtained by stacking into a single column its vector entries. Observe that the agents are
allowed to have training sets with different sizes Ek. Therefore, for a given n, some agents
might have a number of training samples Ek < n. In this case, the vector x̂n appearing
in (12.107) would not contain the features from these agents. The same argument applies
to θ̂n.

To apply McDiarmid’s inequality, we form the vector zn by stacking the vectors x̂n
and θ̂n into a single vector, namely,

zn ≜ col
{
x̂n, θ̂n

}
. (12.108)

Then, we define the function

g(z1, z2, . . . , zEmax) ≜ sup
h∈H

∣∣∣∣∣χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ . (12.109)

Note that, in view of (12.106), we have the following identity:

g(z1, z2, . . . , zEmax) = sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ . (12.110)

Accordingly, if we apply McDiarmid’s inequality to the function g we obtain a bound
on the probability that the empirical risk deviates from the true risk (uniformly for all
functions h in the family H). However, to apply McDiarmid’s inequality we need to
verify that the chosen function g meets the bounded-difference condition (C.5). To this
end, we must consider all sequences

{z1, z2, . . . , zi, . . . , zEmax } and {z1, z2, . . . , qzi, . . . , zEmax } (12.111)

that differ only in their respective ith vectors,

zi = col
{
x̂i, θ̂i

}
and qzi = col

{
qxi, qθi

}
. (12.112)

Applying (12.109) to the second sequence in (12.111) we have

g(z1, z2, . . . , qzi, . . . , zEmax)

= sup
h∈H

∣∣∣∣∣ χ(h) −
K∑
k=1

vk
Ek

[
Q
(
qθk,i hk(qxk,i)

)
+

Ek∑
n=1
n̸=i

Q
(
θ̂k,n hk(x̂k,n)

)] ∣∣∣∣∣
= sup
h∈H

∣∣∣∣∣ χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)
+

K∑
k=1

vk
Ek

[
Q
(
θ̂k,i hk(x̂k,i)

)
− Q

(
qθk,i hk(qxk,i)

)]
I[i ≤ Ek]

∣∣∣∣∣, (12.113)

where I denotes, as usual, the indicator function, which appears since the difference
between (x̂k,i, θ̂k,i) and (qxk,i, qθk,i) is present only if i ≤ Ek, because agent k has Ek
samples in its training set.

336 Social Machine Learning

By introducing the functionals

S(h) ≜ χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)
, (12.114)

T (h) ≜
K∑
k=1

vk
Ek

[
Q
(
θ̂k,i hk(x̂k,i)

)
− Q

(
qθk,i hk(qxk,i)

)]
I[i ≤ Ek], (12.115)

we see that (12.109) and (12.113) can be written as

g(z1, z2, . . . , zi, . . . , zEmax) = sup
h∈H

|S(h)|, (12.116)

g(z1, z2, . . . , qzi, . . . , zEmax) = sup
h∈H

|S(h) + T (h)|. (12.117)

Applying Lemma 12.5 to the functionals defined in (12.114) and (12.115), from (12.116)
and (12.117) we obtain∣∣∣g(z1, z2, . . . , zi, . . . , zEmax) − g(z1, z2, . . . , qzi, . . . , zEmax)

∣∣∣ ≤ sup
h∈H

|T (h)|

= sup
h∈H

∣∣∣∣∣
K∑
k=1

vk
Ek

[
Q
(
θ̂k,i hk(x̂k,i)

)
− Q

(
qθk,i hk(qxk,i)

)]
I[i ≤ Ek]

∣∣∣∣∣
(a)
≤

K∑
k=1

vk
Ek

sup
hk∈Hk

∣∣∣Q (θ̂k,i hk(x̂k,i)
)

− Q
(
qθk,i hk(qxk,i)

)∣∣∣
(b)
≤ L

K∑
k=1

vk
Ek

sup
hk∈Hk

∣∣∣θ̂k,i hk(x̂k,i) − qθk,i hk(qxk,i)
∣∣∣

(c)
≤ 2L

K∑
k=1

vk hk,max
Ek

(d)= 2hnetL

Emax
, (12.118)

where (a) follows from the subadditivity of the supremum and the fact that the indicator
function is bounded by 1; (b) follows from the Lipschitz property of Q; (c) follows from
the boundedness assumption |hk(x)| ≤ hk,max and the fact that the labels are equal to ±1;
and (d) follows from the fact that ek = Emax/Ek and from the definition of hnet in (12.58).
The final bound resulting from (12.118) shows that the function g defined by (12.109)
satisfies the bounded difference condition (C.5) with the choice ci = 2hnetL /Emax. It is
therefore legitimate to apply McDiarmid’s inequality. Specifically, applying (C.8a) and
further recalling (12.106), we get

P
[

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣− E sup

h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ a

]
≤ exp

{
− a2Emax

2h2
netL 2

}
, (12.119)

holding for any a > 0. On the other hand, Lemma 12.7 allows us to bound the expected
value appearing on the LHS of (12.119) as follows:

E sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≤ 2 L ρnet, (12.120)

12.B. Appendix: Bounds for Consistent Learning 337

with ρnet being the network Rademacher complexity from (12.49). In view of (12.120)
we can write

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y

=⇒ sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣− E sup

h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y − 2 L ρnet, (12.121)

which implies that

P
[

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y

]
≤ P

[
sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣− E sup

h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y − 2 L ρnet

]
. (12.122)

Considering a value y > 2 L ρnet and setting a = y − 2 L ρnet in (12.119), from (12.122)
we obtain

P
[

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ y

]
≤ exp

{
− (y − 2 L ρnet)2Emax

2h2
netL 2

}
, (12.123)

and the proof of (12.101) is complete.

Bound (12.102). The proof of (12.102) is similar to the proof of (12.101), and will be
presented in a concise manner. We start by using McDiarmid’s inequality (Theorem C.4)
with zn = x̂n and with the following choice of the function g:

g(z1, z2, . . . , zEmax) = sup
h∈H

∣∣∣∣∣χ(h) −
K∑
k=1

vk
Ek

Ek∑
n=1

hk(x̂k,n)

∣∣∣∣∣ , (12.124)

where the auxiliary functional χ(h) is now defined as

χ(h) =
K∑
k=1

vk Ehk (x̂k,n) . (12.125)

We follow similar steps to those used to prove (12.101), which result in the following
bound:

P
[

sup
h∈H

∣∣η̂(h) − η(h)
∣∣− E sup

h∈H

∣∣η̂(h) − η(h)
∣∣ ≥ a

]
≤ exp

{
−a2Emax

2h2
net

}
, (12.126)

holding for any a > 0. We use again Lemma 12.7 to bound the expected value appearing
on the LHS of (12.126). Specifically, examining the claim of Lemma 12.7, we see that
the function g defined by (12.124) corresponds to the particular setup where the loss
function is the identity function (and, hence, L = 1) and the labels are deterministically
equal to 1; with these choices, Eq. (12.167) gives

E sup
h∈H

∣∣η̂(h) − η(h)
∣∣ ≤ 2ρnet. (12.127)

Using this bound in (12.126) and setting a = y − 2ρnet (for y > 2ρnet) yields (12.102).
■

338 Social Machine Learning

12.C Appendix: Proof of Theorem 12.1

Proof. From Lemma 12.3 we obtain the lower bound in (12.85) for the probability of
consistent learning. Next, we need to examine each of the terms on the RHS of (12.85).

Regarding the first term, by taking the supremum over the family of functions and
then applying the uniform bound provided by (12.102) we can write

P
[∣∣η̂(ho) − η(ho)

∣∣ > y
]

≤ P
[

sup
h∈H

∣∣η̂(h) − η(h)
∣∣ ≥ y

]
≤ exp

{
−Emax (y − 2ρnet)2

2h2
net

}
= exp

{
−2Emax (y/2 − ρnet)2

h2
net

}
(12.128)

for any y such that
y

2 > ρnet. (12.129)

Next, we examine the second term on the RHS of (12.85). We call upon Lemma 12.6. In
particular the functionals S(h) and T (h) and the related quantities h⋆S and T ⋆ appearing
in that lemma are chosen as follows. The functional S(h) is chosen as the network risk
R(h), whereas the functional T (h) is chosen as the network empirical risk R̂(h). Since
we have6

ho = arg min
h∈H

R̂(h), Ronet = inf
h∈H

R(h), (12.130)

the minimizer h⋆S becomes ho and T ⋆ becomes the network target risk Ronet. With these
choices, from (12.164) we obtain

R(ho) − Ronet ≤ 2 sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ . (12.131)

Choose now the parameter y > 0 in the range of values that satisfy the following
inequality:

log
(
1 + e−y

)
> Ronet. (12.132)

These values certainly exist since Ronet < log 2 by assumption. In view of (12.131) we can
write

P
[
R(ho) ≥ log

(
1 + e−y

)]
= P

[
R(ho) − Ronet ≥ log

(
1 + e−y

)
− Ronet

]
≤ P

[
sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥

log
(
1 + e−y

)
− Ronet

2

]
. (12.133)

The last probability can be upper bounded by using (12.101). Specifically, the threshold
value y in (12.101) is replaced by the value (log(1 + e−y) − Ronet)/2 and the loss function
is chosen as Q(z) = log(1+ez) (yielding a Lipschitz constant L = 1), which corresponds

6Equation (12.130) follows by observing that i) the network risks in (12.99a) and (12.99b) are
linear combinations, with positive weights, of the individual agent risks; and ii) the vector-valued
function h is composed of the individual agent functions hk.

12.C. Appendix: Proof of Theorem 12.1 339

to the binary cross-entropy risk adopted in our framework. With these choices, from
(12.101) we get

P
[

sup
h∈H

∣∣∣R̂(h) −R(h)
∣∣∣ ≥ 1

2

(
log
(
1 + e−y

)
− Ronet

)]
≤ exp

{
− Emax

2h2
net

(
log
(
1 + e−y

)
− Ronet

2 − 2ρnet

)2}

= exp

{
−2Emax

h2
net

(
log
(
1 + e−y

)
− Ronet

4 − ρnet

)2}
, (12.134)

where the inequality holds for any y such that

log
(
1 + e−y

)
− Ronet

4 > ρnet. (12.135)

By introducing the auxiliary functions

e1(y) ≜
(
y

2 − ρnet

)2
, e2(y) ≜

(
log(1 + e−y) − Ronet

4 − ρnet

)2

(12.136)

and using (12.128) and (12.134) in (12.85), we obtain the following bound on the
probability of consistent learning:

Pc ≥ 1 − exp
{

−2Emax e1(y)
h2

net

}
− exp

{
−2Emax e2(y)

h2
net

}
≥ 1 − 2 exp

{
−2Emax min{e1(y), e2(y)}

h2
net

}
. (12.137)

To find the tightest bound, we can maximize the quantity min{e1(y), e2(y)} over the
parameter y, under constraints (12.129) and (12.135). To this end, observe that under
these constraints the function e1(y) is an increasing function of y, while e2(y) is a
decreasing function of y. Accordingly, if there exists a value y⋆ that satisfies the equality

e1(y⋆) = e2(y⋆) (12.138)

and meets constraints (12.129) and (12.135), then the maximum of min{e1(y), e2(y)}
computed under these constraints will be equal to e1(y⋆) = e2(y⋆). We now show that
such a solution y⋆ exists.

Since the terms within brackets appearing in both e1(y) and e2(y) from (12.136) are
constrained to be positive, Eq. (12.138) corresponds to the equation

y⋆ = log(1 + e−y
⋆) − Ronet

2 (12.139)

solved under constraints (12.129) and (12.135). Equation (12.139) can be written as

eRo
net e3y⋆

− ey
⋆

− 1 = 0. (12.140)

Therefore, if we set ey⋆ = z, we must solve the third-order equation

eRo
netz3 − z − 1 = 0, (12.141)

340 Social Machine Learning

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Ronet

0.00

0.05

0.10

E
(R

o n
et

)
exact expression

approximation

Figure 12.10: Comparison between the exact expression in (12.142) and the approximation in
(12.148).

whose unique real-valued solution z⋆ is available in closed form as

z⋆ = 2 × 31/3 + 21/3e−Ro
net [f(Ronet)]2/3

62/3[f(Ronet)]1/3 , (12.142)

where
f(Ronet) = 9e2Ro

net +
√

3e3Ro
net (−4 + 27eRo

net). (12.143)
Recalling that ey⋆ = z, we have

y⋆ = log 2 × 31/3 + 21/3e−Ro
net [f(Ronet)]2/3

62/3[f(Ronet)]1/3 . (12.144)

It can be verified that y⋆ > 0 within the range Ronet ∈ [0, log 2]. As a result, the inequality

ρnet <
y⋆

2 (12.145)

is meaningful, in the sense that there exists a range of values of the network Rademacher
complexity ρnet that satisfy (12.145). When (12.145) holds, y⋆ meets constraint (12.129).
Moreover, in view of (12.139), constraint (12.135) is also satisfied under (12.145). Finally,
by defining

E (Ronet) ≜
y⋆

2 = 1
2 log 2 × 31/3 + 21/3e−Ro

net [f(Ronet)]2/3

62/3[f(Ronet)]1/3 (12.146)

and evaluating (12.137) with e1(y⋆) = e2(y⋆), we obtain the desired bound:

Pc ≥ 1 − 2 exp
{

−2Emax
h2

net

(
E (Ronet) − ρnet

)2
}
, (12.147)

holding for ρnet < E (Ronet).
■

A good approximation for the function E (Ro) is the linear fit

E (Ronet) ≈ E (0)
(

1− Ronet
log 2

)
, (12.148)

12.D. Appendix: Proof of Theorem 12.2 341

where
E (0) = 0.1406 (12.149)

is computed from (12.146). Figure 12.10 shows the function E (Ronet) from
(12.146), along with the linear fit from (12.148), for Ronet ∈ [0, log 2]. We
see that the approximation is excellent.

12.D Appendix: Proof of Theorem 12.2

Proof. The proof relies on the bound in (12.57). Recall that this bound was obtained
under the condition ρnet < E (Ronet). Since by assumption we have ρk ≤ Ck/

√
Ek, from

the definition of ρnet in (12.49) we have

ρnet ≤ Cnet√
Emax

, (12.150)

where Cnet was defined in (12.62). Accordingly, the condition ρnet < E (Ronet) is certainly
verified if

Cnet√
Emax

< E (Ronet). (12.151)

If condition (12.151) is satisfied, we can apply (12.57) and write

Pc ≥ 1 − 2 exp

{
−2Emax

(
E (Ronet) − ρnet

hnet

)2
}

≥ 1 − 2 exp

{
−2Emax

h2
net

(
E (Ronet) − Cnet√

Emax

)2
}
, (12.152)

where the last inequality follows from (12.150) and (12.151).
According to the claim of the theorem, we want to guarantee a minimum probability

1 − ε of consistent learning, i.e.,
Pc ≥ 1 − ε. (12.153)

This condition is guaranteed if we impose that the last lower bound in (12.152) is not
smaller than 1 − ε, which amounts to requiring

2 exp

{
−2Emax

h2
net

(
E (Ronet) − Cnet√

Emax

)2
}

≤ ε, (12.154)

or (√
Emax E (Ronet) − Cnet

)2 ≥ h2
net
2 log

(2
ε

)
. (12.155)

In the range prescribed by constraint (12.151), the last inequality is satisfied when

√
Emax E (Ronet) ≥ Cnet +

√
h2

net
2 log

(2
ε

)
, (12.156)

and the final result of the theorem is established by squaring both sides of (12.156).
■

342 Social Machine Learning

12.E Appendix: Auxiliary Results

The next three lemmas are used in the proofs of Theorem 12.1 and
Lemma 12.4.

Lemma 12.5 (Difference of suprema). Assume that S(h) and T (h) are func-
tionals of a function h belonging to a family H, and consider the following
quantities:

s1 = sup
h∈H

|S(h)| , s2 = sup
h∈H

|S(h) + T (h)| . (12.157)

Then
|s1 − s2| ≤ sup

h∈H
|T (h)| (12.158)

Proof. The proof is split into two cases.

Case s2 ≥ s1.

|s1 − s2| = s2 − s1

= sup
h∈H

|S(h) + T (h)| − sup
h∈H

|S(h)|

≤ sup
h∈H

|S(h)| + sup
h∈H

|T (h)| − sup
h∈H

|S(h)|

= sup
h∈H

|T (h)| , (12.159)

where the inequality follows from the triangle inequality and the subadditivity of the
supremum.

Case s2 < s1.

|s1 − s2| = s1 − s2

= sup
h∈H

|S(h)| − sup
h∈H

|S(h) + T (h)|

= sup
h∈H

(|S(h)| − s2)

(a)
≤ sup

h∈H
(|S(h)| − |S(h) + T (h)|)

≤ sup
h∈H

∣∣∣ |S(h)| − |S(h) + T (h)|
∣∣∣

(b)
≤ sup

h∈H
|S(h) − S(h) − T (h)|

= sup
h∈H

|T (h)| , (12.160)

where (a) follows because, from the definition of s2, we have −s2 ≤ −|S(h) + T (h)| for
all h, and (b) follows from the reverse triangle inequality, i.e.,

|a− b| ≥
∣∣∣ |a| − |b|

∣∣∣. (12.161)

12.E. Appendix: Auxiliary Results 343

Grouping (12.159) and (12.160), we obtain the desired result in (12.158).
■

Lemma 12.6 (Useful bound for wrong minimizers). Assume that S(h) and T (h)
are functionals of a function h belonging to a family H. Let

h⋆S = arg min
h∈H

S(h) (12.162)

be the minimizer of S(h) and let

T ⋆ = inf
h∈H

T (h) (12.163)

be the infimum of T (h). Then, the error T (h⋆S) − T ⋆, between the functional T
evaluated at the minimizer of S and the infimum T ⋆, can be related to the error
between S(h) and T (h) through the following upper bound:

T (h⋆S) − T ⋆ ≤ 2 sup
h∈H

|S(h) − T (h)| . (12.164)

Proof. We have the following chain of equalities and inequalities:

T (h⋆S) − T ⋆ = T (h⋆S) − inf
h∈H

T (h)

= T (h⋆S) − S(h⋆S) + S(h⋆S) − inf
h∈H

T (h)

= T (h⋆S) − S(h⋆S) + sup
h∈H

(
S(h⋆S) − T (h)

)
(a)
≤ T (h⋆S) − S(h⋆S) + sup

h∈H

(
S(h) − T (h)

)
≤ 2 sup

h∈H
|S(h) − T (h)| , (12.165)

where (a) follows from the fact that S(h⋆S) ≤ S(h) for all h ∈ H in view of (12.162), and
the proof is complete.

■

Lemma 12.7 (Useful bound for Lipschitz-continuous loss functions). Let As-
sumptions 5.1, 12.1, and 12.2 be satisfied. Let hk : Xk 7→ R be a function
belonging to a family Hk. Denote by h the vector-valued function defined in
(12.68) and by H the resulting family to which h belongs. Let also Q : R 7→ R
be an L −Lipschitz function, and introduce the functional

χk(hk) ≜ EQ
(
θ̂k,n hk(x̂k,n)

)
. (12.166)

344 Social Machine Learning

Then

E sup
h∈H

∣∣∣∣∣
K∑
k=1

vk

[
χk(hk) − 1

Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣ ≤ 2 L ρnet, (12.167)

where vk is the kth entry of the Perron vector and ρnet is the network Rademacher
complexity defined by (12.49).

Proof. From the triangle inequality and the subadditivity of the supremum we can write

E sup
h∈H

∣∣∣∣∣
K∑
k=1

vk

[
χk(hk) − 1

Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣
≤

K∑
k=1

vk E sup
hk∈Hk

∣∣∣∣∣χk(hk) − 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ . (12.168)

Let us focus on the expected values appearing in the summation on the RHS of (12.168).
From definition (12.166), owing to the identical distribution across n, we have the
equality

χk(hk) = 1
Ek

Ek∑
n=1

EQ
(
θ̂k,n hk(x̂k,n)

)
, (12.169)

which allows us to write

E sup
hk∈Hk

∣∣∣∣∣χk(hk) − 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣
= Ex,θ sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

Ex′,θ′Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

) ∣∣∣∣∣,
(12.170)

where we introduced a fictitious training set

T ′k ≜
{
x̂
′
k,n, θ̂

′
k,n

}Ek

n=1

d= Tk, (12.171)

with the equality meaning that T ′k shares the same distribution as the original training set
Tk defined by (12.2). Moreover, we assume that Tk and T ′k are statistically independent.

From (12.170) we can also write

E sup
hk∈Hk

∣∣∣∣∣χk(hk) − 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣
= Ex,θ sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

Ex′,θ′

[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣
≤ E sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣ . (12.172)

12.E. Appendix: Auxiliary Results 345

Note that, when necessary, we have used the subscripts x, θ and x′, θ′ to distinguish
which random quantities the expectation is taken over. The inequality in (12.172) holds
since the absolute value of the expectation is upper bounded by the expectation of
the absolute value, and the supremum of the expectation is upper bounded by the
expectation of the supremum.

To complete the proof, inspired by the arguments used in [13, 30], we develop the
following symmetrization procedure. Let us focus on the last term in (12.172). We have
the identity

E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

(+1) ×
[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣
= E sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

(−1) ×
[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣ , (12.173)

which follows from the fact that the training sets Tk and T ′k are iid and, hence, exchanging
them is immaterial. Consider now a sequence of iid Rademacher random variables rn
(i.e., binary variables taking on values ±1 with equal probability). Furthermore, assume
that the sequences {rn}Ek

n=1, Tk, and T ′k are mutually independent. In view of (12.173),
the last term in (12.172) can also be written as

E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn

[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣ , (12.174)

where the expectation is taken over all involved random variables, including the
Rademacher variables rn.

The quantity appearing in (12.174) can be bounded as follows:

E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn

[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣
(a)= E sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn

[
Q̃
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q̃

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣
(b)
≤ E sup

hk∈Hk

{∣∣∣∣∣ 1
Ek

Ek∑
n=1

rnQ̃
(
θ̂
′
k,n hk(x̂ ′k,n)

)∣∣∣∣∣+

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rnQ̃
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣
}

(c)= 2E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rnQ̃
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ . (12.175)

In (a) we introduced the shifted function

Q̃(z) ≜ Q(z) − Q(0). (12.176)

We note that Q̃(0) = 0 and that Q̃(z) is L -Lipschitz since so is Q(z) and since Lipschitz
continuity is shift-invariant — see (G.5). Step (b) applies the triangle inequality, while
(c) follows from the subadditivity of the supremum and the fact that Tk and T ′k are
identically distributed.

346 Social Machine Learning

We now want to upper bound the last term in (12.175) by exploiting the Lipschitz
property of Q̃(z) associated with the contraction principle of the Rademacher complexity
(Lemma G.1). Specifically, for n = 1, 2, . . . , Ek, we consider the samples

ξn ≜ col
{
x̂k,n, θ̂k,n

}
(12.177)

and the function family G composed of the functions

g(ξn) = θ̂k,n hk(x̂k,n), (12.178)

where hk spans the family Hk. Applying Lemma G.1 with these choices, we obtain

E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rnQ̃
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ = E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rnQ̃ (g(ξn))

∣∣∣∣∣
≤ L E sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn g(ξn)

∣∣∣∣∣ = L E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn θ̂k,n hk(x̂k,n)

∣∣∣∣∣ . (12.179)

It can be readily verified that the random variables rnθ̂k,n hk(x̂k,n) and rn hk(x̂k,n)
share the same distribution since θ̂k,n assumes values ±1 with equal probability and rn
and −rn are equally distributed and independent of the pairs (x̂k,n, θ̂k,n). Since we also
have independence across n, the equality in distribution holding for the individual n
extends to the whole sequences. Therefore, we can write

2 L E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn θ̂k,n hk(x̂k,n)

∣∣∣∣∣
= 2 L E sup

hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn hk(x̂k,n)

∣∣∣∣∣ = 2 L ρk, (12.180)

where the last equality follows from the definition of the Rademacher complexity
(Definition G.1). Substituting (12.180) into (12.179) and using the resulting bound in
(12.175) yields

E sup
hk∈Hk

∣∣∣∣∣ 1
Ek

Ek∑
n=1

rn

[
Q
(
θ̂
′
k,n hk(x̂ ′k,n)

)
− Q

(
θ̂k,n hk(x̂k,n)

)]∣∣∣∣∣ ≤ 2 L ρk. (12.181)

Recalling that the LHS of (12.181) is equal to the RHS of (12.172), we conclude that

E sup
hk∈Hk

∣∣∣∣∣χk(hk) − 1
Ek

Ek∑
n=1

Q
(
θ̂k,n hk(x̂k,n)

)∣∣∣∣∣ ≤ 2 L ρk. (12.182)

Combining this result with (12.168) and recalling the definition of ρnet from (12.49), we
obtain (12.167), which is the claim of the lemma.

■

Chapter 13

Extensions and Conclusions

In this concluding chapter we give an overview of some recent advances on
social learning, which are the subject of ongoing investigations.

13.1 Non-Bayesian Updates

As explained in Chapter 3, in non-Bayesian social learning the agents form
their beliefs by iterating the following procedure. During the self-learning
step, each agent performs an individual Bayesian update and then shares
it with its neighbors. During the combination step, each agent blends the
received beliefs according to some pooling rule. Even if the local updates
are Bayesian, the overall learning scheme is non-Bayesian, since it does
not amount to computing the overall posterior distribution given the data
from all agents.

Let us focus on the objective evidence model described in Section 5.3,
where a true underlying hypothesis ϑo exists for all agents. In Chapters 5
and 7 we showed that, despite being non-Bayesian, traditional social learn-
ing schemes learn well, in the sense that the full belief mass is placed on
the true hypothesis as the number of observations grows. This implies
in particular that the probability of choosing the true hypothesis, e.g.,
by selecting the maximum entry of the belief vector, converges to 1 or,
equivalently, that the error probability vanishes as t→∞. However, we
do not know whether traditional social learning schemes reach the best
attainable performance, or how they compare with benchmark schemes.
One benchmark scheme to assess the goodness of a social learning strat-
egy is a centralized Bayesian construction that has access to all agents’
data and computes the Bayesian posterior over them. Some fundamental

348 Extensions and Conclusions

questions arise. How much does non-Bayesian learning lose with respect to
the centralized Bayesian scheme? Can we modify traditional non-Bayesian
schemes to attain improved performance?

One meaningful performance index to compare decision-making schemes
is the error probability, which is unfortunately too difficult to compute
for general statistical models. However, in Chapter 6 we characterized the
decay rate to 0 of the error probability for social learning with geometric
averaging. In particular, we proved that, under suitable conditions, the
error probabilities of all agents vanish exponentially fast and we illustrated
a procedure to evaluate the error exponent that rules this decay. In this
section we will use the error exponent as a performance index to compare
different schemes.

The analysis presented in this section stems from the work started
in [23], where the NB2 (non-Bayesian learning with non-Bayesian updates)
strategy is introduced. This strategy uses the following update (recall
(2.90)):

ψk,t(θ) ∝ µk,t−1(θ)ℓ γkk (xk,t|θ), γk > 0, (13.1)
which departs from the Bayesian update used in traditional social learning
(except for γk = 1). We will discuss the relevance of this modified update in
the rest of this section. In particular, we will examine the performance of
the centralized Bayesian scheme for the case where the data are independent
across the agents, and for the case where the agents are partitioned into
clusters with data highly dependent within the same cluster. Then, we
will compare the centralized Bayesian scheme against traditional social
learning and the NB2 strategy.

13.1.1 Performance Results

In the following analysis, we assume that the conditions used in Theo-
rem 6.3 are verified. Moreover, we stick to the objective evidence model
in Section 5.3, where the observations collected by each agent k are dis-
tributed according to ℓk(x|ϑo), for a true underlying hypothesis ϑo ∈ Θ
common to all agents.

Centralized Bayesian scheme. Let

xcen,t ≜ col{x1,t,x2,t, . . . ,xK,t} (13.2)

be the vector collecting all agents’ data at time t. Let us further denote
by µcen,t the belief vector of the centralized system at time t, and by

13.1. Non-Bayesian Updates 349

ℓ(x|θ) (no subscript k here) the likelihood for the global data xcen,t. Given
the true hypothesis ϑo, the data are assumed to be drawn from the joint
statistical model ℓ(x|ϑo). Note that the specific form of ℓ(x|θ) depends on
the statistical dependence across the agents. We will write this likelihood
explicitly for some cases examined next. However, for the results in this
section to hold, we do not need to assume any specific form for it.

Since for the centralized scheme we consider the joint model ℓθ rather
than the marginal models ℓk,θ, the finiteness of the KL divergences assumed
in (5.37) must be rephrased in terms of this joint model. In other words,
we assume that for all pairs (θ, θ′),

D(ℓθ||ℓθ′) <∞. (13.3)

By exploiting independence and identical distribution over time, we have
that the Bayesian posterior at time t is given by

µcen,t(θ) ∝ µcen,0(θ)
t∏

τ=1
ℓ(xcen,τ |θ). (13.4)

where we assume that µcen,0(θ) > 0 for all θ ∈ Θ. From (13.4) we compute
the centralized log belief ratio

βcen,t(θ) ≜ log
µcen,t(ϑo)
µcen,t(θ)

= log µcen,0(ϑo)
µcen,0(θ) +

t∑
τ=1

λcen,τ (θ), (13.5)

where
λcen,τ (θ) ≜ log ℓ(xcen,τ |ϑo)

ℓ(xcen,τ |θ)
. (13.6)

To quantify the performance, we focus on the large deviation analysis and
evaluate the pertinent error exponent. We know from Chapter 6 that we
need to examine the asymptotic behavior of the log belief ratio divided by
t,

β̄cen,t(θ) ≜
1
t
βcen,t(θ) = 1

t
log µcen,0(ϑo)

µcen,0(θ) + 1
t

t∑
τ=1

λcen,τ (θ). (13.7)

It can be verified that the vanishing term that depends on the initial state is
immaterial to the evaluation of the error exponent.1 Therefore, neglecting
this term, the RHS of (13.7) is an empirical average of iid variables, which is
the traditional case addressed by Theorem E.1. Applying this theorem, we

1One easy way to show that the term depending on the initial state is immaterial is to call
upon Theorem E.2.

350 Extensions and Conclusions

conclude in particular that the error probability P[βcen,t(θ) ≤ 0] vanishes
exponentially fast as t → ∞, and that the error exponent ruling this
convergence is computed as follows. First, we introduce the LMGF of
λcen,t(θ),

Λcen(s; θ) ≜ logE exp
{
sλcen,t(θ)

}
. (13.8)

Then, we introduce the Fenchel-Legendre transform of Λcen(s; θ),

Λ∗cen(y; θ) = sup
s∈R

(
sy − Λcen(s; θ)

)
. (13.9)

Finally, the error exponent corresponds to this Fenchel-Legendre transform
evaluated at the decision threshold y = 0:

Ecen(θ, ϑo) ≜ Λ∗cen(0; θ) = − inf
s∈R

Λcen(s; θ). (13.10)

Note that in these calculations there is an implicit dependence on the
true hypothesis ϑo (since expectations are computed relative to the true
distribution defined by ϑo). This dependence is now made explicit by the
notation Ecen(θ, ϑo).

Using (13.6) in (13.8), we can further represent the LMGF of the log
likelihood ratio as

Λcen(s; θ) = logE
[(

ℓ(xcen,t|ϑo)
ℓ(xcen,t|θ)

)s]
, (13.11)

where we recall that the expectation is computed under the true hypothesis
ϑo. Substituting (13.11) into (13.10), the error exponent can be rewritten
as

Ecen(θ, ϑo) = Λ∗cen(0; θ) = − inf
s∈R

logE
[(

ℓ(xcen,t|ϑo)
ℓ(xcen,t|θ)

)s]
, (13.12)

which, as was seen in Example 6.4, is referred to as the Chernoff information
between ℓ(x|ϑo) and ℓ(x|θ) [59, 60]. The exponent Ecen(θ, ϑo) characterizes
the decay rate, as t→∞, of the probability of choosing θ in place of ϑo:

P[βcen,t(θ) ≤ 0] ·= e−Ecen(θ,ϑo) t. (13.13)

The probability of error given ϑo is dominated by the worst-case (i.e.,
minimum) Chernoff information across the hypotheses θ ̸= ϑo:

P
[
ϑo ̸= arg max

θ∈Θ
µcen,t(θ)

]
·= e
− min
θ ̸=ϑo

Ecen(θ,ϑo) t
. (13.14)

13.1. Non-Bayesian Updates 351

Finally, the total error probability, (i.e., the probability averaged over all
true hypotheses ϑo by using the prior µcen,0), is ruled by the minimum
Chernoff information across all pairs of hypotheses:

∑
ϑo∈Θ

µcen,0(ϑo)P
[
ϑo ̸= arg max

θ∈Θ
µcen,t(θ)

]
·= e
−min

ϑo
min
θ ̸=ϑo

Ecen(θ,ϑo) t
. (13.15)

It is well known that the MAP rule (which in this case amounts to choosing
the hypothesis that maximizes the centralized Bayesian posterior) attains
the best (i.e., the smallest) total error probability. In view of (13.15), this
implies that the best (i.e., the largest) attainable error exponent for the
total error probability is given by the minimum Chernoff information, and
is also attained with the centralized Bayesian posterior [107].

Traditional social learning. We have seen in Chapter 6 that the per-
formance of traditional social learning with geometric averaging can be
characterized, for large t, in terms of the network random variables

λnet,t(θ) =
K∑
k=1

vkλk,t(θ). (13.16)

More specifically, the large deviation performance obtained in Theorem 6.3
reveals that the error exponent is given by

Enet(θ, ϑo) ≜ − inf
s∈R

Λnet(s; θ), (13.17)

where
Λnet(s; θ) = logE exp

{
sλnet,t(θ)

}
(13.18)

is the LMGF of λnet,t. Therefore, the random variable λnet,t(θ) is all we
need to evaluate the error exponent Enet(θ, ϑo). Likewise, for the centralized
Bayesian scheme we need the random variable λcen,t(θ) defined by (13.6).
The variable λcen,t(θ) is a log likelihood ratio pertaining to the optimal
centralized Bayesian scheme. Therefore, its specific form depends on the
joint distribution of the data across the agents. In comparison, we see
from (13.16) that λnet,t(θ) is a linear combination of the log likelihood
ratios of the individual agents. This is a direct consequence of the fact
that the combination step in listing (3.16) is a geometric-averaging rule,
amounting to a linear combination in the log domain. Furthermore, the
linear combination in (13.16) is weighted by the entries of the Perron
vector. In other words, the network topology plays a role in the learning

352 Extensions and Conclusions

behavior. In contrast, the optimal Bayesian scheme being centralized, there
is no topology influence on it.

It is now legitimate to ask what is the performance loss introduced by
the constrained structure of λnet,t(θ), and if there are alternative schemes
to suitably modify this structure. To answer, we start by introducing the
NB2 strategy from [23].

NB2 strategy. In the context of distributed Bayesian filtering, it has been
observed that modifying the Bayesian update by raising the likelihoods to
some constant power (equal for all agents) can reduce the error in tracking
the centralized Bayesian posterior [92, 99]. Starting from this observation,
in [23] a social learning scheme with non-Bayesian updates is introduced.
This non-Bayesian learning scheme with non-Bayesian updates (NB2) is
summarized in listing (13.19). The combination step is the geometric-
averaging rule. The fundamental modification lies in the update step,
where the likelihood of each agent k is raised to some positive constant γk.
Differently from what was proposed in [92, 99], the constant γk is allowed
to be agent-dependent, a property that will be shown to be critical in the
sequel.

NB2: Social learning with non-Bayesian updates
start from the prior belief vectors µk,0 for k = 1, 2, . . . ,K
choose the update parameters γk > 0 for k = 1, 2, . . . ,K
for t = 1, 2, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣∣
agent k observes xk,t
for θ = 1, 2, . . . , H∣∣∣∣ ψk,t(θ) = µk,t−1(θ)ℓγk

k (xk,t|θ)∑
θ′∈Θ µk,t−1(θ′)ℓγk

k (xk,t|θ′)
end

(self-learning)

end

for k = 1, 2, . . . ,K∣∣∣∣∣∣∣∣
for θ = 1, 2, . . . , H∣∣∣∣ µk,t(θ) =

∏
j∈Nk

[ψj,t(θ)]ajk∑
θ′∈Θ

∏
j∈Nk

[ψj,t(θ′)]ajk

end

(cooperation)

end
end

(13.19)

Unfolding the recursion arising from the algorithm described in listing
(13.19), it is readily seen that the only modification with respect to the

13.1. Non-Bayesian Updates 353

recursion obtained from traditional social learning is that the log likelihood
ratios λj,t in (6.27) are now multiplied by the update constants γj . This
implies that in the NB2 case the relevant network variable is

λNB2,t(θ) ≜
K∑
k=1

vkγkλk,t(θ) (13.20)

and that the error exponents can be evaluated by computing the LMGF

ΛNB2(s; θ) ≜ logE exp
{
sλNB2,t(θ)

}
(13.21)

and then, for the NB2 strategy, the error exponent relative to hypotheses
θ and ϑo is

ENB2(θ, ϑo) ≜ − inf
s∈R

ΛNB2(s; θ). (13.22)

13.1.2 Independent Agents

In this section we examine the case where the data are independent across
the agents. Accordingly, the log likelihood ratio of the optimal centralized
Bayesian scheme becomes

λcen,t(θ) =
K∑
k=1

λk,t(θ). (13.23)

We start by comparing traditional social learning against the centralized
Bayesian scheme.

Consider first what happens when the combination matrix is doubly
stochastic, which implies that vk = 1/K, yielding, in view of (13.20),

λnet,t(θ) = 1
K

K∑
k=1

λk,t(θ). (13.24)

Comparing (13.24) against (13.23), we see that, for doubly stochastic
matrices, λnet,t(θ) and λcen,t(θ) differ by a scaling constant K, which
suggests that in this case the decentralized and centralized schemes should
behave similarly in terms of decision performance. We now show that
this is the case by examining the error exponents. In view of (13.24) and
(13.23), the LMGFs of λnet,t(θ) and λcen,t(θ) are related as follows:

Λnet(s; θ) = logE exp
{
sλnet,t(θ)

}
= logE exp

{
sλcen,t(θ)/K

}
= Λcen(s/K; θ). (13.25)

354 Extensions and Conclusions

Using (13.25) along with (13.17) and (13.10), we have

Enet(θ, ϑo) = − inf
s∈R

Λnet(s; θ) = − inf
s∈R

Λcen(s/K; θ)

= − inf
s∈R

Λcen(s; θ) = Ecen(θ, ϑo), (13.26)

which shows that, when the data are statistically independent across the
agents, traditional social learning with a doubly stochastic combination
matrix achieves the same error exponents, for all pairs (θ, ϑo) with θ ≠ ϑo,
as the centralized Bayesian scheme.

Consider next the setting where the combination matrix is not doubly
stochastic (recall that it must be left stochastic). This setting plays an
important role in several applications, especially over directed graphs, where
it can be difficult to construct a doubly stochastic combination matrix.
When the matrix is not doubly stochastic, the Perron vector v cannot
have uniform entries.2 Therefore, the equivalence between λnet,t(θ) and
λcen,t(θ) is lost, and, hence, the equivalence between the distributed and
centralized scheme is lost. This happens because an agent with a higher
Perron vector entry gives more credit to its own likelihood with respect to
agents with lower entries. However, giving uneven degree of importance
to the likelihoods is not supported from a statistical viewpoint, since the
optimal Bayesian scheme would assign equal weights to the likelihoods —
see (13.23). Notably, this lack of optimality was already proved for the
case of adaptive social learning [94, 95].

We now show how the NB2 strategy from listing (13.19) can overcome
the limitations of traditional social learning thanks to the insertion of
non-Bayesian updates into the social learning loop. In fact, the update
parameters {γk} can be used to compensate for the unequal assignment of
importance across the agents’ likelihoods. Specifically, the choice

γk = 1
vk

(13.28)

leads to λNB2,t(θ) = λcen,t(θ), and, hence, the NB2 strategy achieves the
same error exponent as the centralized Bayesian scheme, even with left
stochastic combination matrices. Note that the Perron vector need not

2The columns of A add up to 1 since A is left stochastic by assumption. If vk = 1/K for all
k, from (4.5) we have

A
1

K
= 1

K
⇐⇒ A1 = 1, (13.27)

which implies that the rows of A also add up to 1. Therefore, if v has uniform entries, A must
be doubly stochastic.

13.1. Non-Bayesian Updates 355

be known beforehand by the agents. It can be estimated by means of a
standard distributed consensus protocol [58], as explained in [23].

Example 13.1 (Independent agents). Consider the following social learning problem
with statistically independent data across the agents. The network topology is displayed
in the left panel of Figure 13.1. It is a strong undirected graph (all nodes have a self-loop,
not shown in the figure). On top of it, we construct a left stochastic combination matrix
through the uniform-averaging rule — see Table 4.1. Regarding the agents’ data, consider
the following family of Laplace probability density functions with three different means
and unit scale parameter, namely,

gn(x) = 1
2e
−|x−0.1n|, n = 1, 2, 3. (13.29)

The distributions of the agents are chosen from among these Laplace densities, in the
specific way reported in Table 13.1. We observe that this assignment results in a globally
identifiable problem for any choice of ϑo.

Table 13.1: Identifiability setup for the learning problem in Example 13.1.

Likelihood model: ℓk(x|θ)
Agent k

θ = 1 θ = 2 θ = 3
1 − 3 g1(x) g1(x) g3(x)
4 − 6 g1(x) g3(x) g3(x)
7 − 10 g1(x) g2(x) g1(x)

We run all algorithms by assuming that the initial beliefs are uniform. Accordingly,
the overall error probability (13.15), corresponding to the centralized system, becomes

p̄t = 1
H

∑
ϑo∈Θ

Pϑo

[
ϑo ̸= arg max

θ∈Θ
µcen,t(θ)

]
. (13.30)

Likewise, for the distributed strategies (i.e., the NB2 strategy and traditional social
learning), to obtain a compact performance descriptor we further average the error
probabilities of all agents. The overall error probability p̄t in this case is defined as

p̄t = 1
KH

K∑
k=1

∑
ϑo∈Θ

Pϑo

[
ϑo ̸= arg max

θ∈Θ
µk,t(θ)

]
. (13.31)

Figure 13.1 shows the evolution over time of this average error probability for: i) the
NB2 strategy from listing (13.19) with the update parameters {γk} chosen according
to (13.28); ii) traditional social learning (SL) from listing (3.16); and iii) the central-
ized Bayesian posterior in (13.4). We see that the NB2 strategy outperforms traditional
social learning, and attains the same error exponent as the centralized Bayesian posterior.

356 Extensions and Conclusions

1

2
3

4

5

6

7
8 9

10

0 50 100 150 200 250 300 350 400

t

10−4

10−3

10−2

10−1

100

p̄ t

markers: simulation
dashes: theoretical exponents

NB2

SL

Bayes

Figure 13.1: (Left) Network topology used in Example 13.1. The graph is undirected and
all agents are assumed to have a self-loop (not shown in the figure). (Right) Average error
probability (Eqs. (13.30) and (13.31)) as a function of time, for the independent data case and
a left stochastic matrix. We compare: i) the NB2 strategy from listing (13.19) with the update
parameters {γk} chosen according to (13.28); ii) traditional social learning (SL) from listing
(3.16); and iii) the centralized Bayesian posterior in (13.4).

13.1.3 Clusters of Highly Dependent Agents

Interestingly, the NB2 strategy can achieve the optimal Bayesian exponent
and outperform traditional social learning even in some scenarios with
high statistical dependence across the agents. This is shown in [23] for the
limiting case where the network is divided into clusters wherein agents
have the same data (i.e., they have maximal statistical dependence). Let
us now examine this case in greater detail.

Specifically, the network is partitioned into M clusters or groups, de-
noted by G1,G2, . . . ,GM . The cluster to which agent k belongs will be
denoted by Ck. For example, if we have 3 agents and M = 2 clusters, with

G1 = {1, 2}, G2 = {3}, (13.32)

then the clusters to which the individual agents belong are

C1 = G1, C2 = G1, C3 = G2. (13.33)

We assume that the agents within the same cluster observe the same data,
i.e., if j and k belong to the same cluster,

xj,t = xk,t. (13.34)

In this scenario, traditional non-Bayesian social learning ends up counting
multiple times the same data arising from agents belonging to the same
cluster. In contrast, a centralized Bayesian posterior taking into account
the statistical dependence would discard all redundant data and compute

13.1. Non-Bayesian Updates 357

the product only between the remaining likelihoods. In other words, the
centralized problem can be reformulated as an equivalent problem with
only M independent data samples at each time t. Assume that, given the
mth cluster, the centralized system picks from this cluster only the data
from a single agent in the cluster, denoted by jm. Accordingly, the optimal
log likelihood ratio would be the sum of the log likelihood ratios for these
independent data samples, namely,

λcen,t =
M∑
m=1

λjm,t. (13.35)

Note that we can also represent the log likelihood ratio in (13.35) by
including the log likelihood ratios from all agents, by writing

λcen,t =
K∑
k=1

1
|Ck|

λk,t. (13.36)

In fact, in (13.36) the log likelihood ratio of each agent k is divided by the
cardinality of the cluster to which agent k belongs. Since the log likelihood
ratios corresponding to the same cluster are identical, the representation in
(13.36) is equivalent to including a single log likelihood ratio per cluster.

Consider now the NB2 strategy. In order to achieve the same exponent
as the centralized Bayesian scheme, we need to match (13.20) with (13.36).
This is easily obtained by setting

γk = 1
vk|Ck|

. (13.37)

For example, if one cluster is made of 2 agents, say j and k, we have
|Cj | = |Ck| = 2, and rule (13.37) (apart from compensating for the Perron
vector entries, as explained in the previous section) discounts the log
likelihood by a factor 1/2 to split its contribution equally between the two
agents in the cluster. In contrast, traditional non-Bayesian social learning
neglects the dependence and simply treats the data in the cluster as if they
were independent. As a consequence, in traditional non-Bayesian social
learning the data in the cluster are given more relevance than what they
would deserve according to the optimal Bayesian processing.

Example 13.2 (Clusters of highly dependent agents). Consider the same network
topology used in Example 13.1. To explore the potential benefits of the NB2 strategy
with dependent data, for the experiments in Figure 13.2 we consider the following setup.

358 Extensions and Conclusions

1

2
3

4

5

6

7
8 9

10

0 200 400 600 800 1000 1200

t

10°2

10°1

100

p̄ t

markers: simulation
dashes: theoretical Bayes exponent

NB2: corr. coeÆ. 1

SL: corr. coeÆ. 1

Bayes

NB2: corr. coeÆ. 2/3

SL: corr. coeÆ. 2/3
<latexit sha1_base64="5b0uZmhJQssi2wRSNCyZhsekBRw=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiC11WsA9oh5JJM21oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z4cPxZcG8f5RoW19Y3NreJ2aWd3b/+gfHjU0lGiKGvSSESq4xPNBJesabgRrBMrRkJfsLY/vs389oQpzSP5aKYx80IylDzglBgreb2QmBElIr2b9d1+ueJUnTnwKnFzUoEcjX75qzeIaBIyaaggWnddJzZeSpThVLBZqZdoFhM6JkPWtVSSkGkvnYee4TOrDHAQKfukwXP190ZKQq2noW8ns5B62cvE/7xuYoJrL+UyTgyTdHEoSAQ2Ec4awAOuGDViagmhitusmI6IItTYnkq2BHf5y6ukdVF1L6u1h1qlfpPXUYQTOIVzcOEK6nAPDWgChSd4hld4QxP0gt7Rx2K0gPKdY/gD9PkDqeSSCg==</latexit>G1

<latexit sha1_base64="qWWBETzIlliAF+26AdmU3BtOn6c=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9klRD0SPegRE0ES2JBu6UJD213bLgnZ8Du8eNAYr/4Yb/4bu7AHBSdpMpl5L286QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pToA15UzSlmGG006sKBYBp4/B+CbzHydUaRbJBzONqS/wULKQEWys5PcENiOCeXo769f65YpbdedAq8TLSQVyNPvlr94gIomg0hCOte56bmz8FCvDCKezUi/RNMZkjIe0a6nEgmo/nYeeoTOrDFAYKfukQXP190aKhdZTEdjJLKRe9jLxP6+bmPDKT5mME0MlWRwKE45MhLIG0IApSgyfWoKJYjYrIiOsMDG2p5ItwVv+8ipp16reRbV+X680rvM6inACp3AOHlxCA+6gCS0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8fq2iSCw==</latexit>G2

Figure 13.2: (Left) Network topology used in Example 13.2. The shaded areas represent the
clusters of agents. The graph is undirected and all agents are assumed to have a self-loop (not
shown in the figure). (Right) Average error probability (Eqs. (13.30) and (13.31)) as a function
of time, for the highly dependent data case and a doubly stochastic matrix. We compare: i) the
NB2 strategy from listing (13.19) with the update parameters {γk} chosen according to (13.37);
ii) traditional social learning (SL) from listing (3.16); and iii) the centralized Bayesian posterior
in (13.4), computed by assuming perfect correlation among the data within the same cluster.

The data samples of agent 1 originate from a unit-scale Laplace distribution with mean
equal to 0.1; the data samples of all other agents originate from a unit-scale Laplace
distribution with mean equal to 0.05, and these agents (i.e., from 2 to 10) form a cluster
with dependent data. The two groups of agents, G1 = {1} and G2 = {2, 3, . . . , 10}, are
highlighted in the network topology depicted in the left panel of Figure 13.2. For the
dependence enforced within G2, we consider the following scenarios: the limiting case
where all data within the cluster are the same (corresponding to a Pearson correlation
coefficient equal to 1); the more practical case where we first generate the same data
samples for all the agents within G2, and then add to these samples independent Gaussian
variables with zero mean and unit variance. In this way, the observations of agents
2, 3, . . . , 10 are highly correlated but not equal (specifically, they feature a Pearson
correlation coefficient equal to 2/3).

In this example we want to emphasize the role of the dependence among the agents,
rather than of the asymmetries arising from unequal Perron vector entries. Therefore,
we choose a doubly stochastic combination matrix (specifically, a Metropolis matrix —
see Table 4.1), which implies that the Perron vector has uniform entries, i.e., vk = 1/K
for k = 1, 2, . . . ,K. According to (13.37), the update constants for the NB2 strategy are
set as

γk = K

|Ck| . (13.38)

We remember that this design choice has been obtained for a model where the data
within the same cluster are exactly the same. Observe that this model holds for the
considered case with Pearson correlation coefficient equal to 1, while it does not hold for
the case with Pearson correlation coefficient equal to 2/3. Remarkably, in Figure 13.2
we see that the NB2 strategy significantly outperforms traditional social learning for
both the considered values of the correlation coefficient, i.e., also in the more practical
case where the data within the same cluster are different.

In Figure 13.2 we also show the performance of the centralized Bayesian posterior
that assumes perfect correlation among the data within the same cluster. Remarkably,

13.1. Non-Bayesian Updates 359

the error exponent attained by the NB2 strategy, for both the considered values of the
correlation coefficient, is close to the error exponent attained by this Bayesian posterior.

13.1.4 More General Update Rules

The update rule (13.1) was already obtained in Chapter 2 — see (2.90). In
particular, we showed there that, from an information-theoretic viewpoint,
this modified rule arises when one modifies the free energy by weighting the
KL divergence term by 1/γk. From a stochastic-optimization viewpoint, the
parameter γk plays the role of the step-size of a stochastic mirror descent
algorithm. Rule (13.1) is not the only possibility for deriving posterior
beliefs based on specific constraints [174]. As also discussed in the last
paragraph of Chapter 2, different update rules would arise by considering
variations of the cost functions in (2.61), (2.70), or (2.72), by scaling the
individual terms with different weights, so as to unbalance the relative
importance of past information (encoded in the prior) and fresh data
(encoded in the likelihood). We have seen other instances of this general
approach in Chapter 8 when we introduced the adaptive update rule

ψk,t(θ) ∝ µ1−δ
k,t−1(θ)ℓk(xk,t|θ). (13.39)

Comparing (13.39) with (13.1) we see that in the adaptive rule (13.39) the
belief, rather than the likelihood, is raised to some power. Note also that
in the adaptive case we did not consider an agent-dependent parameter
δk, even if this choice is possible. The reason why an agent-independent
parameter δ works is that, to infuse adaptation, we do not need to differ-
entiate among the agents. What we need to do is to reduce the importance
of past data in comparison with new data. To this end, we reduced the
importance of the previous-lag belief with respect to the likelihood. In
contrast, as we explained in the previous section, in the NB2 update (13.1)
what matters is to assign different degrees of importance to the likelihoods
of different agents, for example, to compensate for different Perron entries
or to avoid redundancy in the case of dependent data. That is why in
(13.1) we consider an agent-dependent parameter γk.

Another interesting aspect concerns the intrinsic non-Bayesian nature
of the update in (13.1). As we showed in Section 8.2.3, Eq. (13.39) can
be interpreted as a Bayesian update with respect to a flattened belief
µ̂k,t−1(θ) ∝ µ1−δ

k,t−1(θ). In contrast, Eq. (13.1) cannot be interpreted as a
Bayesian update, since if we try to normalize ℓγkk (xk,t|θ) to get a probability

360 Extensions and Conclusions

(mass or density) function, we get a normalization constant that depends
on θ, and we lose the Bayesian-update structure.

The above discussion suggests that we can also consider a more general
update rule in the form

ψk,t(θ) ∝ µ1−δ
k,t−1(θ)ℓγkk (xk,t|θ), (13.40)

where we raise to suitable powers both the belief and the likelihood. In this
way, we can design social learning algorithms that are at the same time
adaptive (thanks to the adaptation parameter δ) and able to control the
discrepancies among the agents so as to optimize the performance (thanks
to the update constants {γk}).

13.1.5 Bayesian or Non-Bayesian?

The local Bayesian update employed in traditional social learning is moti-
vated by observing that, when given a prior µk,t−1 and a new observation
xk,t, an agent k acting rationally would build the updated belief µk,t via
Bayes’ rule. Since agent k has all the necessary knowledge to perform such
update locally, then it makes sense to assume that the local update step is
Bayesian. Then, traditional social learning becomes globally non-Bayesian
due to the combination step, which aggregates the marginal agents’ like-
lihoods without implementing Bayes’ rule globally, i.e., at the network
level.

We have shown that in some useful cases the NB2 strategy attains the
same asymptotic performance as the optimal centralized Bayesian scheme,
while traditional social learning does not. Intriguingly, the NB2 strategy
achieves this improvement by adding a further non-Bayesian layer, since
the update step is no longer Bayesian. Therefore, we obtain a curious
result: Two non-Bayesian steps lead to a Bayesian behavior! This might be
regarded as an instance of the double-negation case where two negatives
cancel each other out.

One explanation for this behavior is that the local Bayesian update is a
greedy choice, since it is optimal only locally. In making this greedy choice,
the agent is not considering that this local step is one part of a global
learning process, which involves cooperation with other agents. Therefore,
it is legitimate that a rational agent modifies its local behavior to reach
improved global performance.

In practice, establishing whether in a social learning algorithm the
local updates must be Bayesian or non-Bayesian is an open question.

13.2. Censored Beliefs 361

From a behavioral viewpoint, social learning models attempt to mimic the
behavior of real-world social groups. Useful theories developed in social
and cognitive sciences support the thesis that agents act individually
in a Bayesian manner. It would be interesting to explore whether these
behavioral theories can incorporate models that depart from the assumption
of local Bayesian updates. In this perspective, a non-Bayesian update
scheme like the one implemented by the NB2 strategy can be interpreted
as a more powerful notion of rationality. The agents are cognizant of
belonging to a social system and accordingly modify their updates (from
Bayesian to non-Bayesian) to optimize the social, rather than the individual,
performance. However, from an experimental viewpoint, it is not known
whether the non-Bayesian updates would match well the effective cognitive
mechanism observed in real-world groups.

From an engineering design perspective, we have shown that a social
learning algorithm using the non-Bayesian update rule (13.1) can lead to
superior performance in some scenarios. For this to be true, each agent
k should incorporate (through the parameter γk) into its own update
some information regarding the social aspects. For example, the Perron
vector that is related to the graph of social interactions, or the statistical
dependence across the agents. However, when this knowledge regarding
the distributed network features is not available, or in scenarios different
from the ones considered in [23], the NB2 strategy could be outperformed
by a scheme with Bayesian updates.

We could sum up by saying that a local Bayesian update is a more
general-purpose rule motivated by assuming local rationality of the agents,
which does not need any information regarding the distributed network
setting. In comparison, the NB2 strategy is a more focused strategy that
can outperform traditional social learning in some cases, by incorporating
ad-hoc information regarding the distributed scenario.

13.2 Censored Beliefs

The ASL strategy introduced in Chapter 8 enables adaptation in social
learning by modifying the Bayesian update rule (3.10a) into the adap-
tive update rule (8.6). We next illustrate another possibility to enable
adaptation in social learning. Referring back to the social learning scheme
(3.10a)–(3.10b), as done for the ASL strategy, we continue to use geomet-
ric averaging for the cooperation step (3.10b) and focus instead on the

362 Extensions and Conclusions

modification of the self-learning step (3.10a), namely, on the computation
of the intermediate belief vector ψk,t.

The basic idea is to avoid that the agents become too “extreme” in
their convictions. To this end, we should avoid that the beliefs about the
discarded hypotheses become too small. Therefore, while we want i) an
intermediate belief vector ψk,t close to the Bayesian update µBu

k,t, we also
want ii) that the entries of ψk,t do not fall below some minimum value
ψmin > 0. In this way, these entries will remain bounded away from 0.
These two requirements can be translated into the following optimization
problem:

ψk,t = arg min
p∈∆H

D
(
p||µBu

k,t

)
, subject to p(θ) ≥ ψmin > 0 ∀θ ∈ Θ.

(13.41)
Note that the minimum admissible belief must fulfill the condition

ψmin ≤
1
H
, (13.42)

otherwise the vector p would have all entries larger than 1/H. Then
the sum of its entries will exceed 1, and p could not be a probability
vector. Preliminarily, we observe that problem (8.1) is feasible under
(13.42) because there exists at least one feasible point, namely, the uniform
solution p(θ) = 1/H for all θ ∈ Θ.

We now show how to solve (13.41) by using the Karush-Kuhn-Tucker
(KKT) conditions [33, 155]. In order to state these conditions, it is first
necessary to rewrite (13.41) as a convex problem in standard form. To this
end, we introduce the following notation:

J(p) ≜ D(p||µBu
k,t), p ∈ RH+ , (13.43)

f(p) ≜
∑
θ∈Θ

p(θ)− 1, (13.44)

gθ(p) ≜ ψmin − p(θ), θ ∈ Θ, (13.45)

which allows us to rewrite the problem in (13.41) as

ψk,t = arg min
p∈RH+

J(p), subject to f(p) = 0 and gθ(p) ≤ 0 ∀θ ∈ Θ,

(13.46)
where R+ is the set of positive real numbers. Note that the cost function is
strictly convex in its argument p, the equality constraint is affine, and the
inequality constraints are convex. Therefore, we have a convex optimization

13.2. Censored Beliefs 363

problem, which is feasible since we showed that there exists at least one
feasible point.

We continue by introducing the Lagrangian
L(p, ζ, ν) ≜ J(p) + ν f(p) +

∑
θ∈Θ

ζθ gθ(p), (13.47)

where ν ∈ R is the Lagrange multiplier associated with the equality
constraint, and ζ = [ζθ] is the vector collecting the nonnegative Lagrange
multipliers associated with the inequality constraints.

Under differentiability and convexity, it is known that a point p is a
solution to (13.41) if, and only if, it fulfills the KKT conditions, which are
the following [33, 155]:

f(p) = 0, (13.48)
gθ(p) ≤ 0, (13.49)
ζθ ≥ 0, (13.50)
ζθ gθ(p) = 0, (13.51)
∇pL(p, ζ, ν) = 0, (13.52)

where the conditions relative to θ are intended to hold for all θ ∈ Θ, and
where ∇p denotes the gradient computed with respect to p.

Let us start by evaluating the θth entry of the gradient in (13.52),
which, by exploiting (13.43)–(13.45), can be evaluated as

∂L(p, ζ, ν)
∂p(θ) = ∂J(p)

∂p(θ) + ν
∂f(p)
∂p(θ) + ζθ

∂gθ(p)
∂p(θ)

= 1 + ν + log p(θ)
µBu
k,t(θ)

− ζθ. (13.53)

Imposing condition (13.52), we find that the sought-after solution ψk,t(θ) =
p(θ) must satisfy

ψk,t(θ) = χµBu
k,t(θ) eζθ , (13.54)

where we introduced the scaling constant χ = e−(1+ν). Accounting for
(13.51), we conclude that

ψk,t(θ) =

ψmin if ζθ > 0,
χ µBu

k,t(θ) if ζθ = 0,
(13.55)

which, defining the set S ≜ {θ : ζθ > 0}, can be rewritten as

ψk,t(θ) =

ψmin if θ ∈ S,
χ µBu

k,t(θ) if θ ∈ Sc,
(13.56)

364 Extensions and Conclusions

where Sc denotes the complement of S. Imposing the equality constraint
(13.48), we have

1 =
∑
θ∈Θ

ψk,t(θ) = |S|ψmin + χ
∑
θ∈Sc

µBu
k,t(θ) =⇒ χ = 1− |S|ψmin∑

θ∈Sc
µBu
k,t(θ)

. (13.57)

The solution in (13.56) is not yet determined since we have not specified
how to determine the set S. Moreover, since we must guarantee that
ψk,t(θ) ≥ ψmin for all θ, in view of (13.56), when θ ∈ Sc we must impose
the condition

χµBu
k,t(θ) ≥ ψmin, (13.58)

which depends on the constant χ and, hence, is also affected by S.
The set S can be obtained by implementing the straightforward algo-

rithmic procedure shown in listing (13.59).

Adaptive update with censored beliefs

initialize ψk,t = µBu
k,t, S = {θ : ψk,t(θ) ≤ ψmin}

while ψk,t(θ) < ψmin for some θ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each θ ∈ Θ∣∣∣∣∣∣∣∣∣∣∣

χ = 1 − |S|ψmin∑
θ∈Sc

µBu
k,t(θ)

ψk,t(θ) =
{
ψmin if θ ∈ S
χµBu

k,t(θ) if θ ∈ Sc

end

S = S
⋃

{θ ∈ Sc : ψk,t(θ) ≤ ψmin}

end

(13.59)

In the algorithm (see also Figure 13.3 for a graphical illustration), we
start by collecting into a set S the hypotheses θ for which the initial beliefs
µBu
k,t(θ) are smaller than or equal to ψmin. Then we replace with ψmin all

the entries that are smaller than ψmin. The additional mass necessary
to fill the gap between these entries and ψmin is taken from the beliefs
µBu
k,t(θ) that exceed ψmin, which correspond to θ ∈ Sc. Specifically, this

mass is redistributed by applying (13.57) and setting ψk,t(θ) = χµBu
k,t(θ)

for θ ∈ Sc. If the resulting vector ψk,t continues to violate the inequality
constraints, we update the set S, saturate the entries smaller than ψmin,

13.2. Censored Beliefs 365

1 2 3 4 5

θ

0.0

0.1

0.2

0.3

0.4

µ
B

u
k
,t
(θ

)

ψmin

1 2 3 4 5

θ

0.0

0.1

0.2

0.3

0.4

ψ
k
,t
(θ

)

ψmin

1 2 3 4 5

θ

0.0

0.1

0.2

0.3

0.4

ψ
k
,t
(θ

)

ψmin

Figure 13.3: An example illustrating the algorithm in listing (13.59). (Left) Bayesian update
µBu
k,t. (Center/Right) Beliefs computed by the algorithm in the two iterations necessary to

converge.

and apply again (13.57). The procedure is repeated until the vector ψk,t
is feasible, i.e., until it fulfills the constraints ψk,t(θ) ≥ ψmin for all θ ∈ Θ.
Note that the algorithm can perform at most H − 1 iterations and that
it must necessarily find an admissible solution. To see why, observe that
at each iteration the algorithm adds at least one new entry equal to ψmin.
Accordingly, if the algorithm has run for H − 1 iterations, the current
belief has H − 1 entries equal to ψmin. However, since at each iteration the
algorithm produces a valid pmf by construction, and since ψmin ≤ 1/H,
we have two cases. If ψmin = 1/H, to obtain a pmf the remaining entry
must be equal to 1/H. This means that the updated Sc is empty, and
the algorithm terminates with a uniform belief. If instead ψmin < 1/H,
the remaining entry cannot be smaller than ψmin (otherwise we would not
have a pmf) and, hence, the algorithm terminates. We conclude that the
algorithm finds always an admissible solution in at most H − 1 iterations.

In summary, we arrive at an algorithmic procedure that implements a
belief update with censored beliefs. As a result of keeping the belief-vector
entries away from zero, we infuse the resulting social learning algorithm
with adaptation capabilities. To understand why, it is useful to consider the
simplified setting with a single agent (we accordingly drop the subscript k
in the following). Consider the sequential Bayesian updates seen in (2.21):

µt(θ) ∝ µt−1(θ)ℓ(xt|θ), (13.60)

366 Extensions and Conclusions

which lead to the relation

log µt(θ)
µt(θ′)

= log µt−1(θ)
µt−1(θ′) + log ℓ(xt|θ)

ℓ(xt|θ′)

= log µ0(θ)
µ0(θ′) +

t∑
τ=1

log ℓ(xτ |θ)
ℓ(xτ |θ′)

. (13.61)

As shown in Lemma 2.2, under correct likelihood models, the belief about
the true hypothesis tends to 1 as time elapses. This result follows from
the fact that the log belief ratio between the true and a wrong hypothesis
diverges asymptotically (as shown in (2.42)). For instance, if the true state
is θ, the log belief ratio in (13.61) diverges to ∞.

Assume now that the true state is θ until a given time instant T ≫ 1,
and then the true state changes from θ to θ′. To examine the learning
behavior under this new condition, it is useful to write the following relation
for t > T :

log µt(θ)
µt(θ′)

= log µT (θ)
µT (θ′) +

t∑
τ=T+1

log ℓ(xτ |θ)
ℓ(xτ |θ′)

. (13.62)

If T is large, we have µT (θ) ≈ 1 (hence, µT (θ′) ≈ 0). Thus, the first term
on the RHS of (13.62) is large. As observed, this is a desired behavior to
learn the hypothesis θ that is in force until T . On the other hand, under the
new true hypothesis θ′, the log belief ratio in (13.62) should invert its trend
and diverge to −∞, thus resulting in a belief that is correctly maximized
at θ′. However, it is virtually impossible to achieve correct learning within
a short time period, due to the almost infinite initial condition at t = T .
To mitigate this effect, we can censor the beliefs in such a way that they
remain sufficiently away from zero, which would guarantee the boundedness
of the first term on the RHS of (13.62).

The shape of the resulting intermediate beliefs in (13.56) has an inter-
esting interpretation. Depending on the values of the traditional Bayesian
update µBu

k,t, some entries of ψk,t are censored and set to the minimum
admissible credibility ψmin. The other entries of ψk,t are a scaled version of
the traditional Bayesian update. In a nutshell, we could say that ψk,t follows
as much as possible the shape of the Bayesian update, while remaining
compatible with the minimum credibility constraint. It is useful to make
some analogies and distinctions with respect to the adaptive social learning
(ASL) strategy introduced in Chapter 8.

13.2. Censored Beliefs 367

• We have already seen that the ASL strategy leads to a linear com-
bination of log likelihood ratios — see, e.g., (9.1). In contrast, when
applied in a social learning context, the censored-belief approach
entails repeated nonlinear steps related to the censoring operation.
While it is still true that, with the geometric combination rule, the log
ratios log ψj,t(ϑ⋆)

ψj,t(θ) are linearly combined, this combination takes place
after a censoring operation that destroys the overall linear structure
of the recursion.

• The censoring strategy implemented by (13.56) is reminiscent of
the philosophy underlying traditional change detection or quickest
detection procedures, such as Page’s CUSUM test [14, 141, 163, 176].
For a single-agent, binary change-detection problem, it is well known
that censoring the decision statistic is beneficial from the quickest
detection viewpoint. In particular, in the single-agent binary detection
case with true distribution corresponding either to ℓ(x|1) or ℓ(x|2),
and with data generated from a hypothesis that suddenly varies at
some instant, Page’s rule optimizes in a suitable mathematical sense
the trade-off between false alarms and time to detect the change [133,
142]. It would be interesting to explore whether this trade-off is
also optimized by the belief-censoring strategy adopted in the social
learning setting. It would also be interesting to compare the ASL
strategy against the strategy with censored beliefs. This type of
comparison is akin to the classic comparison existing in the literature
between EWMA and CUSUM control charts [114] for single-agent
binary detection problems.

• Another aspect is the impact of censoring on the value itself of the
belief, rather than on the decision made by the agents. The belief
value plays an important role in opinion formation and contains more
information than the decision. It provides the degree of confidence
assigned by the agents to each hypothesis, and, in particular, reveals
how confident an agent is about a particular decision. For example,
consider the case where sufficient evidence has been collected in
support of the target hypothesis, so that the belief corresponding
to the wrong hypotheses has reached the minimum value ψmin. This
means that the belief corresponding to the target hypothesis has
reached the maximum value tolerated by the censored strategy, which
is ψmax = 1− (H − 1)ψmin. Assume now that the data distribution

368 Extensions and Conclusions

changes by providing more evidence in support of the currently chosen
hypothesis. The censored strategy is not able to translate this increase
of evidence into an increase of belief, since the maximum value ψmax
has already been reached. In contrast, the ASL strategy will reflect
the change by fluctuating around a higher belief. This is because the
ASL strategy inherently tracks an analog decision statistic, whereas
the censored strategy can track only until censoring takes place.

• We observed in Chapter 5 that traditional social learning allows the
belief about the target hypothesis to reach values astronomically
close to 1, making the agents reluctant to change their mind in the
presence of drifting conditions. One might ask whether such an endless
improvement makes sense in practice and which mechanisms can be
implemented to contrast it. In this connection, both the ASL and
the censored strategies prevent the belief about the target hypothesis
to approach indefinitely the value 1, albeit in two very different
manners. For the ASL strategy, the belief “collapse” is avoided by
preserving some degree of uncertainty in the beliefs, which keep on
fluctuating randomly as time elapses. The censored strategy operates
more “abruptly”; it forces the beliefs to stay always above a minimum
credibility, which implies that the belief about the target hypothesis
stays bounded away from 1.

• The comparison of different adaptation mechanisms is particularly
interesting from a behavioral perspective, where numerous questions
arise. For example, which adaptation mechanism would represent more
faithfully the behavior observed in a certain distributed cognitive
process? Are different categories of individuals represented by different
adaptation mechanisms?

13.3 Learning the Social Graph

We have explained in the previous chapters that the network graph plays
a critical role in the social learning performance. For example, we saw
in Chapter 5 how diverse learning modes are observed over connected
or weak graphs. In social learning applications, there is however another
important learning problem that we should consider, namely, the inverse
problem of learning the underlying graph structure from the observation
of the beliefs. In other words, instead of focusing on what the agents learn

13.3. Learning the Social Graph 369

through their social learning algorithm (which is the goal of the direct
learning problem), we can focus on the dual problem that deals with how
the nodes learn (i.e., on discovering the hidden interconnections that drive
the social learning process). Figure 13.4 summarizes this scenario. In the
direct problem, we start from a topology, run the social learning algorithm,
and examine its performance (e.g., the convergence of the agents’ beliefs or
the probability of misclassifying the target hypothesis) and the dependence
of this performance on the graph. Conversely, in the dual problem we
collect the streams of beliefs ψk,t publicly exchanged by the agents, and
focus on discovering the underlying graph.

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

<latexit sha1_base64="5BwQOaeX8tdj0lZCKtfKvZCJdyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWaop+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7Yuqd1mtNWuV+k0eRxFO4BTOwYMrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/ANSPjPE=</latexit>

l

<latexit sha1_base64="YRJqyVCqG6FQXBoZMn0gBB+PgAM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePHYgq2FNpTNdtKu3U3C7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKHiELcONwE6ikMpA4EMwvp35D0+oNI+jezNJ0Jd0GPGQM2qs1JT9csWtunOQVeLlpAI5Gv3yV28Qs1RiZJigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkZUovaz+aFTcmaVAQljZSsyZK7+nsio1HoiA9spqRnpZW8m/ud1UxNe+xmPktRgxBaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+ANYTjPI=</latexit>m

ψj,1, . . . ,ψj,t

ψk,1, . . . ,ψk,t

ψl,1, . . . ,ψl,t

ψm,1, . . . ,ψm,t

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

<latexit sha1_base64="5BwQOaeX8tdj0lZCKtfKvZCJdyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWaop+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7Yuqd1mtNWuV+k0eRxFO4BTOwYMrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/ANSPjPE=</latexit>

l

<latexit sha1_base64="YRJqyVCqG6FQXBoZMn0gBB+PgAM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePHYgq2FNpTNdtKu3U3C7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKHiELcONwE6ikMpA4EMwvp35D0+oNI+jezNJ0Jd0GPGQM2qs1JT9csWtunOQVeLlpAI5Gv3yV28Qs1RiZJigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkZUovaz+aFTcmaVAQljZSsyZK7+nsio1HoiA9spqRnpZW8m/ud1UxNe+xmPktRgxBaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+ANYTjPI=</latexit>m

<latexit sha1_base64="zWgo4Yn3Q198XkJEmk5wo/yHjqE=">AAACFHicbVDLSsNAFJ34rPEVdekmWARBKEkRFVcFNy4r2Ac0oUwmN+nQySTMTIQS+hFu/BU3LhRx68Kdf+O0jaCtBwYO59zDnXuCjFGpHOfLWFpeWV1br2yYm1vbO7vW3n5bprkg0CIpS0U3wBIY5dBSVDHoZgJwEjDoBMPrid+5ByFpyu/UKAM/wTGnESVYaalvnXoBxJQXBLgCMTZjgbOB55kMsOAgTA94+GP2rapTc6awF4lbkioq0exbn16YkjzRccKwlD3XyZRfYKEoYTA2vVxChskQx9DTlOMEpF9Mjxrbx1oJ7SgV+nFlT9XfiQInUo6SQE8mWA3kvDcR//N6uYou/YLyLFfAyWxRlDNbpfakITukAohiI00wEVT/1SYDLDDRHUhTl+DOn7xI2vWae147u61XG1dlHRV0iI7QCXLRBWqgG9RELUTQA3pCL+jVeDSejTfjfTa6ZJSZA/QHxsc3dAyfDw==</latexit>

graph
learner

<latexit sha1_base64="AlybDlAFUdS2noY8xcVohD+Upac=">AAACLXicbVDLSgMxFM34dnxVXboJFqFuyoyIiitBFy4r2Ad0hpLJ3KnBTDIkGaEM/SE3/ooILiri1t8wbUfQ6oHA4Zx7ktwTZZxp43kjZ25+YXFpeWXVXVvf2NyqbO+0tMwVhSaVXKpORDRwJqBpmOHQyRSQNOLQju4vx377AZRmUtyaQQZhSvqCJYwSY6Ve5SqIoM9EQUEYUEO3CKIEx0wBNUOcKWnvSYPArWlJGeGYA1GCif6hG4CIv1O9StWrexPgv8QvSRWVaPQqL0EsaZ7aOOVE667vZSYsiDKMchi6Qa4hI/Se9KFrqSAp6LCYbDvEB1aJcSKVPcLgifozUZBU60Ea2cmUmDs9643F/7xubpKzsGAiyw0IOn0oyTk2Eo+rK2vhA0sIVcz+FdM7ogi1HWjXluDPrvyXtI7q/kn9+OaoenFe1rGC9tA+qiEfnaILdI0aqIkoekTPaITenCfn1Xl3Pqajc06Z2UW/4Hx+AdNFqRI=</latexit>

direct problem
(social learning)

<latexit sha1_base64="RkaCf+Ar68zCo+LXkmd/varJELY=">AAACKnicbVDLSgMxFM3U9/iqunQTLELdlJkiKq4UNy4rWC10SrmTuTMNZjJDkhHK0O9x46+4caGIWz/E9CH4OhA4nHNPknvCXHBtPO/NqczNLywuLa+4q2vrG5vVre0bnRWKYZtlIlOdEDQKLrFtuBHYyRVCGgq8De8uxv7tPSrNM3lthjn2UkgkjzkDY6V+9TwIMeGyZCgNqpFbBmFMowLEiOYqs7ekQeDWEwX5gAoEJblMDtwAZfQV6VdrXsObgP4l/ozUyAytfvU5iDJWpDbOBGjd9b3c9EpQhjOBIzcoNObA7iDBrqUSUtS9crLqiO5bJaJxpuyRhk7U74kSUq2HaWgnUzAD/dsbi/953cLEJ72Sy7wwKNn0obgQ1GR03BuNuEJmxNASYIrbv1I2AAXMdqBdW4L/e+W/5KbZ8I8ah1fN2tnprI5lskv2SJ345JickUvSIm3CyAN5Ii/k1Xl0np035306WnFmmR3yA87HJzFhp7Y=</latexit>

dual problem
(graph learning)

Figure 13.4: Illustration of the social graph learning problem. The agents of a network run a
social learning algorithm to construct their beliefs about some hypotheses of interest (the direct
learning problem). The network graph influences the way each agent shares its opinions with
its neighbors. An inferential engine can probe the subset of agents {j, k, l,m} and collect the
pertinent beliefs shared over the network. Based on these beliefs, the goal of the dual learning
problem is to estimate the subgraph of connections between nodes j, k, l,m.

The general problem of learning a graph topology from measurements
collected at the nodes arises across several disciplines. It is therefore not
surprising that this problem is referred to in multiple ways, including: graph
learning, topology inference, network tomography, graph reconstruction,
graph estimation. The graph learning problem can provide answers to
many interesting questions. For example, by observing the evolution of
the nodes’ signals, can one establish which nodes are sharing information
with each other? How is privacy reflected in these interactions? Can one
discover which nodes have a magnified influence on the overall network
behavior? Numerous applications would benefit from such answers: tracing
the relationships between the users in a social network to capture the
opinion formation mechanism or to locate the source of fake news [115, 118,

370 Extensions and Conclusions

140, 160]; discovering clandestine information flows over the Internet [116,
168]; learning the synchronized cognitive behavior of a school of fish evading
predators [51, 138]; investigating the interaction between structural and
functional connectivity in the brain [112]; characterizing the evolution of
urban traffic [61]; discovering hidden relationships in financial data [86];
estimating gene regulatory networks from gene expression data [75].

Owing to several forms of physical limitations, the difficulty in address-
ing the graph learning problem is compounded by the fact that usually
only a limited fraction of the nodes can be probed. This is especially true
over large-scale networks. A second important question arises: Despite
the presence of latent, unobserved nodes, can partial observations still be
sufficient to discover the graph linking the probed nodes? For example,
in probing signals from the brain, only certain regions of the brain are
examined. Likewise, in probing signal flows over a social network with
millions of members, only a limited number of observations may be avail-
able. Under this regime, which is referred to as the partial observability
regime, graph learning becomes more complicated than usual, since the
signals collected at the probed nodes are subject to the influence (through
information diffusion) of the unobserved nodes. Interestingly, recent works
show that, despite the influence of the latent nodes, the graph linking the
probed nodes can be estimated faithfully under suitable conditions [47,
121, 122, 124, 150].

There exist some useful survey articles related to the topic of graph
learning [63, 81, 117, 121]. Since the focus of this book is on social learning,
it is useful to mention two recent works that deal with the graph learning
problem in the context of the social learning models that we have introduced
and examined in the previous chapters.

The first work is [118], which addresses the topology inference problem
for a social learning algorithm ruled by a weak graph — see Section 4.5.
Specifically, given the beliefs collected by probing a node belonging to a
receiving network, the goal is to discover the global influence that any
sending network might have exerted on that node. This problem is also
referred to as macroscopic topology learning in [118]. This global influence
is measured by the sum of the limiting combination weights from all nodes
in a given sending network to the node under consideration. The limiting
combination weights automatically embody the effect of multi-hop paths
from the agents in the sending networks to the agents in the receiving
networks — see (4.55). The following strong interplay between social

13.3. Learning the Social Graph 371

and topology learning is discovered in [118]: Given H hypotheses and S

sending networks, for macroscopic topology learning to be feasible it is
necessary that the number of sending networks is smaller than or equal
to the number of hypotheses, i.e., that S ≤ H. This is only a necessary
condition. For example, by exploiting the theory of Euclidean distance
matrices, it is shown in [118] that if the data within the sending networks
follow a very structured Gaussian model (see details in [118]), macroscopic
topology inference is feasible only for S = 2. However, and remarkably,
one fundamental result from [118] is that macroscopic topology inference
becomes feasible whenever S ≤ H (that is, the condition S ≤ H becomes
also sufficient) provided that a certain degree of diversity exists in the
statistical models of the sending networks.

The second work that we would like to mention is [160], which addresses
the problem of estimating, from the beliefs publicly exchanged by the agents,
the entire combination matrix underlying the social learning algorithm. A
graph learning algorithm is proposed, whose analytical characterization
reveals that it is possible: i) to estimate faithfully the combination matrix,
which allows to learn the underlying topology and quantify the pairwise
influences between agents; ii) to identify the influence that each individual
agent has on the objective of truth learning and accordingly quantify its
degree of informativeness, further allowing to identify the influencers and
the influenced agents. The proposed algorithm works under nonstationary
environments where either the true state of nature or the graph topology
are allowed to drift over time. The operation of the algorithm is illustrated
by applying it to different subnetworks of Twitter users to identify the
most influential users by using the text contained in their public tweets.

Appendices

Appendix A

Convex Functions

In this book we use some properties of convex functions. For this reason, we
collect in this appendix minimal elements about convex functions that are
directly applied in our proofs. For a broader treatment see, e.g., [33, 155].
Here and in the forthcoming appendices, most classic results are stated
without proof; for these results, we provide references where the interested
reader can find the necessary technical background and derivations.

We start with the definition of convex sets.

Definition A.1 (Convex sets). A set S ⊆ Rd is convex when, for all pairs of
distinct points x, y ∈ S and all p ∈ (0, 1), the point z = px+ (1 − p)y belongs to
S.

Geometrically, a convex function is ∪-shaped: Given two points x and
y, the line segment (chord) connecting f(x) to f(y) lies above or on the
function evaluated along the line segment that connects x to y.

Definition A.2 (Convex functions). A function f : Rd 7→ R is convex when its
domain dom(f) is convex and

f(px+ (1 − p)y) ≤ pf(x) + (1 − p)f(y) ∀x, y ∈ dom(f), ∀p ∈ [0, 1]. (A.1)

The function is called strictly convex if the inequality is strict whenever x ̸= y
and 0 < p < 1.

When the function is differentiable, convexity can be defined in terms
of the gradient.

376 Convex Functions

Lemma A.1 (First-order condition for convexity [33]). Let f : Rd 7→ R be
defined in an open domain dom(f) and differentiable on it. Then, convexity is
equivalent to the condition

f(y) − f(x) ≥ [∇f(x)]T (y − x) ∀x, y ∈ dom(f), (A.2)

and strict convexity holds when the inequality is strict for all x ̸= y.

In particular, when 0 ∈ dom(f) and f(0) = 0, we have the following
two relations that are useful in some of our proofs:

f(y) ≥ [∇f(0)]T y ∀y ∈ dom(f), (A.3a)
[∇f(x)]T x ≥ f(x) ∀x ∈ dom(f). (A.3b)

Equation (A.3a) is obtained by setting x = 0 in (A.2), whereas Eq. (A.3b)
is obtained by setting y = 0.

When the function is twice differentiable, convexity can be directly
expressed in terms of the Hessian matrix.

Lemma A.2 (Second-order condition for convexity [33]). Let f : Rd 7→ R be
defined in an open domain dom(f) and twice differentiable on it. Then, f is
convex if, and only if, the Hessian matrix ∇2f(x) is positive semidefinite (i.e.,
all its eigenvalues are nonnegative) for all x ∈ dom(f). Strict convexity holds
when the matrix is positive definite (i.e., all its eigenvalues are positive).

Convexity is especially useful in optimization problems, because it
provides information about the existence and/or uniqueness of minima.
Consider an open domain dom(f). Recall that, regardless of convexity, if
xo is a minimum (even local) of a differentiable function f , then we must
have ∇f(xo) = 0. Convexity implies that annihilation of the gradient is
also a sufficient condition for a minimum to exist. Moreover, for convex
functions this minimum is always a global minimum, but there might be
multiple global minima. For strictly convex functions, this is not possible,
and when a minimum exists, it is the unique global minimum.

Appendix B

Entropy and KL Divergence

This appendix collects some information-theoretic quantities that are useful
in our treatment. For more details see, for example, [52].

In the forthcoming definitions we adopt the following conventions (based
on continuity arguments):

0 log 1
0 = 0 log 0 = 0 log 0

0 = 0, log a0 =∞, log 0
a

= −∞, (B.1)

for a > 0. We start by presenting the definition of Shannon’s entropy for
discrete random variables, which quantifies the uncertainty associated with
a probability mass function.

Definition B.1 (Shannon’s entropy). Let y be a discrete random variable defined
on a set Y and having pmf p(y). The entropy of y or, equivalently, the entropy
of the pmf p(y), is

H(p) ≜
∑
y∈Y

p(y) log 1
p(y) = E log 1

p(y) . (B.2)

Next, we define the conditional entropy of a random variable z given
another random variable y, which quantifies the residual uncertainty con-
tained in z once y is observed.

Definition B.2 (Conditional entropy). Let y and z be two discrete random
variables defined on sets Y and Z, respectively, and having joint pmf p(y, z).
The entropy of z given an observed value y is the entropy of the conditional pmf

378 Entropy and KL Divergence

p(z|y), ∑
z∈Z

p(z|y) log 1
p(z|y) . (B.3)

The conditional entropy of z given y is the expectation of the above quantity
taken over the distribution of y,

Hz|y(p) ≜
∑
y∈Y

∑
z∈Z

p(y, z) log 1
p(z|y) = E log 1

p(z|y) . (B.4)

In the following definition we introduce the cross-entropy between a
reference pmf p(y) (which is assumed to be the actual pmf of the random
variable y) and another pmf q(y).

Definition B.3 (Cross-entropy). Let y be a discrete random variable defined on
a set Y and having pmf p(y). Let q(y) be another pmf defined on the same set.
The cross-entropy between p(y) and q(y) is

H(p, q) ≜
∑
y∈Y

p(y) log 1
q(y) = E log 1

q(y) . (B.5)

We continue by defining a quantity related to the cross-entropy, called
Kullback-Leibler (KL) divergence or relative entropy, which is useful to
measure the dissimilarity between a reference pmf p(y) and another pmf
q(y).

Definition B.4 (KL divergence). Let y be a discrete random variable defined on
a set Y and having pmf p(y). Let q(y) be another pmf defined on the same set.
The KL divergence between p(y) and q(y) is

D(p||q) ≜
∑
y∈Y

p(y) log p(y)
q(y) = E log p(y)

q(y) . (B.6)

Since log(p(y)/q(y)) = log p(y) − log q(y), by using Definitions B.1 and B.3 we
get the following representation:

D(p||q) = H(p, q) −H(p). (B.7)

Moreover, the KL divergence is always nonnegative, and is equal to 0 if, and
only if, p = q.

379

The KL divergence can also be introduced for two pdfs p(y) and q(y)
defined on Rd:

D(p||q) = E log p(y)
q(y) =

∫
Rd
p(y) log p(y)

q(y)dy, (B.8)

and it can be extended to more general probability measures by appealing
to the concept of the Radon-Nikodym derivative [54].

Similarly to what was done in Definition B.2, we can introduce the
conditional cross-entropy as follows.

Definition B.5 (Conditional cross-entropy). Let y and z be two discrete random
variables defined on sets Y and Z, respectively, and having joint pmf p(y, z). Let
q(z|y) be a conditional pmf defined for y ∈ Y and z ∈ Z. Given an observed
value y, the cross-entropy between the conditional pmfs p(z|y) and q(z|y) is∑

z∈Z

p(z|y) log 1
q(z|y) . (B.9)

The conditional cross-entropy Hz|y(p, q) is the expectation of the above quantity
taken over the distribution of y,

Hz|y(p, q) ≜
∑
y∈Y

∑
z∈Z

p(y, z) log 1
q(z|y) = E log 1

q(z|y) . (B.10)

Likewise, we define the conditional KL divergence as follows.

Definition B.6 (Conditional KL divergence). Let y and z be two discrete random
variables defined on sets Y and Z, respectively, and having joint pmf p(y, z). Let
q(z|y) be a conditional pmf defined for y ∈ Y and z ∈ Z. Given an observed
value y, the KL divergence between the conditional pmfs p(z|y) and q(z|y) is∑

z∈Z

p(z|y) log p(z|y)
q(z|y) . (B.11)

The conditional KL divergence Dz|y(p||q) is the expectation of the above quantity
taken over the distribution of y,

Dz|y(p||q) ≜
∑
y∈Y

∑
z∈Z

p(y, z) log p(z|y)
q(z|y) = E log p(z|y)

q(z|y) . (B.12)

Since log(p(z|y)/q(z|y)) = log p(z|y) − log q(z|y), by using Definitions B.2
and B.5 we get the following representation:

Dz|y(p||q) = Hz|y(p, q) −Hz|y(p). (B.13)

Appendix C

Probabilistic Inequalities

We start by introducing three famous inequalities that are employed to
obtain concentration bounds. These bounds are useful to estimate the
probability that a random variable exceeds some threshold or deviates
from expected behavior.

The first inequality relates the probability that a nonnegative random
variable exceeds a threshold to the expectation of the random variable.

Theorem C.1 (Markov’s inequality [21, 85]). If z is a nonnegative random
variable and a > 0, then

P [z ≥ a] ≤ Ez
a
. (C.1)

The second inequality can be obtained as a corollary of Markov’s
inequality, and establishes a connection between the variance of a random
variable and the probability that the random variable deviates from its
expectation.

Theorem C.2 (Chebyshev’s inequality [85]). If z is a random variable and a > 0,
then

P [|z − Ez| ≥ a] ≤
E
[
(z − Ez)2]
a2 . (C.2)

The third inequality can also be obtained from Markov’s inequality, and
provides an exponential bound on the probability that a random variable
exceeds a threshold.

382 Probabilistic Inequalities

Theorem C.3 (Chernoff’s bound [31]). If z is a random variable, a ∈ R, and
s ≥ 0, then

P [z ≥ a] ≤ Eesz

esa
. (C.3)

Another concentration bound that is useful in our treatment is the inde-
pendent bounded differences inequality, which is also known as McDiarmid’s
inequality [125, 155].

Theorem C.4 (McDiarmid’s inequality [125, 155]). Consider N independent
random vectors

z1 ∈ Z1, z2 ∈ Z2, . . . , zN ∈ ZN , (C.4)
and a function g : Z1 × Z2 × · · · × ZN 7→ R that satisfies, for i = 1, 2, . . . , N , the
condition

|g(z1, z2, . . . , zi, . . . , zN) − g(z1, z2, . . . , qzi, . . . , zN)| ≤ ci (C.5)

for some constants ci and for all sequences

{z1, z2, . . . , zi, . . . , zN} and {z1, z2, . . . , qzi, . . . , zN} (C.6)

that differ only in their respective ith vectors. Then, letting

c =
N∑
i=1

c2
i , (C.7)

for all a > 0 we have the following concentration bounds:

P
[
g(z1, z2, . . . , zN) − Eg(z1, z2, . . . , zN) ≥ a

]
≤ e−2a2/c, (C.8a)

P
[
g(z1, z2, . . . , zN) − Eg(z1, z2, . . . , zN) ≤−a

]
≤ e−2a2/c. (C.8b)

The next statement introduces a fundamental inequality concerning
the interplay between random variables and convex functions.

Theorem C.5 (Jensen’s inequality [7]). Let g(z) be a convex function from I
to R, where I ⊆ R is an open interval. Let z be a finite-mean random variable
such that P[z ∈ I] = 1. Then

g
(
Ez
)

≤ Eg(z). (C.9)

383

Theorem C.5 has the following immediate implication. Assume that
g(z) is a convex function from an open interval I to R. Given a collection
of points {zn}Nn=1 belonging to I, and a collection of convex weights (i.e.,
nonnegative scalars that add up to 1) {an}Nn=1, then we have

g

(
N∑
n=1

an zn

)
≤

N∑
n=1

an g(zn). (C.10)

This result follows readily from Theorem C.5 because the sequence of
weights can be interpreted as a probability vector.

The next inequality is an essential tool in the theory of measure and
integration. We state it directly in the probabilistic form used in our
treatment. This form relates the joint moment of two random variables to
their individual moments of specific orders.

Theorem C.6 (Hölder’s inequality [145]). Given two random variables z1 and
z2, for any r1, r2 ∈ [1,∞) with 1/r1 + 1/r2 = 1,

E|z1z2| ≤ (E|z1|r1)
1

r1 (E|z2|r2)
1

r2 . (C.11)

We remark that, for r1 = r2 = 2, Hölder’s inequality coincides with the
Cauchy-Schwarz inequality for expected values.

We conclude the appendix with a useful inequality that relates the KL
divergence to the so-called total variation distance, which is defined as
follows.

Definition C.1 (Total variation distance). The total variation distance between
two pmfs p(z) and q(z) defined on a set Z is

DTV(p, q) = 1
2
∑
z∈Z

|p(z) − q(z)|. (C.12)

Likewise, the total variation distance between two pdfs p(z) and q(z) defined on
Rd is

DTV(p, q) = 1
2

∫
Rd

|p(z) − q(z)|dz. (C.13)

Note that the total variation distance is basically an L1 distance [145]
(but for a constant factor). Technically, there exists a more general definition

384 Probabilistic Inequalities

of total variation between probability measures, but the definition provided
here is sufficient for our purposes.

The inequality connecting the KL divergence to the total variation
distance is the following.

Theorem C.7 (Pinsker’s inequality [139, 155, 165]). Given two pmfs or pdfs p
and q,

D(p||q) ≥ 1
2D

2
TV(p, q). (C.14)

Actually, Pinsker proved the inequality with a constant larger than
1/2 [139]. The inequality in the form (C.14) was derived independently by
Csiszár, Kemperman, and Kullback — see [165].

Appendix D

Stochastic Convergence

In this appendix we focus on the convergence of infinite sequences of
random vectors,

z1, z2, . . . , with zn ∈ Rd ∀n ∈ N. (D.1)

To denote the sequence, we will compactly write {zn}, implicitly implying
that n ∈ N.

D.1 Types of Stochastic Convergence

Consider a sequence {zn} of random vectors in Rd, defined on a common
probability space identified by the triple (Ω,F ,P). We recall that, in this
triple, Ω denotes the sample space that collects the possible outcomes of the
random experiment under consideration. The realization of the sequence
associated with a particular outcome ω is denoted by

z1(ω), z2(ω), . . . (D.2)

We also recall that the symbol F denotes a σ-field of subsets of Ω, called
events, and P is a probability measure defined on F .

There are different types of stochastic convergence. The simplest type is
the following immediate generalization of the standard concept of the limit
of a deterministic sequence: We require that, for every ω ∈ Ω, the sequence
in (D.2) converges to a limiting value z(ω). In this case, we would say that
the sequence {zn} converges surely to the random vector z.

However, in probability theory, the strong requirement of convergence for
every outcome is more conveniently replaced by requiring convergence for
almost all realizations, i.e., possibly excluding a set of outcomes occurring

386 Stochastic Convergence

with probability 0. This leads to the concept of almost-sure convergence,
a.k.a. convergence with probability 1.

Definition D.1 (Almost-sure convergence). Let {zn} be a sequence of random
vectors in Rd. We say that {zn} converges almost surely (or with probability 1)
to a random vector z when

P
[

lim
n→∞

zn = z
]

= 1. (D.3)

That is, when the set of outcomes{
ω ∈ Ω : lim

n→∞
zn(ω) = z(ω)

}
(D.4)

has probability 1. Our notation for almost-sure convergence is

zn
a.s.−−−−→
n→∞

z. (D.5)

A weaker notion of convergence is convergence in probability. In this
case, instead of requiring that zn converges to z for almost all realizations,
we require that the probability that zn deviates from z vanishes as n→∞.
In the following, the symbol ∥ · ∥ denotes the Euclidean norm.

Definition D.2 (Convergence in probability). Let {zn} be a sequence of random
vectors in Rd. We say that {zn} converges in probability to a random vector
z ∈ Rd when, for all ε > 0, we have

lim
n→∞

P
[
∥zn − z∥ > ε

]
= 0. (D.6)

Our notation for convergence in probability is

zn
p−−−−→

n→∞
z. (D.7)

Another useful notion is convergence in the mean. Here we require that
the expected value of the absolute deviation of zn from z vanishes. In
particular, we can consider convergence in the rth mean by taking the
rth absolute moment. Before introducing this type of convergence, it is
necessary to define the Lr norm of a vector. Given a vector x = [xj] ∈ Rd,
its Lr norm is

∥x∥r ≜
 d∑
j=1
|xj |r

1/r

. (D.8)

D.1. Types of Stochastic Convergence 387

Definition D.3 (Convergence in the rth mean). Let {zn} be a sequence of
random vectors in Rd and let r > 0. We say that {zn} converges in the rth
mean (or in the Lr norm) to a random vector z when

lim
n→∞

E
[
∥zn − z∥rr

]
= 0. (D.9)

Our notation for convergence in the rth mean is

zn
Lr−−−−→

n→∞
z. (D.10)

It is possible to show that, for r ≥ 1, convergence in the rth mean is
implied by convergence with respect to higher-order moments, i.e.,

zn
Ls−−−→

n→∞
z =⇒ zn

Lr−−−→
n→∞

z (D.11)

for all s > r.
Finally, we introduce the notion of convergence in distribution, a.k.a.

weak convergence or convergence in law. Here we require that the cumu-
lative distribution function (cdf) of zn converges to some limiting cdf. In
the following, int(S) and cl(S) denote the interior and the closure of a set
S, respectively, and ∂S = cl(S)\int(S) denotes the boundary of S.

Definition D.4 (Convergence in distribution). Let {zn} be a sequence of random
vectors in Rd and z a random vector in Rd. Let Fn(z) and F (z) be the cdfs
of the random vectors zn and z, respectively. We say that the sequence {zn}
converges in distribution (or weakly, or in law) to z when

lim
n→∞

Fn(z) = F (z) (D.12)

for any z that is a continuity point of F (z). Our notation for convergence in
distribution is

zn
d−−−−→

n→∞
z. (D.13)

An equivalent definition that is useful in our treatment is the following. The
sequence {zn} converges in distribution to z when

lim
n→∞

P[zn ∈ S] = P[z ∈ S] (D.14)

for all sets S ⊂ Rd that satisfy the condition

P[z ∈ ∂S] = 0. (D.15)

In other words, convergence in distribution takes place when the probability that
zn belongs to S converges to the probability that the limiting variable z belongs
to S, for all sets S that have a boundary where z lies with zero probability.

388 Stochastic Convergence

Note that for convergence with probability 1, in probability, or in the
rth mean, we need to compare the actual values of the random vectors zn
and z. For example, for convergence in probability we have to evaluate
the deviation ∥zn − z∥. This implies that these variables must be defined
on the same probability space. In contrast, convergence in distribution
requires that the cdf of zn converges to the cdf of z, without requiring a
direct comparison in terms of random vectors. As a result, for convergence
in distribution, the random vectors zn and z, as well as the random vectors
in the sequence {zn}, need not be defined on the same probability space.

There exist some useful connections between the different types of
stochastic convergence. Applying the pertinent definitions, it is readily
verified that almost-sure convergence implies convergence in probability,
which in turn implies convergence in distribution:

zn
a.s.−−−→
n→∞

z =⇒ zn
p−−−→

n→∞
z =⇒ zn

d−−−→
n→∞

z. (D.16)

Likewise, convergence in the rth mean is stronger than convergence in
probability, namely,

zn
Lr−−−→

n→∞
z =⇒ zn

p−−−→
n→∞

z, (D.17)

as can be verified by applying Markov’s inequality (Theorem C.1). Note that
there is no implication involving almost-sure convergence and convergence
in the rth mean. In fact, in general, almost-sure convergence does not
imply, nor is implied by convergence in the rth mean. Additional conditions
(like uniform integrability) are needed to establish a link between these
two types of convergence — see, e.g., [159].

D.2 Fundamental Asymptotic Results

This section collects some classic results that we call upon during our
treatment.

We start with a theorem that is very useful when one needs to prove
convergence in distribution. The theorem establishes a strong link between
convergence in distribution and the behavior of the characteristic function.

Theorem D.1 (Lévy-Cramér continuity theorem [159, Thm. 1.9]). Let {zn} be
a sequence of random vectors in Rd, and consider the associated sequence of

D.2. Fundamental Asymptotic Results 389

characteristic functions

φn(s) ≜ Eeιs
Tzn , s ∈ Rd, (D.18)

where ι =
√

−1 is the imaginary unit. Then, the sequence {zn} converges in
distribution to a random vector z if, and only if, the sequence of characteristic
functions {φn(s)}n∈N converges to the characteristic function of z, namely, to

φ(s) ≜ Eeιs
Tz, s ∈ Rd. (D.19)

In other words, we have the following double implication:

zn
d−−−−→

n→∞
z ⇐⇒ lim

n→∞
φn(s) = φ(s) ∀s ∈ Rd. (D.20)

One useful consequence of the Lévy-Cramér continuity theorem is the
following result, which is often referred to as the Cramér-Wold device.
The result establishes that convergence in distribution of a sequence of
random vectors is equivalent to convergence in distribution of all linear
combinations of the entries of the vectors.

Theorem D.2 (Cramér-Wold device [159, Thm. 1.9]). Let {zn} be a sequence
of random vectors in Rd. Then, the sequence {zn} converges in distribution to a
random vector z ∈ Rd if, and only if,

cTzn
d−−−−→

n→∞
cTz for all deterministic vectors c ∈ Rd. (D.21)

The next theorem examines what happens, in terms of convergence,
when the random vectors in a sequence are transformed by a continuous
mapping. Loosely speaking, the theorem ascertains that the limit of the
mapping is equal to the mapping of the limit for three types of conver-
gence, namely, almost-sure convergence, convergence in probability, and
convergence in distribution.

Theorem D.3 (Continuous mapping theorem [65, Thm. 3.2.10]). Let {zn} be
a sequence of random vectors in Rd and z a random vector in Rd. Let

g : Rd 7→ Rm (D.22)

be a mapping continuous at every point of a set A such that P[z ∈ A] = 1. Then
we have the following implications:

390 Stochastic Convergence

i)
zn

a.s.−−−−→
n→∞

z =⇒ g(zn) a.s.−−−−→
n→∞

g(z). (D.23)

ii)
zn

p−−−−→
n→∞

z =⇒ g(zn) p−−−−→
n→∞

g(z). (D.24)

iii)
zn

d−−−−→
n→∞

z =⇒ g(zn) d−−−−→
n→∞

g(z). (D.25)

In our proofs, we often exploit the following properties of stochastic
convergence.

Lemma D.1 (Useful properties of stochastic convergence [166]). Let {yn} and
{zn} be sequences of random vectors in Rd.

P1) If yn converges in probability to y and zn converges in probability to z,
then

yn + zn
p−−−−→

n→∞
y + z. (D.26)

P2) zn converges in probability to z if, and only if, all its entries converge in
probability to the corresponding entries of z.

P3) If yn converges in distribution to a deterministic constant c, then yn
converges in probability to c.

The next lemma shows a sufficient condition for the product of random
sequences to vanish in probability. This lemma is perhaps less known, and
for this reason, it is stated with proof.

Lemma D.2 (Product of random sequences). Let zn = wnyn, where {wn} and
{yn} are two sequences of nonnegative random variables satisfying the following
conditions:

i)
wn

p−−−−→
n→∞

0. (D.27)

ii) For sufficiently large values y > 0,

P [yn > y] ≤ g(y), (D.28)

where g(y) is a nonnegative function such that

lim
y→∞

g(y) = 0. (D.29)

D.2. Fundamental Asymptotic Results 391

Then,
zn

p−−−−→
n→∞

0. (D.30)

Proof. For any two positive values y and z,{
wn ≤ z/y

}⋂{
yn ≤ y

}
=⇒

{
wnyn ≤ z

}
. (D.31)

Now, for any two events A and B, the statement A =⇒ B is equivalent to the statement
Bc =⇒ Ac (the notation Ac denotes the complement of A). Therefore, Eq. (D.31) is
equivalent to {

wnyn ≤ z
}c

=⇒
({
wn ≤ z/y

}⋂{
yn ≤ y

})c
, (D.32)

which is in turn equivalent to{
wnyn > z

}
=⇒

{
wn > z/y

}⋃{
yn > y

}
, (D.33)

because, in view of De Morgan’s law [21], the complement of the intersection of two sets
is the union of the complements of the sets. Moreover, since the condition A =⇒ B
implies that P[A] ≤ P[B], from (D.33) and using the union bound, we conclude that

P[zn > z] ≤ P[wn > z/y] + P[yn > y]. (D.34)

Now, let us fix a value ε > 0 and choose y sufficiently large to use the upper bound in
(D.28) and to ensure that g(y) < ε/2 (the latter choice is possible thanks to (D.29)).
Therefore, for such a y, Eq. (D.34) implies

P[zn > z] ≤ P[wn > z/y] + g(y) < P[wn > z/y] + ε/2. (D.35)

On the other hand, since by assumption wn converges to 0 in probability, for given
values of y and z there exists a sufficiently large n0 such that, for all n ≥ n0, the
quantity P[wn > z/y] is also strictly upper bounded by ε/2. Using this result in (D.35)
we conclude that

P[zn > z] < ε ∀n ≥ n0, (D.36)
which means that the limit of P[zn > z] is 0 for all choices of z > 0. Since zn is
nonnegative, this conclusion corresponds to the statement that zn converges to 0 in
probability, and the claim of the lemma is proved.

■

The next theorem is a classic result that is useful to examine the
convergence in distribution of sums or products of two random sequences,
one converging in distribution, the other converging to a deterministic
value in probability.

392 Stochastic Convergence

Theorem D.4 (Slutsky’s theorem [159, Thm. 1.11]). Let {zn} be a sequence of
random variables converging in distribution to a random variable z. Let {cn} be
another sequence of random variables converging in probability to a deterministic
value c. Then

zn + cn
d−−−−→

n→∞
z + c, (D.37)

cn zn
d−−−−→

n→∞
c z. (D.38)

Note that with Slutsky’s theorem we are able to draw useful conclusions
about sums or products of random variables without knowing the joint
characterization of these random variables. We also remark that Slutsky’s
theorem can be generalized to handle random vectors [166]. In particular,
if {zn} and {cn} are sequences of random vectors in Rd, then

zn
d−−−→

n→∞
z and cn

p−−−→
n→∞

c =⇒ zn + cn d−−−→
n→∞

z + c. (D.39)

Example D.1 (Stochastic convergence with continuous parameter). When dealing with
adaptive social learning in Chapters 8, 9, and 10, we are faced with questions related
to stochastic convergence when a certain continuous parameter δ approaches zero. We
can easily restate the definitions of stochastic convergence in terms of a continuous
parameter δ, as opposed to a discrete index n. We explain in this example how the
theorems listed before can be adapted to the continuous-parameter case — see [145,
p. 213] for more discussion on how to move from countable sequences to continuous
parameters. The adjustment is achieved by resorting to the sequential property of the
limit, which states that, given a deterministic function f(δ), we have [144, Thm. 4.2]

lim
δ→0

f(δ) = ℓ (D.40)

if, and only if,

lim
n→∞

f(δn) = ℓ for all sequences {δn} such that δn ̸= 0 and lim
n→∞

δn = 0. (D.41)

If desired, the limiting point 0 can be replaced by any arbitrary value δ0, also ±∞.
Assume now that we want to apply, for example, Theorem D.4 to a family of random
variables {zδ} indexed by the continuous parameter δ. The hypotheses of Slutsky’s
theorem for a continuous parameter become

zδ
d−−−→

δ→0
z, cδ

p−−−→
δ→0

c. (D.42)

Let us denote by Fδ(z) and F (z) the cdfs of zδ and z, respectively. According to
Definition D.4, the convergence of zδ to z in (D.42) means that limδ→0 Fδ(z) = F (z)
for all continuity points of F (z). Using the sequential property of the limit, (specifically,
considering that (D.40) implies (D.41)), we deduce that, for any sequence {δn} such

D.2. Fundamental Asymptotic Results 393

that δn ̸= 0 and limn→∞ δn = 0, the extracted sequence of functions Fδn (z) converges
to F (z) (for all continuity points of F (z)), which means that

zδn

d−−−−→
n→∞

z. (D.43)

A similar argument applies to the convergence of cδ to c in (D.42). In summary, if
we extract the following n−indexed sequences {zn} and {cn} from {zδ} and {cδ},
respectively:

zn ≜ zδn , cn ≜ cδn , (D.44)

we can write
zn

d−−−−→
n→∞

z, cn
p−−−−→

n→∞
c, (D.45)

which means that the sequences {zn} and {cn} fulfill the hypotheses of Theorem D.4.
This implies that (D.37) and (D.38) hold for any sequence {δn} such that δn ≠ 0 and
limn→∞ δn = 0. Applying again the sequential property of the limit (this time in the
reverse direction, i.e., from (D.41) to (D.40)), we deduce that (D.37) and (D.38) hold
when we replace zn with zδ and cn with cδ, and let δ → 0, which is the continuous
version of Slutsky’s theorem that we wanted to obtain.

We conclude this section with two fundamental results in measure
theory and probability theory, which concern the interchange of limits and
expectations. The first result is Fatou’s lemma, which establishes a useful
inequality relating the limit inferior and the expectation for a sequence of
random variables.

Theorem D.5 (Fatou’s lemma [65, Thm. 1.6.5]). If {zn} is a sequence of
nonnegative random variables, then

lim inf
n→∞

Ezn ≥ E
[
lim inf
n→∞

zn

]
. (D.46)

If all random variables in the sequence are bounded by a random variable
with finite mean, the conclusion from Fatou’s lemma can be strengthened
in two directions, namely, by allowing for random variables of arbitrary
sign, and by establishing an exact convergence.

Theorem D.6 (Dominated convergence theorem [65, Thm. 1.6.7]). Let {zn}
be a sequence of random variables, and y a random variable with finite mean
such that (almost surely) |zn| ≤ y for all n. If zn converges almost surely to a
random variable z, then

lim
n→∞

Ezn = Ez, (D.47)

i.e., the order of the limit and expectation operations can be interchanged.

394 Stochastic Convergence

D.3 Convergence of Sums and Recursions

This section collects some results on the stochastic convergence of sequences
that arise from sums or recursions involving random variables or vectors.
The first result is the famous law of large numbers. In particular, we focus
on its strong version, known as the strong law of large numbers. This law
establishes that, for a sequence of iid random variables with finite statistical
mean, the empirical average (i.e., the arithmetic mean) converges almost
surely to the statistical mean.

Theorem D.7 (Strong law of large numbers [35, Thm. 3.30]). Let {yn} be a
sequence of iid random variables with finite mean ȳ = Eyn. Then, the sequence
of empirical averages

zn = 1
n

n∑
i=1

yi (D.48)

converges almost surely to ȳ:

zn
a.s.−−−−→
n→∞

ȳ. (D.49)

The next theorem is another pillar of asymptotic statistics, whose
centrality is highlighted by the name itself: the central limit theorem
(CLT). The theorem establishes that the distribution of a sum of n iid
random vectors, centered by subtracting the mean and divided by

√
n,

converges to a zero-mean multivariate Gaussian distribution with the
covariance matrix of the individual vectors.

Theorem D.8 (Central limit theorem [35, Thm. 11.10]). Let {yn} be a sequence
of iid random vectors in Rd, with finite mean ȳ = Eyn and covariance matrix
Σ = E

[
(yn − ȳ)(yn − ȳ)T] with finite entries. Let G (0,Σ) denote a random

vector having a zero-mean multivariate Gaussian distribution with covariance
matrix Σ. Then, the sequence {zn} defined by

zn = 1√
n

n∑
i=1

(yi − ȳ), (D.50)

converges in distribution to a zero-mean Gaussian vector with covariance matrix
Σ:

zn
d−−−−→

n→∞
G (0,Σ). (D.51)

D.3. Convergence of Sums and Recursions 395

We also state (a particular case of) the Lindeberg-Feller central limit
theorem [166], which handles independent but not identically distributed
random vectors, and turns out to be useful to prove the asymptotic nor-
mality results in Chapters 6 and 9.

Theorem D.9 (CLT under the Lindeberg condition [166, Prop. 2.27]). Let {yn}
be a sequence of independent random vectors in Rd, possessing the following
three properties. First,

Eyn = 0. (D.52)
Second,

lim
n→∞

1
n

n∑
i=1

E
[
yiy

T
i

]
= Σ, (D.53)

where Σ has finite entries. Third, the following condition (called the Lindeberg
condition) is satisfied:

lim
n→∞

1
n

n∑
i=1

E
[
∥yi∥

2 I
[
∥yi∥

2 > εn
]]

= 0 ∀ε > 0. (D.54)

Then, the sequence {zn} defined by

zn = 1√
n

n∑
i=1

yi, (D.55)

converges in distribution to a zero-mean Gaussian vector with covariance matrix
Σ:

zn
d−−−−→

n→∞
G (0,Σ). (D.56)

We conclude the section with a lemma characterizing a vector recursion
that is repeatedly encountered in our treatment.

Lemma D.3 (Useful vector recursion). Let {yn} be a sequence of iid random
vectors in Rd with finite mean ȳ. Consider the sequence {zn} formed by the
vectors defined through the following recursion, for n ∈ N:

zn = AT(zn−1 + yn), (D.57)

where z0 is an initial deterministic vector, and A is a d × d deterministic
left stochastic matrix. Since all left stochastic matrices are Cesàro-summable
(Theorem 4.4), there exists a limiting matrix A• such that

lim
n→∞

1
n

n∑
i=1

Ai = A•. (D.58)

Then
1
n
zn

a.s.−−−−→
n→∞

(A•)T ȳ. (D.59)

396 Stochastic Convergence

Proof. Unfolding the recursion in (D.57) we get

zn = (An)Tz0 +
n∑
i=1

(Ai)Tyn−i+1. (D.60)

Once scaled by 1/n, the first term on the RHS vanishes as n → ∞ in view of the
properties of A. We focus on the second term. It is useful to rewrite the summation in
(D.60) as follows:

1
n

n∑
i=1

(Ai)Tyn−i+1 = 1
n

n∑
i=1

(Ai)Tȳ + 1
n

n∑
i=1

(Ai)T (yn−i+1 − ȳ
)
. (D.61)

The first term on the RHS converges to (A•)T ȳ as n → ∞ in view of (D.58). As a result,
the claim of the lemma will be proved if we establish that the second term on the RHS
of (D.61) vanishes almost surely as n → ∞. To show that this is the case, observe that
this term is a vector and consider its kth entry:

1
n

n∑
i=1

d∑
j=1

[Ai]jk
(
yj,n−i+1 − ȳj

)
, (D.62)

where [Ai]jk denotes the (j, k) entry of Ai, while yj,n and ȳj denote the jth entries of
yn and ȳ, respectively. Interchanging the summations and rearranging the summands in
the summation running over i, the quantity in (D.62) can be rewritten as

d∑
j=1

1
n

n∑
i=1

[An−i+1]jk
(
yj,i − ȳj

)
. (D.63)

Let us focus on a single term of the outer summation, i.e., a fixed value of j. By setting

bni ≜ [An−i+1]jk, ξi ≜ yj,i − ȳj , (D.64)

the jth term of the outer summation in (D.63) becomes

1
n

n∑
i=1

bni ξi, (D.65)

where bni defines a triangular array1 with nonnegative entries bounded by 1, and the
random variables ξi are zero-mean and iid. Therefore, the random variable in (D.65) is
a weighted sum of independent random variables, where the weights form a triangular

1Let n ∈ N and define, for each n, a sequence of real values yni, with i = 1, 2, . . . , n. Then
we say that these values form a triangular array. The term stems from the following visual
representation:

n = 1 y11

n = 2 y21, y22

n = 3 y31, y32 y33

... (D.66)

D.4. Martingales 397

array with bounded entries. Under these conditions, a strong law of large numbers holds,
specifically, we have that [45]

1
n

n∑
i=1

bni ξi
a.s.−−−−→
n→∞

0, (D.67)

which concludes the proof.
■

D.4 Martingales

In some proofs related to the convergence of social learning algorithms (see
Chapters 7 and 11), we rely on the concept of martingales. Preliminarily,
we introduce the definition of filtrations.

Definition D.5 (Filtrations). Let (Ω,F ,P) be a probability space. A filtration
{Fn} is an increasing sequence of sub-σ-fields of F :

F1 ⊂ F2 ⊂ . . . (D.68)

We can now define martingales, submartingales, and supermartingales.

Definition D.6 (Martingales). Let {zn} be a sequence of finite-mean random
variables defined on a probability space (Ω,F ,P), and let {Fn} be a filtration
according to Definition D.5. Then, {zn} is said to be a martingale relative to
{Fn} when, for all n > 1,

E[zn|Fn−1] = zn−1 almost surely. (D.69)

Likewise, it is said to be a submartingale when

E[zn|Fn−1] ≥ zn−1 almost surely, (D.70)

and a supermartingale when

E[zn|Fn−1] ≤ zn−1 almost surely. (D.71)

The next example helps illustrate what a martingale can be.

Example D.2 (Random walk). Consider a sequence {yn} of iid zero-mean random
variables, and define the so-called random walk

zn =
n∑
i=1

yi, n ∈ N. (D.72)

398 Stochastic Convergence

We now show that {zn} is a martingale.
Observe that we can write

zn = yn +
n−1∑
i=1

yi (D.73)

and consider the filtration over past variables,

Fn−1 = σ(y1,y2, . . . ,yn−1), (D.74)

where the notation signifies that Fn−1 is the σ-field generated by the random variables
y1,y2, . . . ,yn−1. The conditional expectation of zn given Fn−1 is

E[zn|Fn−1] = E[yn|Fn−1] + E

[
n−1∑
i=1

yi|Fn−1

]

= Eyn︸︷︷︸
=0

+
n−1∑
i=1

yi = zn−1, (D.75)

where in the first term on the RHS we remove the conditioning since yn is independent
from the past, whereas in the second term the summation is “frozen” given the filtration
since it is a deterministic function of y1,y2, . . . ,yn−1. Equation (D.75) (along with the
fact that zn has finite mean for all n) shows that {zn} is a martingale.

The next theorem is a fundamental convergence result in the theory of
martingales.

Theorem D.10 (Martingale convergence theorem [35, Thm. 5.14]). Let {zn}
be a submartingale satisfying the condition

lim sup
n→∞

E|zn| < ∞. (D.76)

Then, there exists a finite-mean random variable z such that

zn
a.s.−−−−→
n→∞

z. (D.77)

Similar claims hold for martingales (since a martingale is also a sub-
martingale) and supermartingales (since if zn is a supermartingale, then
−zn is a submartingale). The next corollary is useful in our treatment.

Corollary D.1 (Nonpositive submartingales). Let {zn} be a nonpositive sub-
martingale, i.e., a submartingale satisfying (almost surely) the condition zn ≤ 0

D.4. Martingales 399

for all n. Then
0 ≥ Ezn ≥ Ezn−1 ≥ . . . ≥ Ez1. (D.78)

Since zn is nonpositive, Eq. (D.78) implies condition (D.76), which, in view of
Theorem D.10, implies the existence of a finite-mean random variable z such
that

zn
a.s.−−−−→
n→∞

z. (D.79)

Appendix E

Large Deviations

In this appendix we collect some fundamental results from the theory of
large deviations. The main concepts of this theory are well described by
considering the case of the empirical average of independent and identically
distributed observations, and by examining the probability that this average
deviates from the statistical mean of the observations. This problem is
illustrated in the next section, which culminates with one of the earliest
results on large deviations, known as Cramér’s theorem [53]. Then, in
Section E.2, we consider a more general setting by enunciating the large
deviation principle and by addressing the case of dependent observations
through the Gärtner-Ellis theorem [68, 78].

E.1 Empirical Averages

Consider a sequence {yn} of iid random variables with mean ȳ = Eyn and
variance σ2, and define the empirical average

ȳn = 1
n

n∑
i=1
yi. (E.1)

The strong law of large numbers in Theorem D.7 establishes that ȳn
converges almost surely to ȳ. Recalling that almost-sure convergence implies
convergence in probability, in view of Definition D.2 the probability that
ȳn deviates from ȳ by any arbitrary amount vanishes as n → ∞. This
implies in particular that

lim
n→∞

P [ȳn ≥ y] = 0 ∀y > ȳ, (E.2a)

lim
n→∞

P [ȳn ≤ y] = 0 ∀y < ȳ. (E.2b)

402 Large Deviations

The aim of a large deviation analysis it to characterize the rate at which
these probabilities converge to 0.

Example E.1 (Gaussian variables). Assume that, for all n ∈ N, the variable yn is
Gaussian, with mean ȳ and variance σ2. In this case, the empirical average (E.1) will
also be Gaussian, with mean ȳ and variance σ2/n. Accordingly, the probabilities in
(E.2a) and (E.2b) can be evaluated as

P [ȳn ≥ y] = Q
(√

n
y − ȳ

σ

)
, P [ȳn ≤ y] = Q

(√
n
ȳ − y

σ

)
, (E.3)

where we use the Q-function

Q(y) ≜ 1√
2π

∫ ∞
y

exp
{

−x2

2

}
dx, (E.4)

which is the complementary cumulative distribution function of a standard (i.e., with
zero mean and unit variance) Gaussian variable. Applying to (E.3) the approximation

Q(y) ≈ 1√
2π y

exp
{

−y2

2

}
, y > 0, (E.5)

we get, for y > ȳ,

P [ȳn ≥ y] ≈ σ n−1/2
√

2π (y − ȳ)
exp
{

−n (y − ȳ)2

2σ2

}
= exp

{
−n (y − ȳ)2

2σ2 − 1
2 logn+ log σ√

2π (y − ȳ)

}
. (E.6)

We see that the probability of exceeding the mean decays exponentially with n, but
for higher-order corrections, namely, the term varying logarithmically with n and the
constant term. From (E.6) we can compute the leading exponent as

lim
n→∞

1
n

log P [ȳn ≥ y] = − (y − ȳ)2

2σ2 , y > ȳ. (E.7)

Using similar arguments we can also show that

lim
n→∞

1
n

log P [ȳn ≤ y] = − (y − ȳ)2

2σ2 , y < ȳ. (E.8)

We remark that (E.7) and (E.8) can be obtained rigorously, i.e., without resorting to
the approximation of the Q-function. This can be done by using classic lower and upper
bounds on the Q-function, or by using L’Hôpital’s rule [144] to establish the limit

lim
n→∞

1
n

logQ
(√

ny
)

= −y2

2 , y ̸= 0. (E.9)

E.1. Empirical Averages 403

The exponential decay shown in Example E.1 is not observed only for
Gaussian variables. In fact, under suitable regularity conditions on the tail
of the probability distribution of yn (which, as seen later, are expressed
in terms of the moment generating function of yn), the probability of
deviating from ȳ would continue to vanish exponentially with the number
of samples n. Focusing for brevity on the regime y > ȳ, this condition can
be written generically as

− lim
n→∞

1
n

logP [ȳn ≥ y] = I(y) (E.10)

for some function I(y) or, equivalently, as

P [ȳn ≥ y] = e−n[I(y)+o(1)], y > ȳ, (E.11)

where the notation o(1) refers to a quantity that vanishes as n→∞ — see
Table 1.1. Therefore, relation (E.11) means that the leading exponential
decay is given by the linear term nI(y). We will say in this case that the
probability in (E.11) vanishes at rate n and with rate function I(y). The
quantity n × o(1) collects higher-order corrections to the leading term.
Note that these corrections can diverge with n. For example, on the RHS
of (E.6), we have

n× o(1) = −1
2 logn+ log σ√

2π (y − ȳ)
. (E.12)

The rate function I(y) provides the main exponent ruling the exponential
decay to 0 of the probability of exceeding the mean ȳ by an amount y − ȳ.
This exponent is a function of y. For instance, for the Gaussian case in
Example E.1, Eq. (E.7) reveals that the rate function is

I(y) = (y − ȳ)2

2σ2 [Gaussian case]. (E.13)

As expected, the larger the deviation from the mean is, the larger the
exponent will become, and the faster the convergence to 0 will be. An
alternative and common notation to represent (E.11) is to write [52]

P [ȳn ≥ y] ·= e−nI(y), y > ȳ, (E.14)

which masks the higher-order corrections. We hasten to add that one cannot
use the expression e−nI(y) to approximate the probability P [ȳn ≥ y]. This
is because a large deviation analysis provides only the leading exponent
I(y). For example, the two probabilities e−nI(y) and 100e−nI(y) share the
same exponent, but they differ by two orders of magnitude!

404 Large Deviations

A famous theorem proved by Cramér [53] establishes the shape of the
rate function I(y). Before stating this theorem, it is necessary to introduce
and characterize some relevant tools, which are illustrated in the next two
sections.

E.1.1 Fenchel-Legendre Transform

Given a function
f : R 7→ (−∞,∞], (E.15)

we introduce its Fenchel-Legendre transform, a.k.a. the convex conjugate
of f(y),

f∗(y) ≜ sup
s∈R

(
sy − f(s)

)
, y ∈ R. (E.16)

Note that the function f∗(y) can be equal to ∞ for some y.
It is immediate to verify that f∗(y) is convex. Indeed, for any α ∈ (0, 1)

and any pair of points y1, y2 ∈ R,
f∗(αy1 + (1− α)y2)

= sup
s∈R

(
s(αy1 + (1− α)y2)− f(s)

)
= sup

s∈R

(
s(αy1 + (1− α)y2)− αf(s)− (1− α)f(s)

)
≤ α sup

s∈R

(
sy1 − f(s)

)
+ (1− α) sup

s∈R

(
sy2 − f(s)

)
= αf∗(y1) + (1− α)f∗(y2), (E.17)

where the inequality holds because the supremum of the sum of functions
is upper bounded by the sum of the suprema of the functions. A second
property of the Fenchel-Legendre transform is lower semicontinuity, which
means that, for all y0 ∈ R,

lim inf
y→y0

f∗(y) ≥ f∗(y0). (E.18)

This is in fact true since we can write, for all s ∈ R,

lim inf
y→y0

f∗(y) ≥ lim inf
y→y0

(
sy − f(s)

)
= sy0 − f(s). (E.19)

Accordingly, we have

lim inf
y→y0

f∗(y) ≥ sup
s∈R

(
sy0 − f(s)

)
= f∗(y0), (E.20)

which shows that f∗(y) is lower semicontinuous. Lower semicontinuity
plays a role in the following, when we characterize the general shape that
any rate function must have.

E.1. Empirical Averages 405

E.1.2 Generating Functions

The moment generating function (MGF) of a random variable y is defined
as

M(s) ≜ Eesy, s ∈ R. (E.21)

The function M(s) is allowed to be equal to ∞ for some s. The effective
domain of M(s) is

DM ≜ {s ∈ R : M(s) <∞}. (E.22)

We verify that DM must be an interval. To this end, we recall that a subset
S of the real line is an interval if, and only if, given two points s1, s2 in
S, any point s ∈ (s1, s2) also belongs to S. Observe that we have 0 ∈ DM
since M(0) = 1. Moreover, if there exists a positive value s0 such that
M(s0) <∞, then it is readily seen that M(s) <∞ in the interval [0, s0).
Likewise, if there exists a negative value −s0 such that M(−s0) <∞, then
it is also seen that M(s) < ∞ for all s ∈ (−s0, 0]. As a result, if for two
points s1 and s2 we have M(s1) <∞ and M(s2) <∞, then M(s) <∞ for
all s ∈ (s1, s2). We conclude that the effective domain DM is an interval,
which can be open or closed depending on the particular random variable.
Note that we can also have DM = {0}, that is, M(s) = ∞ for all s ≠ 0.
This happens, e.g., for the Cauchy pdf

p(y) = 1
πσ

1

1 +
(
y −m
σ

)2 , (E.23)

defined for m ∈ R and σ > 0. Moreover, if DM is a nondegenerate interval
(i.e., if DM ̸= {0}), from the properties of the exponential function it is
possible to show that M(s) is infinitely differentiable on int(DM) (the
interior of DM), and that its derivatives can be computed by interchanging
the differentiation and integration operators, which yields [21]

M (n)(s) = E [ynesy] , (E.24)

where we denote by M (n)(s) the nth derivative of M(s). Therefore, we see
that if M(s) is finite in a neighborhood of the origin s = 0, then we have
the identity, for all n ∈ N,

M (n)(0) = Eyn, (E.25)

which justifies the name “moment generating function.”

406 Large Deviations

Of particular interest for the theory of large deviations is the logarithmic
moment generating function (LMGF), a.k.a. cumulant generating function,

Λ(s) ≜ logM(s). (E.26)

One important property of Λ(s) is convexity, which follows from Hölder’s
inequality — see Theorem C.6. In fact, for any α ∈ (0, 1) and any pair of
points s1, s2 ∈ R, we can write

Λ(αs1 + (1− α)s2) = logEe(αs1+(1−α)s2)y

= logE
[
(es1y)α (es2y)1−α

]
≤ log

(
(Ees1y)α (Ees2y)1−α

)
= α logEes1y + (1− α) logEes2y

= αΛ(s1) + (1− α)Λ(s2), (E.27)

where the inequality follows by making the following choices in (C.11):

z1 = (es1y)α , z2 = (es2y)1−α , r1 = 1
α
, r2 = 1

1− α, (E.28)

Since M(s) ̸= 0, we see that −∞ < Λ(s) ≤ ∞, and is equal to ∞ when
M(s) =∞. Thus, the effective domain DΛ of Λ(s) is equal to the effective
domain of M(s). Moreover, from the rules of differentiation, when M(s) is
infinitely differentiable so is Λ(s). Accordingly, when DΛ is a nondegenerate
interval, we can compute the first two derivatives of Λ(s) for any s belonging
to the interior of DΛ, namely,

Λ′(s) = d

ds
logM(s) = M ′(s)

M(s) = E[y esy]
Eesy

(E.29)

and

Λ′′(s) = d

ds

E[y esy]
M(s) = E[y2esy]M(s)−M ′(s)E[y esy]

M2(s)

= E
[
y2 esy

M(s)

]
−
(
E
[
y
esy

M(s)

])2
. (E.30)

We remark that Λ(s) is called the cumulant generating function because,
under the aforementioned assumption of finiteness in a neighborhood of
the origin, the quantity Λ(n)(0), for n ∈ N, is equal to the nth cumulant of
y. For example, by evaluating (E.29) and (E.30) at s = 0 we obtain the
identities

Λ′(0) = Ey, Λ′′(0) = Ey2 − (Ey)2, (E.31)

E.1. Empirical Averages 407

which are consistent with the term “cumulant generating function,” since
the first cumulant is equal to the mean, while the second cumulant is equal
to the variance.

It is now useful to introduce the concept of exponential tilting. Let P(dy)
denote the probability measure associated with the random variable y,
and consider the exponentially tilted measure

Ps(dy) = esy

M(s)P(dy) = esy−Λ(s)P(dy). (E.32)

Note that Ps(dy) is a probability measure as well, since we have∫
R
Ps(dy) =

∫
R

esy

M(s)P(dy) = Eesy

M(s) = 1. (E.33)

Expectation under the tilted distribution will be denoted by Es. Using this
notation, Eqs. (E.29) and (E.30) become, respectively,

Λ′(s) = Esy (E.34)

and
Λ′′(s) = Esy2 − (Esy)2, (E.35)

where the last difference is the variance of y computed under the tilted
distribution. Note that when y is not deterministic, P(dy) does not place
all the probability mass on a single value. We see from (E.32) that in this
case, even Ps(dy) does not place all the probability mass on a single value.
As a result, for nondeterministic variables, the variance computed under
the tilted distribution is positive. In view of (E.35), this implies

Λ′′(s) > 0 ∀s ∈ int(DΛ), (E.36)

which means that Λ(s) is strictly convex on int(DΛ) — see Lemma A.2.

E.1.3 Cramér’s Theorem

We state next Cramér’s theorem.

Theorem E.1 (Cramér’s theorem [53] [60, Thm. I.4]). Let {yn} be a sequence
of iid random variables with LMGF Λ(s) satisfying

Λ(s) < ∞ ∀s ∈ R. (E.37)

408 Large Deviations

Let

ȳn = 1
n

n∑
i=1

yi. (E.38)

Then, for all y > ȳ,

lim
n→∞

1
n

log P[ȳn ≥ y] = −Λ∗(y). (E.39)

That is, the rate function is given by the Fenchel-Legendre transform of Λ(s).

Cramér’s theorem establishes that, under the regularity condition (E.37)
for the LMGF, the probability that the empirical average deviates from the
mean vanishes exponentially with the number of samples, and that the rate
function ruling this decay is given by the Fenchel-Legendre transform of
the LMGF. It is useful to remark that Cramér’s theorem can be proved in a
more general setting, for example, with reference to random vectors yn ∈ Rd

and/or by relaxing condition (E.37) — see [59, 60] for a comprehensive
treatment.

Example E.2 (Gaussian variables, revisited). Let us apply Cramér’s theorem to the
Gaussian case considered in Example E.1. The LMGF of a Gaussian variable with mean
ȳ and variance σ2 is given by [159]

Λ(s) = sȳ + σ2s2

2 . (E.40)

Accordingly, the Fenchel-Legendre transform in (E.16) can be computed by maximizing
over s ∈ R the function

J(s) = sy − sȳ − σ2s2

2 = (y − ȳ)s− σ2s2

2 . (E.41)

Taking the derivative of J(s) and equating it to 0 yields

d

ds
J(s) = (y − ȳ) − σ2s = 0 =⇒ s = y − ȳ

σ2 . (E.42)

Substituting into (E.41) we get

Λ∗(y) = max
s∈R

J(s) = (y − ȳ)2

2σ2 . (E.43)

In view of Cramér’s theorem, Λ∗(y) is the desired rate function, which is displayed
in Figure E.1. Note that the result agrees with what we obtained in Example E.1 in
expression (E.7) by direct evaluation of the probability P[ȳn > y]. However, a direct
approach was possible in the Gaussian case since the distribution of the empirical average
was known. In general, it is not possible to compute this distribution in closed form,
and the theory of large deviations (here, more specifically, Cramér’s theorem) allows us
to compute the rate function from the knowledge of the LMGF.

E.1. Empirical Averages 409

Figure E.1: Rate function for the Gaussian case considered in Example E.2.

Example E.3 (Bernoulli variables). We move away from the Gaussian case and consider
an application of Cramér’s theorem to Bernoulli random variables. Let

P[yn = 1] = p = 1 − P[yn = 0], 0 < p < 1. (E.44)

The LMGF of a Bernoulli variable is immediately seen to be

Λ(s) = logEesy = log
(
pes + (1 − p)

)
. (E.45)

The Fenchel-Legendre transform in (E.16) is then computed by taking the supremum
over s ∈ R of the function

J(s) = sy − log
(
pes + (1 − p)

)
. (E.46)

Note that, for all s > 0,

log
(
pes + (1 − p)

)
< log

(
pes + (1 − p)es

)
= log es = s. (E.47)

Therefore, for y > 1 we have that

Λ∗(y) = sup
s∈R

J(s) ≥ sup
s>0

J(s) > sup
s>0

s(y − 1) = ∞. (E.48)

Likewise we can show that
Λ∗(y) = ∞ ∀y < 0. (E.49)

Note that this conclusion is convincing since the probability that the empirical average
is below 0 or above 1 is zero, and, hence, we must have

lim
n→∞

1
n

log P[ȳn > y] = lim
n→∞

1
n

log 0 = −∞ ∀y > 1, (E.50a)

lim
n→∞

1
n

log P[ȳn < y] = lim
n→∞

1
n

log 0 = −∞ ∀y < 0. (E.50b)

410 Large Deviations

Let us now evaluate the Fenchel-Legendre transform at y = 1. We have

Λ∗(1) = sup
s∈R

(
s− log

(
pes + (1 − p)

))
. (E.51)

Observe that

lim
s→∞

(
s− log

(
pes + (1 − p)

))
= lim
s→∞

(
log es − log

(
pes + (1 − p)

))
= lim
s→∞

log es

pes + (1 − p) = log 1
p
. (E.52)

Since, for 0 < p < 1, the function s− log
(
pes + (1 − p)

)
is strictly increasing in s (this

can be readily verified, e.g., by showing that the first derivative of s− log
(
pes + (1 − p)

)
is strictly positive for 0 < p < 1), Eq. (E.52) yields

Λ∗(1) = sup
s∈R

(
s− log

(
pes + (1 − p)

))
= log 1

p
. (E.53)

It can be shown similarly that

Λ∗(0) = log 1
1 − p

. (E.54)

We finally focus on the interval 0 < y < 1. Computing the derivative of J(s) and equating
it to 0, we get

d

ds
J(s) = y − pes

pes + (1 − p) = y − 1

1 + (1 − p)
p

e−s
= 0, (E.55)

which, after some straightforward algebra, yields the solution

s = log (1 − p)y
(1 − y)p . (E.56)

Substituting this solution into (E.46) we obtain

Λ∗(y) = y log (1 − p)y
(1 − y)p − log

(
p

(1 − p)y
(1 − y)p + (1 − p)

)
= y log (1 − p)y

(1 − y)p − log 1 − p

1 − y

= y log y
p

+ (1 − y) log 1 − y

1 − p

= Db(y||p), (E.57)

where Db(y||p) is the shortcut for the binary KL divergence introduced in (6.98), which
means that Db(y||p) denotes the KL divergence between the pmfs [y, 1 − y] and [p, 1 − p].
It follows that

Λ∗(y) =
{
Db(y||p) if 0 ≤ y ≤ 1,
∞ otherwise,

(E.58)

where, for y = 0 and y = 1, we mean that we compute the limits

lim
y→0+

Db(y||p) = log 1
1 − p

, lim
y→1−

Db(y||p) = log 1
p
. (E.59)

The rate function Λ∗(y) is illustrated in Figure E.2.

E.1. Empirical Averages 411

+ +

Figure E.2: Rate function for the Bernoulli case considered in Example E.3.

The rate functions found in the last two examples have some char-
acteristic shape. They are nonnegative strictly convex functions inside
the domain delimited by the infimum and supremum of the support of
the random variables yn, and they are equal to ∞ outside this domain.
Moreover, they are minimized at y = ȳ. Actually, these properties do
not arise only in these two examples, but are typical of all rate functions
appearing in Cramér’s theorem.

Before illustrating the properties of the rate function, it is useful to
introduce a formal definition for the support of a probability distribution.

Definition E.1 (Support of a probability distribution). The support of the
probability distribution of a random variable y, also referred to as support of
y and denoted by suppy, is the closure of the set that contains all points such
that any neighborhood of these points has nonzero probability, formally,

suppy ≜ cl(S), (E.60)

where
S =

{
y0 ∈ R : ∀ε > 0, P[y ∈ (y0 − ε, y0 + ε)] > 0

}
. (E.61)

For example, from Definition E.1 we have that the support of a Gaussian
random variable is R, the support of a random variable uniform in [0, 1] is

412 Large Deviations

the closed interval [0, 1], and the support of a Bernoulli random variable is
the discrete finite set {0, 1}.

The following lemma collects the relevant properties that identify the
general shape of the rate function.

Lemma E.1 (Properties of the rate function). Assume that the random variable
y is not deterministic (if it is deterministic, the rate function can be examined
trivially), and that

Λ(s) = logEesy < ∞ ∀s ∈ R. (E.62)
Introduce the expected value ȳ = Ey and the extremes of the support of the
probability distribution associated with y (see Definition E.1),

yinf ≜ inf
(

suppy
)
, ysup ≜ sup

(
suppy

)
. (E.63)

Consider then the Fenchel-Legendre transform

Λ∗(y) = sup
s∈R

(
sy − Λ(s)

)
(E.64)

and define its effective domain as

DΛ∗ = {y ∈ R : Λ∗(y) < ∞}. (E.65)

We have the following properties:

P1) Nonnegativity. 0 ≤ Λ∗(y) ≤ ∞ for all y ∈ R, and Λ∗(ȳ) = 0.
P2) Alternative expressions:

Λ∗(y) = sup
s≥0

(
sy − Λ(s)

)
for y ≥ ȳ, (E.66a)

Λ∗(y) = sup
s≤0

(
sy − Λ(s)

)
for y ≤ ȳ. (E.66b)

P3) Interior of the effective domain: int(DΛ∗) = (yinf , ysup).
P4) Smoothness and strict convexity. Λ∗(y) is infinitely differentiable and

strictly convex on (yinf , ysup). Thus, in view of P1, Λ∗(y) attains its unique
minimum at ȳ.

P5) Values at the boundary of the effective domain:

if yinf = −∞, lim
y→yinf

Λ∗(y) = ∞, (E.67a)

if yinf > −∞, Λ∗(yinf) = − log P[y = yinf], (E.67b)
if ysup < ∞, Λ∗(ysup) = − log P[y = ysup], (E.67c)
if ysup = ∞, lim

y→ysup
Λ∗(y) = ∞, (E.67d)

where the expressions in the form − log p should be read as ∞ when p = 0.

E.1. Empirical Averages 413

Proof. It is convenient to prove the different properties separately.

Proof of P1. Since by definition Λ(0) = logE[1] = 0, we have

Λ∗(y) = sup
s∈R

(sy − Λ(s)) ≥ 0 × y − Λ(0) = 0 (E.68)

and, hence, Λ∗(y) is nonnegative, and it can be equal to ∞ since the supremum in the
definition of the Fenchel-Legendre transform can be infinite. Moreover, in view of the
convexity of the exponential function, we can call upon Jensen’s inequality (Theorem C.5)
to obtain

Λ(s) = logEesy ≥ E log esy = sȳ (E.69)
and, hence,

Λ∗(ȳ) = sup
s∈R

(
sȳ − Λ(s)

)
︸ ︷︷ ︸
≤ 0 from (E.69)

≤ 0, (E.70)

which implies
Λ∗(ȳ) = 0, (E.71)

since we know from (E.68) that Λ∗(y) is nonnegative. Thus, P1 is proved.

Proof of P2. For all y ≥ ȳ and all s < 0 we can write

sy − Λ(s) ≤ sȳ − Λ(s) ≤ sup
s∈R

(
sȳ − Λ(s)

)
= Λ∗(ȳ) = 0. (E.72)

Since from property P1 we know that the supremum of sy− Λ(s) is nonnegative, the fact
that sy − Λ(s) ≤ 0 for all s < 0 implies (E.66a). Equation (E.66b) is obtained similarly.

Proof of P3. Let us introduce the function

J(s) = sy − Λ(s) =⇒ Λ∗(y) = sup
s∈R

J(s). (E.73)

Since Λ(s) is strictly convex and infinitely differentiable on R, the function J(s) is strictly
concave and infinitely differentiable on R, with

J ′(s) = y − Λ′(s). (E.74)

Accordingly, strict concavity of J(s) implies that its supremum appearing in (E.73) will
be in fact the unique maximum of J(s) if the equation J ′(s) = 0 has a solution, i.e., if

Λ′(s) = y (E.75)

has a solution. Since we know from (E.36) that Λ′(s) is strictly increasing, it makes
sense to define the following limits:

lim
s→−∞

Λ′(s) = Λ′inf , lim
s→∞

Λ′(s) = Λ′sup, (E.76)

and we conclude that Eq. (E.75) will have a unique solution s(y) for each y ∈ (Λ′inf ,Λ′sup).
This solution is the maximizer of J(s). Therefore, we have the identity sups∈R J(s) =
J
(
s(y)

)
, which, when substituted into (E.73), yields

Λ∗(y) = s(y) y − Λ
(
s(y)

)
< ∞. (E.77)

414 Large Deviations

If Λ′inf = −∞ and Λ′sup = ∞, Eq. (E.77) holds for all y ∈ R, which means that in this
case the effective domain of Λ∗(y) is DΛ∗ = R.

Consider instead the case where Λ′sup < ∞. We now show that in this case Λ∗(y) is
infinite for y > Λ′sup. In fact, by applying the first-order condition for convexity from
(A.2) to the strictly convex function Λ(s) (exploiting the fact that Λ(0) = 0 and using
in particular (A.3b)), we can write, for s ̸= 0,

Λ′(s)s > Λ(s), (E.78)

which implies
J(s) = sy − Λ(s) > s

(
y − Λ′(s)

)
∀s ̸= 0. (E.79)

When y > Λ′sup, the term on the RHS diverges to ∞ as s → ∞, which means that in
this case

Λ∗(y) = sup
s∈R

J(s) = ∞. (E.80)

Likewise, if Λ′inf > −∞ and y < Λ′inf , the term on the RHS of (E.79) diverges to
∞ as s → −∞, implying that Λ∗(y) = ∞. We have thus shown that, when one or
both boundary points Λ′inf and Λ′sup are finite, Λ∗(y) will be equal to ∞ outside these
boundaries. On the other hand, we have shown before that Λ∗(y) is finite for any
y ∈ (Λ′inf ,Λ′sup), which implies that the interior of the effective domain is

int(DΛ∗) = (Λ′inf ,Λ′sup). (E.81)

The behavior of Λ∗(y) at the boundary points is still undetermined. We will address
this point when proving property P6. To complete the proof of property P3, we need to
show that Λ′inf and Λ′sup coincide with the extremes of the support of y. We will focus on
the right boundary Λ′sup. The proof for the left boundary can be obtained similarly.1
Consider a point y0 such that yinf < y0 < ysup, where yinf and ysup are, respectively, the
infimum and the supremum of the support of y, defined by (E.63). Using (E.34) we can
write

Λ′(s) = Esy = y0 + Es(y − y0)

= y0 + Es
[
(y − y0)I[y < y0]

]
+ Es

[
(y − y0)I[y ≥ y0]

]
≥ y0 + Es

[
(y − y0)I[y < y0]

]
, (E.82)

where Es denotes the expectation computed under the exponentially tilted measure
defined by (E.32). We now show that the last term vanishes as s → ∞. To this end,
observing that this term is nonpositive, let us change its sign and make explicit the
definition of the expectation under the tilted measure to obtain

Es
[
(y0 − y)I[y < y0]

]
=

E
[
(y0 − y)esy I[y < y0]

]
M(s)

= E
[
(y0 − y)esy−Λ(s)I[y < y0]

]
= esy0−Λ(s) E

[
(y0 − y)es(y−y0)I[y < y0]

]
, (E.83)

1It is actually not necessary to repeat the proof for the left boundary. In fact, if we consider
the random variable z = −y, the LMGF of z is equal to Λ(−s), and the roles of ysup and yinf
are interchanged.

E.1. Empirical Averages 415

where we further used the definition Λ(s) = logM(s). Now, by exploiting Chernoff’s
bound (Theorem C.3), for all nonnegative s we have

P[y ≥ y0] ≤ Eesy

esy0
= M(s)e−sy0 = eΛ(s)−sy0 . (E.84)

Accordingly, observing that P[y ≥ y0] > 0 since yinf < y0 < ysup, and using (E.84) in
(E.83), we obtain

Es
[
(y0 − y)I[y ≤ y0]

]
≤

E
[
(y0 − y)es(y−y0)I[y < y0]

]
P[y ≥ y0] . (E.85)

Note that
lim
s→∞

es(y−y0)I[y < y0] = 0. (E.86)

Since for all s > 0 we have the bound

es(y−y0)I[y < y0] < 1, (E.87)

and since the random variable y has finite mean, from the dominated convergence
theorem (Theorem D.6) we conclude that

lim
s→∞

E
[
(y0 − y)es(y−y0)I[y < y0]

]
= 0, (E.88)

which, in view of (E.82) and (E.85), implies that

lim inf
s→∞

Λ′(s) ≥ y0. (E.89)

Since y0 can be any point such that yinf < y0 < ysup, if ysup = ∞ the value of y0 can be
chosen arbitrarily large, and Eq. (E.89) implies that the limit inferior of Λ′(s) is equal
to ∞, which in turn implies Λ′sup = ysup. If instead ysup < ∞, we can choose y0 = ysup − ε
for a small ε > 0, and conclude from the arbitrariness of ε that

lim inf
s→∞

Λ′(s) ≥ ysup. (E.90)

On the other hand, from the definition of ysup we have

Λ′(s) = E[y esy]
M(s) ≤ Eesy

M(s) ysup = ysup, (E.91)

which, when combined with (E.90), gives

lim
s→∞

Λ′(s) = ysup, (E.92)

and the proof of P3 is complete.

Proof of P4. In the proof of P3 we have established that, for all y ∈ (yinf , ysup), Eq.
(E.75) implicitly defines a function s(y) through the equation

Λ′
(
s(y)

)
= y. (E.93)

The theorem about differentiation of the inverse function [144, p. 114] allows us to
conclude that the derivative of the function s(y) can be computed as

s′(y) = 1
Λ′′
(
s(y)

) > 0 (E.94)

416 Large Deviations

and that s(y) is infinitely differentiable on (yinf , ysup). Then, from (E.77) we can write
d

dy
Λ∗(y) = s(y) + y s′(y) − Λ′

(
s(y)

)︸ ︷︷ ︸
=y from (E.93)

s′(y) = s(y), (E.95)

and
d2

dy2 Λ∗(y) = s′(y)
(E.94)
> 0, (E.96)

which shows that Λ∗(y) is strictly convex on (yinf , ysup) in view of Lemma A.2. We already
know from property P1 that the point ȳ is a global minimizer for Λ∗(y). From strict
convexity, it is actually the unique minimizer, with Λ∗(y) being strictly decreasing for
y < ȳ and strictly increasing for y > ȳ.

Proof of P5. We focus on ysup, with the proof for yinf being similar. We must accordingly
establish (E.67c) and (E.67d). The fact that Λ∗(y) → ∞ when ysup = ∞, i.e., relation
(E.67d), is readily established by taking a point y0 > ȳ and applying the first-order
condition for convexity (Lemma A.1), which yields

Λ∗(y) > Λ∗(y0) + d

dy
Λ∗(y)

∣∣∣
y=y0

(y − y0). (E.97)

Observing that the function Λ∗(y) is strictly increasing for y > ȳ, its derivative at y0 is
positive, and we conclude from (E.97) that Λ∗(y) → ∞ as y → ∞.

Consider next the case where ysup is finite, corresponding to (E.67c). We must prove
that

Λ∗(ysup) = − log P[y = ysup], (E.98)
which should be read as Λ∗(ysup) = ∞ if P[y = ysup] = 0. To prove (E.98), observe that

Λ∗(ysup) = sup
s∈R

(
sysup − Λ(s)

)
= sup

s∈R

(
sysup − logEesy

)
= sup

s∈R

(
log esysup − logEesy

)
= sup

s∈R

(
log e

sysup

Eesy

)
= sup

s∈R

(
log 1

Ees(y−ysup)

)
= − inf

s∈R
logEes(y−ysup), (E.99)

where the first two equalities follow from the definitions of the Fenchel-Legendre transform
and the LMGF, respectively. The last equality follows from the properties of the infimum
and supremum, whereas the remaining equalities result from straightforward algebraic
manipulations. We now want to evaluate the infimum appearing in (E.99). Due to the
monotonicity of the logarithm, it is sufficient to evaluate the infimum of Ees(y−ysup).
From the definition of the expected value, this quantity can be represented as

Ees(y−ysup) = P[y = ysup] + E
[
es(y−ysup)I [y < ysup]

]
. (E.100)

The first term on the RHS of (E.100) does not depend on s. The second term vanishes
as s → ∞, in view of the dominated convergence theorem (Theorem D.6). However,
since this term is nonnegative,2 the fact that it vanishes implies that its infimum is zero.
Accordingly, from (E.100) we conclude that

inf
s∈R

Ees(y−ysup) = P[y = ysup], (E.101)

2Actually, it is strictly positive since y < ysup with nonzero probability. This follows from
the fact that ysup is the supremum of the support of y and y is not deterministic.

E.1. Empirical Averages 417

which, from the monotonicity of the logarithm, implies

inf
s∈R

logEes(y−ysup) = log P[y = ysup], (E.102)

with the understanding that the expression is equal to −∞ when P[y = ysup] = 0. Using
(E.102) in (E.99) proves (E.98). This completes the proof of P5 and, hence, of the lemma.

■

The next lemma generalizes the previous one by characterizing the
Fenchel-Legendre transform of a special function that is useful to character-
ize the large deviations of random sums examined later in Appendix F, and
ultimately to characterize the error exponent for adaptive social learning
in Chapter 9.

Lemma E.2 (Properties of a useful function). Let Λ(s) be the LMGF of a
nondeterministic random variable y (the conclusions for the deterministic case
are trivial), with Λ(s) < ∞ for all s ∈ R, and introduce the function

ϕ(s) ≜
∫ s

0

Λ(ς)
ς

dς. (E.103)

Then we have the following property:

Q0) Smoothness and strict convexity of ϕ(s). The function ϕ(s) is infinitely
differentiable on R and, for all r ∈ N,

ϕ(r)(s) = 1
sr

∫ s

0
Λ(r)(ς)ςr−1dς, (E.104)

where, for s = 0, the above equation should be read as

ϕ(r)(0) = lim
s→0

1
sr

∫ s

0
Λ(r)(ς)ςr−1dς = Λ(r)(0)

r
. (E.105)

In particular, we have that

ϕ′′(s) = Λ′(s) s− Λ(s)
s2 > 0 ∀s ∈ R, (E.106)

with ϕ′′(0) = lims→0 ϕ
′′(s) = Λ′′(0)/2.

Let us further introduce the expected value ȳ = Ey and the extremes of the
support of the probability distribution associated with y (see Definition E.1),

yinf ≜ inf
(

suppy
)
, ysup ≜ sup

(
suppy

)
. (E.107)

Consider then the Fenchel-Legendre transform

ϕ∗(y) = sup
s∈R

(
sy − ϕ(s)

)
(E.108)

418 Large Deviations

and define its effective domain as

Dϕ∗ = {y ∈ R : ϕ∗(y) < ∞}. (E.109)

We have the following properties:

Q1) Nonnegativity. 0 ≤ ϕ∗(y) ≤ ∞ for all y ∈ R, and ϕ∗(ȳ) = 0.
Q2) Alternative expressions:

ϕ∗(y) = sup
s≥0

(
sy − ϕ(s)

)
for y ≥ ȳ, (E.110a)

ϕ∗(y) = sup
s≤0

(
sy − ϕ(s)

)
for y ≤ ȳ. (E.110b)

Q3) Interior of the effective domain. The interior of the effective domain of
ϕ∗(y) is the open interval int(Dϕ∗) = (yinf , ysup).

Q4) Smoothness and strict convexity. ϕ∗(y) is infinitely differentiable and
strictly convex on (yinf , ysup). Thus, in view of Q1, ϕ∗(y) attains its unique
minimum at ȳ.

Q5) Values at the boundary of the effective domain. If ysup < ∞, then
ϕ∗(ysup) = ∞, and, likewise, if yinf > −∞, then ϕ∗(yinf) = ∞. Thus, the
effective domain is the open interval (yinf , ysup), i.e., we have Dϕ∗ = int(Dϕ∗).
Moreover,

lim
y→y+

inf

ϕ∗(y) = ∞, lim
y→y−

sup

ϕ∗(y) = ∞. (E.111)

A typical shape of ϕ∗(y) is illustrated in Figure E.3.

Proof. It is convenient to prove the different properties separately.

Proof of Q0. The function ϕ(s) defined in (E.103) shares some properties with the
LMGF Λ(s), and for this reason the proof will be similar to that of Lemma E.1.
Preliminarily, we observe that the function Λ(s)/s is continuous over the entire real axis,
once we evaluate its value at s = 0 using

lim
s→0

Λ(s)
s

= Λ′(0) = ȳ, (E.112)

where the equality follows from the first relation in (E.31).
Let us start by establishing (E.104) for the case s ̸= 0; we proceed by induction.

Relation (E.104) trivially holds for r = 1. We show that if (E.104) holds for r, then it
must hold for r + 1. Indeed,

ϕ(r+1)(s) = d

ds
ϕ(r)(s) = d

ds

(
1
sr

∫ s

0
Λ(r)(ς)ςr−1dς

)
. (E.113)

Applying the rule of integration by parts we have

1
sr

∫ s

0
Λ(r)(ς)ςr−1dς = Λ(r)(s)

r
− 1
rsr

∫ s

0
Λ(r+1)(ς)ςrdς. (E.114)

E.1. Empirical Averages 419

+

Figure E.3: Typical shape of the function ϕ∗(y) defined in Lemma E.2.

Differentiating the above expression yields

ϕ(r+1)(s) = Λ(r+1)(s)
r

− Λ(r+1)(s)
r

+ 1
sr+1

∫ s

0
Λ(r+1)(ς)ςrdς, (E.115)

which corresponds to (E.104) for r + 1. This completes the proof by induction, and the
identity in Eq. (E.104) is proved for the case s ≠ 0. To get (E.105), observe that when
the limit of ϕ(r)(s) as s → 0 exists and is finite, then ϕ(r)(0) exists and is equal to this
limit.3 By applying L’Hôpital’s rule to (E.104), we obtain

ϕ(r)(0) = lim
s→0

ϕ(r)(s) = lim
s→0

1
sr

∫ s

0
Λ(r)(ς)ςr−1dς = Λ(r)(0)

r
. (E.117)

Specializing (E.104) to the case r = 2 we get (E.106), where the inequality for s ≠ 0
follows from (E.78), whereas for s = 0 we have ϕ′′(0) = lims→0 ϕ

′′(s) = Λ′′(0)/2, which
is positive because Λ′′(0) is the variance of the nondeterministic random variable y —
see (E.31).

The proof of Q0 is complete. We focus next on the regularity properties of the
Fenchel-Legendre transform ϕ∗(y).

3To see that this property holds, let g be a function defined on an interval Iε = (−ε, ε),
for some ε > 0, and differentiable on Iε\{0}. Assume that limx→0 g′(x) = l. We want to
show that g′(0) exists and is equal to l. From the mean-value theorem [144, Thm. 5.9] we
have g′(x̄) = (g(x) − g(0))/x for some x̄ ∈ (0, x). Moreover, from the squeeze theorem [144,
Thm. 3.19] it follows that x̄→ 0 as x→ 0. Then we can write

g′(0) = lim
x→∞

g(x)− g(0)
x

= lim
x̄→∞

g′(x̄) = l, (E.116)

where the first equality is the definition of the derivative of g in 0.

420 Large Deviations

Proof of Q1. Property Q1 is proved similarly to property P1 in Lemma E.1. First, we
note that ϕ(0) = 0, and, hence, Eq. (E.68) can be obtained with ϕ∗(y) and ϕ(s) in place
of Λ(s) and Λ∗(y), respectively. In other words, we have 0 ≤ ϕ(y) ≤ ∞ for all y ∈ R.
Second, using (E.69) we can write, for all s > 0,

ϕ(s) =
∫ s

0

Λ(ς)
ς

dς ≥
∫ s

0
ȳ dς = sȳ. (E.118)

Likewise, for all s < 0 it holds that (observe that for negative s we have the identity
s = −|s|)

ϕ(s) =
∫ −|s|

0

Λ(ς)
ς

dς = −
∫ 0

−|s|

Λ(ς)
ς

dς ≥ −
∫ 0

−|s|
ȳ dς = sȳ. (E.119)

Therefore, we established the inequality ϕ(s) ≥ sȳ for all s ∈ R, namely, we proved
(E.69) with ϕ(s) in place of Λ(s). Now, combining the two results: i) 0 ≤ ϕ(y) ≤ ∞ for
all y ∈ R; and ii) ϕ(s) ≥ sȳ for all s ∈ R, property Q1 follows from the same arguments
used in the proof of property P1.

Proof of Q2. Q2 is obtained from Q1 in the same manner as P2 is obtained from P1
in Lemma E.1.

Proof of Q3. We can follow the same argument used to establish property P3 in
Lemma E.1. To prove P3 we relied on the strict convexity of Λ(s), and observed that
int(DΛ∗) is the open interval with boundaries given by the limiting values of Λ′(s) as
s → ±∞. Since ϕ(s) is also strictly convex, the same argument applies and we conclude
that

int(Dϕ∗) =
(

lim
s→−∞

ϕ′(s), lim
s→∞

ϕ′(s)
)
. (E.120)

Recalling that
ϕ′(s) = Λ(s)

s
, (E.121)

we want to show that

lim
s→−∞

Λ(s)
s

= yinf , lim
s→∞

Λ(s)
s

= ysup. (E.122)

Actually, we now prove the limit relative to the right boundary ysup, with the proof for
the left boundary yinf being similar.

Let us consider a point y0 such that yinf < y0 < ysup, where yinf and ysup are,
respectively, the infimum and the supremum of the support of y, defined by (E.107).
Using (E.84) we can write, for s > 0,

Λ(s)
s

≥ y0 + log P[y ≥ y0]
s

. (E.123)

We remark that P[y ≥ y0] > 0 since yinf < y0 < ysup. From (E.123) we get

lim inf
s→∞

Λ(s)
s

≥ y0. (E.124)

If ysup = ∞ the result is proved due to the arbitrariness of y0. If ysup < ∞, we can choose
y0 = ysup −ε, and conclude that the limit inferior in (E.124) is equal to ysup. The fact that
the corresponding limit superior is equal to ysup follows by observing that for all s > 0

E.1. Empirical Averages 421

the quantity Λ(s)/s is upper bounded by ysup since Λ(s) = logEesy ≤ logEesysup = s ysup.
We have in fact established that

lim inf
s→∞

Λ(s)
s

= lim sup
s→∞

Λ(s)
s

= ysup = lim
s→∞

Λ(s)
s

, (E.125)

as desired.

Proof of Q4. To prove P4 in Lemma E.1 we relied on the smoothness and the strict
convexity of Λ(s). We can therefore prove Q4 as done for P4, by exploiting the smooth-
ness and the strict convexity of ϕ(s) established in property Q0 of the present lemma.

Proof of Q5. Finally, we characterize the behavior of ϕ∗(y) at the boundaries of
int(Dϕ∗). We focus again on the right boundary ysup, with the proof for yinf being similar.
When ysup = ∞, it suffices to notice that the rate function ϕ∗(y) is strictly convex on
int(Dϕ∗) and is strictly increasing for y > ȳ (see Figure E.3) to conclude that the rate
function diverges to ∞ as y → ysup. Technically, this conclusion can be obtained from
the first-order condition for convexity as done for Λ∗(y) in (E.97).

We next examine the case ysup < ∞. Consider a point y0 < ysup and let q = P[y ≥ y0].
We can write, for all s > 0,

Λ(s) = log
(
E
[
esyI[y < y0]

]
+ E
[
esyI[y ≥ y0]

])
≤ log

(
(1 − q)esy0 + qesysup

)
= sysup + log

(
(1 − q)e−s(ysup−y0) + q

)
. (E.126)

Since y0 < ysup,
lim
s→∞

e−s(ysup−y0) = 0. (E.127)

This implies that, for any ε > 0, there exists s0 > 0 such that

(1 − q)e−s(ysup−y0) ≤ εq ∀s ≥ s0. (E.128)

Combining (E.126) and (E.128), we obtain

Λ(s) ≤ sysup + log
(

(1 + ε)q
)

∀s ≥ s0, (E.129)

which, when used in (E.103), gives

ϕ(s) =
∫ s

0

Λ(ς)
ς

dς =
∫ s0

0

Λ(ς)
ς

dς +
∫ s

s0

Λ(ς)
ς

dς

≤ ϕ(s0) + ysup(s− s0) +
∫ s

s0

log
(

(1 + ε)q
)

ς
dς

= ϕ(s0) + ysup(s− s0) + log
(

(1 + ε)q
)

log s

s0
. (E.130)

Performing straightforward algebraic manipulations, we conclude that

sysup − ϕ(s) ≥ −ϕ(s0) + s0 ysup + log 1
(1 + ε)q log s

s0
(E.131)

422 Large Deviations

for all s ≥ s0. Using this result in (E.108) yields

ϕ∗(ysup) ≥ sup
s≥s0

[sysup − ϕ(s)] ≥ −ϕ(s0) + s0 ysup

+ log 1
(1 + ε)q sup

s≥s0
log s

s0
= ∞, (E.132)

where we assume ε small enough to ensure that (1 + ε)q < 1. Finally, in view of (E.108)
we can write, for a generic s ∈ R,

lim inf
y→ysup

ϕ∗(y) ≥ lim inf
y→ysup

[sy − ϕ(s)] = sysup − ϕ(s), (E.133)

which, due to the arbitrariness of s, also implies that

lim inf
y→ysup

ϕ∗(y) ≥ sup
s∈R

[sysup − ϕ(s)] = ∞, (E.134)

where the equality follows from (E.132). We conclude that ϕ∗(y) → ∞ as y → ysup, and
the proof is complete.

■

Example E.4 (Why does the Fenchel-Legendre transform appear in large deviation
analysis?). Consider the same setting used in Cramér’s theorem and focus on the
probability P[ȳn ≥ y] for y > ȳ. By applying Chernoff’s bound (Theorem C.3) to the
empirical average, for all s ≥ 0 we can write

P[ȳn ≥ y] ≤ Eensȳn

ensy
. (E.135)

On the other hand, we have the identities

Eensȳn
(a)= E

[
n∏
i=1

esyi

]
(b)=

n∏
i=1

Eesyi
(c)= Mn(s) = en logM(s) = enΛ(s), (E.136)

where M(s) and Λ(s) denote the MGF and the LMGF of yi, respectively. In step (a) we
apply the relation n ȳn =

∑n

i=1 yi; step (b) holds because the random variables yi are
independent; and step (c) holds because they are identically distributed. Using (E.136)
in (E.135) we get

P[ȳn ≥ y] ≤ enΛ(s)

ensy
= e
−n
(
sy−Λ(s)

)
. (E.137)

On the other hand, since s is an arbitrary nonnegative value, we can also write

P[ȳn ≥ y] ≤ inf
s≥0

e
−n
(
sy−Λ(s)

)
= e
−n sups≥0

(
sy−Λ(s)

)
= e−nΛ∗(y), (E.138)

where Λ∗(y) is the Fenchel-Legendre transform of Λ(s) — see (E.66a). We remark that,
in the evaluation of the Fenchel-Legendre transform, the supremum is taken only for
s ≥ 0, which is legitimate in view or (E.110a), since we are considering the case y > ȳ.
Equation (E.138) highlights the relevance of the Fenchel-Legendre transform Λ∗(y) in
evaluating the deviation of the empirical average from the statistical average. Note that
this result does not prove Cramér’s theorem, since it establishes only an upper bound.
The derivation of a lower bound that allows to establish Cramér’s theorem is provided
in [59, 60].

E.1. Empirical Averages 423

Example E.5 (Why cannot the CLT be used to evaluate large deviations?). Just like
Cramér’s theorem, the central limit theorem (Theorem D.8) is a useful concentration
result that sharpens the law of large numbers by providing information about the
deviation of the empirical average from the statistical average. In terms of the empirical
average

ȳn = 1
n

n∑
i=1

yi (E.139)

of iid random variables yi with mean ȳ and variance σ2, the convergence in distribution
in (D.51) corresponds to the statement

√
n (ȳn − ȳ) d−−−−→

n→∞
G (0, σ2). (E.140)

Applying the definition of convergence in distribution seen in (D.12), we conclude from
(E.140) that, for all γ ∈ R,

lim
n→∞

P
[√
n (ȳn − ȳ) ≥ γ

]
= Q(γ/σ). (E.141)

By straightforward manipulations, Eq. (E.141) becomes

lim
n→∞

P
[
ȳn ≥ ȳ + γ√

n

]
= Q(γ/σ). (E.142)

Consider, for example, a value γ > 0. Equation (E.142) reveals that, for large n, the
probability that ȳn deviates from ȳ by a small positive amount γ/

√
n is close to Q(γ/σ).

Now, recalling (E.2a), we can write

lim
n→∞

P [ȳn ≥ y] = lim
n→∞

P [ȳn ≥ ȳ + (y − ȳ)] = 0 ∀y > ȳ. (E.143)

It is useful to compare (E.142) against (E.143). In (E.142), the deviation from the mean
ȳ is quantified by the term γ/

√
n, which vanishes as n → ∞. A vanishing deviation of

this form is usually referred to as moderate or normal [59, 60]. In contrast, in (E.143)
the deviation (y− ȳ) is called a large deviation, since it does not converge to 0 as n → ∞.
We see from (E.143) that the probability of a large deviation converges to 0. In contrast,
Eq. (E.142) reveals that the probability of a moderate deviation converges to a nonzero
value Q(γ/σ).

This behavior can be explained as follows. As n increases, the law of large numbers
asserts that the distribution of the empirical average will be concentrated on ȳ. The
CLT reveals that this distribution assumes a Gaussian shape, with a variance converging
to 0 as 1/n. This is the reason why variations on the order of 1/

√
n correspond to a

constant limiting probability. For example, if we focus on the body of the distribution of
ȳn containing approximately 95% of the probability mass, we will need to consider a
range around the mean corresponding to twice the standard deviation, 2σ/

√
n, yielding,

for large n,

P
[

|ȳn − ȳ| ≤ 2 σ√
n

]
≈ 1 − 2Q(2) ≈ 0.9545. (E.144)

This situation is illustrated in Figure E.4, where we display four histograms of the
empirical average ȳn of iid Bernoulli random variables with success probability p = 0.1.

424 Large Deviations

-0.09 0.29
0

2

4

6
d

is
tr

ib
u

ti
on

of
ȳ n

0.9290

n = 10

0.02 0.18
0

5

10

0.9731

n = 50

0.06 0.14
0

10

20

d
is

tr
ib

u
ti

on
of
ȳ n

0.9609

n = 200

empirical histogram limiting Gaussian

0.07 0.13
0

10

20

30 0.9594

n = 300

Figure E.4: Histograms computed from 106 independent realizations of the empirical average
ȳn of iid Bernoulli random variables with success probability p = 0.1. The four panels correspond
to n = 10, 50, 200, 300. The numerical value inside each panel is the empirical probability of
belonging to the interval in (E.145). The pink area in the plots refers to this interval.

The four panels correspond to n = 10, 50, 200, 300. We see that the histograms approach
a Gaussian shape as n increases. The area highlighted in pink corresponds to the range[

ȳ − 2 σ√
n
, ȳ + 2 σ√

n

]
(E.145)

and the numerical value in each panel is the empirical probability of belonging to such
interval. We see that, as n increases, this probability approaches the value 1 − 2Q(2) ≈
0.9545 predicted by the CLT. The main message of this analysis is that, as n increases,
the region that contains most of the probability mass shrinks, becoming progressively
concentrated on the mean. This is evident in Figure E.4, where the histograms approach
a Dirac-δ shape as n increases. For this reason, if we consider intervals that shrink
appropriately as n → ∞, the probability of belonging to these intervals converge to
a constant nonzero value, and the CLT is able to predict well this value through a
Gaussian approximation. In other words, the effective body of the distribution is well
approximated by a Gaussian distribution.

Consider now the large deviation perspective, where we are interested in evaluating
the probability that the empirical average exceeds a threshold y ≠ ȳ that is constant
with n — see (E.11). For example, let y = 0.2. Examining again the panels in Figure E.4,
we see that, as n → ∞, the value 0.2 becomes progressively farther from the body of the
distribution, and this explains why, as predicted by Eq. (E.143), the probability that the
empirical average exceeds this value converges to 0 as n → ∞. In other words, the large
deviation regime focuses on the tails of the distribution of ȳn, rather than on the body.

E.1. Empirical Averages 425

0 50 100 150
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

empirical

large deviations

CLT
P[

ȳ
n

≥
0.

2]

1

Figure E.5: Probability that the empirical average of iid Bernoulli variables with success
probability p = 0.1 exceeds the value y = 0.2, displayed as a function of the number of samples n.
The empirical probability (black) is estimated from 106 Monte Carlo runs. The red curve shows
the Gaussian approximation in (E.146). The blue curve corresponds to the function e−nΛ∗(0.2),
where Λ∗(y) is the rate function given by (E.58).

In particular, under some regularity conditions on the tails, the probability of observing
a large deviation vanishes at an exponential rate, and is accordingly characterized by
evaluating the exponent that rules this decay — see (E.39). Note that, since the CLT
is asymptotically exact for moderate (i.e., not large) deviations, it is not possible to
use the CLT to evaluate the exponent. To give a concrete example, in Figure E.5 we
consider the probability P[ȳn ≥ y], for y = 0.2 and several values of n, with reference to
the same example considered before, i.e., iid Bernoulli variables with success probability
p = 0.1. The black curve is obtained empirically by means of 106 Monte Carlo runs. The
red curve corresponds to the Gaussian approximation

P[ȳn ≥ y] ≈ Q

(
y − ȳ

σ/
√
n

)
, (E.146)

where ȳ = p and σ2 = p(1 − p). We see that the CLT approximation fails to reproduce
the correct behavior. Regarding the large deviation analysis, we depict in blue the curve
e−nΛ∗(0.2), where Λ∗(y) is the rate function given by (E.58). As already remarked, this
curve is not intended to be an approximation for P[ȳn ≥ y], but only to represent the
exponential decay. We see that this curve captures well the exponent exhibited by the
black curve.

426 Large Deviations

E.1.4 Probability of Belonging to Arbitrary Sets

Cramér’s theorem focuses on the probability that the empirical average
stays above or below the statistical average, and reveals that the exponential
decay of this probability is well characterized through the rate function.
It is therefore legitimate to ask whether the rate function can be useful
to characterize the probability of belonging to arbitrary sets. To examine
this question, it is useful to start with the following case:

P[ȳn ∈ S], S =
(−∞, y′] ∪ [y′′,∞), y′ < ȳ < y′′. (E.147)

We can write

P[ȳn ∈ S] ≥ P
[
ȳn ≤ y′

]
, (E.148a)

P[ȳn ∈ S] ≥ P
[
ȳn ≥ y′′

]
, (E.148b)

P[ȳn ∈ S] ≤ P
[
ȳn ≤ y′

]
+ P

[
ȳn ≥ y′′

]
, (E.148c)

where the lower bounds hold since the probability of the union of events
is not smaller than the probability of the individual events, while the
upper bound follows from the union bound. From Cramér’s theorem
(Theorem E.1) we know that

P
[
ȳn ≤ y′

] ·= e−nΛ∗(y′), P
[
ȳn ≥ y′′

] ·= e−nΛ∗(y′′). (E.149)

Using these relations in (E.148a)–(E.148c), it is immediate to conclude
that

P[ȳn ∈ S] ·= e−nmin{Λ∗(y′),Λ∗(y′′)}. (E.150)
In this case we see that the exponent is not given by the rate function
itself, but by the minimum value between Λ∗(y′) and Λ∗(y′′). From the
general properties of the rate function (see Lemma E.1), this minimum is
in fact the infimum of Λ∗(y) over the set S — see Figure E.6 for a visual
illustration. Note that the infimum corresponds to the smallest exponent.
This behavior has the following useful interpretation.

On one hand, we know that the probability P[ȳn ∈ S] converges to 0 as
n→∞. This means that {ȳn ∈ S} is a rare event for large n. On the other
hand, we know that P[ȳn ∈ S] vanishes at an exponential rate. The smaller
the exponent, the rarer the event will be. We have seen that the exponent
is determined by the infimum of the rate function over the set S. This
principle is nicely summarized in [60] by saying that “any large deviation
is done in the least unlikely of all the unlikely ways! ” It is now legitimate
to ask whether this principle can be extended to sets S more general than
the one in (E.147). We answer this question in the next section.

E.2. Large Deviation Principle 427

+ +

Figure E.6: Illustration of how to compute the exponent for the probability P[ȳn ∈ S] in
(E.147). The rate function Λ∗(y) corresponds to Example E.3, and is given by (E.58). The part
of the curve corresponding to y ∈ S is highlighted in red. The blue star denotes the value of the
exponent, obtained as the infimum of Λ∗(y) over S.

E.2 Large Deviation Principle

The analysis in the previous sections focused only on the deviation of the
empirical average of iid random variables from their statistical average.
The theory of large deviations, however, is more general in several respects.
First, it applies to more general families of random variables or vectors,
and is not limited to empirical averages of iid samples. Second, the theory
covers the probability of belonging to arbitrary sets.

The core concept is the large deviation principle (LDP). Although this
principle can be formulated with reference to random vectors in Rd or
general topological spaces, it is sufficient for our purposes to consider the
simplest case of random variables. We recall that int(S) and cl(S) denote
the interior and the closure of a set S, respectively. Moreover, the infimum
over an empty set is taken as ∞.

Definition E.2 (Large deviation principle). A family of random variables {yε}
indexed by a (possibly continuous) parameter ε is said to satisfy the LDP with

428 Large Deviations

rate 1/ε and with rate function I(y) when, for all sets S ⊆ R,

− inf
y∈int(S)

I(y) ≤ lim inf
ε→0

ε log P[yε ∈ S]

≤ lim sup
ε→0

ε log P[yε ∈ S] ≤ − inf
y∈cl(S)

I(y), (E.151)

where the function I : R 7→ [0,∞] must be lower semicontinuous, which means
that for any z ∈ [0,∞), the level set

{y ∈ R : I(y) ≤ z} (E.152)

is a closed subset of R or, equivalently, that

lim inf
y→y0

I(y) ≥ I(y0) ∀y0 ∈ R. (E.153)

Examining the LDP definition, one might wonder about the need for the
lower semicontinuity restriction on the family of rate functions. Likewise,
one might ask why the LDP is defined in terms of the limit inferior (resp.,
superior) relative to the interior (resp., the closure) of S, rather than simply
by a limit relative to S. Regarding lower semicontinuity, this property
is useful to guarantee the uniqueness of the rate function — see [60,
Thm. III.8] or [59, Lemma 4.1.4].

Regarding the second question, observe that whenever

inf
y∈int(S)

I(y) = inf
y∈cl(S)

I(y), (E.154)

relation (E.151) implies the existence of the limit

lim
ε→0

ε logP[yε ∈ S] = − inf
y∈S

I(y). (E.155)

Sets fulfilling (E.154) are called I-continuity sets. There is no doubt that
(E.155) is more direct and easier to deal with than (E.151). However,
requiring (E.155) for all sets S can be too restrictive, and would exclude
important classes of random variables.

To see why, assume that yε is a family of continuous random variables,
and consider first the singleton S = {y0}. Then, since P[yε ∈ S] = P[yε =
y0] = 0, by applying (E.155) we would get

lim
ε→0

ε logP[yε = y0] = −∞ = −I(y0) ∀y0 ∈ R. (E.156)

Let us now consider another choice for the set S, namely, S = R. Since
P[yε ∈ R] = 1, by applying (E.155) we would conclude that

lim
ε→0

ε logP[yε ∈ R] = 0 = − inf
y∈R

I(y), (E.157)

E.2. Large Deviation Principle 429

which is not compatible with (E.157). This reveals that, if the LDP were
formulated by requiring (E.155) for all sets, continuous random variables
would be excluded.

We are now ready to state the famous Gärtner-Ellis theorem, which
generalizes Cramér’s theorem to deal with sequences of random variables
more general than empirical averages of iid samples.

Theorem E.2 (Gärtner-Ellis theorem [68, 78] [60, Thm. V.6] [59, Thm. 2.3.6]).
Let {yε} be a family of random variables indexed by a (possibly continuous)
parameter ε, and let

Λε(s) = logEesyε (E.158)
be the LMGF of yε. If, for all s ∈ R,

lim
ε→0

εΛε(s/ε) = Λ(s) < ∞, (E.159)

with Λ(s) being differentiable on R, then the family of random variables {yε}
satisfies the LDP with rate 1/ε and with rate function I(y) = Λ∗(y). Furthermore,
Λ∗(y) has compact level sets.4

To become familiar with the statement of the Gärtner-Ellis theorem, it
is instructive to apply it to the empirical average of iid random variables,
and verify whether we recover Cramér’s theorem.

Example E.6 (Cramér’s theorem from the Gärtner-Ellis theorem). Consider the setting
of Cramér’s theorem (Theorem E.1), where we have a sequence {yn} of iid random
variables, whose LMGF Λ(s) satisfies the condition Λ(s) < ∞ for all s ∈ R. Consider
then the empirical average

ȳn = 1
n

n∑
i=1

yi, (E.160)

whose LMGF can be computed in terms of the LMGF Λ(s) of the individual variable
yn by using (E.136), which yields

logEesȳn = nΛ(s/n). (E.161)

Performing the change of variable ε = 1/n and denoting by Λε(s) the LMGF of ȳn, we
can write

Λε(s) = 1
ε

Λ(ε s), (E.162)

which in turn implies
εΛε(s/ε) = Λ(s). (E.163)

4Some authors [59] use the term “good rate function” when the rate function has compact
level sets. Other authors [60] embody directly the “goodness” of the rate functions in their
definitions, i.e., they require that all rate functions must be “good” by definition.

430 Large Deviations

Accordingly, condition (E.159) is verified with the limiting LMGF equal to the LMGF
of the individual variable yn. Calling upon the Gärtner-Ellis theorem we conclude that
the LDP is satisfied with rate 1/ε = n and with rate function I(y) = Λ∗(y).

Now, let ȳ < z < ysup and consider the set

S = [z,∞). (E.164)

Property P4 in Lemma E.1 ensures that

inf
y∈int(S)

Λ∗(y) = inf
y∈cl(S)

Λ∗(y) = Λ∗(z), (E.165)

i.e., S is a Λ∗-continuity set (see (E.154)) and the infima in (E.165) are in fact a minimum
equal to Λ∗(z). Thus, in this case the LDP from (E.151) corresponds to the statement

lim
n→∞

1
n

log P[ȳn ≥ z] = −Λ∗(z), (E.166)

which in turn corresponds to the claim of Cramér’s theorem.
Reasoning in a similar manner it is possible to verify that when ysup < ∞, the set

[ysup,∞) is not a Λ∗-continuity set (see, e.g., Figure E.2). This particular case, which
is covered by Cramér’s theorem, is not directly obtained from the statement of the
Gärtner-Ellis theorem.

Owing to its generality, the Gärtner-Ellis theorem is a powerful tool
that allows to cover numerous cases of practical relevance. In our treatment,
it is used to characterize the error probability associated with traditional
(Chapter 6) and adaptive (Chapter 9) social learning.

Appendix F

Random Sums and Series

This appendix focuses on the stochastic convergence of random sums.
Section F.1 contains some classic results on convergent random series.
Sections F.2 and F.3 focus instead on certain random sums that are
relevant to the adaptive social learning paradigm considered in Chapters 8,
9, and 10; the results presented in these sections are either novel or borrowed
from [25, 119, 120].

F.1 Convergent Random Series

We adopt the following standard terminology. Given a sequence of numbers
{yn} and the partial sum ∑n

i=1 yi, when the sequence of partial sums
converges as n→∞ we say that the series ∑∞i=1 yi is convergent. Moreover,
we say that the series ∑∞i=1 yi is absolutely convergent when the series∑∞
i=1 |yi| is convergent. Note that absolute convergence implies convergence.
The next lemma provides a sufficient condition for the almost-sure

convergence of random series.

Lemma F.1 (Convergence of random series [113, Lemma 3.6′]). Let {yn} be
a sequence of independent random variables. If the series of expected values of
|yn| is convergent, i.e., if

∞∑
i=1

E|yi| < ∞, (F.1)

then
∑∞

i=1 yi is almost surely an absolutely convergent series.

We remark that the limiting value ∑∞i=1 yi is in general random. For
the characterization of a random series employed to characterize adaptive

432 Random Sums and Series

social learning in Chapter 9 (see footnote 2 in that chapter) it is useful
to know that, if the summands yi are not deterministic from some index
onward, then the series ∑∞i=1 yi will be a continuous1 random variable.
This property is guaranteed by the following result.

Lemma F.2 (Continuous nature of random series [111, Thm. XIII]). Let {yn}
be a sequence of independent random variables satisfying the condition

∞∑
i=1

E|yi| < ∞. (F.2)

If the random variables in the sequence are not deterministic from some index
n0 onward, then the series

∑∞
i=1 yi is a continuous random variable.

F.2 Random Sums Relevant to Adaptive Social Learning

In this section we derive some properties for a particular random sum that
arises in the study of the adaptive social learning algorithms in Chapters 8,
9, and 10.

Definition F.1 (Useful random sums). Let {yn} be a sequence of iid random
variables with finite mean ȳ. Let also 0 < δ < 1 and consider the following
partial sums:

zn(δ) ≜ δ

n∑
i=1

(1 − δ)i−1αiyi, (F.3)

where 0 ≤ αi ≤ 1, with αi converging exponentially to some value α > 0 and
obeying the following upper bound for all i ∈ N:

|αi − α| ≤ κ ξi, (F.4)

for some constants κ > 0 and ξ ∈ (0, 1).

We will first study the convergence, as n → ∞, of the partial sums
in (F.3), and then characterize their behavior in the limit as δ → 0. To
facilitate the presentation, the relevant properties are collected in a series
of lemmas.

1We recall that a continuous random variable does not necessarily have a pdf, since it could
be continuous but singular [21]. In the context of random series, one notable example that
can exhibit this behavior is given by Bernoulli convolutions, which are sums of iid Bernoulli
variables. For some values of the success probability, it has been shown that these sums converge
to continuous but singular limiting variables [69].

F.2. Random Sums Relevant to Adaptive Social Learning 433

Lemma F.3 (Useful random series). Consider the setting described in Defini-
tion F.1. Then, irrespective of condition (F.4), the partial sums in (F.3) converge
almost surely as n → ∞, namely, we can define the following random variable

z(δ) ≜ δ

∞∑
i=1

(1 − δ)i−1αiyi. (F.5)

In particular, the series on the RHS is almost-surely absolutely convergent.

Proof. We start by establishing the convergence of the series of expectations

δ

∞∑
i=1

(1 − δ)i−1αi E|yi| = ȳabs δ

∞∑
i=1

(1 − δ)i−1αi, (F.6)

where ȳabs = E|yi|. Note that ȳabs < ∞ because the random variables yi have finite
mean. The series on the RHS of (F.6) is convergent for the following reason. Since
0 ≤ αi ≤ 1 in view of Definition F.1, we have

n∑
i=1

(1 − δ)i−1αi ≤
n∑
i=1

(1 − δ)i−1 ≤
∞∑
i=1

(1 − δ)i−1

= 1
1 − (1 − δ) = 1

δ
< ∞, (F.7)

where in the first equality we compute the known value of the geometric series. Observe
that the partial sums

n∑
i=1

(1 − δ)i−1αi (F.8)

consist of nonnegative terms; this implies that these sums form a monotone (nondecreas-
ing) sequence. As a result, their limit

lim
n→∞

n∑
i=1

(1 − δ)i−1αi =
∞∑
i=1

(1 − δ)i−1αi (F.9)

exists. In principle, the limit can be equal to ∞. However, this is not the case since, by
letting n → ∞ on the LHS of (F.7), we get

∞∑
i=1

(1 − δ)i−1αi < ∞. (F.10)

This proves that the series of expectations in (F.6) converges.
In view of Lemma F.1, convergence of the series of expectations in (F.6) implies that

the random series z(δ) in (F.5) is almost-surely absolutely convergent, and the lemma
is proved.

■

434 Random Sums and Series

Lemma F.4 (First moment). Consider the setting described in Definition F.1,
and let

z(δ) ≜ δ

∞∑
i=1

(1 − δ)i−1αiyi. (F.11)

Then,

Ez(δ) = ȳ δ

∞∑
i=1

(1 − δ)i−1αi = α ȳ +O(δ), (F.12)

where O(δ) is a quantity such that the ratio O(δ)/δ remains bounded as δ → 0
— see Table 1.1.

Proof. Since, in view of (F.6) and (F.7), the series

δ

∞∑
i=1

(1 − δ)i−1αi E|yi| (F.13)

is convergent, so is the series

∞∑
i=1

(1 − δ)i−1αi Eyi = ȳ

∞∑
i=1

(1 − δ)i−1αi. (F.14)

The equality is obtained by using the definition ȳ = Eyi. On the other hand, from the
triangle inequality we have the following upper bound for the random sum zn(δ) in
(F.3):

|zn(δ)| ≤ δ

n∑
i=1

(1 − δ)i−1αi|yi| ≤ δ

∞∑
i=1

(1 − δ)i−1αi|yi|︸ ︷︷ ︸
zabs(δ)

, (F.15)

where the convergence of the series defined by zabs(δ) is guaranteed by Lemma F.3
(because the series z(δ) converges absolutely). In view of Beppo Levi’s monotone conver-
gence theorem [65, Thm. 1.5.7], the expectation of the almost-sure limit zabs(δ) is equal
to the series of expectations, namely,

Ezabs(δ) = δ

∞∑
i=1

(1 − δ)i−1αi E|yi| < ∞, (F.16)

where the inequality holds because of (F.7). From (F.15) and (F.16) we conclude that
|zn(δ)| is upper bounded, for all n, by a random variable with finite mean. Therefore,
the dominated convergence theorem (Theorem D.6) implies that the expectation of the
almost-sure limit z(δ) is equal to the convergent series of expectations (F.14), and the
first equality in (F.12) follows. For the second equality, observe that

δ

n∑
i=1

(1 − δ)i−1αi = δ

n∑
i=1

(1 − δ)i−1 (αi − α) + α δ

n∑
i=1

(1 − δ)i−1. (F.17)

F.2. Random Sums Relevant to Adaptive Social Learning 435

Reasoning as done to establish the convergence of (F.7), we can see that both partial
sums on the RHS converge and, hence, we can write

δ

∞∑
i=1

(1 − δ)i−1αi = δ

∞∑
i=1

(1 − δ)i−1 (αi − α) + α δ

∞∑
i=1

(1 − δ)i−1

︸ ︷︷ ︸
=1

. (F.18)

In view of (F.4), the absolute value of the first summation on the RHS of (F.18) is
dominated by

κ δ

∞∑
i=1

ξi(1 − δ)i−1 = κ ξ δ

∞∑
i=1

[
ξ(1 − δ)

]i−1 = κ ξ δ

1 − ξ(1 − δ) = O(δ). (F.19)

We conclude from (F.14), (F.18), and (F.19) that the second equality in (F.12) holds.
■

Lemma F.5 (Weak law of small δ). Consider the setting described in Defini-
tion F.1, and let

z(δ) ≜ δ

∞∑
i=1

(1 − δ)i−1αiyi. (F.20)

Then, the series z(δ) converges to α ȳ in probability as δ → 0, namely, for all
ε > 0,

lim
δ→0

P
[
|z(δ) − α ȳ| > ε

]
= 0. (F.21)

Proof. If we assume finiteness of the second moment of z(δ), the proof of this lemma is
immediately obtained as an application of Chebyshev’s inequality — see Theorem C.2.
However, finiteness of the second moment is not required, and thus we proceed with a
more technical proof that works without that assumption. Let

ζi = δ(1 − δ)i−1αi (F.22)

and consider the following centered variables:

z̃(δ) = z(δ) − Ez(δ), ỹi = yi − Eyi. (F.23)

In view of Lemmas F.3 and F.4, the centered partial sums

zn(δ) − Ezn(δ) =
n∑
i=1

ζi ỹi (F.24)

converge almost surely (hence, in distribution) to z̃(δ) as n → ∞. From the Lévy-
Cramér continuity theorem (Theorem D.1) the characteristic function of zn − Ezn(δ)
must converge to the characteristic function of z̃(δ). Exploiting (F.24) and the fact that
the random variables yi are iid, the latter characteristic function can be represented as

φz̃(s) =
∞∏
i=1

φỹ(ζis), (F.25)

436 Random Sums and Series

where φỹ(s) denotes the characteristic function of the centered variable ỹi.
The claim of the lemma is that z(δ) − α ȳ converges in probability to 0 as δ → 0.

In view of (F.12) and property P1 from Lemma D.1, it is enough to prove that z̃(δ) in
(F.23) converges in probability to 0 as δ → 0. Furthermore, property P3 from Lemma D.1
allows us to conclude that it suffices to establish that z̃(δ) converges to 0 in distribution.
To this end, we resort again to the Lévy-Cramér continuity theorem (and use it this
time to examine the convergence for δ → 0). Since the characteristic function of a
deterministic variable equal to 0 is identically 1 for all s ∈ R, we need to show that φz̃(s)
converges to 1 as δ → 0. Using (F.25) we can write2

|φz̃(s) − 1| ≤
∞∑
i=1

|φỹ(ζis) − 1|. (F.27)

Consider a positive s (the proof for s < 0 is similar, whereas for s = 0 it is trivial). Since
the random variables ỹi have finite mean, it is known that the first derivative of the
characteristic function, φ′ỹ(s), is a continuous function [70], and from the mean-value
theorem [144, Thm. 5.9] we can write (since in particular Eỹi = 0)

φỹ(ζis) = 1 + ζisφ
′
ỹ(sm) for some sm ∈ (0, ζis). (F.28)

Accordingly, we have

|φỹ(ζis) − 1| = ζis |φ′ỹ(sm)| ≤ ζis max
ς∈[0,δs]

|φ′ỹ(ς)|, (F.29)

where the inequality holds because sm ∈ (0, ζis) and ζi ≤ δ — see (F.22). Applying
(F.29) to (F.27) we get

|φz̃(s) − 1| ≤ s max
ς∈[0,δs]

|φ′ỹ(ς)|
∞∑
i=1

ζi︸ ︷︷ ︸
≤1

. (F.30)

On the other hand, since φ′ỹ(0) = Eỹi = 0, from the continuity of φ′ỹ(s) it follows that

lim
δ→0

max
ς∈[0,δs]

|φ′ỹ(ς)| = 0, (F.31)

which, in view of (F.30), proves that φz̃(s) converges to 1 as δ → 0. From the Lévy-
Cramér continuity theorem, this implies that z(δ) converges to Ez(δ) in distribution as
δ → 0, and the proof is complete.

■

F.3 Vector Case for Network Behavior

In this section we extend Definition F.1 to examine the case where yn is
a vector. Actually, when we examine networks of agents in Chapters 8,

2The following inequality is known for complex numbers xi, yi, with |xi| ≤ 1 and |yi| ≤ 1 [70]:∣∣∣∣∣
n∏
i=1

xi −
n∏
i=1

yi

∣∣∣∣∣ ≤
n∑
i=1

|xi − yi|. (F.26)

F.3. Vector Case for Network Behavior 437

9, and 10, we always deal with this vector case (with the vector entries
referring to distinct agents). In fact, the results proved for the scalar case in
the previous sections can be readily applied to the vector case. However, for
the results that we are going to prove in this section, an analysis specialized
to the vector setting is necessary to account for the possible statistical
dependence across the agents.

Definition F.2 (Random sums with random vectors). Let {yn} be a sequence of
iid random vectors in RK , whose entries have finite mean, and define

yn = [y1,n,y2,n, . . . ,yK,n], ȳ = Eyn. (F.32)

Let also 0 < δ < 1, and consider the following (scalar) partial sums:

zn(δ) = δ

n∑
i=1

(1 − δ)i−1αT
i yi, (F.33)

where
αn = [α1,n, α2,n, . . . , αK,n] (F.34)

is a deterministic vector with nonnegative entries bounded by 1, i.e.,

0 ≤ αk,n ≤ 1 for k = 1, 2, . . . ,K and for all n ∈ N. (F.35)

Moreover, assume that αn converges to some vector

α = [α1, α2, . . . , αK] (F.36)

with the following exponential law:

|αk,n − αk| ≤ κ ξn (F.37)

for all k and n, and for some constants κ > 0 and ξ ∈ (0, 1). To avoid trivial
cases, we assume that α has at least one nonzero entry.

Note that Lemma F.3 implies the convergence as n→∞ of the partial
sums in (F.33), allowing us to define the series

z(δ) = δ
∞∑
i=1

(1− δ)i−1αT
i yi. (F.38)

Our main goal is to characterize the asymptotic behavior of z(δ) as δ → 0.
In particular, we will show that this behavior is ruled by the average
variable

yave,n ≜ αTyn =
K∑
k=1

αkyk,n. (F.39)

438 Random Sums and Series

For later use, we also introduce the mean and variance of this average
variable, namely,

ȳave ≜ Eyave,n = E
[
αTyn

]
= αTȳ (F.40)

and
σ2

ave ≜ VAR
[
yave,n

]
= VAR

[
αTyn

]
. (F.41)

Next, we examine the behavior of the second moment of z(δ).

Lemma F.6 (Second moment). Consider the setting described in Definition F.2,
and assume that yn has finite second moment. Then, the variance of z(δ) in
(F.38) is

VAR[z(δ)] = δ2
∞∑
i=1

(1 − δ)2(i−1) VAR[αT
i yi] = 1

2σ
2
ave δ +O(δ2). (F.42)

Proof. Let us introduce, for i ∈ N, the centered, zero-mean vectors

ỹi = yi − ȳ (F.43)

and their expected squared norm

σ2
y = E∥ỹi∥

2. (F.44)

Observe that, in view of the Cauchy-Schwarz inequality, we have

VAR
[
αT
i yi

]
= E

[(
αT
i ỹi
)2
]

≤ ∥αi∥2 E∥ỹi∥
2 ≤ Kσ2

y, (F.45)

where in the last inequality we use definition (F.44) and the fact that the K entries
of αi are all bounded by 1. Since the scalar variables αT

i yi are independent, from the
definition of zn(δ) in (F.33) we have

VAR[zn(δ)] = δ2
n∑
i=1

(1 − δ)2(i−1) VAR
[
αT
i yi
]

≤ Kσ2
y δ

2
n∑
i=1

(1 − δ)2(i−1), (F.46)

where the inequality follows from (F.45). Note that both partial sums in (F.46) admit
limits since they consist of nonnegative terms. In particular, the limit of the partial sum
on the RHS is finite since it is given by a convergent geometric series, and we can write

lim
n→∞

VAR[zn(δ)] = δ2
∞∑
i=1

(1 − δ)2(i−1) VAR
[
αT
i yi
]

≤ Kσ2
y δ

2
∞∑
i=1

(1 − δ)2(i−1) < ∞. (F.47)

F.3. Vector Case for Network Behavior 439

Consider now the centered and squared variables(
zn(δ) − Ezn(δ)

)2
= δ2

(
n∑
i=1

(1 − δ)i−1αT
i ỹi

)2

. (F.48)

In view of Lemmas F.3 and F.4, the quantity on the LHS converges almost surely, as
n → ∞, to (

z(δ) − Ez(δ)
)2
. (F.49)

Therefore, we can apply Fatou’s lemma (Theorem D.5) to the variables (zn(δ)−Ezn(δ))2,
yielding

lim
n→∞

VAR[zn(δ)] ≥ VAR[z(δ)]. (F.50)

In view of (F.47), this implies that the limiting variable z(δ) has finite variance. But
since the limiting variable z(δ) can be written as

z(δ) = zn(δ) + δ

∞∑
i=n+1

(1 − δ)i−1αT
i yi, (F.51)

with the two quantities on the RHS being statistically independent, for any n the
variance of z(δ) cannot be smaller than the variance of zn(δ), implying that

VAR[z(δ)] ≥ lim
n→∞

VAR[zn(δ)]. (F.52)

Combining (F.50) with (F.52) we see that the variance of the almost-sure limit z(δ) is
equal to the convergent series of variances, which is the first equality in (F.42).

In order to prove the second equality in (F.42) we write

VAR [z(δ)] = δ2
∞∑
i=1

(1 − δ)2(i−1) E
[(
αT
i ỹi

)2
]
. (F.53)

The expected values appearing in the last summation can be manipulated as follows:

E
[(
αT
i ỹi

)2
]

= E
[(
αT ỹi + (αi − α)T ỹi

)2
]

= E
[(
αT ỹi

)2
]

+ E
[(

(αi − α)T ỹi

)2
]

+ 2E
[
(αi − α)T ỹiα

Tỹi
]

= σ2
ave + E

[(
(αi − α)T ỹi

)2
]

+ 2E
[
(αi − α)T ỹiα

Tỹi
]
, (F.54)

where, in the last step, we used (F.41) and (F.43). Substituting (F.54) into (F.53) we
obtain

VAR [z(δ)] = σ2
ave δ

2
∞∑
i=1

(1 − δ)2(i−1)

+ δ2
∞∑
i=1

(1 − δ)2(i−1) E
[(

(αi − α)T ỹi

)2
]

+ 2δ2
∞∑
i=1

(1 − δ)2(i−1) E
[
(αi − α)T ỹiα

Tỹi
]
. (F.55)

440 Random Sums and Series

By evaluating the geometric series, the first term in (F.55) is equal to

σ2
ave

δ

2 − δ
= σ2

ave δ

2 + σ2
ave δ

(1
2 − δ

− 1
2

)
= σ2

ave δ

2 + σ2
ave δ

2

2(2 − δ) (F.56)

and we see that the last term is O(δ2). Therefore, the proof will be complete if we show
that the last two terms on the RHS of (F.55) are O(δ2).

To this end, we apply the Cauchy-Schwarz inequality to obtain the bound

E
[(

(αi − α)T ỹi

)2
]

≤ ∥αi − α∥2 E
[
∥yi∥

2] ≤ K κ2 ξ2i σ2
y, (F.57)

where the second inequality follows from (F.37) and (F.44). Likewise, by applying the
Cauchy-Schwarz inequality for expected values (see Theorem C.6 for r1 = r2 = 2), we
can write∣∣∣∣E[(αi − α)T ỹi α

Tỹi

]∣∣∣∣
≤

(
E
[(

(αi − α)T ỹi

)2
]

︸ ︷︷ ︸
≤ K κ2 ξ2i σ2

y from (F.57)

E
[(
αT ỹi

)2
]

︸ ︷︷ ︸
=σ2

ave

)1/2

≤
√
K σy σave κ ξ

i. (F.58)

Using the bounds (F.57) and (F.58), in the second and third term on the RHS of (F.55),
respectively, and computing the pertinent geometric series, it is readily seen that both
these terms are O(δ2). This proves the second equality in (F.42), thus completing the
proof.

■

The next lemma establishes that, when properly shifted and scaled,
z(δ) is asymptotically normal as δ → 0.

Lemma F.7 (Asymptotic normality). Consider the setting described in Defi-
nition F.2, and assume that yn has finite second moment. Recall from (F.40)
and (F.41) that ȳave and σ2

ave denote the mean and variance, respectively, of the
average variable yave,n defined by (F.39). Consider the following shifted and
scaled version of the random variable z(δ) in (F.38):

z(δ) − ȳave√
δ

, (F.59)

where we remark that z(δ) is shifted by subtracting the mean ȳave of the average
variable yave,n. Then, (z(δ) − ȳave)/

√
δ converges in distribution to a zero-mean

Gaussian variable with variance equal to half the variance σ2
ave of the average

variable yave,n:
z(δ) − ȳave√

δ

d−−−→
δ→0

G
(

0, 1
2σ

2
ave

)
. (F.60)

F.3. Vector Case for Network Behavior 441

Proof. The claim in (F.60) is equivalent to stating that the random variable

z(δ) − ȳave√
δσ2ave/2

(F.61)

converges in distribution to a standard Gaussian variable. Now, note that we can write

z(δ) − ȳave√
δσ2ave/2

= z(δ) − Ez(δ)√
δσ2ave/2

+ Ez(δ) − ȳave√
δσ2ave/2

. (F.62)

Since the second term in (F.62) converges to 0 in view of (F.12),3 from Slutsky’s theorem
(see Theorem D.4) it suffices to show that the random variable

z(δ) − Ez(δ)√
δσ2ave/2

(F.64)

converges in distribution to a standard Gaussian variable. To this end, we start by
introducing, with a slight abuse of notation with respect to (F.22) and (F.23), the
quantities

ζi = δ(1 − δ)i−1√
δ/2

=
√

2δ(1 − δ)i−1 (F.65)

and
z̃(δ) = z(δ) − E[z(δ)]√

δσ2ave/2
, ỹi = yi − ȳ

σave
. (F.66)

It is also useful to introduce the following centered and scaled version of the average
variable yave,i defined by (F.39):

ỹave,i ≜
yave,i − ȳave

σave
= αT ỹi. (F.67)

Our aim is to establish that z̃(δ) converges in distribution to a standard Gaussian
variable. In view of the Lévy-Cramér continuity theorem (Theorem D.1) this claim is
equivalent to the convergence, as δ → 0, of the characteristic function of z̃(δ) to the
characteristic function e−s

2/2 (which is known to be the characteristic function of a
standard Gaussian variable). From (F.38), (F.65), and (F.66) we see that

z̃(δ) =
∞∑
i=1

ζi α
T
i ỹi. (F.68)

Reasoning as done to compute (F.25), the characteristic function of z̃(δ) in (F.68) is
given by

φz̃(s) =
∞∏
i=1

E exp
{
ιs ζiα

T
i ỹi

}
, (F.69)

3We remark that Eq. (F.12) applies to the series z(δ) defined by (F.11), where αi and yi
are scalars. For the series z(δ) in (F.38), where αi and yi are instead K × 1 vectors, Eq. (F.12)
becomes

Ez(δ) = δ

∞∑
i=1

(1− δ)i−1αT
i ȳ = αTȳ +O(δ) = ȳave +O(δ). (F.63)

This follows by noticing that αT
i yi =

∑K

k=1 αk,iyk,i, and then applying (F.12), separately for
each k, to the series (F.11) with αk,iyk,i in place of αiyi.

442 Random Sums and Series

where we recall that ι =
√

−1 is the imaginary unit. Using the triangle inequality for
complex numbers we can write

∣∣∣φz̃(s) − e−
s2
2

∣∣∣ ≤

∣∣∣∣∣φz̃(s) −
∞∏
i=1

φave(ζis)

∣∣∣∣∣+

∣∣∣∣∣
∞∏
i=1

φave(ζis) − e−
s2
2

∣∣∣∣∣ , (F.70)

where

φave(s) ≜ E exp
{
ιs ỹave,i

}
(F.71)

is the characteristic function of the random variable ỹave,i defined by (F.67). Let us focus
on the first term appearing on the RHS of (F.70). Since characteristic functions have
magnitude not greater than 1, in view of (F.26) we can write∣∣∣∣∣φz̃(s) −

∞∏
i=1

φave(ζis)

∣∣∣∣∣ =

∣∣∣∣∣
∞∏
i=1

E exp
{
ιs ζi α

T
i ỹi

}
−
∞∏
i=1

E exp
{
ιs ζi α

T ỹi

}∣∣∣∣∣
≤
∞∑
i=1

∣∣∣∣E [exp
{
ιs ζi α

T
i ỹi

}
− exp

{
ιs ζi α

T ỹi

}] ∣∣∣∣
≤
∞∑
i=1

E
∣∣∣exp

{
ιs ζi α

T
i ỹi

}
− exp

{
ιs ζi α

T ỹi

}∣∣∣
=
∞∑
i=1

E
∣∣∣1 − exp

{
ιs ζi (αi − α)T ỹi

}∣∣∣
(a)
≤ |s|

∞∑
i=1

ζi E
∣∣∣(αi − α)T ỹi

∣∣∣
= |s|

∞∑
i=1

ζi E

∣∣∣∣∣
K∑
k=1

(αk,i − αk) ỹk,i

∣∣∣∣∣
≤ |s|

∞∑
i=1

ζi E

[
K∑
k=1

|αk,i − αk|︸ ︷︷ ︸
≤κ ξi from (F.37)

× |ỹk,i|

]

≤ |s|
∞∑
i=1

κ ζi ξ
i E∥ỹi∥1︸ ︷︷ ︸

my

= κmy|s|
∞∑
i=1

ζi ξ
i, (F.72)

where in step (a) we used the inequality |1 − eιx| ≤ |x| [65, Lemma 3.3.19], and where
∥ · ∥1 denotes the L1 norm. Using the definition of ζi from (F.65) and evaluating the
geometric series, we see that the last summation in (F.72) converges to 0 as δ → 0. This
proves that the first term on the RHS of (F.70) converges to 0. To complete the proof,
we need to show that the second term on the RHS of (F.70) converges to 0, namely, that

lim
δ→0

∞∏
i=1

φave(ζis) = e−
s2
2 . (F.73)

F.3. Vector Case for Network Behavior 443

To this end, we resort again to the triangle inequality for complex numbers and write∣∣∣∣∣
∞∏
i=1

φave(ζis) − e−
s2
2

∣∣∣∣∣ ≤

∣∣∣∣∣
∞∏
i=1

φave(ζis) − e
− 1

2

∑∞
i=1

ζ2
i s

2

∣∣∣∣∣
+
∣∣∣e− 1

2

∑∞
i=1

ζ2
i s

2
− e−

s2
2

∣∣∣ . (F.74)

The second term on the RHS of (F.74) converges to 0 because

lim
δ→0

∞∑
i=1

ζ2
i = 1, (F.75)

as can be seen by exploiting (F.65) and evaluating the pertinent geometric series. Let
us now focus on the first term on the RHS of (F.74). We have the following chain of
relations: ∣∣∣∣∣

∞∏
i=1

φave(ζis) − e
− 1

2

∑∞
i=1

ζ2
i s

2

∣∣∣∣∣ =

∣∣∣∣∣
∞∏
i=1

φave(ζis) −
∞∏
i=1

e−
ζ2

i
s2

2

∣∣∣∣∣
≤
∞∑
i=1

∣∣∣∣φave(ζis) − e−
ζ2

i
s2

2

∣∣∣∣
(F.26)

≤
∞∑
i=1

∣∣∣∣φave(ζis) − 1 + ζ2
i s

2

2

∣∣∣∣
+
∞∑
i=1

∣∣∣∣e− ζ2
i

s2

2 − 1 + ζ2
i s

2

2

∣∣∣∣ , (F.76)

where in the last step we applied the triangle inequality. Now, the second term on the
RHS of (F.76) converges to 0 since for any positive number x we have |e−x−1+x| ≤ x2/2,
which implies

∞∑
i=1

∣∣∣∣e− ζ2
i

s2

2 − 1 + ζ2
i s

2

2

∣∣∣∣ ≤ s4

8

∞∑
i=1

ζ4
i (F.77)

and it is immediate to show that (see the proof in [119]):

lim
δ→0

∞∑
i=1

ζ4
i = 0. (F.78)

Next, we establish that also the first term on the RHS of (F.76) vanishes. To this end,
consider the following identity:

φave(ζis) − 1 + ζ2
i s

2

2 = E
[
eι ỹave,i ζis − 1 − ι ỹave,i ζis+ 1

2 ỹ
2
ave,i ζ

2
i s

2
]
, (F.79)

which holds because of the definition of φave(s) in (F.71) and because ỹave,i has zero
mean and unit variance. Focusing on the argument of the expectation in (F.79) and

444 Random Sums and Series

using [65][Lemma 3.3.19] we can write, for an arbitrarily small ε > 0,∣∣∣eι ỹave,i ζis − 1 − ι ỹave,i ζis+ 1
2 ỹ

2
ave,i ζ

2
i s

2
∣∣∣

≤ I
[∣∣ỹave,i

∣∣ ζi ≤ ε
]∣∣ỹave,i ζis

∣∣3
6 + I

[
|ỹave,i| ζi > ε

] (
ỹave,i ζis

)2

≤ ε ỹ
2
ave,i ζ

2
i

|s|3

6 + ỹ
2
ave,i I

[
|ỹave,i|ζi > ε

]
ζ2
i s

2

≤ ε ỹ
2
ave,i ζ

2
i

|s|3

6 + ỹ
2
ave,i I

[
|ỹave,i| > ε/

√
2δ
]
ζ2
i s

2, (F.80)

where the last inequality follows because ζi ≤
√

2δ — see (F.65). Computing the
magnitude of both sides of (F.79), recalling that the magnitude of the expectation is
upper bounded by the expectation of the magnitude, and using (F.80), we find that∣∣∣∣φave(ζis) − 1 + ζ2

i s
2

2

∣∣∣∣ ≤ ζ2
i

(
ε

|s|3

6 + s2g(δ)
)
, (F.81)

where we define

g(δ) ≜ E

[
ỹ

2
ave,i I

[
ỹ

2
ave,i > ε/

√
2δ
]]
. (F.82)

The function g(δ) does not depend on i since the random variables ỹave,i are identically
distributed. Since ỹave,i has finite second moment, from the dominated convergence
theorem (Theorem D.6) we have that g(δ) → 0 as δ → 0. Using this result in (F.81) and
accounting for (F.75) yields

lim sup
δ→0

∞∑
i=1

∣∣∣∣φave(ζis) − 1 + ζ2
i s

2

2

∣∣∣∣ ≤ ε
|s|3

6 . (F.83)

Due to the arbitrariness of ε, we conclude that the first term on the RHS of (F.74)
vanishes as δ → 0. Since we already proved that the second term vanishes, we conclude
that (F.73) holds. And since we already showed that the second term on the RHS of
(F.70) vanishes, we conclude that φz̃(s) converges to e−s2/2 as δ → 0. We have therefore
shown that z̃(δ) in (F.66) converges in distribution to a standard Gaussian variable as
δ → 0, and this completes the proof.

■

We conclude this appendix by examining the asymptotic properties
of the LMGF of z(δ) in (F.38). Preliminarily, it is useful to establish the
following auxiliary lemma.

F.3. Vector Case for Network Behavior 445

Lemma F.8 (Limiting property of a useful sum). Let f(s) be a function twice
continuously differentiable on R, with f(0) = 0. Define the interval

Js =
{

[0, s] if s ≥ 0,
[s, 0] otherwise,

(F.84)

and introduce the auxiliary functions

g(s) =

f(s)
s

if s ̸= 0,

f′(0) if s = 0,

(F.85)

and4

h(s) ≜ s2

2 max
ς∈Js

∣∣g′(ς)∣∣ . (F.86)

Then, for all s ∈ R,
∞∑
i=1

f
(
s δ(1 − δ)i−1

)
= 1
δ

∫ s δ

0

f(ς)
ς
dς + r(s, δ), (F.87)

where r(s, δ) is a function that satisfies the following bound:

|r(s, δ)| ≤ h(s δ)
2 − δ

. (F.88)

Proof. To begin with, observe from the properties of f(s) that the function h(s) is well
defined and satisfies, for all s ∈ R, the inequalities 0 ≤ h(s) < ∞. Now, for the case
s = 0, Eq. (F.87) is trivially verified with the choice r(0, δ) = 0. Let us consider the case
s > 0; the proof for s < 0 is similar. We introduce the following infinite partition of
(0, δs]:

si = s δ(1 − δ)i−1, i ∈ N. (F.91)
Let us introduce the function

G(s) =
∫ si

s

g(ς)dς, (F.92)

where g is defined by (F.85). A second-order Taylor expansion of G(s) around the point
si gives

G(si+1) = g(si)(si − si+1) − 1
2 g′(s̄i)(si − si+1)2 (F.93)

4The derivative g′(ς) appearing in (F.86) is well defined. Indeed, for ς ̸= 0,

g′(ς) = f′(ς) ς − f(ς)
ς2 . (F.89)

In addition, by applying L’Hôpital’s rule [144], from (F.89) we obtain

lim
ς→0

g′(ς) = f′′(0)
2

, (F.90)

which implies that g′(0) = f′′(0)/2 — see footnote 3 in Appendix E.

446 Random Sums and Series

for a certain s̄i ∈ (si+1, si). Observing from (F.91) that si−si+1 = si δ and using (F.85),
Eq. (F.93) can be rewritten as

G(si+1) = δf(si) − δ2

2 g′(s̄i) s2
i . (F.94)

Consider now an index n > 0 and observe from (F.91) that s1 = s δ and sn+1 = s δ(1−δ)n.
Therefore, from (F.92) and the definition of integration we have∫ s δ

s δ(1−δ)n

g(ς)dς =
∫ s1

sn+1

g(ς)dς =
n∑
i=1

∫ si

si+1

g(ς)dς =
n∑
i=1

G(si+1). (F.95)

Then, from (F.94) we obtain∫ s δ

s δ(1−δ)n

g(ς)dς = δ

n∑
i=1

f(si) − δ2

2

n∑
i=1

g′(s̄i) s2
i , (F.96)

which, exploiting (F.91) and (F.85), is equivalent to
n∑
i=1

f
(
s δ(1 − δ)i−1

)
= 1
δ

∫ s δ

s δ(1−δ)n

f(ς)
ς
dς

+ δ

2

n∑
i=1

(1 − δ)2(i−1)(s δ)2g′(s̄i). (F.97)

Now, from the definition of integration we have

lim
n→∞

∫ s δ

s δ(1−δ)n

f(ς)
ς
dς =

∫ s δ

0

f(ς)
ς
dς, (F.98)

which shows that, as n → ∞, the first term on the RHS of (F.97) agrees with the first
term on the RHS of (F.87).

Consider then the second term on the RHS of (F.97). Since s̄i ∈ (si+1, si), and since
(si+1, si) ⊂ [0, s δ] in view of (F.91), we have

1
2(s δ)2 |g′(s̄i)| ≤ 1

2(s δ)2 max
ς∈[0,s δ]

|g′(ς)| = h(s δ), (F.99)

where the equality follows from the definition of h(s) in (F.86). Using (F.99) we can
write

δ

2

n∑
i=1

(1 − δ)2(i−1)(s δ)2|g′(s̄i)| ≤ δ h(s δ)
∞∑
i=1

(1 − δ)2(i−1) = h(s δ)
2 − δ

, (F.100)

which implies that the last summation in (F.97) is absolutely convergent as n → ∞,
allowing us to introduce the series

r(s, δ) ≜ δ

2

∞∑
i=1

(1 − δ)2(i−1)(s δ)2g′(s̄i). (F.101)

Letting n → ∞ in (F.97), and applying (F.98) and (F.101), we obtain the representation
in (F.87), with the function r(s, δ) satisfying (F.88) in view of (F.100).

■

F.3. Vector Case for Network Behavior 447

We are now ready to characterize the LMGF of z(δ) in the small-δ
regime.

Lemma F.9 (Limiting LMGF). Consider the setting described in Definition F.2.
Assume that each entry yk,n of the vector yn has LMGF finite everywhere:

Λyk (s) ≜ logE exp
{
syk,n

}
< ∞ ∀s ∈ R. (F.102)

Let Λave(s) be the LMGF of the average variable yave,n defined by (F.39), and
let Λδ(s) be the LMGF of z(δ) in (F.38). Then

lim
δ→0

δΛδ(s/δ) =
∫ s

0

Λave(ς)
ς

dς. (F.103)

Proof. Let

Λzn (s) ≜ logE exp
{
s zn(δ)

}
(F.104)

be the LMGF of the random variable zn(δ) in (F.33). Since the LMGF of the sum of
independent random variables is equal to the sum of the LMGFs of the random variables,
by exploiting the independence across i of the random variables αT

i yi that appear in
(F.33), we get

Λzn (s) =
n∑
i=1

logE exp
{
s δ(1 − δ)i−1αT

i yi

}
. (F.105)

It is convenient to introduce the multivariate LMGF of the vector yi [59, 159]:

Λy(u) ≜ logE exp
{
uTyi

}
, u ∈ RK , (F.106)

from which (F.105) can be rewritten as

Λzn (s) =
n∑
i=1

Λy
(
s δ(1 − δ)i−1αi

)
=

n∑
i=1

Λy
(
s δ(1 − δ)i−1α

)
+

n∑
i=1

[
Λy
(
s δ(1 − δ)i−1αi

)
− Λy

(
s δ(1 − δ)i−1α

)]
=

n∑
i=1

Λave

(
s δ(1 − δ)i−1

)
+

n∑
i=1

[
Λy
(
s δ(1 − δ)i−1αi

)
− Λy

(
s δ(1 − δ)i−1α

)]
, (F.107)

448 Random Sums and Series

where, to justify the last equality, we recall that Λave(s) is the LMGF of the average
random variable yave,i = αTyi, which, in view of (F.106), yields

Λave

(
s δ(1 − δ)i−1

)
= logE exp

{
s δ(1 − δ)i−1 yave,i

}
= logE exp

{
s δ(1 − δ)i−1αTyi

}
= Λy

(
s δ(1 − δ)i−1α

)
. (F.108)

We are interested in evaluating the limits of the summations on the RHS of (F.107)
as n → ∞. Regarding the first summation, we can apply Lemma F.8 with the choice
f(s) = Λave(s),5 obtaining

∞∑
i=1

Λave

(
s δ(1 − δ)i−1

)
= 1
δ

∫ s δ

0

Λave(ς)
ς

dς + r(s, δ), (F.110)

where r(s, δ) is the remainder term introduced in Lemma F.8.
Let us now focus on the second term on the RHS of (F.107). In view of (F.102),

we know that the multivariate LMGF is finite for all u ∈ RK .6 As a consequence, it is
infinitely differentiable on RK [59, 159]. In particular, we can use a first-order Taylor

5Recalling that Λave(s) is the LMGF of the random variable defined by (F.39), we have

Λave(s) = logE exp

{
s

K∑
k=1

αkyk,n

}
≤ logE

K∑
k=1

αk exp
{
syk,n

}
= log

(
K∑
k=1

αk exp {Λyk (s)}

)
<∞, (F.109)

where the first inequality is an application of Jensen’s inequality (see Theorem C.5 and in
particular (C.10)) to the term exp

{
s
∑K

k=1 αkyk
}

, accounting for the fact that the exponential
function is convex and the weights {αk} are nonnegative and add up to 1. The second inequality
follows from (F.102). We conclude that Λave(s) is finite for all s ∈ R. This implies that it is
infinitely differentiable on R (see Appendix E.1.2), thus fulfilling the hypotheses of Lemma F.8.

6 If u has all zero entries, the multivariate LMGF is equal to 0. Thus, we consider the case
where u has at least one nonzero entry, and let

σu =
K∑
k=1

|uk|, qk = |uk|
σu

. (F.111)

We have the following chain of relations:

exp
{
uTyi

}
= exp

{
K∑
k=1

ukyk,i

}
= exp

{
K∑
k=1

qksign(uk)σuyk,i

}

≤
K∑
k=1

qk exp
{

sign(uk)σuyk,i
}
, (F.112)

where the last step follows from Jensen’s inequality (see Theorem C.5 and in particular (C.10)),
which can be used because the exponential function is convex and the weights {qk} are nonneg-

F.3. Vector Case for Network Behavior 449

expansion of Λy around the point s δ(1 − δ)i−1α:

Λy
(
s δ(1 − δ)i−1αi

)
= Λy

(
s δ(1 − δ)i−1α

)
+ s δ(1 − δ)i−1(αi − α)T ∇Λy(ū), (F.114)

where ∇Λy(u) is the gradient of Λy(u) taken with respect to u, and where ū is a point
lying in the open line segment that joins the points s δ(1 − δ)i−1αi and s δ(1 − δ)i−1α.
In particular, by introducing the hypercube Hs defined as

Hs =
{

[0, s]K if s ≥ 0,
[s, 0]K otherwise,

(F.115)

we know that ū is surely contained in Hsδ, because (1 − δ)i−1 ≤ 1 and all the entries
of the vectors αi and α are nonnegative and bounded by 1. In view of (F.114), we can
write ∣∣∣Λy(s δ(1 − δ)i−1αi

)
− Λy

(
s δ(1 − δ)i−1α

)∣∣∣
= s δ(1 − δ)i−1 ∣∣(αi − α)T ∇Λy(ū)

∣∣ ≤ κ s δ ξi(1 − δ)i−1
K∑
k=1

∣∣∣∣∂Λy
∂uk

(ū)
∣∣∣∣ , (F.116)

where, in the last step, we used (F.37). In addition, since ∇Λy(u) is continuous on RK ,
we can write

K∑
k=1

∣∣∣∣∂Λy
∂uk

(ū)
∣∣∣∣ ≤ h2(s δ), (F.117)

where we have defined the auxiliary function

h2(s) ≜ max
u∈Hs

K∑
k=1

∣∣∣∣∂Λy
∂uk

(u)
∣∣∣∣ . (F.118)

Letting

r2(s, δ) ≜
∞∑
i=1

(
Λy
(
s δ(1 − δ)i−1αi

)
− Λy

(
s δ(1 − δ)i−1α

))
, (F.119)

from (F.116) and (F.117) we get

|r2(s, δ)| ≤ κ ξ s δ h2(s δ)
∞∑
i=1

[ξ(1 − δ)]i−1 = κ ξ s δ

1 − ξ(1 − δ) h2(s δ). (F.120)

ative and add up to 1. Using (F.112), and (F.106), we can write

Λy(u) = logE exp
{
uTyi

}
≤ log

(
K∑
k=1

qk E exp
{

sign(uk)σuyk,i
})

= log

(
K∑
k=1

qk exp
{

Λyk

(
sign(uk)σu

)}))
<∞, (F.113)

where the last inequality follows from (F.102). We conclude that Λy(u) is finite for all u ∈ RK .

450 Random Sums and Series

Combining (F.107), (F.110), and (F.119), we arrive at the representation

Λδ(s) = lim
n→∞

Λzn (s) = 1
δ

∫ s δ

0

Λave(ς)
ς

dς + r(s, δ) + r2(s, δ), (F.121)

where, in the first equality, the LMGF of the limiting random variable z(δ) in (F.38)
appears because, from the continuity theorem for moment generating functions [55], it
is legitimate to evaluate the LMGF of z(δ) as the limit of the LMGF of the partial sum
zn(δ). Exploiting (F.121) we can further write

δΛδ(s/δ) =
∫ s

0

Λave(ς)
ς

dς + δ r(s/δ , δ) + δ r2(s/δ , δ). (F.122)

To prove (F.103), we now show that the last two terms in (F.122) vanish as δ → 0.
Regarding the first term, from (F.88) we get

|δ r(s/δ , δ)| ≤ δ

2 − δ
h(s) δ→0−→ 0, (F.123)

where h(s) is the auxiliary function introduced in (F.86). Likewise, regarding the second
term, from (F.120) we can write

|δ r2(s/δ , δ)| ≤ δ
κ ξ s h2(s)

1 − ξ(1 − δ)
δ→0−→ 0, (F.124)

which concludes the proof.
■

Appendix G

Rademacher Complexity

In the social machine learning problem examined in Chapter 12, each agent
learns a decision statistic chosen from some admissible family. The degree
of complexity of the decision statistic is an important parameter that is
related to the performance achievable in the learning process. In statistical
learning, one way to quantify the complexity of a family of functions is the
Rademacher complexity [30, 130, 155], originally introduced as Rademacher
penalty in [103].

G.1 General Case

We start with the definition of the Rademacher complexity.

Definition G.1 (Rademacher complexity). Let G be a family of real-valued
functions

g : X 7→ R (G.1)
and consider a sequence of samples xn ∈ X , for n = 1, 2, . . . , E. The sequence of
these samples will be compactly denoted by

X = {x1, x2, . . . , xE}. (G.2)

The empirical Rademacher complexity of the family G associated with a particular
sequence X is1

R(G;X) ≜ E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rng(xn)

∣∣∣∣∣ , (G.3)

1Following [13, 30], we are defining the empirical Rademacher complexity in (G.3) and the
Rademacher complexity in (G.4) with the absolute value. Other definitions are without the
absolute value, and the two definitions coincide if the family G is symmetric, i.e., if for any
function g(x) ∈ G, the function −g(x) also belongs to G.

452 Rademacher Complexity

where the sequence {rn} is formed by independent and identically distributed
Rademacher random variables, i.e., binary variables taking on values ±1 with
equal probability.
Assume now that X is random, with the individual samples xn being iid and also
independent of the Rademacher variables. We define the Rademacher complexity
as

R(G) ≜ ER(G;X) = E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rng(xn)

∣∣∣∣∣ , (G.4)

where the expectation is taken over all the involved random quantities, i.e., rn
and xn.

The summations in (G.3) and (G.4) are a measure of the correlation
between the functions g ∈ G and the Rademacher variables rn. As a result,
the Rademacher complexity measures on average how well the function
family G correlates with random noise. The capability to emulate random
noise describes the richness (hence, the complexity) of the chosen family,
and can also be seen as a measure of overfitting during training [12, 130].

The following known property of the Rademacher complexity is useful
for some of our derivations [30, 109]. We recall that a function Q : R 7→ R
is Lipschitz-continuous with constant L , also referred to as L -Lipschitz,
when

|Q(z1)−Q(z2)| ≤ L |z1 − z2| ∀z1, z2 ∈ dom(Q). (G.5)

Lemma G.1 (Contraction principle). Let Q : R 7→ R be an L -Lipschitz function
with Q(0) = 0. Let G be a family of real-valued functions, and consider a sequence
of samples X = {x1, x2, . . . , xE}. The empirical Rademacher complexity satisfies
the following property:

R(Q ◦ G;X) ≤ L R(G;X), (G.6)

where we denote by Q ◦ G the family generated by the composition of functions
Q ◦ g, for g ∈ G.

Proof. From (G.3) we can write the empirical Rademacher complexity of the composition
of functions Q ◦ g as

R(Q ◦ G;X) = E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rnQ
(
g(xn)

)∣∣∣∣∣ . (G.7)

Since Q is L -Lipschitz and Q(0) = 0, from (G.5) we can write∣∣Q(g(xn)
)∣∣ =

∣∣Q(g(xn)
)

− Q(0)
∣∣ ≤ L

∣∣g(xn)
∣∣, (G.8)

G.1. General Case 453

for n = 1, 2, . . . , E. By defining

un ≜

Q
(
g(xn)

)
L g(xn) if g(xn) ̸= 0,

an arbitrary number in [−1, 1] if g(xn) = 0,

(G.9)

we can also write
Q
(
g(xn)

)
= L ung(xn), (G.10)

which, when used in (G.7), yields

R(Q ◦ G;X) = L E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rnun g(xn)

∣∣∣∣∣ . (G.11)

Observe from (G.8) and (G.9) that

|un| ≤ 1 for n = 1, 2, . . . , E. (G.12)

Consider now the function

f(u) = E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rnun g(xn)

∣∣∣∣∣ , (G.13)

with u = [u1, u2, . . . , uE] ∈ [−1, 1]E . Applying the triangle inequality and exploiting the
subadditivity of the supremum, it is readily seen that f(u) is a convex function of u. As
a result, over the hypercube [−1, 1]E (which is a compact convex set), the maximizers
of f(u) must be extreme points of this hypercube, i.e., vectors with all entries equal to
±1.2 Let u⋆ be one maximizer, then we can write

R(Q ◦ G;X) ≤ L E sup
g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rnu
⋆
n g(xn)

∣∣∣∣∣ . (G.16)

We want to evaluate explicitly the expectation over the Rademacher variables rn in
(G.16). To this end, we introduce the random vector r = [r1, r2, . . . , rE] and observe

2Observe that C = [−1, 1]E is a compact convex set, and denote by EC the set of extreme
points of C, which are defined as points that do not lie in any open line segment joining two
points in C [146]. Accordingly, the extreme points are vectors with all entries equal to ±1,
yielding |EC | = 2E . We denote these extreme points by ym, for m = 1, 2, . . . , 2E . From the
Krein-Milman theorem [146], it follows that C is equal to the closed convex hull of the extreme
points. This result implies that any u ∈ C can be written in the form

u =
2E∑
m=1

qmym, ym ∈ EC , (G.14)

where {qm} are nonnegative weights that add up to 1. Then, using (G.14) and the convexity of
the function f defined by (G.13), we get

f(u) = f

 2E∑
m=1

qmym

 ≤ 2E∑
m=1

qmf(ym) ≤ max
m∈{1,2...,2E}

f(ym), (G.15)

which shows that f is maximized at some extreme point(s).

454 Rademacher Complexity

that, since the Rademacher variables rn are iid with P[rn = 1] = P[rn = −1] = 1/2,
the vector r takes all possible values in the set {−1, 1}E (i.e., in the E-fold Cartesian
product of binary sets {−1, 1}) with equal probability 2−E . As a result, Eq. (G.16) can
be rewritten as

R(Q ◦ G;X) ≤ L ×
∑

r∈{−1,1}E

1
2E sup

g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rnu
⋆
n g(xn)

∣∣∣∣∣
= L ×

∑
r′∈{−1,1}E

1
2E sup

g∈G

∣∣∣∣∣ 1
E

E∑
n=1

r′n g(xn)

∣∣∣∣∣
= L E sup

g∈G

∣∣∣∣∣ 1
E

E∑
n=1

rng(xn)

∣∣∣∣∣ = L R(G;X), (G.17)

where the first equality holds because, irrespective of the particular value of u⋆, when
r spans the set {−1, 1}E , the vector r′ = [r1 u

⋆
1, r2 u

⋆
2, . . . , rE u

⋆
E] spans the same set.

Comparing (G.17) with (G.6), we see that the proof is complete.
■

G.2 Multilayer Perceptrons

It is desirable to relate the Rademacher complexity to the system parame-
ters that characterize a particular problem, e.g., the depth and weights of
a neural network, the feature space, the size of the training set, and so on.
In this section we establish a useful relation for the multilayer perceptron
(MLP) from Example 12.2, considering the binary classification case with
H = 2. This relation will reveal in particular that with bounded features,
the Rademacher complexity of norm-constrained MLPs (where the weight
matrices are bounded) scales as 1/

√
E with the number of samples E. The

result is illustrated in the next lemma, which is adapted from [13, 137].

Lemma G.2 (Rademacher complexity of norm-constrained MLP). Assume that
each entry x(i) of the feature vector x ∈ Rd is bounded, namely,

max
i∈{1,2,...,d}

|x(i)| ≤ xmax < ∞. (G.18)

Consider the MLP represented in Figure 12.2 for the binary case H = 2. This
MLP has L layers (excluding the final softmax layer). For l = 1, 2, . . . , L, the
number of nodes at layer l is denoted by nl. The output of the Lth layer has
one node (because H = 2) and computes a decision statistic

h(x) = h(x; θ1). (G.19)

Assume that the MLP is characterized by: i) an activation function σa that is
Lσ-Lipschitz and satisfies σa(0) = 0; and ii) a weight matrix at layer l, denoted

G.2. Multilayer Perceptrons 455

by Wl, fulfilling the bounded-norm condition

∥Wl∥1 = max
m∈{1,2,...,nl}

nl−1∑
i=1

∣∣∣w(l)
im

∣∣∣ ≤ wmax < ∞ for l = 1, 2, . . . , L, (G.20)

where ∥Wl∥1 is the maximum absolute column sum norm of the matrix Wl and
w

(l)
im denotes the (i,m) entry of the same matrix.

Let H denote the family of possible functions h generated at the Lth layer by
the considered MLP. Then, the empirical Rademacher complexity of this family
of functions obeys the following bound:

R(H;X) ≤ 2wmax xmax√
E

(wmax Lσ)L−1
√

log(2d). (G.21)

Proof. We recall that, according to the notation introduced in Example 12.2, g(l)
m denotes

the function computed by node m belonging to layer l of the MLP. We start by showing
that all functions g(l)

m corresponding to the same layer belong to a common function
family Gl. That is, g(l)

m ∈ Gl for m = 1, 2, . . . , nl.3 We prove this result for any layer
l ≥ 2, with the reasoning being similar for the first layer described by (12.27).

In view of (12.26), for any layer l ≥ 2 we have

g(l)
m (x) =

nl−1∑
i=1

w
(l)
im σa

(
g

(l−1)
i (x)

)
. (G.22)

Examining (G.22), we see that the admissible functions generated at nodes m =
1, 2, . . . , nl are linear combinations of a nonlinear transformation of the functions gen-
erated at the previous layer l − 1. In view of (G.20), the weights w(l)

im of this linear
combination must obey the condition, for m = 1, 2, . . . , nl,

nl−1∑
i=1

∣∣∣w(l)
im

∣∣∣ ≤ wmax. (G.23)

Since this condition is the same for all nodes m, we conclude that the admissible functions
generated at all nodes of the lth layer belong to the same family, which we denote by Gl.
Note that the decision statistic we are interested in is the function computed by the
single node of layer L, which means that we have the identity H = GL.

To evaluate the (empirical) Rademacher complexity of GL, we construct a recursion
over the number of MLP layers, similarly to what was done in [137]. First, we establish
that the empirical Rademacher complexity of one layer is upper bounded by the empirical
Rademacher complexity of the previous layer, scaled by a suitable constant. Second, we
apply recursively the obtained bound from the last to the first layer. Third, we derive
an upper bound on the Rademacher complexity of the first layer. The combination of
the three steps yields an upper bound on the Rademacher complexity of the last layer,
i.e., of the MLP.

Consider then the lth layer and denote by Wl the family of vectors w = [wi] ∈ Rnl−1

that have L1 norm bounded by wmax. In view of (G.22), for l ≥ 2 the Rademacher

3Actually, for layer L there is nothing to show since nL = 1.

456 Rademacher Complexity

complexity of the family Gl can be expressed as

R (Gl;X) = E sup
w∈Wl
g1∈Gl−1
g2∈Gl−1

...
gnl−1∈Gl−1

∣∣∣∣∣ 1
E

E∑
n=1

rn

nl−1∑
i=1

wiσa
(
gi(xn)

)∣∣∣∣∣ , (G.24)

where rn are iid Rademacher random variables and where we see that each function
gi, for i = 1, 2, . . . , nl−1, is selected from the family Gl−1. By applying the triangle
inequality, we have∣∣∣∣∣ 1

E

E∑
n=1

rn

nl−1∑
i=1

wiσa
(
gi(xn)

)∣∣∣∣∣ =

∣∣∣∣∣
nl−1∑
i=1

wi
1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣
≤
nl−1∑
i=1

|wi| ×

∣∣∣∣∣ 1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣ . (G.25)

Taking the supremum over w ∈ Wl and gi ∈ Gl−1, and exploiting the subadditivity of
the supremum (relative to gi ∈ Gl−1), we further get

sup
g1∈Gl−1
g2∈Gl−1

...
gnl−1∈Gl−1

nl−1∑
i=1

|wi| ×

∣∣∣∣∣ 1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣

≤ sup
w∈Wl

nl−1∑
i=1

|wi| × sup
gi∈Gl−1

∣∣∣∣∣ 1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣
= wmax sup

gi∈Gl−1

∣∣∣∣∣ 1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣ . (G.26)

Using (G.25) and (G.26) in (G.24) we obtain

R (Gl;X) ≤ wmax E sup
gi∈Gl−1

∣∣∣∣∣ 1
E

E∑
n=1

rnσa
(
gi(xn)

)∣∣∣∣∣ = wmaxR (σa ◦ Gl−1;X) , (G.27)

which, applying Lemma G.1, yields the following recursion relating the empirical
Rademacher complexities at layers l and l − 1:

R (Gl;X) ≤ wmax LσR (Gl−1;X) . (G.28)

Iterating (G.28) from the last layer L to the first layer, we obtain

R (H;X) = R (GL;X) ≤ (wmax Lσ)L−1R (G1;X) . (G.29)

It remains to bound the empirical Rademacher complexity relative to each node of
the first layer, which has a simpler structure implementing a linear combination of
the feature vector entries. To characterize the complexity of such a structure, we

G.2. Multilayer Perceptrons 457

can directly use [137, Lemma 15], applied with the choices p = 1, γ = wmax, and
∥xn∥∞ = maxi∈{1,2,...,d} |xn(i)| ≤ xmax, obtaining

R (G1;X) = E sup
w∈W1

∣∣∣∣∣ 1
E

E∑
n=1

rn

d∑
i=1

wixn(i)

∣∣∣∣∣ ≤ 2wmaxxmax√
E

√
log(2d), (G.30)

which, when used in (G.29), yields the final result.
■

References

[1] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar (2011). “Bayesian learning
in social networks”. The Review of Economic Studies 78.4, pp. 1201–1236.

[2] D. Acemoglu and A. Ozdaglar (2011). “Opinion dynamics and learning in social
networks”. Dynamic Games and Applications 1.1, pp. 3–49.

[3] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi (2010). “Spread of (mis)-
information in social networks”. Games and Economic Behavior 70.2, pp. 194–
227.

[4] J. Aczél and Z Daróczy (1975). On Measures of Information and their Charac-
terizations. Academic Press.

[5] J. Alcock (2009). Animal Behavior: An Evolutionary Approach. Sinauer Asso-
ciates.

[6] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic (2017). “QSGD:
Communication-efficient SGD via gradient quantization and encoding”. Proc.
Neural Information Processing Systems (NIPS), pp. 1707–1718.

[7] R. B. Ash and C. A. Doléans-Dade (2000). Probability and Measure Theory.
Academic Press.

[8] R. R. Bahadur and R. R. Rao (1960). “On deviations of the sample mean”. The
Annals of Mathematical Statistics 31.4, pp. 1015–1027.

[9] D. Bajović, D. Jakovetić, J. M. F. Moura, J. Xavier, and B. Sinopoli (2012).
“Large deviations performance of consensus+innovations distributed detection
with non-Gaussian observations”. IEEE Transactions on Signal Processing 60.11,
pp. 5987–6002.

[10] A. Bandura (1977). Social Learning Theory. Prentice Hall.
[11] A.-L. Barabási and Z. N. Oltvai (2004). “Network biology: Understanding the

cell’s functional organization”. Nature Reviews Genetics 5, pp. 101–113.
[12] P. L. Bartlett, S. Boucheron, and G. Lugosi (2002). “Model selection and error

estimation”. Machine Learning 48.1, pp. 85–113.
[13] P. L. Bartlett and S. Mendelson (2002). “Rademacher and Gaussian complexities:

Risk bounds and structural results”. Journal of Machine Learning Research 3,
pp. 463–482.

[14] M. Basseville and I. V. Nikiforov (1993). Detection of Abrupt Changes: Theory
and Application. Prentice Hall.

[15] M. F. Bear, B. W. Connors, and M. A. Paradiso (2006). Neuroscience: Exploring
the Brain. Lippincott Williams & Wilkins.

[16] M. A. Beauchamp (1965). “An improved index of centrality”. Behavioral Science
10.2, pp. 161–163.

[17] A. Beck and M. Teboulle (2003). “Mirror descent and nonlinear projected sub-
gradient methods for convex optimization”. Operations Research Letters 31.3,
pp. 167–175.

460 References

[18] T. Berger, Z. Zhang, and H. Viswanathan (1996). “The CEO problem [multiter-
minal source coding]”. IEEE Transactions on Information Theory 42.3, pp. 887–
902.

[19] R. H. Berk (1966). “Limiting behavior of posterior distributions when the model
is incorrect”. The Annals of Mathematical Statistics 37.1, pp. 51–58.

[20] J. M. Bernardo and A. F. M. Smith (2000). Bayesian Theory. John Wiley &
Sons.

[21] P. Billingsley (2008). Probability and Measure. John Wiley & Sons.
[22] B. Bollobás (1998). Modern Graph Theory. Springer.
[23] V. Bordignon, M. Kayaalp, V. Matta, and A. H. Sayed (2023a). “Social learning

with non-Bayesian local updates”. Proc. European Signal Processing Conference
(EUSIPCO), pp. 1878–1882.

[24] V. Bordignon, V. Matta, and A. H. Sayed (2020). “Social learning with partial
information sharing”. Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5540–5544.

[25] — (2021). “Adaptive social learning”. IEEE Transactions on Information
Theory 67.9, pp. 6053–6081.

[26] — (2023). “Partial information sharing over social learning networks”. IEEE
Transactions on InformationTheory 69.3, pp. 2033–2058.

[27] — (2024). “Socially intelligent networks: A framework for decision making
over graphs”. IEEE Signal Processing Magazine 41.4, pp. 20–39.

[28] V. Bordignon, S. Vlaski, V. Matta, and A. H. Sayed (2021). “Network classifiers
based on social learning”. Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5185–5189.

[29] — (2023b). “Learning from heterogeneous data based on social interactions
over graphs”. IEEE Transactions on Information Theory 69.5, pp. 3347–3371.

[30] S. Boucheron, O. Bousquet, and G. Lugosi (2005). “Theory of classification: A
survey of some recent advances”. ESAIM: Probability and Statistics 9, pp. 323–
375.

[31] S. Boucheron, G. Lugosi, and O. Bousquet (2003). “Concentration inequalities”.
Summer School on Machine Learning. Ed. by O. Bousquet, U. von Luxburg, and
G. Rätsch. Springer, pp. 208–240.

[32] S. Boyd, P. Diaconis, P. Parrilo, and L. Xiao (2009). “Fastest mixing Markov
chain on graphs with symmetries”. SIAM Journal on Optimization 20.2, pp. 792–
819.

[33] S. Boyd and L. Vandenberghe (2004). Convex Optimization. Cambridge University
Press.

[34] L. M. Bregman (1967). “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex pro-
gramming”. USSR Computational Mathematics and Mathematical Physics 7.3,
pp. 200–217.

[35] L. Breiman (1992). Probability. SIAM.
[36] S. Bubeck (2015). “Convex optimization: Algorithms and complexity”. Founda-

tions and Trends in Machine Learning 8.3-4, pp. 231–357.
[37] P. S. Bullen (2003). Handbook of Means and Their Inequalities. Vol. 560. Springer.
[38] G. Buzsaki (2011). Rythms of the Brain. Oxford University Press.
[39] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E.

Bonabeau (2003). Self-Organization in Biological Systems. Princeton University
Press.

References 461

[40] M. Carpentiero, V. Matta, and A. H. Sayed (2023). “Distributed adaptive learning
under communication constraints”. IEEE Open Journal of Signal Processing 5,
pp. 321–358.

[41] — (2024). “Compressed regression over adaptive networks”. IEEE Transac-
tions on Signal and Information Processing over Networks.

[42] C. Chamley, A. Scaglione, and L. Li (2013). “Models for the diffusion of beliefs in
social networks: An overview”. IEEE Signal Processing Magazine 30.3, pp. 16–29.

[43] C. P. Chamley (2004). Rational Herds: Economic Models of Social Learning.
Cambridge University Press.

[44] H. Chernoff (1952). “A measure of the asymptotic efficiency of tests of a hypothesis
based on a sum of observations”. The Annals of Mathematical Statistics 23,
pp. 493–507.

[45] B. D. Choi and S. H. Sung (1987). “Almost sure convergence theorems of weighted
sums of random variables”. Stochastic Analysis and Applications 5.4, pp. 365–377.

[46] M. Cirillo, V. Bordignon, V. Matta, and A. H. Sayed (2023). “Memory-aware
social learning under partial information sharing”. IEEE Transactions on Signal
Processing 71, pp. 2833–2848.

[47] M. Cirillo, V. Matta, and A. H. Sayed (2023). “Estimating the topology of
preferential attachment graphs under partial observability”. IEEE Transactions
on Information Theory 69.2, pp. 1355–1380.

[48] N. D. Condorcet (1785). Essai sur l’Application de l’Analyse à la Probabilité des
Décisions Rendues à la Pluralité des Voix. Imprimerie Royale.

[49] J. Conlisk (1996). “Why bounded rationality?” Journal of Economic Literature
34.2, pp. 669–700.

[50] C. Cortes, M. Mohri, and U. Syed (2014). “Deep boosting”. Proc. International
Conference on Machine Learning (ICML), pp. 1179–1187.

[51] I. D. Couzin (2009). “Collective cognition in animal groups”. Trends in Cognitive
Sciences 13, pp. 36–43.

[52] T. M. Cover and J. A. Thomas (1991). Elements of Information Theory. John
Wiley & Sons.

[53] H. Cramér (1938). “Sur un nouveau théorème-limite de la théorie des probabilités”.
Proc. Colloque Consacré à la théorie des probabilités, Actualités Scientifiques et
Industrielles. 736, pp. 5–23.

[54] I. Csiszár (1975). “I-divergence geometry of probability distributions and mini-
mization problems”. The Annals of Probability 3.1, pp. 146–158.

[55] J. H. Curtiss (1942). “A note on the theory of moment generating functions”.
The Annals of Statistics 13.4, pp. 430–433.

[56] D. M. Cvetković, M. Doob, and H. Sachs (1980). Spectra of Graphs: Theory and
Applications. Academic Press.

[57] Z. Daróczy and L. Losonczi (1967). “Über die erweiterung der auf einer punkt-
menge additiven funktionen”. Publicationes Mathematicae Debrecen 14, pp. 239–
245.

[58] M. H. DeGroot (1974). “Reaching a consensus”. Journal of the American Statis-
tical Association 69.345, pp. 118–121.

[59] A. Dembo and O. Zeitouni (1998). Large Deviations Techniques and Applications.
Springer.

[60] F. Den Hollander (2000). Large Deviations. American Mathematical Society.
[61] J. A. Deri and J. M. F. Moura (2016). “New York city taxi analysis with graph

signal processing”. Proc. IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pp. 1275–1279.

462 References

[62] L. Devroye, L. Györfi, and G. Lugosi (2013). A Probabilistic Theory of Pattern
Recognition. Springer.

[63] X. Dong, D. Thanou, M. Rabbat, and P. Frossard (2019). “Learning graphs from
data: A signal representation perspective”. IEEE Signal Processing Magazine
36.3, pp. 44–63.

[64] L. A. Dugatkin (2009). Principles of Animal Behavior. W. W. Norton & Company.
[65] R. Durrett (2019). Probability: Theory and Examples. Cambridge University

Press.
[66] C. Efthimiou (2011). Introduction to Functional Equations. Mathematical Sciences

Research Institute.
[67] E. O. Elliott (1963). “Estimates of error rates for codes on burst-noise channels”.

The Bell System Technical Journal 42.5, pp. 1977–1997.
[68] R. S. Ellis (1984). “Large deviations for a general class of random vectors”.

TheAnnals of Probability 12.1, pp. 1–12.
[69] P. Erdős (1939). “On a family of symmetric Bernoulli convolutions”. American

Journal of Mathematics 61.4, pp. 974–976.
[70] W. Feller (2008). An Introduction to Probability Theory and Its Applications, vol.

2. John Wiley & Sons.
[71] D. A. Freedman (1963). “On the Asymptotic Behavior of Bayes’ Estimates in

the Discrete Case I”. The Annals of Mathematical Statistics 34.4, pp. 1386–1403.
[72] — (1965). “On the Asymptotic Behavior of Bayes’ Estimates in the Discrete

Case II”. The Annals of Mathematical Statistics 36.2, pp. 454–456.
[73] Y. Freund, R. Schapire, and N. Abe (1999). “A short introduction to boosting”.

Journal of Japanese Society of Artificial Intelligence 14.5, pp. 771–780.
[74] K. Friston, J. Kilner, and L. Harrison (2006). “A free energy principle for the

brain”. Journal of Physiology-Paris 100.1-3, pp. 70–87.
[75] A. Fujita, J. R. Sato, H. M. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. C.

Sogayar, and C. E. Ferreira (2007). “Modeling gene expression regulatory networks
with the sparse vector autoregressive model”. BMC Systems Biology 1.39, pp. 1–
11.

[76] F. Galton (1907). “Vox populi (the wisdom of crowds)”. Nature 75.7, pp. 450–451.
[77] F. R. Gantmacher (1959). The Theory of Matrices, 2 volumes. AMS Chelsea

Publishing.
[78] A. Gärtner (1977). “On large deviations from the invariant measure”. Theory of

Probability and its Applications 22.1, pp. 24–39.
[79] C. Genest (1984). “A characterization theorem for externally Bayesian groups”.

The Annals of Statistics 12.3, pp. 1100 –1105.
[80] C. Genest, K. J. McConway, and M. J. Schervish (1986). “Characterization of

externally Bayesian pooling operators”. The Annals of Statistics 14.2, pp. 487
–501.

[81] G. B. Giannakis, Y. Shen, and G. V. Karanikolas (2018). “Topology identifi-
cation and learning over graphs: Accounting for nonlinearities and dynamics”.
Proceedings of the IEEE 106.5, pp. 787–807.

[82] E. N. Gilbert (1960). “Capacity of a burst-noise channel”. The Bell System
Technical Journal 39.5, pp. 1253–1265.

[83] B. Golub and E. Sadler (2017). “Learning in social networks”. SSRN, available
at https://ssrn.com/abstract=2919146 .

[84] B. Golub and M. O. Jackson (2010). “Naïve learning in social networks and the
wisdom of crowds”. American Economic Journal: Microeconomics 2.1, pp. 112–49.

https:// ssrn.com/abstract=2919146

References 463

[85] G. Grimmett and D. Stirzaker (2020). Probability and Random Processes. Oxford
University Press.

[86] J. D. Hamilton (1994). Time Series Analysis. Princeton University Press.
[87] J. Z. Hare, C. A. Uribe, L. Kaplan, and A. Jadbabaie (2020a). “Non-Bayesian

social learning with uncertain models”. IEEE Transactions on Signal Processing
68, pp. 4178–4193.

[88] — (2021). “A general framework for distributed inference with uncertain
models”. IEEE Transactions on Signal and Information Processing over Networks
7, pp. 392–405.

[89] J. Z. Hare, C. A. Uribe, L. M. Kaplan, and A. Jadbabaie (2020b). “Communi-
cation constrained learning with uncertain models”. Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8609–8613.

[90] T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of Statistical
Learning. Springer.

[91] J. Hazla, A. Jadbabaie, E. Mossel, and M. A. Rahimian (2021). “Bayesian decision
making in groups is hard”. Operations Research 69.2, pp. 632–654.

[92] O. Hlinka, O. Slučiak, F. Hlawatsch, P. M. Djurić, and M. Rupp (2012). “Like-
lihood consensus and its application to distributed particle filtering”. IEEE
Transactions on Signal Processing 60.8, pp. 4334–4349.

[93] R. A. Horn and C. R. Johnson (2013). Matrix Analysis. Cambridge University
Press.

[94] P. Hu, V. Bordignon, S. Vlaski, and A. H. Sayed (2022). “Optimal combination
policies for adaptive social learning”. Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5842–5846.

[95] — (2023). “Optimal aggregation strategies for social learning over graphs”.
IEEE Transactions on Information Theory 69.9, pp. 6048–6070.

[96] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi (2012). “Non-
Bayesian social learning”. Games and Economic Behavior 76.1, pp. 210–225.

[97] S. T. Jose and O. Simeone (2021). “Free energy minimization: A unified framework
for modeling, inference, learning, and optimization [Lecture Notes]”. IEEE Signal
Processing Magazine 38.2, pp. 120–125.

[98] B. H. Junker and F. Schreiber (2008). Analysis of Biological Networks. John
Wiley & Sons.

[99] M. Kayaalp, V. Bordignon, S. Vlaski, and A. H. Sayed (2022). “Hidden Markov
modeling over graphs”. Proc. IEEE Data Science and Learning Workshop (DSLW),
pp. 1–6.

[100] W. Kocay and D. L. Kreher (2005). Graphs, Algorithms and Optimization.
Chapman & Hall/CRC Press.

[101] G. Koliander, Y. El-Laham, P. M. Djurić, and F. Hlawatsch (2022). “Fusion of
probability density functions”. Proceedings of the IEEE 110.4, pp. 404–453.

[102] A. Koloskova, S. Stich, and M. Jaggi (2019). “Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication”. Proc. International
Conference on Machine Learning (ICML), pp. 3478–3487.

[103] V. Koltchinskii (2001). “Rademacher penalties and structural risk minimization”.
IEEE Transactions on Information Theory 47.5, pp. 1902–1914.

[104] M. Kuczma (1978). “Functional equations on restricted domains”. Aequationes
Mathematicae 18, pp. 1–34.

[105] S. Kullback (1988). “[Optimal information processing and Bayes’s theorem]:
Comment”. The American Statistician 42.4, pp. 282–283.

464 References

[106] A. Lalitha, T. Javidi, and A. D. Sarwate (2018). “Social learning and distributed
hypothesis testing”. IEEE Transactions on Information Theory 64.9, pp. 6161–
6179.

[107] C. C. Leang and D. H. Johnson (1997). “On the asymptotics of M-hypothesis
Bayesian detection”. IEEE Transactions on Information Theory 43.1, pp. 280–
282.

[108] Y. LeCun, C. Cortes, and C. J. Burges (2010). MNIST handwritten digit database.
Available at http://yann.lecun.com/exdb/mnist.

[109] M. Ledoux and M. Talagrand (1991). Probability in Banach Spaces: Isoperimetry
and Processes. Springer.

[110] E. L. Lehmann and G. Casella (1998). Theory of Point Estimation. Springer.
[111] M. P. Lévy (1931). “Sur les séries dont les termes sont des variables éventuelles

indépendantes”. Studia Mathematica 3, pp. 119–155.
[112] R. Liégeois, A. Santos, V. Matta, D. Van de Ville, and A. H. Sayed (2020).

“Revisiting correlation-based functional connectivity and its relationship with
structural connectivity”. Network Neuroscience 4.4, pp. 1235–1251.

[113] M. Loève (1951). “On almost sure convergence”. Proc. Second Berkeley Symposium
on Mathematical Statistics and Probability, pp. 279–303.

[114] J. M. Lucas and M. S. Saccucci (1990). “Exponentially weighted moving average
control schemes: Properties and enhancements”. Technometrics 32.1, pp. 1–12.

[115] S. Mahdizadehaghdam, H. Wang, H. Krim, and L. Dai (2016). “Information
diffusion of topic propagation in social media”. IEEE Transactions on Signal and
Information Processing over Networks 2.4, pp. 569–581.

[116] S. Marano, V. Matta, T. He, and L. Tong (2013). “The embedding capacity
of information flows under renewal traffic”. IEEE Transactions on Information
Theory 59.3, pp. 1724–1739.

[117] G. Mateos, S. Segarra, A. Marques, and A. Ribeiro (2019). “Connecting the
dots: Identifying network structure via graph signal processing”. IEEE Signal
Processing Magazine 36.3, pp. 16–43.

[118] V. Matta, V. Bordignon, A. Santos, and A. H. Sayed (2020). “Interplay between
topology and social learning over weak graphs”. IEEE Open Journal of Signal
Processing 1, pp. 99–119.

[119] V. Matta, P. Braca, S. Marano, and A. H. Sayed (2016a). “Diffusion-based
adaptive distributed detection: Steady-state performance in the slow adaptation
regime”. IEEE Transactions on Information Theory 62.8, pp. 4710–4732.

[120] — (2016b). “Distributed detection over adaptive networks: Refined asymp-
totics and the role of connectivity”. IEEE Transactions on Signal and Information
Processing over Networks 2.4, pp. 442–460.

[121] V. Matta, A. Santos, and A. H. Sayed (2020). “Graph learning under partial
observability”. Proceedings of the IEEE 108.11, pp. 2049–2066.

[122] — (2022). “Graph learning over partially observed diffusion networks: Role of
degree concentration”. IEEE Open Journal of Signal Processing 3, pp. 335–371.

[123] V. Matta and A. H. Sayed (2018). “Estimation and detection over adaptive
networks”. Cooperative and Graph Signal Processing. Ed. by P. M. Djurić and
C. Richard. Academic Press, pp. 69–106.

[124] — (2019). “Consistent tomography under partial observations over adaptive
networks”. IEEE Transactions on Information Theory 65.1, pp. 622–646.

[125] C. McDiarmid (1989). “On the method of bounded differences”. Surveys in
Combinatorics 141.1, pp. 148–188.

[126] C. D. Meyer (2000). Matrix Analysis and Applied Linear Algebra. SIAM.

http://yann.lecun.com/exdb/mnist

References 465

[127] J. Mills, J. Hu, and G. Min (2020). “Communication-efficient federated learning
for wireless edge intelligence in IoT”. IEEE Internet of Things Journal 7.7,
pp. 5986–5994.

[128] A. Mitra, S. Bagchi, and S. Sundaram (2020). “Event-triggered distributed
inference”. Proc. IEEE Conference on Decision and Control (CDC), pp. 6228–
6233.

[129] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram (2021). “Distributed
inference with sparse and quantized communication”. IEEE Transactions on
Signal Processing 69, pp. 3906–3921.

[130] M. Mohri, A. Rostamizadeh, and A. Talwalkar (2018). Foundations of Machine
Learning. MIT Press.

[131] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie (2018). “A theory of non-Bayesian
social learning”. Econometrica 86.2, pp. 445–490.

[132] E. Mossel and O. Tamuz (2017). “Opinion exchange dynamics”. Probability
Surveys 14, pp. 155–204.

[133] G. V. Moustakides (1986). “Optimal stopping times for detecting changes in
distributions”. The Annals of Statistics 14.4, pp. 1379–1387.

[134] R. Nassif, S. Vlaski, M. Carpentiero, V. Matta, M. Antonini, and A. H. Sayed
(2023). “Quantization for decentralized learning under subspace constraints”.
IEEE Transactions on Signal Processing 71, pp. 2320–2335.

[135] A. Nedić, A. Olshevsky, and C. A. Uribe (2017). “Fast convergence rates for
distributed non-Bayesian learning”. IEEE Transactions on Automatic Control
62.11, pp. 5538–5553.

[136] A. S. Nemirovski and D. B. Yudin (1983). Problem Complexity and Method
Efficiency in Optimization. John Wiley & Sons.

[137] B. Neyshabur, R. Tomioka, and N. Srebro (2015). “Norm-based capacity control
in neural networks”. Proc. Conference on Learning Theory (COLT), pp. 1376–
1401.

[138] B. L. Partridge (1982). “The structure and function of fish schools”. Scientific
American 246.6, pp. 114–123.

[139] M. S. Pinsker (1964). Information and Information Stability of Random Variables
and Random Processes. Holden-Day.

[140] P. C. Pinto, P. Thiran, and M. Vetterli (2012). “Locating the source of diffusion
in large-scale networks”. Physical Review Letters 109, pp. 068702–1–068702–5.

[141] H. V. Poor and O. Hadjiliadis (2008). Quickest Detection. Cambridge University
Press.

[142] Y. Ritov (1990). “Decision theoretic optimality of the CUSUM procedure”. The
Annals of Statistics 18.3, pp. 1464–1469.

[143] S. W. Roberts (1959). “Control chart tests based on geometric moving averages”.
Technometrics 1.3, pp. 239–250.

[144] W Rudin (1964). Principles of Mathematical Analysis. McGraw-Hill.
[145] — (1987). Real and Complex Analysis. McGraw-Hill.
[146] W. Rudin (1991). Functional Analysis. McGraw-Hill.
[147] H. Salami, B. Ying, and A. H. Sayed (2017). “Social learning over weakly

connected graphs”. IEEE Transactions on Signal and Information Processing
over Networks 3.2, pp. 222–238.

[148] H. Salami, B. Ying, and A. H. Sayed (2021). “Belief control strategies for inter-
actions over weakly-connected graphs”. IEEE Open Journal of Signal Processing
2, pp. 265–279.

466 References

[149] R. Salhab, A. Ajorlou, and A. Jadbabaie (2020). “Social learning with sparse belief
samples”. Proc. IEEE Conference on Decision and Control (CDC), pp. 1792–
1797.

[150] A. Santos, V. Matta, and A. H. Sayed (2020). “Local tomography of large
networks under the low-observability regime”. IEEE Transactions on Information
Theory 66.1, pp. 587–613.

[151] A. H. Sayed (2014a). “Adaptation, learning, and optimization over networks”.
Foundations and Trends in Machine Learning 7.4–5, pp. 311–801.

[152] — (2014b). “Adaptive networks”. Proceedings of the IEEE 102.4, pp. 460–
497.

[153] — (2014c). “Diffusion adaptation over networks”. Academic Press Library
in Signal Processing, vol. 3. Ed. by R. Chellappa and S. Theodoridis. Academic
Press, pp. 323–454.

[154] A. H. Sayed (2008). Adaptive Filters. John Wiley & Sons.
[155] A. H. Sayed (2022). Inference and Learning from Data, 3 volumes. Cambridge

University Press.
[156] T. D. Seeley, R. A. Morse, and P. K. Visscher (1979). “The natural history of

the flight of honey bee swarms”. Psyche 86, pp. 103–114.
[157] S. Shahrampour, A. Rakhlin, and A. Jadbabaie (2015). “Distributed detection:

Finite-time analysis and impact of network topology”. IEEE Transactions on
Automatic Control 61.11, pp. 3256–3268.

[158] C. E. Shannon (1948). “A mathematical theory of communication”. The Bell
System Technical Journal 27.3, pp. 379–423.

[159] J. Shao (2003). Mathematical Statistics. Springer.
[160] V. Shumovskaia, M. Kayaalp, M. Cemri, and A. H. Sayed (2023). “Discovering

influencers in opinion formation over social graphs”. IEEE Open Journal of Signal
Processing 4, pp. 188–207.

[161] H. A. Simon (1990). “Bounded rationality”. Utility and Probability. Ed. by J.
Eatwell, M. Milgate, and P. Newman. Springer, pp. 15–18.

[162] O. Sporns (2010). Networks of the Brain. MIT Press.
[163] A. Tartakovsky, M. Basseville, and I. Nikiforov (2015). Sequential Analysis:

Hypothesis Testing and Changepoint Detection. CRC Press.
[164] M. T. Toghani and C. A. Uribe (2022). “Communication-efficient distributed

cooperative learning with compressed beliefs”. IEEE Transactions on Control of
Network Systems 9.3, pp. 1215–1226.

[165] A. B. Tsybakov (2009). Introduction to Nonparametric Estimation. Springer.
[166] A. W. van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.
[167] V. N. Vapnik and A. Y. Chervonenkis (2015). “On the uniform convergence of

relative frequencies of events to their probabilities”. Measures of Complexity.
Ed. by V. Vovk, H. Papadopoulos, and A. Gammerman. Springer, pp. 11–30.

[168] P. Venkitasubramaniam, T. He, and L. Tong (2008). “Anonymous networking
amidst eavesdroppers”. IEEE Transactions on Information Theory 54.6, pp. 2770–
2784.

[169] H. Viswanathan and T. Berger (1997). “The quadratic Gaussian CEO problem”.
IEEE Transactions on Information Theory 43.5, pp. 1549–1559.

[170] S. Vlaski, L. Vandenberghe, and A. H. Sayed (2022). “Regularized diffusion
adaptation via conjugate smoothing”. IEEE Transactions on Automatic Control
67.5, pp. 2343–2358.

References 467

[171] M. J. Wainwright and M. I. Jordan (2008). “Graphical models, exponential
families, and variational inference”. Foundations and Trends in Machine Learning
1.1–2, pp. 1–305.

[172] L. Xiao and S. Boyd (2004). “Fast linear iterations for distributed averaging”.
System & Control Letters 53.1, pp. 65–78.

[173] B. Ying and A. H. Sayed (2016). “Information exchange and learning dynamics
over weakly connected adaptive networks”. IEEE Transactions on Information
Theory 62.3, pp. 1396–1414.

[174] A. Zellner (1988). “Optimal information processing and Bayes’s theorem”. The
American Statistician 42.4, pp. 278–280.

[175] X. Zhao and A. H. Sayed (2012). “Learning over social networks via diffusion
adaptation”. Proc. Asilomar Conference on Signals, Systems and Computers,
pp. 709–713.

[176] Q. Zou, S. Zheng, and A. H. Sayed (2010). “Cooperative sensing via sequential
detection”. IEEE Transactions on Signal Processing 58.12, pp. 6266–6283.

About the Authors

Vincenzo Matta is a Full Professor in Telecom-
munications at the Department of Information
and Electrical Engineering and Applied Mathe-
matics, University of Salerno, Italy. An author of
nearly 150 articles published in reputed journals
and proceedings of international conferences, his
research interests include adaptation and learning
over networks, social learning, statistical infer-
ence on graphs, and security in communication
networks. Dr. Matta has served IEEE in multiple

capacities, including as a member of the editorial boards of several journals.

Virginia Bordignon received the Ph.D. degree
in electrical engineering in 2022 from École Poly-
technique Fédérale de Lausanne (EPFL), Switzer-
land, for which she was awarded the 2023 Best
Dissertation Award from the IEEE Signal Process-
ing Society. She served as a post-doctoral scholar
with the Adaptive Systems Laboratory at EPFL
until early 2024. Her research interests include
statistical inference, distributed learning, and in-
formation processing over networks.

470 About the Authors

Ali H. Sayed is Dean of Engineering at EPFL,
Switzerland, where he also directs the Adaptive
Systems Laboratory. He served before as Distin-
guished Professor and Chair of Electrical Engi-
neering at UCLA. He is a member of the US
National Academy of Engineering and The World
Academy of Sciences. He served as President of
the IEEE Signal Processing Society in 2018 and
2019. An author of over 650 scholarly publications
and 9 books, his research involves several areas
including adaptation and learning theories, sta-

tistical inference, and multi-agent systems. His work has been recognized
with several major awards including the 2022 IEEE Fourier Technical Field
Award and the 2020 IEEE Wiener Society Award. He is a Fellow of IEEE,
EURASIP, and the American Association for the Advancement of Science.

	Dedication
	Preface
	Introduction
	Examples of Social Learning
	Building Opinions
	Book Organization
	Notation, Symbols, and Conventions

	Bayesian Learning
	The Bayesian Way
	Properties of Bayes' Rule
	Information-Theoretic Interpretations
	Stochastic-Optimization Interpretation

	From Single-Agent to Social Learning
	Bayesian versus Non-Bayesian Learning
	Non-Bayesian Social Learning
	Information-Theoretic Viewpoint
	Behavioral Viewpoint
	Unifying Framework

	Network Models
	Network Graphs
	Combination Matrices
	Strong and Primitive Graphs
	Stochastic Combination Matrices
	Weak Graphs
	Combination Policies

	Social Learning with Geometric Averaging
	Belief Convergence
	Learning over Connected Graphs
	Objective Evidence
	Subjective Evidence
	Fake Evidence
	Learning over Weak Graphs

	Error Probability Performance
	Useful Statistical Descriptors
	Normal Approximation for Large t
	Large Deviations for Large t

	Social Learning with Arithmetic Averaging
	Modeling Assumptions
	Belief Convergence

	Adaptive Social Learning
	Stubbornness of Agents
	Adaptive Update
	Learning versus Adaptation
	Adaptive Setting
	Variation on ASL

	Learning Accuracy under ASL
	Steady-State Analysis
	Small- Regime
	Consistency of Adaptive Social Learning
	Normal Approximation for Small
	Large Deviations for Small
	Main Performance Characteristics

	Adaptation under ASL
	Qualitative Description of the Transient Phase
	Quantitative Transient Analysis
	Adaptation Time
	Summary: Learning and Adaptation under ASL

	Partial Information Sharing
	Partial Information Framework
	Decoding Strategies
	Asymptotic Learning Objectives
	Memoryless Strategy
	Memory in Partial Information
	Comparing Strategies
	Appendix: Preliminary Results
	Appendix: Proof of [th:main-TXneq0]Theorem 11.2
	Appendix: Proof of [th:main-TXeq0]Theorem 11.3

	Social Machine Learning
	Social Machine Learning Model
	General Decision Statistics
	Training Phase
	Performance Guarantees
	Sample Complexity
	Illustrative Examples
	Appendix: Notation for Binary Decision Problems
	Appendix: Bounds for Consistent Learning
	Appendix: Proof of [the:consist]Theorem 12.1
	Appendix: Proof of [cor:1]Theorem 12.2
	Appendix: Auxiliary Results

	Extensions and Conclusions
	Non-Bayesian Updates
	Censored Beliefs
	Learning the Social Graph

	Appendices
	Convex Functions
	Entropy and KL Divergence
	Probabilistic Inequalities
	Stochastic Convergence
	Types of Stochastic Convergence
	Fundamental Asymptotic Results
	Convergence of Sums and Recursions
	Martingales

	Large Deviations
	Empirical Averages
	Large Deviation Principle

	Random Sums and Series
	Convergent Random Series
	Random Sums Relevant to Adaptive Social Learning
	Vector Case for Network Behavior

	Rademacher Complexity
	General Case
	Multilayer Perceptrons

	References
	About the Authors

