
Compressed Sensing
Approach to Systems and

Control

Masaaki Nagahara

EURASIP–Now Publishers Open Access Book Series
on Information and Learning Sciences

Editor-in-chief
Ali H. Sayed (EPFL, Switzerland)

Editors
Helmut Bolcskei (ETH Zurich, Switzerland)
Alfred O. Hero (University of Michigan, USA)
Angelia Nedich (Arizona State University, USA)
H. Vincent Poor (Princeton University, USA)
Sergios Theodoridis (University of Athens, Greece)
Abdelhak Zoubir (Technical University Darmstadt, Germany)

Other titles in EURASIP–Now Publishers Open Access Book Series on
Information and Learning Sciences

Social Learning: Opinion Formation and Decision-Making over Graphs
Vincenzo Matta, Virginia Bordignon, Ali H. Sayed
ISBN: 978-1-63828-472-7

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

EURASIP–Now Publishers Open Access Book Series on Information and
Learning Sciences

ISBN: 978-1-63828-504-5
E-ISBN: 978-1-63828-505-2
DOI: 10.1561/9781638285052

Copyright © 2025 Masaaki Nagahara

Suggested citation: Masaaki Nagahara. (2025). Compressed Sensing
Approach to Systems and Control. Boston–Delft: Now Publishers

Contents

Preface ix

1 Introduction 3
1.1 Occam’s Razor . 3
1.2 Optimization with ℓ1 Norm 5
1.3 Sparsity Methods for Systems and Control 7

I Compressed Sensing in Finite-dimensional Spaces 13

2 What is Sparsity? 15
2.1 Redundant Dictionary . 15
2.2 Underdetermined Systems . 19
2.3 The ℓ0 Norm . 21
2.4 Group Testing . 24
2.5 Exhaustive Search . 27
2.6 Advanced Topic: Sparse Representation for Functions 30
2.7 Further Readings . 33

3 Sparse Optimization 35
3.1 Least Squares and Regularization 35
3.2 Sparse Polynomial and ℓ1-norm Optimization 50
3.3 Python Examples . 54
3.4 Further Readings . 60

4 Algorithms for Convex Optimization 61
4.1 Basics of Convex Optimization 61
4.2 Proximal Operators . 68
4.3 Proximal Splitting Methods for ℓ1 Optimization 76
4.4 Proximal Gradient Methods for ℓ1 Regularization 81
4.5 Generalized LASSO and ADMM 90
4.6 Further Readings . 97

5 Greedy Algorithms 99
5.1 ℓ0 Optimization . 99
5.2 Orthogonal Matching Pursuit 103
5.3 Thresholding Algorithms . 110
5.4 Numerical Example . 116
5.5 Further Readings . 118
5.6 Python Programs . 118

6 Distributed Optimization 125
6.1 Network Model and Algebraic Graph Theory 125
6.2 Consensus Algorithm . 128
6.3 Distributed Optimization . 130
6.4 Further Readings . 139
6.5 Python Programs . 140

7 Applications of Compressed Sensing 149
7.1 Sparse Representations for Splines 149
7.2 Sparse System Identification 155
7.3 Sparse Controller Design . 158
7.4 Discrete-time Hands-off Control 161
7.5 Further Readings . 167
7.6 Python Programs . 168

II Maximum Hands-off Control: Compressed Sensing for Continuous-
time Systems 173

8 Dynamical Systems and Optimal Control 175
8.1 Dynamical Systems . 175
8.2 Minimum-time Control . 188
8.3 Rocket Control Example . 189
8.4 Further Readings . 195

9 Maximum Hands-off Control 197
9.1 L0 Norm and Sparsity . 197
9.2 Practical Benefits of Sparsity in Control 199
9.3 Problem Formulation of Maximum Hands-off Control 200
9.4 L1-optimal Control . 201
9.5 Equivalence Theorem . 205

9.6 Existence of L0-optimal Control 206
9.7 Rocket Control Example . 211
9.8 Further Readings . 215

10 Numerical Optimization by Time Discretization 217
10.1 Time Discretization . 217
10.2 Controllability of Discretized Systems 219
10.3 Reduction to Finite-dimensional Optimization 221
10.4 Fast Algorithm by ADMM 222
10.5 Further Readings . 226
10.6 Python Programs . 226

11 Advanced Topics 231
11.1 Smooth Hands-off Control by Mixed L1/L2 Optimization . . . 231
11.2 Discrete-valued Control . 235
11.3 Time-optimal Hands-off Control 242
11.4 Distributed Hands-off Control 245
11.5 Further Readings . 247

References 249

Index 257

About the Author 263

Preface

Compressed sensing, also known as sparse representation or sparse model-
ing, has experienced substantial growth in research fields such as signal
processing, machine learning, and statistics. In recent years, this power-
ful tool has been successfully applied to the design of control systems.
This book provides a comprehensive guide to compressed sensing-based
techniques with their application to systems and control.

This book is intended for graduate students and researchers who already
have a foundational understanding of basic calculus and linear algebra.
Its primary objective is to equip readers with the practical skills to apply
compressed sensing techniques to a range of engineering problems, with
a particular emphasis on systems and control. It also presents a compre-
hensive collection of efficient algorithms for addressing these problems.
Moreover, the book includes accompanying Python programs, which enable
readers to actively experiment with these algorithms firsthand. By engaging
with these practical examples, readers will develop a deeper understanding
of compressed sensing techniques and their applications to systems and
control. The Python programs can be downloaded from the following web
page:
https://nagahara-masaaki.github.io/spm_en

This book is the second edition of the author’s previous work, Sparsity
Methods for Systems and Control, published by Now Publishers in 2020.
This edition incorporates significant updates to reflect the latest advance-
ments in the field. Notably, it includes new chapters and sections covering
the following key topics:

• Distributed optimization (Chapter 6)

• Sparse system identification (Section 7.2)

• Sparse controller design (Section 7.3)

• Distributed hands-off control (Section 11.4)

https://nagahara-masaaki.github.io/spm_en

I trust that this book will serve as a valuable resource for readers seeking
to gain a comprehensive understanding of the state-of-the-art in this field.

This book is organized as follows. Chapter 1 provides a brief overview of
the history and literature of compressed sensing. The book is then divided
into two parts. Part I (Chapters 2–7) offers a comprehensive foundation in
compressed sensing within the context of finite-dimensional vector spaces.
Part II (Chapters 8–11) introduces maximum hands-off control, an optimal
control strategy based on compressed sensing principles, for continuous-
time systems.

Part I commences with Chapter 2, which establishes the fundamental
concept of sparsity and its significance in compressed sensing. Chapter 3
introduces sparse optimization, incorporating illustrative examples such
as curve fitting and group testing. Chapter 4 provides efficient algorithms
for convex optimization, a powerful framework for solving sparse opti-
mization problems. Chapter 5 explores greedy algorithms as alternative
approaches to compressed sensing. Chapter 6 extends the scope of sparse
optimization to distributed optimization scenarios. Chapter 7 showcases
applications of compressed sensing within the context of systems and
control, demonstrating the practical utility of the techniques presented in
Part I.

Part II begins with Chapter 8, which provides a brief review of dynamical
systems and optimal control theory. Chapter 9 introduces the novel concept
of maximum hands-off control, an optimal control strategy characterized
by its sparsity. Chapter 10 presents a numerical optimization method for
solving the optimal control problem associated with maximum hands-off
control. Finally, Chapter 11 explores advanced topics in maximum hands-
off control, including smooth hands-off control, discrete-valued control, and
distributed hands-off control.

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number
23K26130.

Masaaki Nagahara

Notation

A finite-dimensional vector is represented in a bold face, e.g. x, when the
size of the vector is greater than 2. For one-dimensional vectors, we do not
use a bold face and simply write like x, regarding as a scalar.

We denote by Rn the set of n-dimensional real column vectors, and by
Rm×n the set of m× n real matrices. The transpose of a vector x and a
matrix A are respectively denoted by x⊤ or A⊤. The i-th element of a
vector x and the (i, j)-th element of a matrix A are respectively denoted
by (x)i and [A]ij . We denote by Z the set of integers and by N the set of
natural numbers, that is, N = {1, 2, 3, . . .}.

For a vector x ∈ Rn, supp(x) denotes the support set of x, that is, the
set of nonzero elements of x = [x1, . . . , xn]⊤ ∈ Rn:

supp(x) ≜
{
i ∈ {1, . . . , n} : xi ̸= 0

}
. (1)

The ℓ0 norm of x ∈ Rn is defined by

∥x∥0 ≜ #
(
supp(x)

)
, (2)

where #(·) returns the number of elements of the argument set. The ℓp
norm with p ≥ 1 is defined by

∥x∥p ≜
{

n∑
i=1

|xi|p
}1/p

, (3)

and the ℓ∞ norm by
∥x∥∞ ≜ max

i=1,2,...,n
|xi|. (4)

In Part II, these norms will be denoted by ∥x∥ℓ0 , ∥x∥ℓp , and ∥x∥ℓ∞ to
distinguish them from the norms used for continuous-time signals.

For a vector x ∈ Rn, and an index set S ⊂ {1, 2, . . . , n}, we denote
by xS the restriction of x to S. Namely, if x = [x1, x2, . . . , xn]⊤ and
S = {i1, i2, . . . , ik} (1 ≤ i1 < i2 < · · · < ik ≤ n), then

xS = [xi1 , xi2 , . . . , xik]⊤ ∈ Rk. (5)

2 Notation

Also, for Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rm×n, ΦS is defined as

ΦS = [ϕi1 ,ϕi2 , . . . ,ϕik
] ∈ Rm×k. (6)

The complement of a set S is denoted by Sc.
Let f : [0, T] → R be a measurable function with T > 0. The support

of f is denoted by supp(f) and defined by

supp(f) ≜ {t ∈ [0, T] : f(t) ̸= 0}. (7)

The L0 norm of f is defined by

∥f∥0 ≜ µ
(
supp(f)

)
, (8)

where µ is the Lebesgue measure over R. The Lp norm with p ≥ 1 is
defined by

∥f∥p ≜
{∫ T

0
|f(t)|pdt

}1/p

, (9)

and the L∞ norm by
∥f∥∞ ≜ sup

t∈[0,T]
|f(t)|. (10)

We denote by Lp(0, T) with p ≥ 1 or p = ∞ the set of functions with finite
Lp norm.

For a function f : Rn → R, the gradient ∇f is defined by

∇f ≜
∂f

∂x
=
[
∂f

x1
,
∂f

x2
, . . . ,

∂f

xn

]⊤
∈ Rn. (11)

We say a real-valued function f(n), n ∈ N, is O(g(n)) if

lim sup
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ < ∞.

Chapter 1

Introduction

In this chapter, we briefly review the history of compressed sensing, also
known as sparse modeling, in science and engineering. The chapter will
motivate you to learn this topic. The content of this chapter is independent
of the other chapters, and readers interested in the technical aspects of
compressed sensing can skip this chapter without much effect on their
understanding of the rest of the book.

1.1 Occam’s Razor

At the root of sparsity methods, including compressed sensing, lies the
idea that one should not assume more than is necessary to explain certain
things. This is known as Occam’s razor, also called the law of parsimony,
developed by Ockham in the 14th century. This idea was not invented by
Ockham but rather long before him, for example, by Claudius Ptolemy
(90AD–168AD) and Aristotle (384BC–322BC). This is a very familiar
concept to us, especially in Japan, where there is a culture of Zen and
Wabi/Sabi, which can be roughly translated as “simple is best.”

There is a satirical depiction of the opposite of Occam’s razor, Rube
Goldberg machine. Figure 1.1 shows an example of a Goldberg machine.
The machine is a self-operating napkin, which automatically wipes off the
dirt from the beard when he drinks soup. This caricature depicts a machine
that performs very simple actions with extreme complexity and satirizes
the large-scale mechanization in the first half of the twentieth century. The
machine runs as follows.

1. The man raises the spoon of soup (A) to his mouth.

2. The string (B) attached to the spoon (A) is pulled.

4 Introduction

Figure 1.1: Rube Goldberg machine (self-operating napkin)

3. The ladle (C) moves.

4. The cracker (D) flies on the parrot (E).

5. The parrot (E) takes off after the cracker (D).

6. The perch (F) tilts.

7. The seeds (G) on the perch (F) spill out and go into the pail (H).

8. The string (I) is pulled by the extra weight in the pail (H).

9. It ignites the cigar lighter (J).

10. The fuse of the rocket (K) is lit and it takes off.

11. The knife (L) attached to the rocket (K) cuts the string (M).

12. The pendulum swings and the napkin (N) wipes the dirt off the beard.

The Goldberg machine is obviously strange. However, in this highly
technologized society, we might have created something like the Goldberg
machine without even realizing it. The sparsity method is therefore an
essential technique to avoid such a situation.

1.2. Optimization with ℓ1 Norm 5

|G(ω)|

ω

0

t

0

n(t)

supp(G) supp(n)

Figure 1.2: Reconstruction from noisy signal f(t) = g(t) + n(t): the Fourier transform G(ω) of
g is band-limited in the frequency domain, and the noise n is localized in the time domain.

1.2 Optimization with ℓ1 Norm

As we will see in this book, ℓ1-norm optimization is one of the most
important techniques for compressed sensing as an approximation of ℓ0-
norm optimization.

1.2.1 Signal reconstruction

The first study of optimization with the ℓ1 norm for sparse solutions is
found in the dissertation by Franklin Logan in 1965 [86]. Logan considered
the problem of signal reconstruction from noisy data. In his dissertation, he
showed that ℓ1-norm minimization completely eliminates the noise when
the original signal is band-limited to a certain frequency and the noise is
well localized (i.e., sparse) on the time axis. More precisely, if we have a
noisy observation

f(t) = g(t) + n(t), t = 0, 1, 2, . . . (1.1)

where the Fourier transform G(ω) of g has its support on a low-frequency
range, and the support of n(t) is sufficiently short, then the ℓ1 optimiza-
tion leads to perfect reconstruction of g from f . This is called Logan’s
phenomenon. Figure 1.2 illustrates the signal assumptions (band limitation
and sparsity) in Logan’s phenomenon. The sparsity method by the ℓ1-norm
minimization was then extended in [37] to signal recovery when the original
signal is sparse in the frequency domain.

1.2.2 Geophysics

In the field of geophysics, sparsity methods by the ℓ1 optimization have
been proposed since the 1970s. The structure of the strata can be estimated
by generating artificial earthquakes near the ground surface and observing

6 Introduction

R
u(t) y(t) t

0

r(t)

Figure 1.3: Linear system R with input u(t) and output y(t) (left), and its sparse impulse
response r(t) (right).

the reflected waves. This is a method called the reflection seismic survey.
This is a problem of system identification or an inverse problem, where the
mathematical model of the system is learned from its inputs and outputs.
As shown in the left-hand diagram in Figure 1.3, we consider a linear
system R with the input (the wave by the artificial earthquake) u(t) and
the output (the reflected wave) y(t).

The problem is to find the impulse response r(t) of the system R from
the input/output data of u(t) and y(t). In the case of seismic reflection
waves, the impulse response r(t) can be assumed to be localized in time
(see the right-hand figure in Fig. 1.3). That is, the impulse response is
sparse. From this, the ℓ1 regularization was proposed to reconstruct the
sparse impulse response [27], [134], [146]. These are other early studies
that used the idea of sparsity.

1.2.3 Neural networks

In the field of neural networks, the idea of sparsity has also been investigated.
Since the 1980s, Masumi Ishikawa has been proposing a method to learn
the structure by introducing the ℓ1 norm regularization into the training of
multilayer perceptrons [69]. He proposed sparsifying the coupling weights of
the network, which can also avoid overfitting. This is a method of machine
learning that takes advantage of the human brain’s ability to forget, which
is called structure learning with forgetting. The method can lead to an
explainable structure of multilayer neural networks, which allows people
to understand the learning results. Recently, more sophisticated methods
have been proposed to obtain sparse neural networks [87], [137], [151]. In
addition, the technique of dropout in recent deep neural networks is based
on a similar idea of sparsity [49], [143].

1.3. Sparsity Methods for Systems and Control 7

1.2.4 Statistics

In statistics, the method called LASSO (Least Absolute Shrinkage and
Selection Operator) is the most famous method with sparsity. Let us
consider polynomial curve fitting from given data. If we can set many of
the coefficients (parameters) to zero, the terms with zero coefficients will
not affect the estimation at all, and we can avoid overfitting. Such a method
is called a shrinkage method in statistics. LASSO, the shrinkage method
with ℓ1 norm regularization, was proposed by Robert Tibshirani in 1996
[147]. The idea of LASSO has been extended to elastic net regularization
[158] with the sum of the ℓ1 norm and the squared ℓ2 norm as a regularized
term, and group LASSO with the sum of weighted ℓ2 norms for grouped
vectors [155]. We will study LASSO in Chapter 3.

1.2.5 Signal processing

The first research area where sparsity methods became a hot topic is signal
processing. A method called basis pursuit with ℓ1 norm optimization to
recover sparse signals was proposed in 1994 by Chen and Donoho [25]
at the 28th Asilomar Conference on Signals, Systems, and Computers1.
In addition, the total variation denoising, by using the ℓ1 norm of the
difference of a signal was proposed in 1992 by Rudin et al. [131]. More
recently, Donoho et al. proposed a new theory of sensing and recovery called
compressed sensing [36] in 2006, which is a theoretically refined version
of the basis pursuit. In the same year, Candes and Tao also published a
paper on this topic [19]. 2006 is the year that the current development of
compressed sensing began. Compressed sensing was a topic in the fields
of signal processing and information theory at that time. However, the
topic is now widely attracting a lot of attention in various research fields,
including systems and control.

1.3 Sparsity Methods for Systems and Control

Here we describe a brief history of sparsity methods for systems and control
to provide a motivation for studying the new research topic.

1Later, this work was published as a journal article [24] with Saunders as a co-author.

8 Introduction

1.3.1 Minimum-fuel control and L1 optimization

In the field of automatic control, sparsity has been recognized for a long time.
An example is the minimum-fuel control, which is an optimal control that
minimizes the L1 norm of control among feasible controls. The minimum-
fuel control has been actively discussed in the field of control theory since
the early 1960s [3]. At that time, the space race between the United States
and the Soviet Union was at its peak. Minimum-fuel control has its roots in
the exploration of ways to minimize rocket fuel consumption, particularly
during missions from Earth to the Moon. As we will see in Chapter 8, the
minimum-fuel control is a bang-off-bang control that takes ternary values
of ±umax (the maximum amplitude that the control can produce) and
zero, under some assumptions. When the control input is zero, the rocket
undergoes inertial flight, reducing fuel consumption during this period.
This is why it is called minimum-fuel control.

1.3.2 Maximum hands-off control

The L1-optimal minimum-fuel control is shown to be equivalent to the L0-
optimal control (the sparsest control) in [104], [105] under the assumption of
non-singularity. The sparse control with the minimum L0 norm is called the
maximum hands-off control. The mathematical properties of the maximum
hands-off control have been investigated in [23], [64], [80]. This has also
been extended to time-space sparse control [67], [68], time-optimal control
[66], distributed control [60], [62], continuous control [110], and infinite-
dimensional systems [59]. See survey papers [107], [108], [114] for detailed
discussions. The maximum hands-off control will be discussed in Chapters
9–11.

1.3.3 Discrete-valued control

The bang-off-bang property of minimum-fuel control is also referred to
as discreteness. It has been known since the 1960s that certain types of
optimal control show such discreteness of control. In fact, the classical
textbook [3] states that the discrete-valued control can be implemented
as a few switches in the rocket cockpit (see Fig. 1.4). Clearly, such simple
manual control would be impractical and dangerous for spaceflight. An
automatic control system, not controlled by a human, with feedback is
essential. However, the discrete-valued control expressed only by switching
on and off, is very important in recent resource-aware networked control

1.3. Sparsity Methods for Systems and Control 9

Figure 1.4: The rocket cockpit illustrated in 1960’s textbook [3]. The pilot just operates the
switches with the observation of the position and velocity of the rocket. This figure is from [3,
p. 608, Fig. 7-62].

systems, such as the Internet of Things (IoT) or Cyber-Physical Systems
(CPS). Discrete-valued control with the idea of sparsity was proposed in
[61], [65]. In these papers, it is shown that the minimization of the sum of
absolute values (SOAV) of the control enhances the discreteness. We will
study the SOAV control in Section 11.2 of Chapter 11.

1.3.4 Robust control and rank minimization

The optimal control mentioned above requires a complete mathematical
model of the controlled object (e.g., a rocket). However, there should be
uncertainties in the model and parameters in reality, and how to deal
with them has been a major challenge in automatic control theory. Robust
control, a theory of control systems design that takes uncertainty into
account, was actively studied in the 1980s, with H∞ control theory being
one of the most successful examples [156]. Some basic problems in H∞

control boil down to the problem of finding a matrix satisfying linear matrix
inequalities (LMIs) [12], [39]. An LMI is a convex constraint, which can
be easily solved using convex optimization techniques, such as the interior
point method. However, if you want to control a large-scale and high-
dimensional system with a simple and much lower-dimensional controller,
or if you need to treat structured uncertainties, the problem becomes LMIs

10 Introduction

with a matrix rank constraint, or rank minimization, which is much more
difficult to solve since the rank constraint is non-convex2.

The rank minimization problem is in general described as

minimize
X∈Rn×n

rank(X) subject to M(X) +Q ⪰ 0, (1.2)

where M(X) is a linear function of X, Q is a matrix, and the inequality
A ⪰ B means A− B is positive semidefinite. It is easily shown that the
matrix rank is the number of non-zero singular values (i.e., the ℓ0 norm),
and hence this is a problem related to sparsity. As discussed in Chapter
3, the ℓ0 norm is often approximated by the ℓ1 norm. Namely, we instead
minimize the sum of absolute values (i.e., the ℓ1 norm) of the singular
values. This is called the nuclear norm and denoted by ∥X∥∗. That is, the
rank minimization problem in (1.2) is approximated to the nuclear norm
minimization:

minimize
X∈Rn×n

∥X∥∗ subject to M(X) +Q ⪰ 0. (1.3)

The pioneering work by Mesbahi and Papavassilopoulos [93] showed the
equivalence between (1.2) and (1.3). Interestingly, this was published in
1997 prior to the theory of compressed sensing in the 2000s. For the
equivalence, they used the property of Z matrix, which has not been
considered in standard compressed sensing theory. Since then, a lot of
related research has been conducted [2], [35], [44], [112], [129], [130]. In this
book, we do not deal with rank minimization. Readers who are interested
in rank minimization may refer to [91].

1.3.5 Resource-aware control for networked control systems

Sparsity methods have also been applied to networked control systems. A
networked control system is a feedback control system where the commu-
nication between the controlled object and the controller is limited. Figure
1.5 shows an example of a networked control system. In this system, sensor
data from the drone is sent to the computer (CPU) via a wireless com-
munication network. Based on the information, CPU updates the control
values for the attitude, speed, and acceleration of the drone, and returns
the control commands to the drone via the network. A Multi-agent system
is an important example of networked systems, where multiple autonomous

2The rank constraint can be equivalently transformed into a bilinear matrix inequality
(BMI), which is also non-convex.

1.3. Sparsity Methods for Systems and Control 11

CPU

Wireless network

Figure 1.5: Networked Control System

agents, such as drones, collaboratively work to achieve specific goals or
tasks [109].

For networked control systems, sparsity methods play an important
role to realize resource-aware control that can significantly reduce the
communication and computational burden. In [46], [78], [101], [103], [121],
sparse control is proposed by using ℓ1 norm minimization for discrete-time
systems, by which we can reduce the size of control packets that are sent
through rate-limited communication networks. These are finite-horizon
control and to obtain feedback control, we can adapt the receding horizon
control or the model predictive control formulations [32], [106], [113]. See
Section 7.4 in Chapter 7 for details.

Minimum actuator placement is also an important sparsity method for
resource-aware control. This is to minimize the number of actuators (or
control inputs) that achieve a control objective (e.g. controllability). The
problem has been discussed in [58], [70], [102], [120], [123], [125], [148].

For state feedback control, the control gain matrix is also sparsified
[34], [83], [84], [96]. The obtained feedback controller is sparsely structured
and the design should achieve an optimal tradeoff between closed-loop
performance and sparsity. See a review paper [74] by Jovanović and Dhingra
for detailed discussion on this topic. Also, we will discuss this in Section
7.3 in Chapter 7.

Part I

Compressed Sensing in
Finite-dimensional Spaces

Chapter 2

What is Sparsity?

In this chapter, we explain the notion of sparsity, and introduce sparse
representation of vectors and functions. The concepts presented here are
fundamental to the remainder of this book, and should not be overlooked.

Key ideas of Chapter 2� �
• Sparsity of a vector is measured by its ℓ0 norm.

• In sparse representation, a redundant dictionary of vectors is
used.

• In sparse representation, the smallest number of vectors are
automatically chosen from a redundant dictionary that represent
a given vector, which is achieved by ℓ0 optimization.

• The exhaustive search to solve the ℓ0 optimization requires com-
putational time that exponentially increases as the problem size
increases.� �

2.1 Redundant Dictionary

Let us consider the three-dimensional vector space R3. The standard basis
for R3 is formed with the following three unit vectors:

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 . (2.1)

16 What is Sparsity?

By using this basis, any three-dimensional vector y ∈ R3 can be represented
as

y =

y1
y2
y3

 = y1e1 + y2e2 + y3e3. (2.2)

In general, if you choose three linearly independent vectors ϕ1, ϕ2, and
ϕ3 from R3, then they form a basis for R3. That is, for any vector y ∈ R3,
there exist unique real numbers β1, β2, and β3 such that

y = β1ϕ1 + β2ϕ2 + β3ϕ3 (2.3)

holds. Moreover, if ϕ1, ϕ2, and ϕ3 are unit vectors and orthogonal to each
other, that is, if they satisfy

⟨ϕi,ϕj⟩ = ϕ⊤
i ϕj =

1, i = j

0, i ̸= j
, i, j = 1, 2, 3, (2.4)

where ⟨·, ·⟩ is the ℓ2 inner product (see also Section 2.3), then ϕ1, ϕ2, and
ϕ3 form an orthonormal basis for R3, and the coefficients β1, β2, and β3
can be obtained by the inner product

βi = ⟨ϕi,y⟩ = ϕ⊤
i y, i = 1, 2, 3. (2.5)

Exercise 2.1. How do you obtain the coefficients β1, β2, and β3 in (2.3),
when ϕ1, ϕ2, and ϕ3 are linearly independent but they do not form an
orthonormal basis?

Let us consider another basis for R3 with the following three linearly
independent vectors:

ϕ1 = e1 + e2 =

1
1
0

 , ϕ2 = e2 + e3 =

0
1
1

 , ϕ3 = e3 + e1 =

1
0
1

 . (2.6)

Combining these with the unit vectors in (2.1), let us form a set of 6
vectors {e1, e2, e3,ϕ1,ϕ2,ϕ3}. Figure 2.1 shows these 6 vectors. With
these vectors, consider the following representation of vector y ∈ R3:

y =
3∑
i=1

αiei +
3∑
i=1

βiϕi. (2.7)

This is a redundant representation, and there are infinitely many solutions
for αi and βi (i = 1, 2, 3) to satisfy (2.7). For example, for y = [y1, y2, y3]⊤,
we have two solutions

(α1, α2, α3, β1, β2, β3) = (y1, y2, y3, 0, 0, 0), (2.8)

2.1. Redundant Dictionary 17

φ1

φ2

φ3

e3

e2

e1

1

1

1

x1

x2

x3

0

Figure 2.1: 6 vectors e1, e2, e3,ϕ1,ϕ2,ϕ3 in R3

and
(α1, α2, α3, β1, β2, β3) = (−y3,−y1,−y2, y1, y2, y3). (2.9)

Now, let us consider a situation where the cost to keep the values of the
non-zero coefficients is very expensive due to an expensive memory device
for example. Then we want to minimize the number of non-zero coefficients
to reduce the cost. Let us consider a vector y ∈ R3 on the plane spanned
by e1 and ϕ2. For this vector, we have the following solution:

y = α1e1 + β2ϕ2, (2.10)

This expression has a smaller number of non-zero coefficients than (2.8).
This is a trivial example and the cost of (2.10) is almost the same as that
of (2.8). However, if we can find just 102 non-zero coefficients for a 106

(one million) dimensional vector, the cost will be dramatically reduced.
Such a technology is often called data compression, which is one of the
biggest motivations of sparse representation.

Example 2.1. The four cardinal directions form a redundant system to
represent a direction in R2. We say, for example, “Go southwest” not “Go
minus-north-minus-east” although the two are mathematically equivalent.
□

Example 2.2. Imagine that you want to tell a foreigner about an elephant.
The foreigner cannot speak English but has a small dictionary with 3,000
words, which does not include the word ‘elephant.’ You might say, ‘There
is an animal that is the largest living land animal and has a long nose.
Many of them live in the African savanna.’ Then the foreigner might ask,
‘What is a savanna?’ since the word is not in their dictionary. However,

18 What is Sparsity?

if the foreigner has a larger dictionary that contains more than 1 million
words, you could simply say, ‘There is an elephant.’ Some English teachers
claim you only need to memorize these 3,000 words for conversation, but
actually, 3,000 words are not enough at all for simple expression. □

Let us formulate this problem of sparse representation in a general
form. Let us consider m-dimensional vector space Rm, and a set of vectors
{ϕ1,ϕ2, . . . ,ϕn} in Rm, where n > m. For a given vector y ∈ Rm, we find
coefficients α1, α2, . . . , αn such that

y =
n∑
i=1

αiϕi. (2.11)

We assume that m vectors in {ϕ1,ϕ2, . . . ,ϕn} are linearly independent.
We call such a set of vectors {ϕ1,ϕ2, . . . ,ϕn} a dictionary (recall Example
2.2), and the elements ϕ1,ϕ2, . . . ,ϕn atoms1. Note that the size n of the
dictionary is larger than the size m of vector y. We call such a dictionary
a redundant dictionary, or over-complete dictionary.

Define a matrix Φ and a vector x as

Φ ≜
[
ϕ1 ϕ2 . . . ϕn

]
∈ Rm×n, x ≜


α1
α2
...
αn

 ∈ Rn. (2.12)

Then, the equation (2.11) can be equivalently written as

Φx = y. (2.13)

The matrix Φ is called a dictionary matrix, or a measurement matrix. Since
the dictionary is redundant, the matrix Φ is a fat matrix, that is, the
number of columns is larger than the number of rows. Our problem is now
described as follows:

Problem 2.1 (Sparse Representation). Given a vector y ∈ Rm and a dictio-
nary {ϕ1,ϕ2, . . . ,ϕn}. Find the simplest representation of y that satisfies
(2.13).

In the next section, we discuss this problem with a fat matrix.

1We do not call them words.

2.2. Underdetermined Systems 19

2.2 Underdetermined Systems

Let us consider the following system of linear equations with unknowns x1,
x2, and x3:

x1 + x2 + x3 = 3
x1 − x3 = 0

(2.14)

Now there are three unknowns and two equations, and it is easily seen
that there are infinitely many solutions. To represent all solutions, we use
parametrization. All solutions to (2.14) are parametrized as

x1 = t, x2 = −2t+ 3, x3 = t, (2.15)

where t ∈ R is a parameter. We call such a system of equations an
underdetermined system, where the number of unknowns is larger than the
number of equations.

An underdetermined system is something like insufficient proofs for
a detective to determine one among many suspects. For a detective, say
Conan Edogawa2, the two proofs (equations) in (2.14) are insufficient and
he should seek one more proof to reveal the unique solution to the case.
Thanks to his investigation, a proof was found, which said “the criminal is
the smallest one among the suspects.” This is actually a conclusive proof
by which one can choose just one suspect. Let us find the smallest solution
among the candidates in (2.15). We use the ℓ2 norm as a measure of the
size, and we find the smallest ℓ2-norm solution as follows. First, from (2.15),
we have

∥x∥2
2 = x2

1 + x2
2 + x2

3

= t2 + (−2t+ 3)2 + t2

= 6(t− 1)2 + 3.
(2.16)

Then we can choose t = 1, and from (2.15), the solution is uniquely chosen
as (x1, x2, x3) = (1, 1, 1). Case closed.

Let us generalize the above discussion. We consider a system of linear
equations in a matrix form as

Φx = y. (2.17)

For example, the system in (2.14) can be represented in the matrix form

2See: https://en.wikipedia.org/wiki/Case_Closed

https://en.wikipedia.org/wiki/Case_Closed

20 What is Sparsity?

(2.17) with

Φ =
[
1 1 1
1 0 −1

]
, x =

x1
x2
x3

 , y =
[
3
0

]
. (2.18)

We assume the size of matrix Φ is m×n where m < n, that is, we consider
an underdetermined system of equations. We also assume that there are
m column vectors in {ϕ1, . . . ,ϕn} that are linearly independent. In other
words, we assume Φ has full row rank. Note that a matrix Φ ∈ Rm×n is
said to have full row rank if Φ is surjective, or

rank(Φ) = m. (2.19)

If rank(Φ) < m, then there exist redundant linear equations (i.e., there
is at least one equation that is a linear combination of other equations).
For example, the following system of equations

x1 + x2 + x3 = 3
x1 − x3 = 0
x1 − x3 = 0

(2.20)

is redundant and the rank is 2 < 3. We here assume such redundancy
should be eliminated beforehand.

If Φ has full row rank, or rank(Φ) = m, then for any vector y ∈ Rm,
there exists at least one solution x that satisfies the linear equation (2.17).
Now, we seek all the solutions to (2.17). For this, we define the kernel (or
null space) of matrix Φ by

ker(Φ) ≜ {x ∈ Rn : Φx = 0}. (2.21)

Note that ker(Φ) is a linear subspace in Rn, that is, if x1,x2 ∈ ker(Φ),
then a1x1 + a2x2 ∈ ker(Φ) holds for any a1, a2,∈ R. Then, we introduce
the dimension theorem in linear algebra.

Theorem 2.1 (dimension theorem). For any matrix Φ ∈ Rm×n,

rank(Φ) + dim ker(Φ) = n (2.22)

holds.

From the dimension theorem, the dimension of ker(Φ) is n−m. Since
n > m, the kernel, which is a linear subspace in Rn, has at least one
dimension. That is, there exist infinitely many vectors in ker(Φ).

2.3. The ℓ0 Norm 21

Let x0 ∈ Rn be a particular solution to (2.17). Then, all the solutions to
the linear equation (2.17) can be represented by the sum of the particular
solution x0 and a free parameter z ∈ ker(Φ), that is,

x = x0 + z, z ∈ ker(Φ). (2.23)

From this, it follows that there exist infinitely many solutions to (2.17).

Exercise 2.2. Show that the vector x in (2.23) is the solution to the
equation (2.17).

The problem of sparse representation (Problem 2.1) is to find a solution
x to (2.17) that has the simplest representation or the smallest number of
non-zero elements. Let us consider this problem more precisely in the next
section.

2.3 The ℓ0 Norm

We here review the notion of a norm in a finite-dimensional vector space,
and then introduce the ℓ0 norm that defines the sparsity of a vector.

First, let us recall the definition of a norm in Rn.

Definition 2.1. A norm ∥x∥ : Rn → [0,∞) is a nonnegative function
that satisfies the following properties:

1. For any vector x ∈ Rn and any number α ∈ R, ∥αx∥ = |α|∥x∥.

2. For any x,y ∈ Rn, ∥x + y∥ ≤ ∥x∥ + ∥y∥.

3. ∥x∥ = 0 ⇐⇒ x = 0.

A well-known norm in Rn is the ℓ2 norm (or the Euclidean norm). For
a vector x = [x1, x2, . . . , xn]⊤ ∈ Rn, the ℓ2 norm is defined by

∥x∥2 ≜
√
x2

1 + x2
2 + · · · + x2

n. (2.24)

The ℓ2 norm is also given by

∥x∥2 =
√

⟨x,x⟩, (2.25)

where ⟨·, ·⟩ is the ℓ2 inner product (or Euclidean inner product) in Rn

defined by

⟨x,y⟩ ≜ x⊤y =
n∑
i=1

xiyi. (2.26)

22 What is Sparsity?

1

1

−1

−1

0
x1

x2

ℓ1ℓ∞ ℓ2

Figure 2.2: Contour curves (∥x∥p = 1) of ℓ1, ℓ2, ℓ∞ norms.

Exercise 2.3. Confirm the ℓ2 norm ∥x∥2 defined in (2.24) satisfies the
three properties in Definition 2.1.

Beyond the ℓ2 norm, an infinite variety of norms can be defined for Rn.
A generalization of the ℓ2 norm in (2.24) is the ℓp norm with p ∈ [1,∞),
defined by

∥x∥p ≜
(n∑
i=1

|xi|p
)1/p

. (2.27)

The most important norm in this book is the ℓ1 norm with p = 1 in (2.27).
The ℓ1 norm is described as the sum of the absolute values of the elements
in a vector, that is,

∥x∥1 =
n∑
i=1

|xi|. (2.28)

The limit of (2.27) as p → ∞ is called the ℓ∞ norm (or the maximum
norm), defined by

∥x∥∞ ≜ max
i=1,2,...,n

|xi|. (2.29)

Exercise 2.4. Prove that for any x ∈ Rn,

∥x∥∞ = lim
p→∞

∥x∥p. (2.30)

Figure 2.2 shows the contour curves that satisfy ∥x∥p = 1 for p = 1, 2,
and ∞ in R2. The contour of the ℓ2 norm is a unit circle centered at the
origin. The contour of the ℓ∞ norm is a unit square centered at the origin,

2.3. The ℓ0 Norm 23

and touches the ℓ2 circle at (1, 0), (0, 1), (−1, 0), and (0,−1). The shape
of the contour of the ℓ1 norm is very important for sparse representation.
This diamond-shaped contour has four corners on the x1 and x2 axes. This
property gives an intuitive explanation of the relation between ℓ1 norm
and sparsity (see Section 3.2).

Now, let us define the ℓ0 norm. Consider a vector x = [x1, x2, . . . , xn]⊤ ∈
Rn. Define the support of x by

supp(x) ≜
{
i ∈ {1, 2, . . . , n} : xi ̸= 0

}
. (2.31)

The support of x is the set of indices on which the elements of x are
nonzero. By using the support, the ℓ0 norm is defined by

∥x∥0 ≜ #
(
supp(x)

)
, (2.32)

where #
(
supp(x)

)
is the number of elements in the finite set supp(x).

Namely, the ℓ0 norm counts the number of nonzero elements in x.
It is notable that the ℓ0 norm does not satisfy the first property in

Definition 2.1. For example, a nonzero vector x ∈ Rn has the same ℓ0 norm
as 2x. This implies that

∥2x∥0 = ∥x∥0 ̸= 2∥x∥0, (2.33)

whenever x ̸= 0. Strictly speaking, the ℓ0 norm is not a norm, and hence
we sometimes call it as ℓ0 pseudo-norm or cardinality. However, we use
the term “ℓ0 norm” as often used in the literature. Note that by definition,
the second and third properties in Definition 2.1 hold, that is,

∥x + y∥0 ≤ ∥x∥0 + ∥y∥0 (2.34)

and
∥x∥0 = 0 ⇐⇒ x = 0. (2.35)

Finally, we define the sparsity of a vector by using the ℓ0 norm. A
vector x ∈ Rn is said to be sparse if the ℓ0 norm ∥x∥0 is sufficiently small
compared to the dimension n. The notion of sparsity is important in this
book.

Exercise 2.5. Prove that for any x,y ∈ Rn,

∥x + y∥0 ≤ ∥x∥0 + ∥y∥0 (2.36)

holds.

24 What is Sparsity?

Exercise 2.6. Let x,y ∈ Rn. When does the following equality hold?

∥x + y∥0 = ∥x∥0 + ∥y∥0. (2.37)

The problem of sparse representation (Problem 2.1) is finding the
sparsest solution among infinitely many solutions to the linear equation in
(2.17). This problem is mathematically formulated by using the ℓ0 norm
introduced above. That is, we seek the smallest ℓ0-norm solution to (2.17).
This is formulated as a mathematical optimization problem as follows:

Problem 2.2 (Sparse representation). Given a vector y ∈ Rm and a full-
row-rank matrix Φ ∈ Rm×n. Find the optimizer x∗ of the optimization
problem:

minimize
x∈Rn

∥x∥0 subject to Φx = y. (2.38)

We call this the ℓ0 optimization.

2.4 Group Testing

In this section, we consider a real example of compressed sensing called
group testing, which is one of the first attempts to apply a sparsity method
to a scientific problem. Group testing was proposed by Robert Dorfman in
1948 as a problem of finding an infected individual among a large number
of patients in a small number of blood tests [38].

For example, suppose that only one of eight patients is infected with a
disease, which can be detected by examining the blood. Now, we have eight
blood samples from the eight patients. Since blood testing is expensive and
time-consuming, we want to identify the infected individual as few times
as possible. In this case, there is a good way to do this (see also Figure
2.3).

• (TEST 1) We first divide the blood of the eight patients into two
groups of four patients, and take a little bit of blood from each of
the eight patients, and mix it for each group. Since there is only one
infected individual, the blood from either group will test positive.

• (TEST 2) Divide the group that tested positive into two groups of two
patients, and do the same thing as above. At this point, the number
of suspicious individual has been narrowed down to two.

• (TEST 3) Finally, by examining the blood of the two individuals
separately, the infected individual can be uniquely identified.

2.4. Group Testing 25

positive negative

positivenegative

TEST 1

TEST 2

positive negative
TEST 3

Figure 2.3: Group testing from eight blood samples

By this method, it is possible to identify an infected individual in three
tests, whereas eight tests would be required for an individual blood test.
In general, according to the above method, if there is only one infected
individual among 2T people, we can identify the infected individual in less
than T tests. For example, for 1,024 patients, only 10 tests are needed
to identify the infected individual. We can see that group testing can
dramatically reduce the number of tests compared to testing all patients’
blood individually. Then we consider a sophisticated method like this in a
general situation where a few people in 100,000, for example, are infected,
instead of examining the blood of 100,000 people individually. This is the
problem of group testing.

Now let us describe the problem of group testing in detail. Let n be the
number of people to be tested. Define a variable xi representing whether
the i-th individual (i ∈ {1, 2, . . . , n}) is infected or not as

xi ≜

1, if the i-th individual is infected,
0, otherwise.

(2.39)

26 What is Sparsity?

Define an n-dimensional binary vector that takes values of 0 or 1 as

x ≜ [x1, x2, . . . , xn]⊤ ∈ {0, 1}n, (2.40)

where {0, 1}n is the set of n-dimensional vectors whose elements are 0 or 1.
The problem here is to find this n-dimensional binary vector. Of course, if
we examine each one of them individually, we can determine the vector x

with n tests, but here we want to identify x with a much smaller number
of tests.

To formulate the process of group testing, we define the testing vec-
tor a ∈ {0, 1}n, where one-valued elements in a indicate which blood
samples are tested. For example, if x = [0, 1, 0, 1, 0, 0, 0, 0]⊤ and a =
[1, 1, 1, 1, 0, 0, 0, 0]⊤, then we test the first four elements in x, and the result
is

⟨a,x⟩ = 2. (2.41)

This means that there are two positives among the first four individuals.
Here we assume the blood test is very precise so that the number of
positives in mixed blood can be detected.

We here assume the number of tests is m, which is much less than n, the
number of individuals. We also assume the testing vector aj , j = 1, 2, . . . ,m,
are previously given. This is called the non-adaptive group testing. On
the other hand, if, for example, a2 depends on the result ⟨a1,x⟩ as in
the example above (see Figure 2.3), then this is called the adaptive group
testing. From this formulation, the j-th result (j = 1, 2, . . . ,m) of group
testing is given by

yj = ⟨aj ,x⟩, j = 1, 2, . . . ,m. (2.42)

Then, define the following matrix and vector:

Φ ≜


a⊤

1
a⊤

2
...

a⊤
m

 ∈ Rm×n, y ≜


y1
y2
...
ym

 ∈ Rm. (2.43)

The problem of group testing is to find a vector x ∈ {0, 1}n that satisfies
the linear equation

Φx = y. (2.44)

The matrix Φ is called the testing matrix, or the measurement matrix, and
the vector y is called the measurement vector.

2.5. Exhaustive Search 27

If the matrix Φ ∈ Rm×n is fixed (i.e., non-adaptive group testing),
and has full row rank (i.e., rank(Φ) = m), then the equation Φx = y is
underdetermined and has infinitely many solutions since m < n. To obtain
the solution uniquely, we further assume that there are just a few positives
in n individuals. In other words, the ℓ0 norm of the solution x is much
smaller than n, that is, the solution x is sparse. Then our problem finding
a sparse x is formulated as the ℓ0 optimization (2.38).

2.5 Exhaustive Search

In this section, we show a direct method to solve the ℓ0 optimization
problem (2.38), called an exhaustive search (or brute-force search). Let
ϕi ∈ Rm (i = 1, 2, . . . , n) denote the i-th column vector in matrix Φ, that
is,

Φ ≜
[
ϕ1 ϕ2 . . . ϕn

]
∈ Rm×n. (2.45)

The following shows the procedure of the exhaustive search for (2.38).

1. If y = 0, then output x∗ = 0 as the optimal solution and quit.
Otherwise, proceed to the next step.

2. Find a vector x with ∥x∥0 = 1 that satisfies the equation y = Φx.
That is, set

x1 ≜


x1
0
...
0

 , x2 ≜



0
x2
0
...
0


, . . . , xn ≜


0
...
0
xn

 , (2.46)

and search xi ∈ R (i = 1, 2, . . . , n) that satisfies

y = Φxi = xiϕi. (2.47)

If a solution exists for some i, output x∗ = xi as the solution and
quit. Otherwise, proceed to the next step.

3. Find a vector x with ∥x∥0 = 2 that satisfies the equation y = Φx.

28 What is Sparsity?

That is, set

x1,2 ≜



x1
x2
0
...
0


, x1,3 ≜



x1
0
x3
0
...
0


, . . . , xn−1,n ≜



0
...
0

xn−1
xn


(2.48)

and search xi, xj ∈ R (i, j = 1, 2, . . . , n) that satisfies

y = Φxi,j = xiϕi + xjϕj . (2.49)

If a solution exists for some i, j, then output x∗ = xi,j and quit.
Otherwise, proceed to the next step.

4. Do similar procedures for ∥x∥0 = k, k = 3, 4, . . . ,m until a solution
is found.

The exhaustive search can find the optimal solution x∗ (if it exists) within
a finite number of steps, while the worst-case scenario requires k = m

steps.
Next, we investigate the exhaustive search in detail. For a vector x =

[x1, x2, . . . , xn]⊤ and an index set S ⊂ {1, 2, . . . , n}, we denote by xS ∈
R#(S) the restriction of x to the indices in S, where #(S) is the number
of elements in S. For example, for x = [x1, x2, x3, x4, x5, x6]⊤ and S =
{1, 2, 5}, we have

xS =

x1
x2
x5

 ∈ R3. (2.50)

More generally, for x = [x1, x2, . . . , xn]⊤ and the index set

S = {i1, i2, . . . , ik}, k ∈ {1, 2, . . . , n}, (2.51)

where 1 ≤ i1 < i2 < · · · < ik ≤ n, we have

xS =


xi1
xi2
...
xik

 ∈ Rk. (2.52)

2.5. Exhaustive Search 29

Also, for matrix Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rm×n with ϕi ∈ Rm, i =
1, 2, . . . , n and the index set in (2.51), we define

ΦS = [ϕi1 ,ϕi2 , . . . ,ϕik
] ∈ Rm×k. (2.53)

Using this notation, we can formulate the exhaustive search algorithm for
the ℓ0 optimization (2.38) as follows: First check if y = 0. In this case,
the solution is x∗ = 0. Otherwise, take each subset S of the index set
{1, 2, . . . , n} from #(S) = 1 to #(S) = m, and solve the following equation

y = ΦSxS . (2.54)

If there is a solution to (2.54), then using the solution xS = [xi1 , . . . , xik]⊤,
set x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]⊤ where

x∗
i =

xi, i ∈ S,

0 i ̸∈ S.
(2.55)

This is the sparsest solution and we have ∥x∗∥0 = k. We summarize the
exhaustive search algorithm.

Exhaustive search algorithm for ℓ0 optimization (2.38)� �
1. If y = 0 then output x∗ = 0 and quit. Otherwise, proceed to the

next step.

2. k := 1.

3. For each subset S ⊂ {1, 2, . . . , n} with #(S) = k, do

• Check if equation y = ΦSxS has a solution.
• If it exists, output x∗ defined in (2.55) and quit.

4. k := k + 1. Return to 3.� �
We should notice that with the exhaustive search method, the compu-

tation time to find a solution grows exponentially with problem size (i.e.
m). For example, in image processing, the dimension becomes millions or
larger, and the exhaustive search is not useful at all.

The above problem is also known as combinatorial optimization, which
is in general hard to solve for large-scale problems. In the following chap-
ters, we investigate efficient algorithms for such a hard problem of sparse
optimization.

30 What is Sparsity?

Example 2.3. Let us consider the problem of group testing discussed in
Section 2.4. Suppose we conduct m = 100 tests on significantly more
than 100 individuals. Then we solve the optimization problem (2.38) with
fixed measurement matrix Φ and obtained measurement vector y ∈ R100.
By the exhaustive search, the number of iterations at the worst case is
2m = 2100 ≈ 1.3 × 1030. Suppose that you can use a supercomputer that
can do one iteration of the exhaustive search algorithm in 10−15 seconds.
Then, it takes 1.3 × 1030 × 10−15 ≈ 30 million years at the worst case! □

2.6 Advanced Topic: Sparse Representation for Functions

In this section, we discuss sparse representation for functions.
Let us consider the function space L2(0, T), the space of all square

integrable functions on (0, T) in the sense of Lebesgue. That is, for any
f ∈ L2(0, T), the L2 norm is finite:

∥f∥2 ≜
∫ T

0
|f(t)|2dt < ∞. (2.56)

In this space, we can define the L2 inner product

⟨f, g⟩ ≜
∫ T

0
f(t)g(t)dt, (2.57)

where g(t) is the complex conjugate of g(t). It is well-known that under
the L2 inner product, the space L2 becomes a Hilbert space.

Then let us consider an orthonormal basis {ϕi : i ∈ Z} in L2(0, T) that
satisfies

⟨ϕi, ϕj⟩ = δij =

1, if i = j,

0, otherwise.
(2.58)

Then, for any function f ∈ L2(0, T), there exists a complex sequence
{αi : i ∈ Z} such that

f =
∞∑

i=−∞
αiϕi, (2.59)

where the convergence is in the sense of L2, that is,∥∥∥∥∥∥f −
N∑

i=−N
αiϕi

∥∥∥∥∥∥
2

→ 0, (2.60)

2.6. Advanced Topic: Sparse Representation for Functions 31

as N → ∞. The representation (2.59) is called Fourier series3 of f . Given
f and {ϕi}, the coefficients are obtained by the inner product

αi = ⟨f, ϕi⟩ =
∫ T

0
f(t)ϕi(t)dt. (2.61)

Exercise 2.7. Prove that (2.61) holds.

A standard basis for L2(0, T) is the Fourier basis defined by

ϕi(t) ≜
1√
T
ejωit, i ∈ Z, (2.62)

where j =
√

−1 and ωi = 2πi/T . With this basis, the coefficients in (2.61)
are given as

αi = 1√
T

∫ T

0
f(t)ejωitdt = 1√

T

∫ T

0
f(t)e−jωitdt. (2.63)

For a sufficiently smooth function, the Fourier basis gives a good solution
to represent the function with a finite number of coefficients by truncation.
That is, we approximate function f as

fN =
N∑

i=−N
αiϕi, αi = 1√

T

∫ T

0
f(t)e−jωitdt. (2.64)

Actually, this is optimal in the sense that fN minimizes the L2 error

EN (β−N , . . . , βN) ≜

∥∥∥∥∥∥f −
N∑

i=−N
βiϕi

∥∥∥∥∥∥
2

(2.65)

among all coefficients {β−N , . . . , βN}.
Now, let us consider a rectangular function on L2(0, 1) defined by

f(t) =

1, t ∈ (0, 1/2),
−1, t ∈ [1/2, 1).

(2.66)

Figure 2.4 (left) shows this function. We can see that this function
is discontinuous. The Fourier coefficients of this function can be easily
computed using (2.63). In fact, we have

αi =

− 2j
πi , if i is odd,

0, otherwise.
(2.67)

3This is also called as generalized Fourier series. Then, with the standard Fourier basis in
(2.62), the series in (2.59) is called the Fourier series.

32 What is Sparsity?

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|a
i|

Fourier Coefficients

-20 -15 -10 -5 0 5 10 15 20
i

Figure 2.4: Discontinuous rectangular function f(t) (left) and absolute values of its Fourier
coefficients (right)

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.5: Truncated Fourier series fN (t) with N = 20 (left) and N = 100 (right)

Exercise 2.8. Show that the Fourier coefficients of the rectangular function
in (2.66) are given by (2.67).

Figure 2.4 (right) shows the absolute values of the coefficients with
i = −20 to 20. We can see that the coefficients converge to zero as i goes
to ±∞. Actually, from (2.67), the coefficient sequence {αi} converges to
zero as |i| → ∞ with convergence rate O(1/i).

This fact suggests us to truncate the coefficients with N to obtain the
approximant fN (t) in (2.64). Figure 2.5 shows the truncated Fourier series
fN (t) in (2.64).

The left figure of Figure 2.5 shows fN (t) withN = 20. We see oscillations
around the edges of the rectangular function. When we increase N to
N = 100, we obtain another oscillative function in the right figure of Figure
2.5. This oscillation never disappears around the edges for arbitrarily large
but finite N . This is called Gibbs phenomenon. To exactly reconstruct the

2.7. Further Readings 33

ψ1(t)

t
0 1

t
0

1
1
2

ψ2(t) ψ3(t)

1
4

t
0

1
1
2

ψ4(t)

3
4

t
0

1
1
2

Figure 2.6: Haar functions ψ1,ψ2, ψ3, and ψ4.

shape of the rectangular function from its Fourier coefficients, you cannot
truncate it but store all of the coefficients.

Let us consider another orthonormal basis in L2(0, 1) called the Haar
basis defined by the Haar functions

ψ1(t) ≜ 1, (2.68)

and for i = 2m + k, k = 1, 2, . . . , 2m, m = 0, 1, 2, . . .,

ψi(t) ≜


√

2m, t ∈
[
2−m(k − 1), 2−m−1(2k − 1)

)
,

−
√

2m, t ∈
[
2−m−1(2k − 1), 2−mk

)
,

0, otherwise.
(2.69)

Figure 2.6 shows Haar functions ψ1,ψ2, ψ3, and ψ4.
Then, we can adopt a redundant dictionary of bases consisting of the

Fourier basis in (2.62) and the Haar basis. From this dictionary, we can
simply represent the rectangular function in (2.66) as

f(t) = ψ2(t). (2.70)

That is, we need to store just one coefficient under the redundant basis.
This is the motivation to use a redundant dictionary and to obtain sparse
representation for functions. As shown above, sparse representation of
functions is achieved by sparsifying the coefficients in the Fourier series of
a given function with a redundant basis dictionary.

2.7 Further Readings

The notion of redundant dictionary and sparse optimization described in
this chapter is fundamental and important in this book. The redundant
representation of vectors is related to frames and wavelets, for which
readers can refer to nice books by Strang and Nguyen [144] and by Mallat
[90]. For fundamental theory of vector spaces, called functional analysis,

34 What is Sparsity?

including norms, inner products, orthonormal bases, and Fourier series,
I recommend books by Young [153] and by Yamamoto [152], which are
written for scientists and engineers. For recent methods of group testing,
see, for example, [1], [4].

Chapter 3

Sparse Optimization

In this chapter, we study sparse optimization from the viewpoint of reg-
ularization. We show some examples of curve fitting and group testing,
which help readers understand the concept of sparse optimization.

Key ideas of Chapter 3� �
• Curve fitting and group testing can be formulated as optimization

problems that choose a single solution from an underdetermined
system of linear equations.

• Regularization is used to avoid overfitting.

• Sparse optimization is reduced to ℓ1 optimization, which is convex
and efficiently solved by numerical optimization.� �

3.1 Least Squares and Regularization

We begin with the least squares and regularization with simple examples.

3.1.1 Underdetermined system and minimum ℓ2-norm solution

Let us consider the linear equation

Φx = y, (3.1)

where y ∈ Rm is a given vector, Φ ∈ Rm×n is a given matrix, and x ∈
Rn is an unknown vector. We here assume m < n, that is, there are
fewer equations than unknowns. Such a system of equations is said to be

36 Sparse Optimization

underdetermied, which appears in group testing discussed in Section 2.4
for example. We assume that Φ has full row rank, that is,

rank(Φ) = m. (3.2)

Under this assumption, there exist infinitely many solutions to the equation
(3.1).

Then, let us choose a single solution among the infinitely many solutions.
For example, we can find the smallest ℓ2-norm solution among them.
Namely, we consider the following optimization problem:

minimize
x∈Rn

1
2∥x∥2

2 subject to Φx = y. (3.3)

We call this problem the ℓ2 optimization problem, and the solution the
minimum ℓ2-norm solution.

To solve this problem, we can use the method of Lagrange multipli-
ers. First, we define the Lagrange function, or simply Lagrangian, of the
optimization problem (3.3) by

L(x,λ) = 1
2x⊤x + λ⊤(Φx − y). (3.4)

The variable λ ∈ Rm is called the Lagrange multiplier.
Then, we can obtain the optimal solution to (3.3) by finding the sta-

tionary point (x∗,λ∗) of the Lagrange function L. By differentiating L by
the variable x, we have

∂L

∂x
= ∂

∂x

(1
2x⊤x + λ⊤Φx

)
= x + Φ⊤λ. (3.5)

It follows that the stationary point (x∗,λ∗) satisfies

x∗ + Φ⊤λ∗ = 0. (3.6)

Then differentiating L by λ gives

∂L

∂λ
= Φx − y, (3.7)

and hence
Φx∗ − y = 0. (3.8)

From this and (3.6), we have

−ΦΦ⊤λ∗ = y. (3.9)

3.1. Least Squares and Regularization 37

Since Φ has full row rank, the matrix ΦΦ⊤ is non-singular and has its
inverse. Therefore, from (3.9) we have

λ∗ = −(ΦΦ⊤)−1y. (3.10)

Assigning this to (3.6) gives the minimum ℓ2-norm solution x∗ as

x∗ = Φ⊤(ΦΦ⊤)−1y. (3.11)

In summary, if we are given a full-row-rank matrix Φ and a vector y,
we can compute the minimum ℓ2-norm solution by the formula (3.11).

Exercise 3.1. Find the minimum ℓ2-norm solution to the following equation
with unknowns x1 and x2:

a1x1 + a2x2 = 1, (3.12)

where a1 and a2 are nonzero real numbers.

Exercise 3.2. Let Φ ∈ Rm×n. Prove that ΦΦ⊤ is invertible if Φ has full
row rank.

3.1.2 Regression and least squares

Here we consider the curve fitting problem as an example of least squares.
Suppose we are given the following two-dimensional dataset

D = {(t1, y1), (t2, y2), . . . , (tm, ym)}. (3.13)

Let us consider a polynomial of order n− 1,

y = f(t) = an−1t
n−1 + an−2t

n−2 + · · · + a1t+ a0. (3.14)

Polynomial curve fitting is to find coefficients a0, a1, . . . , an−1 with which
the polynomial curve has the best fit to the m-point data (see Figure
3.1 for example). For example, t1, t2, . . . , tm are sampling instants, and
y1, y2, . . . , ym are temperature data from a sensor at a position. From these
data, we often want to know the curve behind the data. We call such data
analysis the regression analysis.

First, we consider an interpolating polynomial that interpolates the
given data as shown in Figure 3.1. The polynomial curve (3.14) goes
through the data points (3.13), and hence we have m linear equations with

38 Sparse Optimization

t1 t2 t3 t5

y = f(t)

y

t4

t

Figure 3.1: Interpolating polynomial

unknowns an−1, an−2, . . ., a1, a0:

an−1t
n−1
1 + an−2t

n−2
1 + · · · + a1t1 + a0 = y1,

an−1t
n−1
2 + an−2t

n−2
2 + · · · + a1t2 + a0 = y2,

· · ·
an−1t

n−1
m + an−2t

n−2
m + · · · + a1tm + a0 = ym.

(3.15)

Define a matrix

Φ ≜


tn−1
1 tn−2

1 . . . t1 1
tn−1
2 tn−2

2 . . . t2 1
...

...
tn−1
m tn−2

m . . . tm 1

 ∈ Rm×n, (3.16)

and vectors

x ≜



an−1
an−2

...
a1
a0


∈ Rn, y ≜


y1
y2
...
ym

 ∈ Rm. (3.17)

Then the system of linear equations (3.15) can be represented in a matrix
form Φx = y. The matrix Φ is known as a Vandermonde matrix, and if
m = n, then Φ is a square matrix and its determinant is given by

det(Φ) =
∏

1≤i<j≤m
(ti − tj) = (t1 − t2)(t1 − t3) · · · (tm−1 − tm). (3.18)

It follows that if

ti ̸= tj for all i, j such that i ̸= j, (3.19)

then Φ is non-singular and has its inverse. Hence, the solution x∗ to
equation (3.15) is given by using Φ−1 as

x∗ = Φ−1y. (3.20)

3.1. Least Squares and Regularization 39

In summary, if one chooses a polynomial of order m− 1 for m data points
that satisfy (3.19), then the coefficients of the interpolating polynomial
can be uniquely obtained by the formula (3.20).

Example 3.1. Let us consider the following data.

t 1 2 3 . . . 14 15
y 2 4 6 . . . 28 30

The data are obtained from a linear relation y = 2t. By using these 15
data points, we find a 14th-order interpolating polynomial. Now, we use a
useful computational software, Python, to compute the matrix inversion
in (3.20). The following is a program to obtain the coefficients.

Program 3.1: Python program for the coefficients of the interpolating polynomial.

1 import numpy as np
2

3 # Data
4 t = np. arange (1, 16)
5 y = 2 * t
6

7 # Vandermonde matrix
8 Phi = np. vander (t)
9

10 # Coefficients of interpolating polynomial
11 x = np. linalg .inv(Phi) @ y
12 print(x)

In this program, numpy is a library that underpins much of scientific
computing in Python, which provides efficient and convenient ways to
handle numerical data. The command vander is a function in the numpy
library to compute the Vandermonde matrix in (3.16). The inverse of Φ
is computed by the inv function in the numpy.linalg module, and the
multiplication Φ−1y is executed by the @ operator.

40 Sparse Optimization

Running this program, we obtain

x =



2.85231728 × 10−19

−1.49471669 × 10−17

3.13375085 × 10−16

−4.28216490 × 10−15

6.10900219 × 10−14

−8.59645688 × 10−13

8.46611670 × 10−12

−4.87716534 × 10−11

1.73088210 × 10−10

−3.61524144 × 10−10

4.81122697 × 10−10

−3.00133252 × 10−10

3.69254849 × 10−10

2.00000000
3.18323146 × 10−11



. (3.21)

This result shows that the second value from the bottom is 2, and the
other values are almost zero. That is, the coefficients are given by a1 = 2
and ai = 0 for i ̸= 1, and the interpolating polynomial is y = 2t. This is
the right solution. □

Real data include noise. Let us add Gaussian noise with zero mean
and variance 0.52 to the data y in Example 3.1, and find the interpolating
polynomial. The obtained curve is shown in Figure 3.2. The interpolating
polynomial exactly goes through the data points, but the curve is signifi-
cantly affected by noise, and is very different from the original relationship
y = 2t. Such a phenomenon is called overfitting.

The reason for overfitting is that the order of the polynomial is too
high. If we previously know that the original curve is of first order, then
we can assume a first-order polynomial (i.e. a line) y = a1t+ a0, and find
the coefficients a0 and a1 with which the line has the best fit to the data.
If the data is noisy, it is obviously impossible to obtain a line that goes
through all the data points. However, it is not a problem at all if the line
does not interpolate the noisy data.

Now, let us reformulate our problem of curve fitting for noisy data. We
measure the distance between the polynomial and the data points by the
ℓ2 norm (Euclidean norm). For noisy data, we do not require the curve
to go through the data points since it is in general impossible. We find

3.1. Least Squares and Regularization 41

2 4 6 8 10 12 14
t

30

20

10

0

10

20

30

y

Data points
Interpolation

Figure 3.2: 14th-order interpolating polynomial with noisy data

the curve that is as close to the data points as possible. The optimization
problem is described as follows:

minimize
x∈Rn

1
2∥Φx − y∥2

2, (3.22)

where Φ ∈ Rm×n is the Vandermonde matrix defined in (3.16). We call the
optimization in (3.22) the least squares. If we assume n < m, that is, if the
order of the polynomial is less than m− 2, then the number of unknowns
is less than that of equations. In this case, the matrix Φ is a tall matrix,
and the equation Φx = y has no solution in general. If the condition (3.19)
holds, it is easily shown that the solution to (3.22) uniquely exists. In fact,
if (3.19) holds, then the Vandermonde matrix Φ has full column rank. Note
that a matrix Φ ∈ Rm×n is said to have full column rank if the n column
vectors in Φ are linearly independent. In other words, Φ ∈ Rm×n has full
column rank if and only if Φ is injective, or

rank(Φ) = n. (3.23)

Then, the unique solution to the optimization problem in (3.22) is given
by

x∗ = (Φ⊤Φ)−1Φ⊤y. (3.24)
We call this the least squares solution. As the minimum ℓ2-norm solution
in (3.11), the least squares solution is also given in a closed form.

42 Sparse Optimization

Exercise 3.3. Prove that the solution to the optimization problem (3.22)
is given by (3.24).

Exercise 3.4. Let ϕi denote the i-th column vector in matrix Φ ∈ Rm×n,
that is,

Φ =
[
ϕ1 ϕ2 . . . ϕn

]
. (3.25)

Then define the residual between the data y and the optimal estimation
Φx∗ with (3.24) by

r ≜ y − Φx∗. (3.26)
Prove that the residual satisfies

⟨ϕi, r⟩ = 0, ∀i ∈ {1, 2, . . . , n}. (3.27)

Also, by using this fact, show that the residual r is orthogonal to Φx∗.

Example 3.2. Let us consider Example 3.1 with additive Gaussian noise
with zero mean and variance 0.52. We assume the curve is a first-order
polynomial modeled by y = a1t + a0. A Python program to obtain the
least squares solution to this problem is given as follows:

Program 3.2: Python program for least squares solution.

1 import numpy as np
2

3 # Data
4 np. random .seed (1) # random seed
5 t = np. arange (1, 16)
6 y = 2 * t + np. random .randn (15) * 0.5
7

8 # Vandermonde matrix
9 Phi15 = np. vander (t, 15)

10 Phi = Phi15 [:, 13:15]
11

12 # Least squares solution
13 Phi_transpose = Phi.T
14 x = np. linalg .inv(Phi_transpose @ Phi) @

Phi_transpose @ y
15 print(x)

In this program, randn(15) is a function in the numpy.random module
that returns normally distributed random numbers (i.e., Gaussian noise)

3.1. Least Squares and Regularization 43

2 4 6 8 10 12 14
t

150

125

100

75

50

25

0

25

50

y

Data points
Least squares
Interpolation

Figure 3.3: Least square solution (solid line) and 14th-order interpolating polynomial (dashed
curve)

with zero mean and variance 1 of size 15. The matrix variable Phi15 is
the Vandermonde matrix of size 15 × 15, and in the 10th line we extract
the 14th and 15th columns, which are related to coefficients a1 and a0, to
make matrix Phi of size 15 × 2. The result is shown below.

x =
[

1.99907309
−0.03065618

]
. (3.28)

Figure 3.3 shows the line y = a1t+ a0 with these coefficients. While the
14th-order interpolating polynomial implies overfitting, the least squares
line shows a good result. □

3.1.3 Ridge regularization

As we have discussed in the previous section, we can avoid overfitting by
the least squares method with an appropriate order of the polynomial,
which is less than the number of data points. However, what can we do if
we do not know the proper order in advance? In this case, we can adopt
regularization. Let us begin with a simple example.

Example 3.3. Suppose that we are given the following dataset

D = {(t1, y1), (t2, y2), . . . , (tm, ym)}, (3.29)

44 Sparse Optimization

0 2 4 6 8 10
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Data points
sin(t)

Figure 3.4: 11 data points from a sinusoid (dashed curve)

which is generated from a sinusoid y = sin(t). We consider sampling
instants

t1 = 0, t2 = 1, t3 = 2, . . . , t11 = 10, (3.30)

on which the output points y1, y2, . . . , y11 are obtained as

yi = sin(ti) + ϵi, i = 1, 2, . . . , 11, (3.31)

where ϵi is Gaussian noise with zero mean and variance 0.22 added at time
ti independently. The following table shows the obtained data.

ti 0 1 2 3 4 5
yi 0.3528 0.7076 0.8473 0.5879 -0.2187 -0.8624
ti 6 7 8 9 10
yi -0.0789 0.5122 0.6549 0.4622 -0.4460

Figure 3.4 shows the data points and the original sinusoidal curve.
For these data, we first find a 10th-order polynomial that interpolates

the data points by using (3.20). Figure 3.5 shows the result. Affected by
the noise, the curve is very oscillative and shows overfitting. We then take
a 6th-order polynomial and compute the least squares solution by (3.24).
Figure 3.6 shows the result. From this figure, we have a better fit than the
interpolating function shown in Figure 3.5. □

3.1. Least Squares and Regularization 45

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

Data points
10-th order interpolating polynomial
sin(t)

Figure 3.5: 10th-order interpolating polynomial (solid curve) and the original sinusoid (dashed
curve)

In the above example, the order 6 was chosen by computing curves
of all orders from 1 to 10, and comparing the reconstructed curve with
the original sinusoid. However, this can be done if we previously know the
original sinusoid. This is impossible in real applications. That is, we do
not know the optimal polynomial order from data in advance1.

To see the difference between the 10th-order interpolating polynomial
and the 6th-order least squares polynomial, we compare their coefficients.
Let us denote by x10 and x6 respectively the 10th and 6th-order polyno-

1For choosing the polynomial order, we can adopt the method of cross validation, dividing
the data into two sets; training and test data. This is actually a powerful method but it takes a
lot of time to perform. See [10] for details.

46 Sparse Optimization

0 2 4 6 8 10
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Data points
6-th order polynomial
sin(t)

Figure 3.6: Least squares solution with 6th-order polynomial (solid curve) and the original
sinusoid (dashed curve)

mials. They are obtained as

x10 =



0.3528
−13.0687
37.3672

−41.5757
24.7010
−8.7587

1.9368
−0.2690

0.0228
−0.0011

0.0000



, x6 =



0.3549
−0.3993

1.3586
−0.7883

0.1704
−0.0157

0.0005


, (3.32)

where the boldface numbers are the largest three elements in their absolute
values. We can observe that the boldface values in x10 are much larger than
those in x6. This is a cause of oscillation in the 10th-order interpolating
curve.

From the above observation, we try to minimize both the squared error
∥Φx − y∥2

2 and the squared ℓ2 norm ∥x∥2
2 of the coefficient vector x at the

3.1. Least Squares and Regularization 47

same time. This is formulated as the following optimization problem:

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ

2 ∥x∥2
2. (3.33)

We call this optimization the regularized least squares, or ridge regression.
The additional term λ

2 ∥x∥2
2 is called the regularization term, and the

parameter λ > 0 the regularization parameter, which controls the balance
between the error in curve fitting and the ℓ2 norm of the coefficients.

As in the least squares solution, the solution to the regularized least
squares in (3.33) can be obtained in a closed form:

x∗ = (λI + Φ⊤Φ)−1Φ⊤y. (3.34)

Exercise 3.5. Prove that the solution to (3.33) is given by (3.34).

Example 3.4. Here we consider an example of regularization. With the
data given in Example 3.3, we compute a 10th-order polynomial by the
regularized least squares. We take the regularization parameter λ = 1, and
compute the solution x∗ by the formula (3.34). The obtained coefficients
are as follows:

x∗ =



0.2435
0.1810

0.2134
0.1092

−0.1821
0.0607

−0.0087
0.0006

−0.0000
0.0000
0.0000



. (3.35)

The boldface values are the three largest elements in the absolute values.
Compared with the coefficients x10 in (3.32) of the 10th-order interpolating
polynomial, the values in x∗ are much smaller. The curve with the regular-
ized least squares is shown in Figure 3.7. We can see that the 10th-order
polynomial by the regularized least squares shows comparable accuracy to
the 6th-order least squares solution. □

3.1.4 Weighted ridge regression

Here we further consider the problem of polynomial interpolation. In the
regularized least squares, we minimize the cost function in (3.33) with the

48 Sparse Optimization

0 2 4 6 8 10
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Data points
10-th order ridge polynomial
sin(t)

Figure 3.7: Regularized least squares solution with 10th-order polynomial (solid curve) and
the original sinusoid (dashed curve)

regularization term ∥x∥2
2. This is to make the coefficient vector x not so

large. Instead of this, we consider the L2 norm of the polynomial f(t). The
L2 norm of a function f(t), t ∈ [t1, tm] is defined as

∥f∥L2 ≜

√∫ tm

t1
|f(t)|2 dt. (3.36)

Since f(t) is a polynomial, namely,

f(t) =
n−1∑
i=0

ait
i, (3.37)

its L2 norm can be computed as

∥f∥2
L2 =

∫ tm

t1

(n−1∑
i=0

ait
i
)(n−1∑

j=0
ajt

j
)
dt

=
n−1∑
i=0

n−1∑
j=0

aiaj

∫ tm

t1
ti+jdt

=
n−1∑
i=0

n−1∑
j=0

aiaj
ti+j+1
m − ti+j+1

1
i+ j + 1

= x⊤Qx,

(3.38)

3.1. Least Squares and Regularization 49

Table 3.1: Summary of optimization problems with ℓ2 norm

Problem Size Problem Solution
min ℓ2 norm m < n min

x

1
2 ∥x∥2

2 s.t. Φx = y Φ⊤(ΦΦ⊤)−1y

least squares m > n min
x

1
2 ∥Φx − y∥2

2 (Φ⊤Φ)−1Φ⊤y

ridge regression any min
x

1
2 ∥Φx − y∥2

2 + λ
2 ∥x∥2

2 (λI + Φ⊤Φ)−1Φ⊤y

weighted ridge regression any min
x

1
2 ∥Φx − y∥2

2 + λ
2 ∥Ψx∥2

2 (λΨ⊤Ψ + Φ⊤Φ)−1Φ⊤y

where Q = [Qij] is a matrix defined by

Qij = ti+j+1
m − ti+j+1

1
i+ j + 1 , i, j = 0, 1, . . . , n− 1. (3.39)

Now, from the definition of the L2 norm, we have ∥f∥L2 ≥ 0 for any
polynomial f , and ∥f∥L2 = 0 if and only if f = 0. This means that for any
x ∈ Rn, we have x⊤Qx ≥ 0 and x⊤Qx = 0 if and only if x = 0. That is,
the matrix Q is positive definite.

Now, we consider a regularization problem minimizing
1
2∥Φx − y∥2

2 + λ

2 ∥f∥2
L2 = 1

2∥Φx − y∥2
2 + λ

2 ∥Ψx∥2
2, (3.40)

where Ψ is a matrix that satisfies Q = Ψ⊤Ψ. This is called the weighted
ridge regression. The solution is obtained by

x∗ = (λΨ⊤Ψ + Φ⊤Φ)−1Φ⊤y. (3.41)

Exercise 3.6. Prove that (3.41) is the solution to the optimization problem
minimizing (3.40).

3.1.5 Summary of ℓ2-norm optimization

Now we summarize the curve fitting problem by a polynomial of order
m− 1:

y = f(t) = an−1t
n−1 + an−2t

n−2 + · · · + a1t+ a0, (3.42)
with the following dataset:

D = {(t1, y1), (t2, y2), . . . , (tm, ym)}. (3.43)

Table 3.1 shows the summary.

Exercise 3.7. Prove that for any matrix Φ ∈ Rm×n and any number λ > 0,
matrices λI + ΦΦ⊤ and λI + Φ⊤Φ are invertible and satisfy

Φ⊤(λI + ΦΦ⊤)−1 = (λI + Φ⊤Φ)−1Φ⊤. (3.44)

50 Sparse Optimization

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

y

Data points
Original polynomial

Figure 3.8: Sparse polynomial y = −t80 + t and sampled data

3.2 Sparse Polynomial and ℓ1-norm Optimization

Here we consider yet another example of curve fitting. Let us consider an
80th-order polynomial

y = −t80 + t. (3.45)
From this polynomial, we sample data points with sampling instants

t1 = 0, t2 = 0.1, t3 = 0.2, . . . , t11 = 1, (3.46)

to obtain

D = {(t1, y1), (t2, y2), . . . , (t11, y11)}, yi = −t80
i + ti. (3.47)

Figure 3.8 shows the curve of the 80th-order polynomial in (3.45) and the
generated data in (3.47).

We assume that the order of the original polynomial is previously known
to be at most 80. Then, can we reconstruct the original curve in (3.45)
from the dataset D? In this case, there are infinitely many interpolating
polynomials with order at most 80 that go through all the data points. In
fact, the Vandermonde matrix Φ in (3.16) is a fat matrix of size 11 × 81,
which has full row rank since the condition (3.19) holds. Therefore, there
exist infinitely many solutions to the linear equation Φx = y, where x is a
column vector consisting of 81 unknown coefficients, and y is a column

3.2. Sparse Polynomial and ℓ1-norm Optimization 51

vector consisting of data y1, y2, . . . , y11. As mentioned in Section 3.1, we
need additional proofs to obtain the unique solution.

Let us look again at the original 80th-order polynomial in (3.45). The
coefficients of this polynomial are all zero but two coefficients. In other
words, the coefficient vector x = (a80, a79, . . . , a0) is sparse, that is, the
ℓ0 norm of x is sufficiently small. We call such a polynomial a sparse
polynomial. We assume that the following fact can be additionally used as
our proof.

The original polynomial is sparse.

Note that we can use the sparsity property of the original polynomial but
the number of non-zero coefficients (i.e., ∥x∥0) is assumed to be unknown.

Borrowing the idea of the optimization mentioned in Section 2.3, we use
the ℓ0 norm as the cost function, and consider the following optimization
problem:

minimize
x∈Rn

∥x∥0 subject to Φx = y. (3.48)

As mentioned in Section 2.5, this is quite hard to solve using the exhaustive
search method when the problem size is large.

The key idea of sparse optimization is to use the ℓ1 norm

∥x∥1 =
n∑
i=1

|xi|, (3.49)

instead of the ℓ0 norm. That is, we consider the following optimization
problem as a relaxation of the ℓ0 optimization (3.48):

minimize
x∈Rn

∥x∥1 subject to Φx = y. (3.50)

We call this optimization the ℓ1 optimization. The method to obtain a
sparse vector by the ℓ1 optimization is known as the basis pursuit.

The ℓ1 optimization problem in (3.50) is to find the smallest ℓ1-norm
vector on a hyperplane {x ∈ Rn : Φx = y}. As illustrated in Figure
2.2 (p. 22), the contour of the ℓ1 norm (∥x∥1 = c) is a diamond whose
corners are on the axes. The optimal solution to (3.50) is obtained (in the
2-dimensional case) by enlarging the contour ∥x∥1 = c from c = 0 until the
contour touches the line {x ∈ R2 : Φx = y}. As shown in Figure 3.9, the
ℓ1 contour touches the line almost surely at one of the corners. Since each
corner is on one of the axes, the optimal solution satisfies ∥x∗∥0 = 1 < 2,
and hence it is sparse. This is an intuitive explanation of why minimizing
ℓ1 norm gives a sparse solution.

52 Sparse Optimization

x∗ = (0, x∗
2)

x1

x2

Φx = y

‖x‖1 = c

0

Figure 3.9: ℓ1 optimization in R2: the contour {x : ∥x∥1 = c} touches the line {x : Φx = y}
at one of the corners that are on axes.

−1 0 1

1
|x||x|0

x

Figure 3.10: Relation between |x| and |x|0.

The relation between the ℓ0 and ℓ1 norms is intuitively understood as
follows. By definition, the ℓ0 norm can be rewritten as

∥x∥0 =
n∑
i=1

|xi|0, (3.51)

where |x|0 ≜ 1 if x ̸= 0 and 00 ≜ 0. Figure 3.10 shows the graph of |x|0.
From this figure, it is easily seen that the ℓ0 norm is non-convex. On the
other hand, the ℓ1 norm

∥x∥1 =
n∑
i=1

|xi|, (3.52)

is the sum of absolute values |xi|, which is convex as shown in Figure 3.10.
The ℓ1 norm is the best convex approximation of the ℓ0 norm in the sense
that it has the minimum exponent p = 1 among ℓp norms that are convex.

3.2. Sparse Polynomial and ℓ1-norm Optimization 53

Theoretically, the ℓ1 norm is also understood as the convex relaxation of
the ℓ0 norm. That is, the ℓ1 norm is the second conjugate ∥ · ∥∗∗

0 of ∥ · ∥0.
See [149, Section 1.3] for details.

In the ℓ1 optimization problem in (3.50), the cost function ∥x∥1 is a
convex function of x, and the constraint set {x ∈ Rn : Φx = y} is a convex
set. Therefore, the problem is a convex optimization problem2, for which
numerical optimization by using a computer can give a numerical solution
much faster than the exhaustive search for the ℓ0 optimization in (3.48).

To obtain a sparse vector, we can also use the idea of regularization for
sparse optimization. In the case of noisy data, we can formulate the curve
fitting as the ℓ0 regularization described below:

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥x∥0. (3.53)

Unfortunately, this optimization is also a combinatorial problem, and
hard to solve if the problem size is large. Instead of the ℓ0 norm for
the regularization term, we use the ℓ1 norm and consider the following
optimization problem:

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥x∥1. (3.54)

This is called ℓ1 regularization, or LASSO (Least Absolute Shrinkage and
Selection Operator). The cost function in (3.54) is a convex function of x,
and hence the optimization is a convex optimization problem, which can
also be solved very efficiently.

In this section, we have introduced the important idea to approximate
the ℓ0 norm, which is non-convex and discontinuous, by the ℓ1 norm, which
is convex. A question is when the convex optimization problem (3.50), or
(3.54) can give the solution to the original ℓ0 optimization (3.48), or (3.53).
Very interestingly, in many applications (e.g., signal/image processing),
the solution to the ℓ1 norm optimization is equivalent to (or sufficiently
close to) the ℓ0-norm solution. In fact, there exist many theorems for
the equivalence between ℓ0 and ℓ1 optimizations. From these facts, ℓ1
optimization is often said to be sparse optimization. For seeking sparse
solutions, there also exist many methods other than ℓ1 optimization, for
example, greedy methods, which we will see in detail in Chapter 5, or
ℓp-norm optimization with p ∈ (0, 1). In the next section, we will show
how to solve the ℓ1 optimization (3.50) or ℓ1 regularization (3.54) by using
Python.

2For the mathematical definition of convexity and convex optimization, see Chapter 4.

54 Sparse Optimization

3.3 Python Examples

3.3.1 Sparse polynomial curve fitting

The optimization problems (3.50) and (3.54) are convex ones, and they
can be efficiently solved by numerical optimization. We here introduce a
well-known software for numerical convex optimization, CVXPY,3 which is
a Python library designed for numerical convex optimization. It provides
a powerful and intuitive framework for constructing and solving convex
optimization problems.

Let us consider the 80th-order polynomial y = −t80 + t in (3.45). From
this, we generate 11 data points as in (3.47), and we try to reconstruct the
original polynomial from these data.

The Python program for ℓ1 optimization is shown below.

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import cvxpy as cp
4

5 # Polynomial coefficients
6 x_orig = np.zeros (80)
7 x_orig [0] = -1
8 x_orig [78] = 1
9

10 # Data
11 t = np. arange (0, 1.1, 0.1)
12 y = np. polyval (x_orig , t)
13

14 # Vandermonde matrix
15 N = len(t)
16 M = N - 1 # order of polynomial
17 Phi_v = np. vander (t)
18

19 ## Interpolation polynomial
20 x_i = np. linalg .inv(Phi_v) @ y
21 print (" Interpolating polynomial ")
22 for coeff in x_i:
23 print(f"{ coeff :.4f}")

3https://www.cvxpy.org/

https://www.cvxpy.org/

3.3. Python Examples 55

24

25 ## L1 optimization
26 # Vandermonde matrix
27 M_l = 80 # order of polynomial
28 Phi_l = np. vander (t, N=M_l +1)
29

30 # CVXPY for L1 optimization
31 x = cp. Variable (M_l +1)
32 objective = cp. Minimize (cp.norm(x, 1))
33 constraints = [Phi_l @ x == y]
34 problem = cp. Problem (objective , constraints)
35 problem .solve ()
36

37 # Extract the coefficients
38 x_lasso = x.value
39 print ("\n LASSO ")
40 for coeff in x.value:
41 print(f"{ coeff :.4f}")

First, we import Python libraries numpy, matplotlib.pyplot and
cvxpy, used in the program. Then, we define the coefficient vector of
the 80th-order polynomial (lines 5–8). Next, by using a Numpy function
polyval that returns the value of the polynomial from the coefficient
vector, we make a data set (3.47) as in lines 10–12. With the data, we first
find the 10th-order interpolating polynomial. For this, we compute the
Vandermonde matrix (3.16) as in lines 14–17. From this, we compute the
coefficients of the interpolating polynomial by using (3.20) as in line 20.

Figure 3.11 shows the curve of the obtained polynomial. In this case, the
data are noiseless and there is no oscillation due to overfitting. However,
we can see a large gap in the range from t = 0.9 to t = 1.

Finally, we compute the curve by ℓ1 optimization (3.50). We assume that
we know the polynomial order is at most 80. In this case, the Vandermonde
matrix (3.16) becomes a fat matrix of size 11 × 81. This matrix can be
obtained in lines 26–28. Define the coefficient vector x and the data vector
y as in (3.17), then the condition for interpolation is described as

Φx = y. (3.55)
We seek the sparsest solution in the set {x ∈ R81 : Φx = y} by solving
the ℓ1 optimization problem in (3.50).

56 Sparse Optimization

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

y

Data points
Original polynomial
Interpolating polynomial

Figure 3.11: 10th-order interpolating polynomial (solid curve) and the original polynomial
y = −t80 + t (dashed curve)

To solve the ℓ1 optimization problem, we use the CVXPY library. By
using CVXPY, the optimization problem can be very easily coded as in
lines 30–35. You should compare this program with (3.50). You can write a
program very intuitively for an optimization problem. This is the strongest
point of CVXPY. You can solve many convex optimization problems other
than the ℓ1 optimization in a similar way. We recommend for beginners to
use CVXPY to solve convex optimization problems.4

Let us draw the curve with the coefficients obtained by the ℓ1 optimiza-
tion. Figure 3.12 shows the curve. We can see that the obtained curve is
almost the same as the original curve y = −t80 + t. This is the power of ℓ1
optimization.

3.3.2 Group testing

Let us consider the problem of group testing discussed in Section 2.4.
Suppose there are n = 1000 individuals among which s = 5 individuals are
infected. We assume the number of tests is m = 100. We choose the testing
matrix Φm×n as a random binary-valued matrix, that is, Φ ∈ {0, 1}m×n.
This means that the m groups are formed randomly. Then we obtain
the measurement vector y = Φx, where x is a binary-valued vector that

4CVXPY is also available in MATLAB. See https://cvxr.com/cvx/ for details.

https://cvxr.com/cvx/

3.3. Python Examples 57

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

y

Data points
Original polynomial
LASSO polynomial

Figure 3.12: 80th-order polynomial by ℓ1 optimization (solid curve) and the original polynomial
y = −t80 + t (dashed curve)

indicates the presence of infection in each individual, as defined in equations
(2.39) and (2.40). Then the problem of group testing is formulated as the
following ℓ0 optimization:

minimize
x∈Rn

∥x∥0 subject to y = Φx. (3.56)

As discussed in Example 2.3, it takes a tremendous amount of time to
solve this by the naive exhaustive search algorithm. Instead, we solve this
by the ℓ1 optimization:

minimize
x∈Rn

∥x∥1 subject to y = Φx. (3.57)

We numerically solve this optimization problem using CVXPY. The Python
program is given at the end of this section. Figure 3.13 shows the results.
The left figure shows the original binary vector of size n = 1000 including
s = 5 ones. Then, by the ℓ1 optimization, we obtain the reconstructed vector
shown in the right figure. They are almost identical. The indices of the ones
in the original vector are {37, 72, 235, 767, 908}, and the indices predicted
from the reconstructed vector are exactly the same. The computational
time is about 3 seconds (please check this by yourself!), and this is much
faster than the exhaustive search.

58 Sparse Optimization

0 250 500 750 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.13: The original vector (left) and the reconstructed vector by ℓ1 optimization (right)

1 import cvxpy as cp
2 import numpy as np
3 import matplotlib . pyplot as plt
4

5 ## Parameter settings
6 # Vector size (number of individuals)
7 n = 1000
8 # Number of positives
9 s = 5

10 # Random seed
11 np. random .seed (1)
12 # Original vector (n- dimensional , k- sparse)
13 x_orig = np.zeros(n)
14 S = np. random . randint (n,size=s)
15 x_orig [S] = 1
16 # Number of tests

3.3. Python Examples 59

17 m = 100
18 # Testing matrix
19 A = np. random . randint (2, size =(m, n))
20 # Result vector
21 b = A @ x_orig
22

23 ## Optimization by CVXPY
24 # Optimization variable
25 x = cp. Variable (n)
26 # Cost function (L1 norm)
27 cost = cp.norm1(x)
28 # Constraints (linear equations)
29 constraints = [A @ x == b]
30 # Optimization problem
31 prob = cp. Problem (cp. Minimize (cost), constraints)
32 # Solve by CVXPY
33 prob.solve ()
34 # Print the result
35 print (" status :", prob. status)
36 print (" optimal value", prob.value)
37

38 ## Results
39 fig = plt. figure ()
40 ax1 = fig. add_subplot (1, 2, 1)
41 ax1.stem(x_orig)
42 plt.ylim (-0.1 ,1.1)
43 ax2 = fig. add_subplot (1, 2, 2)
44 ax2.stem(x.value)
45 plt.ylim (-0.1 ,1.1)
46 plt.show ()
47

48 ## Indeces
49 print(np. nonzero (x_orig))
50 x_est=np.round(x.value)
51 print(x_est. nonzero ())

60 Sparse Optimization

3.4 Further Readings

For the theory of regularization, I recommend reading standard textbooks
[10], [51] of machine learning. The least squares method is deeply related
to the projection and the generalized inverse, for which you can choose a
textbook of [50]. The mathematical theory and generalization of LASSO
can be found in [16], [47], [51], [52]. For the equivalence theorems between
ℓ0 and ℓ1 optimizations, refer to textbooks [43], [45], [149].

Chapter 4

Algorithms for Convex Optimization

In the previous chapter, we have seen that convex optimization such as ℓ1
optimization is efficiently solved by using CVXPY on Python. Such a tool
is actually very useful for small or middle-scale problems. However, if you
treat a very large-scale problem like image processing, CVXPY might be
insufficient. Moreover, if you want to apply the ℓ1 optimization to control
systems, you should compute the optimal solution in real-time (e.g., in
a few msec) with a cheap device on which Python and CVXPY cannot
be installed. In such cases, you should instead write an efficient algorithm
by yourself for your specific problem. This means that you should look
into the black box of the toolbox. For this purpose, we review the basics
of convex optimization, and introduce efficient algorithms for problems in
compressed sensing.

Key ideas of Chapter 4� �
• In convex optimization, a local minimum is a global minimum.

• ℓ1 optimization problems we study in this book are convex opti-
mization.

• Proximal operators are used to derive fast algorithms for convex
optimization with non-differentiable ℓ1 norm and constraints.� �

4.1 Basics of Convex Optimization

We here review important facts in convex optimization. Let us begin with
the definition of a convex set.

62 Algorithms for Convex Optimization

x

y x y

Figure 4.1: Convex set (left) and non-convex set (right)

Definition 4.1 (convex set). Let C be a subset of Rn. C is said to be
a convex set if the following inclusion

tx + (1 − t)y ∈ C (4.1)

holds for any vectors x,y ∈ C and for any real number t ∈ [0, 1].

Figure 4.1 illustrates a convex set and a non-convex set (i.e., a set that
is not convex). In convex set C, the line segment between any two points
x and y in C lies completely in C. On the other hand, in a non-convex set,
there exists a line segment that partially lies outside of the set.

Exercise 4.1. Suppose that C and D are convex and C ∩ D ≠ ∅. Show that
C ∩ D is convex.

In convex optimization, we often handle a function f : Rn → R ∪ {∞},
which takes values on extended real numbers R ∪ {∞}. The following
function is an example:

f(x) =

0, if ∥x∥2 ≤ 1,
∞, if ∥x∥2 > 1.

(4.2)

This function is called an indicator function, which will be explained in
Section 4.2.4.

The effective domain of a function f is defined by

dom(f) ≜ {x ∈ Rn : f(x) < ∞}. (4.3)

That is, the effective domain of a function f : Rn → R ∪ {∞} is a set in
Rn on which f takes finite real values. For example, the effective domain
of the indicator function (4.2) is given by

dom(f) = {x ∈ Rn : ∥x∥2 ≤ 1}. (4.4)

4.1. Basics of Convex Optimization 63

x y x y

Figure 4.2: convex function (left) and non-convex function (right)

A function f : Rn → R ∪ {∞} is said to be proper if its effective domain is
non-empty, that is, there exists at least one x ∈ Rn such that f(x) < ∞.

Now, let us define a convex function.

Definition 4.2 (convex function). Let f : Rn → R∪{∞} be a proper
function. The function f is said to be a convex function if the
following inequality

f
(
tx + (1 − t)y

)
≤ tf(x) + (1 − t)f(y) (4.5)

holds for any vectors x,y ∈ dom(f) and for any real number t ∈
[0, 1].

Figure 4.2 illustrates a convex function and a non-convex function, a
function that is not convex. By definition, if f is convex, the line segment
between any two points (x, f(x)) and (y, f(y)), where x,y ∈ dom(f), lies
above or on the graph of f . On the other hand, if f is non-convex, there
exists a line segment that partially lies below the graph.

Exercise 4.2. Suppose that f and g are convex functions and dom(f) ∩
dom(g) ̸= ∅. Show that f + g is convex.

One more important property of a function is closedness. A function
f : Rn → R ∪ {∞} is said to be closed if the sublevel set (or lower level
set) {x ∈ dom(f) : f(x) ≤ c} is a closed set for any c ∈ R. The closedness
of a function is also understood by its epigraph. The epigraph epi(f) of
function f is defined by

epi(f) ≜
{
(x, t) ∈ Rn × R : x ∈ dom(f), f(x) ≤ t

}
. (4.6)

Figure 4.3 illustrates the epigraph of a function f . The epigraph of f is
the region above the graph on its effective domain. It is easily shown that
a function f is closed if and only if its epigraph is closed.

64 Algorithms for Convex Optimization

x

f(x)

epi(f)

Figure 4.3: Epigraph epi(f) of function f

Table 4.1: Function and its epigraph

function f epigraph epi(f)
convex convex set
closed closed set
proper non-empty set

We can also perceive other properties of a function in terms of its
epigraph. A function is convex if and only if its epigraph is convex. A
function is proper if and only if its epigraph is non-empty. We summarize
these facts in Table 4.1.

Now, we formulate a convex optimization problem in a general form.

Problem 4.1 (Convex optimization problem). Let f : Rn → R ∪ {∞} be a
proper, closed, and convex function, and C ⊂ Rn be a non-empty, closed,
and convex set. Then, a convex optimization problem is a problem to find
a vector x∗ ∈ Rn that minimizes the function f(x) over the set C ⊂ Rn.

For the convex optimization, we use the following terminology in this
book:

• The function f(x) is called a cost function or an objective function.

• The set C is called a constraint set or a feasible set.

• The entries of C are called feasible solutions.

• The inclusion x ∈ C is called a constraint.

The above optimization problem is often described as follows:

minimize
x∈Rn

f(x) subject to x ∈ C. (4.7)

In this expression, the optimization variable x ∈ Rn to be minimized is
placed under “minimize”, next to which the cost function f(x) is placed.

4.1. Basics of Convex Optimization 65

minimize
x∈Rn

f(x)︸︷︷︸ subject to x ∈ C︸ ︷︷ ︸
cost function constraint

min
x∈C

f(x)

arg min
x∈C

f(x)

minimum value

minimizer (set)

Figure 4.4: Notation for optimization problem

The term “subject to” is sometimes abbreviated as “s.t.”, followed by the
constraint x ∈ C. The term “minimize” in (4.7) is often abbreviated as
“min” and simply described as

min
x∈Rn

f(x) s.t. x ∈ C. (4.8)

Also, we often write the constraint under “minimize” as

min
x∈C

f(x). (4.9)

Note that (4.9) sometimes means the minimum value of the optimization
problem (4.7), instead of an optimization problem. The set of minimiz-
ers (solutions) to the optimization problem (4.7) is denoted using “arg”
(abbreviation of argument) as

arg min
x∈C

f(x) ≜
{
x∗ ∈ C : f(x∗) ≤ f(x), ∀x ∈ C ∩ dom(f)

}
. (4.10)

Also, we often use the following expression

x∗ = arg min
x∈C

f(x). (4.11)

In this expression, “argmin” returns a minimizer, instead of the set of
minimizers. If the minimizer of the optimization problem (4.7) is unique,
then this expression may not cause any confusion. If not unique, (4.11)
means that x∗ is a minimizer arbitrarily taken from the set of minimizers.

We summarize the definitions in Figure 4.4.
Then we define a local minimizer and a global minimizer of the opti-

mization problem (4.7). If there exists an open set B ⊂ Rn that contains a
feasible solution x̄ ∈ C such that

f(x) ≥ f(x̄), ∀x ∈ B ∩ C, (4.12)

66 Algorithms for Convex Optimization

x̄ = x∗ x̄ x∗

f(x) f(x)

Figure 4.5: Local minimizer x̄ and global minimizer x∗ with convex function (left) and non-
convex function (right)

then x̄ is called a local minimizer of the optimization problem (4.7). If a
feasible solution x∗ ∈ C satisfies

f(x) ≥ f(x∗), ∀x ∈ C, (4.13)

then x∗ is called a global minimizer of the optimization problem (4.7).
One of the most important properties of convex optimization is that a

local minimizer is (if it exists) a global minimizer. Figure 4.5 illustrates
this fact of convex optimization. In this figure, for a convex function, the
local minimizer x̄ is also the global minimizer x∗. On the other hand, for a
non-convex function, they may not coincide. In fact, the following theorem
holds [14, Section 4.2.2].

Theorem 4.1. For a convex optimization problem (4.7), any local
minimizer is (if it exists) a global minimizer, and the set of global
minimizers is a convex set.

By this theorem, an algorithm that outputs a local minimizer of a convex
optimization problem is automatically an algorithm for a global minimizer.
For example, a convex optimization problem with a differentiable and
convex function f(x) and C = Rn (unconstrained problem), a point x̄ such
that ∇f(x̄) = 0, where ∇f is the gradient of f , is a local minimizer, and
this is also a global minimizer. Therefore, for an unconstrained convex
optimization with a differentiable cost function, an algorithm searching
for a point satisfying ∇f(x) = 0 is an algorithm for a global minimizer.
Theorem 4.1 is very important to derive an efficient algorithm for convex
optimization.

Exercise 4.3. Find a convex function that has no local minimizer.

4.1. Basics of Convex Optimization 67

Exercise 4.4. Find a convex function that has infinitely many local mini-
mizers.

Next, we consider the uniqueness of the minimizer. For this, we define
strictly and strongly convex functions.

Definition 4.3. Let f : Rn → R ∪ {∞} be a proper function. The
function f is said to be a strictly convex function if for any x,y ∈
dom(f) ⊂ Rn with x ̸= y and any t ∈ (0, 1),

f
(
tx + (1 − t)y

)
< tf(x) + (1 − t)f(y) (4.14)

holds. Moreover, the function f is said to be a strongly convex
function if there exists β > 0 such that for any x,y ∈ dom(f) ⊂ Rn

and any t ∈ [0, 1],

f
(
tx + (1 − t)y

)
≤ tf(x) + (1 − t)f(y) − t(1 − t)β2 ∥x − y∥2

2 (4.15)

holds. The constant β is called a modulus.

The following lemma is an important property of strongly convex
functions.

Lemma 4.1. A function f : Rn → R ∪ {∞} is strongly convex with
modulus β > 0 if and only if

f − β

2 ∥ · ∥2
2 (4.16)

is convex.

Weierstrass extreme value theorem is also important in convex opti-
mization.

Theorem 4.2 (Weierstrass extreme value theorem). Every continuous
function on a compact set attains its extreme values on that set.

Note that a subset in Rn is compact if and only if it is closed and
bounded.

The following theorem shows the existence and uniqueness of the mini-
mizer of a strongly convex function.

68 Algorithms for Convex Optimization

Theorem 4.3. Assume f : Rn → R ∪ {∞} is a proper, closed, and
strongly convex function with modulus β > 0. Then f has the
unique minimizer x∗ ∈ dom(f). That is, for any x ∈ dom(f) such
that x ̸= x∗,

f(x) > f(x∗) (4.17)

holds. Moreover, for any x ∈ dom(f), we have

f(x) ≥ f(x∗) + β

2 ∥x − x∗∥2
2. (4.18)

This theorem is used to define the proximal operator discussed in the
next section.

Exercise 4.5. Prove Theorem 4.3.

4.2 Proximal Operators

We here introduce a powerful tool called the proximal operator for deriving
efficient algorithms to solve convex optimization problems, particularly
those involving non-differentiable cost functions.

4.2.1 Definition

The proximal operator of a function is defined as follows:

Definition 4.4 (proximal operator). For a proper, closed, and convex
function f : Rn → R ∪ {∞}, and a real number γ > 0, the proximal
operator proxγf with parameter γ is defined by

proxγf (v) ≜ arg min
x∈dom(f)

{
f(x) + 1

2γ ∥x − v∥2
2

}
. (4.19)

First, we can easily show that the function

g(x) ≜ f(x) + 1
2γ ∥x − v∥2

2 (4.20)

is a proper, closed, and strongly convex function with modulus β = 1/γ
(see Definition 4.3). Therefore, from Theorem 4.3, the proximal operator
(4.19) is well-defined, that is, proxγf (v) uniquely exists for any v ∈ Rn.

4.2. Proximal Operators 69

v

dom(f)

projection

minimum

prox

v
prox

Figure 4.6: Illustration of proximal operator

Exercise 4.6. Assume that f is a proper, closed, and convex function,
γ > 0, and v ∈ Rn. Prove that the function g(x) in (4.20) is a proper,
closed, and strongly convex function with modulus β = 1/γ.

From (4.19), if we take γ → ∞, then the second term of (4.19) disap-
pears and the proximal operator becomes

prox∞f (v) = arg min
x∈dom(f)

f(x) = x∗, (4.21)

where x∗ is a minimizer of f(x). On the other hand, taking γ → 0 eliminates
the first term of (4.19), and the proximal operator is reduced to

prox0f (v) = arg min
x∈dom(f)

∥x − v∥2
2 = ΠC(v), C ≜ dom(f), (4.22)

where ΠC is the projection operator on the set C. That is, ΠC returns the
closest point in C measured by the ℓ2 norm. Finally, if the parameter γ
satisfies 0 < γ < ∞, the proximal operator (4.19) is a mixture of the
minimizer in (4.21) and the projection operator in (4.22).

Figure 4.6 illustrates the proximal operator. By definition, if a point v

is outside the effective domain dom(f), then proxγf (v) moves into dom(f).
If a point v is in dom(f), then proxγf (v) moves in dom(f), and approaches
towards the minimizer x∗ of f(x), with a step size determined by the value
of γ. Therefore, the effective domain dom(f) is an invariant set under the
proximal operator proxγf . Note that a set C is called an invariant set under
an operator T if

x ∈ C ⇒ T (x) ∈ C (4.23)

70 Algorithms for Convex Optimization

holds.

Exercise 4.7. Prove that the effective domain dom(f) is an invariant set
under the proximal operator proxγf .

As illustrated in Figure 4.6, if v ∈ dom(f), then the vector proxγf (v)
approaches the minimizer x∗ within the effective domain dom(f). That is,
a proximal operator behaves similarly to the negative gradient of f (if f
is differentiable) within the effective domain. The proximal operator can
be applied to a broader class of functions, including those that are not
differentiable.

4.2.2 Proximal algorithm

From the invariance property of (4.23), we can consider an iterative al-
gorithm called the proximal algorithm that seeks a minimizer of convex
function f :

Proximal algorithm� �
Initialization: give an initial vector x[0] and positive numbers
γ0, γ1, . . .

Iteration: for k = 0, 1, 2, . . . , do

x[k + 1] = proxγkf
(x[k]). (4.24)� �

If you properly choose the parameter sequence {γk}, you can obtain one of
the minimizers of f by the proximal algorithm. The convergence is shown
in the following theorem [9, Proposition 5.1.3]:

Theorem 4.4 (convergence of proximal algorithm). Suppose that the
parameter sequence {γk} satisfies γk > 0 for all k and

∞∑
k=0

γk = ∞. (4.25)

Then, the vector sequence {x[k]} generated by the proximal algo-
rithm (4.24) converges to one of the minimizers of f for any initial
vector x[0].

The theorem is based on the fact that a minimizer of f(x) is also a fixed
point of its proximal operator proxγf . Note that a fixed point of proxγf is

4.2. Proximal Operators 71

a point that satisfies
x = proxγf (x). (4.26)

A fixed point is literally fixed under the operation by proxγf .
The proximal algorithm minimizes the strongly convex function

gk(x) ≜ f(x) + 1
2γk

∥x − x[k]∥2
2 (4.27)

at step k. In other words, the algorithm approximates a general convex
function f(x) by a strongly convex function at each step.

Also, it is often important to find a closed form of the proximal operator
(4.19) for an efficient algorithm. A function for which the proximal operator
is obtained in a closed form is sometimes called proximable. Let us see
some proximable functions in the following subsections.

4.2.3 Proximal operator for quadratic function

Let us consider the following quadratic function

f(x) = 1
2x⊤Φx − y⊤x, (4.28)

where Φ is a positive-definite symmetric matrix. Note that a symmetric
matrix Φ is said to be positive definite if the following inequality holds

x⊤Φx > 0, (4.29)

for every nonzero vector x ∈ Rn. Let us compute the proximal operator of
the quadratic function in (4.28). From the definition (4.19) of the proximal
operator, we have

proxγf (v) = arg min
x∈Rn

{1
2x⊤Φx − y⊤x + 1

2γ (x − v)⊤(x − v)
}
. (4.30)

Since the function in (4.30) is differentiable, we can obtain the minimizer
by setting the gradient to be zero. After some calculations, we have the
proximal operator in a closed form:

proxγf (v) =
(

Φ + 1
γ
I

)−1 (
y + 1

γ
v

)
. (4.31)

Exercise 4.8. Prove that the equation (4.31) holds.

An important application of this proximal operator is numerical matrix
inversion. The minimizer x∗ of (4.28) is also the unique solution to the
linear equation

Φx = y, (4.32)

72 Algorithms for Convex Optimization

that is, x∗ = Φ−1y. Note that Φ is invertible since Φ is positive definite.
Then, let us assume that the condition number of Φ, the ratio of its
maximum and minimum eigenvalues, is very large so that the numerical
computation of the inverse is difficult. We call such a case ill-conditioned.
For an ill-conditioned case, the proximal algorithm (4.24) is used to safely
compute the inverse. From (4.31), the proximal algorithm to obtain the
minimizer of (4.28), which is also the solution to (4.32), is given as follows:

Proximal algorithm for Φ−1y� �
Initialization: give an initial vector x[0] and a positive number γ > 0.
Iteration: for k = 0, 1, 2, . . . , do

x[k + 1] =
(

Φ + 1
γ
I

)−1 (
y + 1

γ
x[k]

)
. (4.33)� �

If the positive number γ is sufficiently small, then the condition number
of matrix Φ + (1/γ)I is relatively small, and the inversion can be easily
computed numerically.

Also, if γ is sufficiently small, we have(
Φ + 1

γ
I

)−1
= γ(I + γΦ)−1 ≈ γ(I − γΦ). (4.34)

Then, the right-hand side of the proximal operator (4.31) becomes(
Φ + 1

γ
I

)−1 (
y + 1

γ
v

)
≈ γ(I − γΦ)

(
y + 1

γ
v

)
≈ v − γ(Φv − y)
= v − γ∇f(v).

(4.35)

That is, if γ is sufficiently small, the proximal algorithm (4.33) approximates
the behavior of the gradient descent algorithm

x[k + 1] = x[k] − γ∇f(x[k]), k = 0, 1, 2, . . . , (4.36)

to find the minimizer of the quadratic function (4.28).

4.2.4 Proximal operator for indicator function

The indicator function of a non-empty set C ⊂ Rn is defined by

IC(x) ≜

0, if x ∈ C,
∞, if x ̸∈ C.

(4.37)

4.2. Proximal Operators 73

x

C

IC(x)

Figure 4.7: Indicator function IC(x) on a closed interval C ∈ R

If the set C is non-empty, closed, and convex, then the indicator function
IC(x) is a proper, closed, and convex function (to check this, draw the
epigraph). For example, the indicator function IC(x) of a closed interval
C on R is illustrated in Figure 4.7. You can see that if C is a non-empty
closed interval, the epigraph is a non-empty, closed, and convex set.

Let us compute the proximal operator of the indicator function IC.
From the definition (4.19), the proximal operator of IC is given as

proxγIC (v) = arg min
x∈Rn

{
IC(x) + 1

2γ ∥x − v∥2
2

}
= arg min

x∈C
∥x − v∥2

2

= ΠC(v).

(4.38)

That is, the proximal operator of the indicator function IC is the projection
operator ΠC onto the set C.

Exercise 4.9. Suppose that C ⊂ Rn is a non-empty, closed, and convex set.
Prove that ΠC(v) is uniquely determined for any v ∈ Rn.

4.2.5 Proximal operator for ℓ1 norm

Let us compute the proximal operator (4.19) for the ℓ1 norm:

f(x) = ∥x∥1 =
n∑
i=1

|xi|, (4.39)

74 Algorithms for Convex Optimization

0

Sγ(v)

γ

−γ v

Figure 4.8: Soft-thresholding operator Sγ(v)

where xi is the i-th element of x ∈ Rn. From the definition (4.19) of the
proximal operator, we have

proxγ∥·∥1(v) = arg min
x∈Rn

{
∥x∥1 + 1

2γ ∥x − v∥2
2

}
= arg min

x∈Rn

n∑
i=1

{
|xi| + 1

2γ (xi − vi)2
}
,

(4.40)

where vi is the i-th element of v. This optimization can be reduced to
element-wise optimization, that is,

min
x∈Rn

n∑
i=1

{
|xi| + 1

2γ (xi − vi)2
}

=
n∑
i=1

min
xi∈R

{
|xi| + 1

2γ (xi − vi)2
}
. (4.41)

Therefore, we just solve the following scalar minimization problem:

minimize
x∈R

|x| + 1
2γ (x− v)2. (4.42)

The minimizer x∗ ∈ R can be easily calculated, which is given by

x∗ = Sγ(v) ≜


v − γ, if v ≥ γ,

0, if − γ < v < γ,

v + γ, if v ≤ −γ.
(4.43)

The function Sγ(v) in (4.43) is called the soft-thresholding operator.
Figure 4.8 shows the graph of this operator.

Exercise 4.10. Show that the minimizer x∗ of the function

f(x) ≜ |x| + 1
2γ (x− v)2 (4.44)

4.2. Proximal Operators 75

is given by (4.43). (Hint: divide the domain of f(x) into two intervals:
x ≥ 0 and x < 0. Then, consider the three cases for v: v ≥ γ, −γ < v < γ,
and v ≤ −γ.)

By using the scalar-valued soft-thresholding operator, the proximal
operator of the ℓ1 norm is given by[

proxγf (v)
]
i

= Sγ(vi), (4.45)

where []i denotes the i-th element of the vector in the square bracket.
For a simple expression, we extend the definition of the scalar-valued
soft-thresholding operator (4.43) to vectors. For a vector v ∈ Rn, we define
the vector-valued soft-thresholding operator Sγ(v) by

[Sγ(v)]i ≜ Sγ(vi), (4.46)

where [Sγ(v)]i is the i-th element of Sγ(v). With this notation, the proximal
operator of the ℓ1 norm (4.45) is simply rewritten as

proxγ∥·∥1(v) = Sγ(v). (4.47)

Exercise 4.11. Let Q ∈ Rn×n be an orthogonal matrix. Prove that the
minimizer x∗ ∈ Rn of the following function

f(x) ≜ 1
2∥Qx − y∥2

2 + λ∥x∥1 (4.48)

is given by
x∗ = Sλ(Q⊤y). (4.49)

Note that Q is orthogonal if and only if

QQ⊤ = Q⊤Q = I. (4.50)

In summary, the proximal operator of the ℓ1 norm is the soft-thresh-
olding operator Sγ(v). If the absolute value of an element vi in v is less
than γ, then the element is set to be zero by the proximal operator. This
is an important property to understand why ℓ1 optimization gives a sparse
solution.

The word ‘soft’ means that the operator is continuous (see Figure 4.8).
We can also define the hard-thresholding operator by

Hλ(v) ≜

v, if |v| ≥ λ,

0, if |v| < λ.
(4.51)

76 Algorithms for Convex Optimization

0

v

Hλ(v)

λ

−λ

Figure 4.9: Hard-thresholding operator Hλ(v)

Figure 4.9 shows the graph of this operator. We can see from this figure, the
hard-thresholding operator is discontinuous. An interesting fact is that the
hard-thresholding operator is the proximal operator of the ℓ0 norm with
λ =

√
2γ. Strictly speaking, this is dubious since the proximal operator is

defined for proper, closed, and convex functions (see Definition 4.4), but
the ℓ0 norm is not convex. However, the hard-thresholding operator is very
useful to derive efficient algorithms for ℓ0-norm optimization. See Chapter
5 for details.

Exercise 4.12. Compute the proximal operator (4.19) of the ℓ0 norm, and
show that it is the hard-thresholding operator (4.51).

4.3 Proximal Splitting Methods for ℓ1 Optimization

In this section, we derive an efficient algorithm based on proximal splitting
to solve the ℓ1 optimization:

minimize
x∈Rn

∥x∥1 subject to Φx = y, (4.52)

where Φ ∈ Rm×n and y ∈ Rm are given. We assume that m < n and Φ
has full row rank, that is, rank(Φ) = m. The cost function is the ℓ1 norm,
which is obviously a proper, closed, and convex function. Then, let us
consider the constraint. Let C denote the set of vectors x ∈ Rn satisfying
the constraint Φx = y. That is,

C ≜
{
x ∈ Rn : Φx = y

}
. (4.53)

It is easy to prove that this set is a non-empty, closed, and convex set in
Rn if rank(Φ) = m.

4.3. Proximal Splitting Methods for ℓ1 Optimization 77

Exercise 4.13. Show the cost function ∥x∥1 in (4.52) is a proper, closed,
and convex function. Also, show the set C defined in (4.53) is a non-empty,
closed, and convex set in Rn.

Then, consider the indicator function IC(x) for C:

IC(x) =

0, if Φx = y,

∞, if Φx ̸= y.
(4.54)

By using this, the optimization problem in (4.52) is equivalently rewritten
as

minimize
x∈Rn

∥x∥1 + IC(x). (4.55)

Note that the functions ∥x∥1 and IC(x) are both proper, closed, and convex
functions, and hence the sum of them, ∥x∥1 + IC(x), is also proper, closed,
and convex.

Exercise 4.14. Suppose that two functions, f and g, are proper, closed,
and convex. Suppose also that dom(f) ∩ dom(g) ̸= ∅. Prove that f + g is
also a proper, closed, and convex function.

Note that for the optimization problem (4.55), we cannot obtain the
proximal operator of the cost function

f(x) ≜ ∥x∥1 + IC(x), (4.56)

in a closed form. In other words, f(x) is not proximable. That is, we cannot
directly apply the proximal algorithm (4.25) to this problem. However, the
proximal operators of the two functions

f1(x) ≜ ∥x∥1, f2(x) ≜ IC(x) (4.57)

can be obtained as the soft-thresholding operator in (4.47) and the projec-
tion operator onto C defined in (4.38), respectively. The idea is to split the
cost function as f = f1 + f2, and write an algorithm using the proximal
operators of f1 and f2 separately. Algorithms designed by this idea are
called proximal splitting algorithms. For the problem (4.55), we introduce
two proximal splitting algorithms in the following subsections.

4.3.1 Douglas-Rachford splitting algorithm

Let us consider the following optimization problem in a general form:

minimize
x∈Rn

f1(x) + f2(x), (4.58)

78 Algorithms for Convex Optimization

where f1 and f2 are proper, closed, and convex functions. The Douglas-
Rachford splitting algorithm for (4.58) is given as follows:

Douglas-Rachford splitting algorithm for (4.58)� �
Initialization: give an initial vector z[0] and a parameter γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = proxγf1(z[k]),
z[k + 1] = z[k] + proxγf2(2x[k + 1] − z[k]) − x[k + 1].

(4.59)

� �
From the algorithm, we can derive an algorithm for our unconstrained

problem (4.55). In our case, f1(x) = ∥x∥1 and f2(x) = IC(x), for which
the proximal operators are given by

proxγf1(v) = Sγ(v), proxγf2(v) = ΠC(v). (4.60)

Then the Douglas-Rachford splitting algorithm for the ℓ1 optimization
problem (4.52) is given as follows:

Douglas-Rachford splitting algorithm for (4.52)� �
Initialization: give an initial vector z[0] and a parameter γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = Sγ(z[k]),
z[k + 1] = z[k] + ΠC(2x[k + 1] − z[k]) − x[k + 1].

(4.61)

� �
In this algorithm, the projection operator ΠC on the hyperplane C defined
in (4.53) is given by

ΠC(v) = v + Φ⊤(ΦΦ⊤)−1(y − Φv). (4.62)

Note that ΦΦ⊤ is invertible since Φ has full row rank.

Exercise 4.15. Show that the projection operator ΠC for C defined in (4.53)
is given by (4.62).

The ℓ1 optimization problem (4.52) can be rewritten as a linear pro-
gramming problem, which can be efficiently solved by the well-known
interior-point method [54, Section 5.12.]. However, this method should
solve a system of linear equations at each step of the iteration, which
takes in general non-negligible computational time. On the other hand,
the Douglas-Rachford algorithm in (4.61) only requires

4.3. Proximal Splitting Methods for ℓ1 Optimization 79

• simple continuous mapping of the soft-thresholding function Sγ ,

• and linear computation of matrix-vector multiplication and vector
addition.

Thus, the Douglas-Rachford algorithm is efficient and easy to implement
compared to standard interior-point algorithms.

To consider the convergence of Douglas-Rachford splitting algorithm,
we define the relative interior ri(C) of a subset C ⊂ Rn by

ri(C) ≜ {x ∈ Rn : x ∈ C and ∃ ϵ > 0, Nϵ(x) ∩ aff(C) ⊂ C}, (4.63)

where Nϵ(x) is the ϵ-neighborhood of x, that is,

Nϵ ≜ {v ∈ Rn : ∥v − x∥2 < ϵ}, (4.64)

and aff(C) is the affine hull of C, that is, the set of all affine sets containing
C. Note that the relative interior is different from the interior of C that is
defined by

int(C) ≜ {x ∈ Rn : x ∈ C and ∃ ϵ > 0,Nϵ(x) ⊂ C}. (4.65)

For example, let us consider the disc

C = {(x1, x2, 0) ∈ R3 : x2
1 + x2

2 ≤ 1}, (4.66)

on the x1-x2 plane in R3. Then, the interior of C is empty by definition
(4.65), while the relative interior is

ri(C) = {(x1, x2, 0) ∈ R3 : x2
1 + x2

2 < 1}. (4.67)

Now, we introduce the convergence theorem [29] for the Douglas-
Rachford splitting algorithm.

Theorem 4.5. Suppose that f1 and f2 are proper, closed, and convex
functions that satisfy

ri
(
dom(f1)

)
∩ ri

(
dom(f2)

)
̸= ∅. (4.68)

Also, suppose that
f1(x) + f2(x) → ∞ as ∥x∥2 → ∞. (4.69)

Then each sequence {x[k]}∞
k=0 generated by the Douglas-Rachford

splitting algorithm converges to a solution to the optimization prob-
lem (4.58).

80 Algorithms for Convex Optimization

4.3.2 Dykstra-like splitting algorithm

Here we compute the proximal operator of f = f1 + f2 numerically. Let us
consider the following optimization problem:

minimize
x∈Rn

f1(x) + f2(x) + 1
2∥x − v∥2

2, (4.70)

where f1 and f2 are proper, closed, and convex functions. The solution
is given by x∗ = proxγ(f1+f2)(v) with γ = 1, but we assume f1 + f2 is
not proximable. To solve this, we adopt the Douglas-Rachford splitting
algorithm by splitting the cost function into f1 and f2 + 1

2∥ · −v∥2
2. Then

an algorithm called Dykstra-like splitting algorithm is obtained as follows:
Dykstra-like splitting algorithm for (4.70)� �

Initialization: set x[0] = v and p[0] = q[0] = 0; give a parameter
γ > 0.
Iteration: for k = 0, 1, 2, . . . do

z[k] = proxγf2(x[k] + p[k]),
p[k + 1] = x[k] + p[k] − z[k],
x[k + 1] = proxγf1(z[k] + q[k]),
q[k + 1] = z[k] + q[k] − x[k + 1].

(4.71)

� �
An important application of the Dykstra-like algorithm is to find the

projection of a point onto the intersection of two convex sets C1 and C2,
namely to find ΠC1∩C2(v). This is done by setting f1 = IC1 and f2 = IC2 ,
indicator functions defined in (4.37), for the optimization problem (4.70).
Since proxγIC1

= ΠC1 and proxγIC2
= ΠC2 , the algorithm is given by

z[k + 1] = ΠC1(x[k] + p[k]),
p[k + 1] = x[k] + p[k] − z[k],
x[k + 1] = ΠC2(z[k] + q[k]),
q[k + 1] = z[k] + q[k] − x[k + 1].

(4.72)

This is called the Dykstra projection algorithm, proposed by Dykstra [15].1
The name “Dykstra-like splitting” is actually after this algorithm. The
convergence theorem is given as follows [29].

1Note that Dykstra for this algorithm is different from Dijkstra who found a famous algorithm
for a shortest path in a network.

4.4. Proximal Gradient Methods for ℓ1 Regularization 81

Theorem 4.6. Suppose that f1 and f2 are proper, closed, and convex
functions that satisfy

dom(f1) ∩ dom(f2) ̸= ∅. (4.73)

Then each sequence {x[k]}∞
k=0 generated by the Dykstra-like split-

ting algorithm (4.71) converges to a solution to the optimization
problem (4.70).

Compared to the assumptions in Theorem 4.5 for Douglas-Rachford
splitting algorithm, the assumption (4.73) is weaker.

4.4 Proximal Gradient Methods for ℓ1 Regularization

We here consider an efficient algorithm for ℓ1 regularization (or LASSO):

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥x∥1. (4.74)

We assume that Φ ∈ Rm×n, y ∈ Rm, and λ > 0 are already given.

4.4.1 Algorithm

In (4.74), the first term 1
2∥Φx − y∥2

2 and the second term λ∥x∥1 are both
proper, closed, and convex functions of x. Also, the proximal operator
of the first term, a quadratic function of x, is obtained in a closed form
as described in Section 4.2.3 (see also Exercise 4.16 below). Hence, we
can directly apply the Douglas-Rachford splitting algorithm (4.59) to this
problem. Namely, we have the following iterative algorithm based on the
Douglas-Rachford splitting algorithm:

x[k + 1] =
(
Φ⊤Φ + γ−1I

)−1 (
Φ⊤y + γ−1z[k]

)
,

z[k + 1] = z[k] + Sγλ(2x[k + 1] − z[k]) − x[k + 1].
(4.75)

We note that the proximal operator of f(x) = 1
2∥Φx − y∥2

2 is given by

proxγf (v) =
(
Φ⊤Φ + γ−1I

)−1 (
Φ⊤y + γ−1v

)
. (4.76)

Exercise 4.16. Prove that the proximal operator of f(x) = 1
2∥Φx − y∥2

2 is
given by (4.76).

82 Algorithms for Convex Optimization

As we have seen before, the proximal operator is an “alternative” to
the gradient descent update as shown in (4.35). However, the first term
1
2∥Φx − y∥2

2 of (4.74) is a quadratic function of x, which is differentiable.
By using the gradient of 1

2∥Φx − y∥2
2 directly, we can develop an efficient

algorithm that surpasses the performance of the Douglas-Rachford splitting
algorithm. Here we introduce such an algorithm, along with an acceleration
method.

First, let us consider the following general problem:

minimize
x∈Rn

f1(x) + f2(x), (4.77)

where f1 is a differentiable and convex function satisfying dom(f1) = Rn,
and f2 is a proper, closed, and convex function. Note that f2 may not be
differentiable like the ℓ1 norm and the indicator function defined in (4.37).

For the optimization problem, we introduce the proximal gradient
algorithm, which is given as follows:

Proximal gradient algorithm for (4.77)� �
Initialization: give an initial vector x[0] and a real number γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = proxγf2

(
x[k] − γ∇f1(x[k])

)
. (4.78)� �

In this algorithm, γ > 0 is the step size of the update. The function ∇f1(x)
is the gradient of f1 at x ∈ Rn.

We offer a geometrical interpretation of the proximal gradient algorithm.
Let us define

ϕ(x) ≜ proxγf2

(
x − γ∇f1(x)

)
. (4.79)

Then, from the definition (4.19) of the proximal operator, we have

ϕ(x) = arg min
z∈Rn

{
f2(z) + 1

2γ
∥∥z −

(
x − γ∇f1(x)

)∥∥2
2

}
= arg min

z∈Rn

{
f̃1(z; x) + f2(z) + 1

2γ ∥z − x∥2
2

}
,

(4.80)

where
f̃1(z; x) ≜ f1(x) + ∇f1(x)⊤(z − x). (4.81)

Note that ∥∇f1(x)∥2
2 and f1(x) are constant for the minimization with

z, and hence ∥∇f1(x)∥2
2 is eliminated and f1(x) is added in (4.80). The

function f̃1(z; x) is a linear approximation of f1(z) around the point

4.4. Proximal Gradient Methods for ℓ1 Regularization 83

x

f1(z)

z
f̃1(z; x)

Figure 4.10: Linear approximation f̃1(z;x) of convex function f1(z) at x

x ∈ Rn. Figure 4.10 shows an example of the linear approximation for one-
dimensional case. From (4.80), the function ϕ(x) is the proximal operator
of the linearized function f̃1(z; x) plus f2(z), and the iteration (4.78) can
be interpreted as the proximal algorithm (4.24) for this approximated
function.

4.4.2 Convergence analysis and acceleration

Here we analyze the convergence of the proximal gradient algorithm. For
this, we define Lipschitz continuity. A function f : Rn → Rn is said to be
Lipschitz continuous over Rn if there exists a constant L > 0 such that the
following inequality

∥f(x) − f(y)∥2 ≤ L∥x − y∥2 (4.82)

holds for any vectors x,y ∈ Rn. When f is Lipschitz continuous, L is
called a Lipschitz constant, and the smallest L that satisfies (4.82) is called
the best Lipschitz constant.

Let us consider the optimization problem (4.77). We assume that the
gradient ∇f1 of f1 is Lipschitz continuous, that is, there exists L > 0 such
that the following inequality holds:

∥∇f1(x) − ∇f1(y)∥2 ≤ L∥x − y∥2, ∀x,y ∈ Rn. (4.83)

If function f1 satisfies (4.83), then f1 is said to be L-smooth. Assume that
the optimization problem (4.77) has an optimal solution x∗. Then we have
[122, Section 4.2]

x∗ = ϕ(x∗) = proxγf2

(
x∗ − γ∇f1(x∗)

)
. (4.84)

This implies that an optimal solution x∗ to (4.77) is also a fixed point
of mapping ϕ in (4.79). From this, the meaning of the iteration (4.78) is
now clear; this algorithm seeks the fixed point of ϕ.

84 Algorithms for Convex Optimization

Exercise 4.17. Consider a continuous function ϕ : Rn 7→ Rn. Assume that
there exists an initial vector x[0] ∈ Rn such that the iteration

x[k + 1] = ϕ(x[k]), k = 0, 1, 2, . . . , (4.85)

converges to x∗ ∈ Rn. Prove that x∗ is a fixed point of the mapping ϕ,
that is, x∗ = ϕ(x∗) holds:

In fact, the following theorem holds [7].

Theorem 4.7. Assume that f1 is L-smooth, that is, there exists
L > 0 such that (4.83) holds. Assume also that the step size γ > 0
satisfies

γ ≤ 1
L
. (4.86)

Then the sequence {x[k]} generated by the proximal gradient algo-
rithm (4.78) converges to a solution x∗ to (4.77), and we have

∥x[k + 1] − x∗∥2 ≤ ∥x[k] − x∗∥2, k = 0, 1, 2, . . . (4.87)

Moreover, we have

f(x[k]) − f(x∗) ≤ L∥x[0] − x∗∥2
2

2k , k = 0, 1, 2, . . . , (4.88)

where f(x) = f1(x) + f2(x).

By this theorem, the convergence rate of the proximal gradient algorithm
is O(1/k). Note that this rate is much slower than linear convergence (or
first-order convergence), with which the rate is O(rk) with |r| < 1.

Now, let us derive the proximal gradient algorithm of our ℓ1 regulariza-
tion (4.74). In our case, the two functions are

f1(x) = 1
2∥Φx − y∥2

2, f2(x) = λ∥x∥1, (4.89)

and the gradient of f1(x) is given by

∇f1(x) = Φ⊤(Φx − y). (4.90)

Also, the proximal operator of f2(x) = λ∥x∥1 is the soft-thresholding
operator (see Section 4.2.5):

proxγf2(v) = Sγλ(v). (4.91)

4.4. Proximal Gradient Methods for ℓ1 Regularization 85

From these, the proximal gradient algorithm for (4.74) is given as follows.
Proximal gradient algorithm (ISTA) for (4.74)� �

Initialization: give an initial vector x[0] and parameter γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = Sγλ
(
x[k] − γΦ⊤(Φx[k] − y)

)
. (4.92)� �

This algorithm is called the iterative shrinkage thresholding algorithm, or
ISTA for short. From (4.90), a Lipschitz constant of ∇f1 is given by

L = λmax(Φ⊤Φ) = σmax(Φ)2 = ∥Φ∥2, (4.93)

where λmax and σmax respectively denote the maximum eigenvalue and
the maximum singular value, and ∥Φ∥ is a matrix norm defined by ∥Φ∥ ≜
σmax(Φ). Note that if Φ ̸= 0, then ∥Φ∥ > 0. From (4.86) in Theorem 4.7,
if we choose γ to satisfy

0 < γ ≤ 1
∥Φ∥2 , (4.94)

then a solution to the ℓ1 regularization (4.74) is obtained after the simple
iteration of (4.92).

Theorem 4.7 implies that the error by ISTA decreases at the rate of
O(1/k). We can then accelerate the algorithm by using not only x[k] but
also the previous x[k − 1] in the k-th step. The following algorithm is the
accelerated iteration called FISTA (Fast ISTA), which converges at the
rate of O(1/k2) [7], [157].

Fast ISTA (FISTA) for (4.74)� �
Initialization: give initial vectors x[0], z[0], initial number t[0], and
parameter γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = Sγλ
(
z[k] − γΦ⊤(Φz[k] − y)

)
,

t[k + 1] = 1 +
√

1 + 4t[k]2
2 ,

z[k + 1] = x[k + 1] + t[k] − 1
t[k + 1](x[k + 1] − x[k]).

(4.95)

� �
It is surprising that such a simple modification leads to an improvement

of computational efficiency from O(1/k) to (1/k2). However, it is known

86 Algorithms for Convex Optimization

that O(1/k2) is optimal and one cannot accelerate the algorithm any
further [122, Section 4.3].

4.4.3 Noisy group testing by FISTA

Here we consider the problem of group testing discussed in Section 2.4. We
assume the same parameter settings in Section 3.3.2. Namely, the number
of individuals is n = 1000, among which s = 5 individuals are infected.
The number of tests is m = 100 and the testing matrix Φ ∈ {0, 1}m×n is
chosen randomly. Then, we consider a noisy observation, given by

y = Φx + n, (4.96)

where n ∈ Rm is a random vector such that each element is independently
sampled from the normal distribution with 0 mean and 0.1 variance. From
this noisy observation, we reconstruct the original x by solving the ℓ1
regularization

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥x∥1. (4.97)

The regularization parameter is λ = 1.
We solve (4.97) by FISTA in (4.95). We set the initial vectors as

x[0] = z[0] = 0 and the initial number t[0] = 0. We choose the step-size
parameter γ = 1/∥Φ∥2 to satisfy the inequality (4.94).

Figure 4.11 shows the reconstruction error ∥xorig − x[k]∥2 between the
original vector xorig and the estimated vector x[k], k = 0, 1, 2, . . . by FISTA
iteration (4.95). We can see that the error converges to a value after 5000
iterations. We note that the error does not converge to zero due to not
only the noise but also the choice of regularization parameter λ. We also
note that the error is not monotonically decreasing.

With the iteration, we obtain the estimated vector x[5000], which is
shown in Figure 4.12. Since the observation vector y includes noise, the
reconstructed vector shows some noise as well. However, the indices of the
five largest elements of the estimated vector x̃ match the indices of the
non-zero elements of the original vector. Therefore, we can exactly predict
the infected 5 individuals from the noisy observation.

The Python program is given below.

1 import cvxpy as cp
2 import numpy as np
3 import matplotlib . pyplot as plt

4.4. Proximal Gradient Methods for ℓ1 Regularization 87

0 1000 2000 3000 4000 5000
error

10 1

100

Figure 4.11: The reconstruction error ∥xorig − x[k]∥2 between the original vector xorig and
the estimated vector x[k], k = 0, 1, 2, . . . by FISTA.

4

5 ## Parameter settings
6 # Vector size (number of individuals)
7 n = 1000
8 # Number of positives
9 s = 5

10 # Random seed
11 np. random .seed (1)
12 # Original vector (n- dimensional , k- sparse)
13 x_orig = np.zeros(n)
14 S = np. random . randint (n,size=s)
15 x_orig [S] = 1
16 # Number of tests
17 m = 100
18 # Testing matrix
19 Phi = np. random . randint (2, size =(m, n))

88 Algorithms for Convex Optimization

0 250 500 750 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12: The original vector xorig (left) and the estimated vector x̃ = x[5000] by FISTA.

20 # Result vector
21 y = Phi @ x_orig + 0.1 * np. random .randn(m)
22

23 ## Optimization by FISTA
24 # Soft - thresholding function
25 def St(lmbd , v):
26 n = v.shape [0]
27 Sv = np.zeros(n)
28 i = np.abs(v) > lmbd
29 Sv[i] = v[i] - np.sign(v[i]) * lmbd
30 return Sv
31

32 # parameter settings
33 lmbd = 1
34 Phi_norm = np. linalg .norm(Phi ,2)
35 gamma = 1/ Phi_norm **2 # step size
36 max_itr = 5000 # number of iterations

4.4. Proximal Gradient Methods for ℓ1 Regularization 89

37 x = np.zeros(n) # initial guess for x
38 z = x # initial guess for z
39 t = 0 # initial guess for t
40

41 error = np.zeros(max_itr) # residual
42

43 # FISTA iteration
44 for k in range(max_itr):
45 error[k] = np. linalg .norm(x_orig - x)
46 res = Phi @ z - y
47 x2 = St(gamma*lmbd , z - gamma*Phi.T @ res)
48 t2 = (1 + np.sqrt (1+4*t**2))/2
49 z = x2 + (t -1)/t2 * (x2 - x)
50 x = x2
51 t = t2
52

53 ## Error plot
54 fig = plt. figure ()
55 plt. semilogy (error)
56 plt. xlabel ("k")
57 plt. xlabel (" error ")
58

59 ## Reconstructed vector
60 fig = plt. figure ()
61 ax1 = fig. add_subplot (1, 2, 1)
62 ax1.stem(x_orig)
63 ax2 = fig. add_subplot (1, 2, 2)
64 ax2.stem(x)
65

66 ## Result
67 print(np. nonzero (x_orig))
68 x_est = np.round(x)
69 print(x_est. nonzero ())

90 Algorithms for Convex Optimization

4.5 Generalized LASSO and ADMM

In this section, we consider an extension of ℓ1 regularization, with a
generalized regularization term:

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥Ψx∥1, (4.98)

where Ψ is a matrix. We call this optimization problem the generalized
LASSO. If Ψ is the identity matrix, this problem is reduced to the ℓ1

regularization, or LASSO, in (4.74). A problem is that the regularization
term ∥Ψx∥1 is in general not proximable, that is, it is difficult to obtain a
closed form of the proximal operator of ∥Ψx∥1. Therefore, we do not directly
apply Douglas-Rachford splitting nor the proximal gradient method to this
problem. In this section, we introduce an alternative splitting method for
this case.

4.5.1 Algorithm

Aside from the generalized LASSO in (4.98), let us consider a general
optimization problem:

minimize
x∈Rn,z∈Rp

f1(x) + f2(z) subject to z = Ψx, (4.99)

where f1 : Rn → R ∪ {∞} and f2 : Rp → R ∪ {∞} are proper, closed,
and convex functions, and Ψ ∈ Rp×n. The following algorithm, called
Alternating Direction Method of Multipliers, or ADMM for short, is an
efficient algorithm to solve (4.99):

ADMM for (4.99)� �
Initialization: give initial vectors z[0], v[0] ∈ Rp, and real number
γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] := arg min
x∈Rn

{
f1(x) + 1

2γ
∥∥Ψx − z[k] + v[k]

∥∥2
}
, (4.100)

z[k + 1] := proxγf2

(
Ψx[k + 1] + v[k]

)
, (4.101)

v[k + 1] := v[k] + Ψx[k + 1] − z[k + 1]. (4.102)� �
To analyze this algorithm, we introduce the augmented Lagrangian:

Lρ(x, z,λ) = f1(x) + f2(z) + λ⊤(Ψx − z) + ρ

2∥Ψx − z∥2
2, (4.103)

4.5. Generalized LASSO and ADMM 91

where λ is the Lagrange multiplier and ρ is a positive constant. The term
‘augmented’ means that the function (4.103) is augmented from the usual
Lagrangian

L(x, z,λ) = f1(x) + f2(z) + λ⊤(Ψx − z), (4.104)
by adding the term ρ

2∥Ψx − z∥2
2. Note that the augmented Lagrangian

becomes strongly convex with respect to variables x and z thanks to the
additional term ρ

2∥Ψx − z∥2
2 if Ψ⊤Ψ is positive definite.

Now, let γ ≜ ρ−1 and v[k] ≜ γλ[k]. Then the ADMM algorithm
(4.100)–(4.102) can be rewritten in terms of augmented Lagrangian as

x[k + 1] = arg min
x∈Rn

Lρ(x, z[k],λ[k]), (4.105)

z[k + 1] = arg min
z∈Rp

Lρ(x[k + 1], z,λ[k]), (4.106)

λ[k + 1] = λ[k] + ρ(Ψx[k + 1] − z[k + 1]), k = 0, 1, 2, . . . (4.107)

Exercise 4.18. Show that the algorithm in (4.105)–(4.107) is equivalent
to (4.100)–(4.102) under the transformation γ = ρ−1, v[k] = γλ[k].

The important point of this algorithm is that the optimization for
variables x, z, and λ is decoupled. The first step (4.105) is the minimization
of the augmented Lagrangian for the variable x with fixed z and λ. The
second step (4.106) is for z with fixed x and λ. The third step (4.106)
updates the variable λ using the previously computed values of x and z.

The following is a convergence theorem for the ADMM algorithm [13],
[41]:

Theorem 4.8 (Convergence of ADMM). Consider the optimization
problem in (4.99). Assume that f1 and f2 are proper, closed, and
convex functions. Assume also that the Lagrangian (4.104) has a
saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗, z∗,λ) ≤ L(x∗, z∗,λ∗) ≤ L(x,z,λ∗), ∀x,z,λ. (4.108)

Then, the ADMM algorithm (4.100)–(4.102) satisfies the following
convergence properties:

• The residual

r[k] ≜ Ψx[k] − z[k], k = 0, 1, 2, . . . , (4.109)

converges to 0 as k → ∞. This implies that the iterates con-
verge to a feasible solution to (4.99).

92 Algorithms for Convex Optimization

• The objective value f1(x[k])+f2(z[k]) converges to the optimal
value

f∗ ≜ inf
x∈Rn,z∈Rp

Ψx=z

f1(x) + f2(z). (4.110)

• If Ψ⊤Ψ is positive definite, then the sequence {(x[k], z[k])}
converges to an optimal solution (x∗, z∗) to the optimization
problem (4.99).

We can now derive the ADMM algorithm for the generalized LASSO
(4.98). First, since f1(x) = 1

2∥Φx − y∥2
2, the minimization in (4.100) be-

comes

arg min
x∈Rn

{1
2∥Φx − y∥2

2 + 1
2γ ∥Ψx − z[k] + v[k]∥2

2

}
=
(

Φ⊤Φ + 1
γ

Ψ⊤Ψ
)−1 (

Φ⊤y + 1
γ

Ψ⊤(z[k] − v[k])
)
. (4.111)

Exercise 4.19. Prove the equality in (4.111).

Next, since f2(x) = λ∥x∥1, the proximal operator in (4.101) is the
soft-thresholding function. In summary, the ADMM algorithm for the
generalized LASSO (4.98) is given as follows.

ADMM for generalized LASSO (4.98)� �
Initialization: give initial vectors z[0], v[0] ∈ Rp, and real number
γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] =
(

Φ⊤Φ + 1
γ

Ψ⊤Ψ
)−1 (

Φ⊤y + 1
γ

Ψ⊤(z[k] − v[k])
)
,

(4.112)
z[k + 1] = Sγλ

(
Ψx[k + 1] + v[k]

)
, (4.113)

v[k + 1] = v[k] + Ψx[k + 1] − z[k + 1]. (4.114)� �
If we compute the inverse matrix (Φ⊤Φ+γ−1Ψ⊤Ψ)−1 offline (i.e., before

the iteration), the above ADMM algorithm just includes matrix-vector
multiplication, vector addition, and element-wise soft-thresholding. By this
property, one can implement this algorithm in a small device and execute
very fast. Moreover, if the matrix Φ⊤Φ + γ−1Ψ⊤Ψ is a tridiagonal matrix,

4.5. Generalized LASSO and ADMM 93

the linear equation (
Φ⊤Φ + 1

γ
Ψ⊤Ψ

)
x = v (4.115)

with unknown x can be solved in O(n) [48, Section 4.3], and the first step
(4.112) can be computed very efficiently.

4.5.2 Total variation denoising

Here we consider total variation denoising for images, which can achieve
noise reduction and edge preserving at the same time. Let us assume that
we have a noisy image Y ∈ Rn×m, where each element in Y is the pixel
value of the image of size n×m. From 2D image data Y , we pull out each
column vector, say y ∈ Rn, and solve the following optimization problem,
one by one:

minimize
x∈Rn

∥x − y∥2
2 + λ

n−1∑
i=1

|xi+1 − xi|. (4.116)

The first term is the ℓ2 error between x and y for proximity to the data,
while the second term is the ℓ1 norm of the difference, called the total
variation, for flatness of the result. The optimization problem (4.116) is a
special case of the generalized LASSO (4.98) with Φ = I (identity matrix)
and

Ψ =


−1 1 0 . . . 0

0 −1 1
... 0
0 . . . 0 −1 1

 . (4.117)

We can directly exploit ADMM (4.112)–(4.114) for this problem. Moreover,
the matrix Φ⊤Φ + γ−1Ψ⊤Ψ is a tridiagonal matrix, and the algorithm can
be executed very fast, as mentioned above.

The total variation, which is described by ∥Ψx∥1, can be explained
as a convex approximation of the ℓ0 total variation ∥Ψx∥0. Minimizing
the ℓ0 total variation leads to a sparse difference vector, and hence the
optimization result can be maximally flat (i.e., the difference = 0 in all
but a few pixels). A few nonzero differences come from image edges. That
is, we assume that there are just a few edges in an image.

Now, we show the results of total variation denoising. Figure 4.13 shows
the original image and a noisy image. The noise in the noisy image is
so-called salt-and-pepper noise with noise density 0.05. Roughly speaking,

94 Algorithms for Convex Optimization

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Original Image

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Noisy Image

Figure 4.13: Original image (left) and noisy image (right)

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Restored Image

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Restored Image

Figure 4.14: Total variation denoising with λ = 50 (left), λ = 100 (right)

about 5% of the original pixels are randomly replaced by black or white
pixels.

From the noisy image, we remove noise by the total variation denoising.
We use the ADMM algorithm with γ = 1. The maximum number of
iterations in ADMM is set to N = 500. For the 2-D image, we first run
total variation denoising horizontally and then vertically. That is, we
run the algorithm twice for one image. Figure 4.14 shows the results of
denoising with λ = 50 and λ = 100. If you take larger λ, the variation
between adjacent pixels will be smaller. Comparing images with λ = 50
and λ = 100 in Figure 4.14, the image with λ = 100 gives an impression
of more smoothness than that with λ = 50. This effect is much more
perceptible when λ = 200. Figure 4.15 shows the result. The total variation
term is too strong in this case, and the restored image is now unacceptable.

In summary, to obtain a good result, you should carefully choose the
parameter λ, which affects the quality of denoising. However, there is no

4.5. Generalized LASSO and ADMM 95

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Restored Image

Figure 4.15: Result of total variation denoising with λ = 200

general rule for optimal λ, and you should choose λ by trial and error.
A Python program for this simulation is given below. You can experi-

ment with the total variation denoising by yourself.

1 import numpy as np
2 from PIL import Image
3 import matplotlib . pyplot as plt
4 from scipy. sparse import eye , diags , kron
5 from scipy. sparse . linalg import spsolve
6

7 ## Settings
8 # Soft - thresholding function
9 def soft_thresholding (lam , X):

10 return np.sign(X) * np. maximum (np.abs(X) - lam
, 0)

11

12 # Read image and convert to grayscale
13 img = Image.open(’cat.jpg ’). convert (’L’)
14 X_orig = np.array(img)
15 n, m = X_orig .shape
16

17 # Add salt and pepper noise
18 np. random .seed (1)
19 Y = X_orig .copy ()
20 num_salt = np.ceil (0.05 * Y.size * 0.5)
21 coords = [np. random . randint (0, i - 1, int(num_salt

)) for i in Y.shape]

96 Algorithms for Convex Optimization

22 Y[coords [0], coords [1]] = 255
23 Y[coords [1], coords [0]] = 0
24

25 # Display original and noisy images
26 plt. figure ()
27 plt. imshow (X_orig , cmap=’gray ’)
28 plt.title(’ Original Image ’)
29 plt.show ()
30

31 plt. figure ()
32 plt. imshow (Y, cmap=’gray ’)
33 plt.title(’Noisy Image ’)
34 plt.show
35

36 ## Total variation denoising
37 # Denoising parameters
38 lambda_val = 50
39 gamma = 1
40 N = 500
41 Phi = eye(n)
42 Psi = -diags ([np.ones(n)], [0]) + diags ([np.ones(n

- 1)], [1])
43

44 # Matrix M
45 M = (Phi.T * Phi + (1 / gamma) * (Psi.T * Psi)).

tocsc ()
46

47 # Optimization by ADMM
48 X_res = np. zeros_like (Y, dtype=float)
49 Z = np. zeros_like (Y, dtype=float)
50 V = np. zeros_like (Y, dtype=float)
51 W = Phi.T @ Y. astype (float)
52 for k in range(N):
53 X_res = spsolve (M, W + gamma * Psi.T @ (Z - V)

)
54 P = Psi @ X_res + V
55 Z = soft_thresholding (gamma * lambda_val , P)
56 V = P - Z

4.6. Further Readings 97

57

58 # Horizontal processing
59 W = np.rot90(X_res)
60 for k in range(N):
61 X_res = spsolve (M, W + gamma * Psi.T @ (Z - V)

)
62 P = Psi @ X_res + V
63 Z = soft_thresholding (gamma * lambda_val , P)
64 V = P - Z
65 X_res = np.rot90(X_res , -1)
66

67 ## Show the restored image
68 plt. figure ()
69 plt. imshow (np.clip(X_res.round (), 0, 255). astype (

np.uint8), cmap=’gray ’)
70 plt.title(’ Restored Image ’)
71 plt.show ()

4.6 Further Readings

To study convex optimization deeply, you can choose a renowned book by
Boyd and Vandenberghe [14]. The PDF version of the book, lecture slides,
and Python programs for exercises can be available in
http://web.stanford.edu/~boyd/cvxbook/
You can also choose a recent book by Bertsekas [9]. This book devotes
much space to recent algorithms such as the proximal gradient algorithms
and ADMM. If you need deep and mathematical knowledge of convex
optimization at a research level, you can consult the book [6] by Bauschke
and Combettes. For proximal splitting algorithms, you can refer to [29],
[122]. The book chapter [7] by Beck and Teboulle is a nice introduction to
ISTA and FISTA. For ADMM, you can read the book [13] by Boyd et al.

http://web.stanford.edu/~boyd/cvxbook/

Chapter 5

Greedy Algorithms

In the previous chapter, we have formulated the problem of sparse rep-
resentation as optimization problems with ℓ1 norm, for which there are
efficient and fast algorithms. The idea was to approximate the non-convex
and discontinuous ℓ0 norm by the convex ℓ1 norm. In this chapter, we
explore alternative algorithms that directly solve ℓ0-norm optimization
problems by using greedy methods.

Key ideas of Chapter 5� �
• Greedy algorithms are available to directly solve ℓ0 optimization.

• The greedy algorithms introduced in this chapter show the linear
convergence, which are much faster than the proximal splitting
algorithms.

• A local optimal solution is obtained by a greedy algorithm, which
is not necessarily a global optimizer.� �

5.1 ℓ0 Optimization

Let us consider the following ℓ0 optimization problem:

minimize
x∈Rn

∥x∥0 subject to Φx = y, (5.1)

where we assume Φ ∈ Rm×n and y ∈ Rm are given. To consider this
optimization problem, let us first define the mutual coherence of a matrix.

100 Greedy Algorithms

θij

φi

φj

θij

φiφj

Figure 5.1: Angle θij between two lines along with ϕi and ϕj : coherent vectors (left) and
incoherent vectors (right)

Definition 5.1. For a matrix Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rm×n with
ϕi ∈ Rm, i = 1, 2, . . . , n, we define the mutual coherence µ(Φ) by

µ(Φ) ≜ max
i,j=1,...,n

i̸=j

|⟨ϕi,ϕj⟩|
∥ϕi∥2∥ϕj∥2

. (5.2)

The mutual coherence is the maximum value of the absolute value of
the inner product of ϕi/∥ϕi∥2 and ϕj/∥ϕj∥2. That is,

µ(Φ) = max
i,j=1,...,n

i̸=j

∣∣∣∣∣
〈

ϕi

∥ϕi∥2
,

ϕj

∥ϕj∥2

〉∣∣∣∣∣ . (5.3)

The value
〈

ϕi
∥ϕi∥2

,
ϕj

∥ϕj∥2

〉
is the cosine of the angle θij between two lines

along with ϕi and ϕj . If the angle is small (i.e. coherent), then this value
is large (close to 1), and if the angle is large (close to 90◦, incoherent),
then the value is almost 0. Figure 5.1 illustrates these properties. Hence,
the mutual coherence is described as

µ(Φ) = max
i,j=1,...,n

i̸=j

| cos θij |. (5.4)

Roughly speaking, if the vectors ϕ1, . . . ,ϕn are uniformly spread in Rm,
then the mutual coherence µ(Φ) is small. On the other hand, if some
vectors in Φ are coherent like a tassel, then µ(Φ) is large. Figure 5.2 shows
examples of dictionaries {ϕ1,ϕ2,ϕ3} with both large and small values of
µ(Φ).

From Cauchy-Schwartz inequality

|⟨x,y⟩| ≤ ∥x∥2∥y∥2, ∀x,y ∈ Rm, (5.5)

5.1. ℓ0 Optimization 101

φ1 φ2

φ3

φ1 φ2

φ3

Figure 5.2: Dictionary {ϕ1,ϕ2,ϕ3} with large µ(Φ) (left) and small µ(Φ) (right)

the maximum value of the mutual coherence is 1. Since the equality in
(5.5) holds if and only if the two vectors x and y are parallel, we have
µ(Φ) = 1 if and only if there exist parallel vectors in {ϕ1,ϕ2, . . . ,ϕn}. On
the other hand, the mutual coherence is always non-negative, and µ(Φ) = 0
if ϕ1,ϕ2, . . . ,ϕn are mutually orthogonal.

By using the mutual coherence, we can characterize the solution of the
ℓ0 optimization (5.1) [43, Theorem 2.5]:

Theorem 5.1. Suppose y ̸= 0. If there exists a vector x ∈ Rn that
satisfies the linear equation Φx = y, and

∥x∥0 <
1
2

(
1 + 1

µ(Φ)

)
, (5.6)

then x is the sparsest solution of the linear equation.

By this theorem, let us consider properties of the solution(s) of the ℓ0
optimization problem in (5.1).

First, let us assume µ(Φ) < 1. That is, there are no parallel vectors in
{ϕ1,ϕ2, . . . ,ϕn}. Then, we have

1
2

(
1 + 1

µ(Φ)

)
> 1, (5.7)

and hence if there exists a 1-sparse solution x (i.e. ∥x∥0 = 1) of equation
Φx = y, then this is the sparsest solution from Theorem 5.1. Now, we have

y = Φx = x1ϕ1 + x2ϕ2 + · · · + xnϕn, (5.8)

and hence the 1-sparse solution is parallel to one of ϕ1,ϕ2, . . . ,ϕn. From
this, we find ϕi that is parallel to y. This is formulated as a problem to

102 Greedy Algorithms

find an index i ∈ {1, 2, . . . , n} that minimizes the error e(i) defined by

e(i) ≜ min
x∈R

∥xϕi − y∥2
2. (5.9)

If there exists x with ∥x∥0 = 1, then there exists an index i ∈ {1, 2, . . . , n}
that achieves e(i) = 0. Now, the minimum value of (5.9) can be easily
obtained as follows:

e(i) = min
x∈R

∥xϕi − y∥2
2

= min
x∈R

{
⟨ϕi,ϕi⟩x2 − 2⟨ϕi,y⟩x+ ⟨y,y⟩

}
= min

x∈R

{
∥ϕi∥2

2

(
x− ⟨ϕi,y⟩

∥ϕi∥2
2

)2
+ ∥y∥2

2 − ⟨ϕi,y⟩2

∥ϕi∥2
2

}

= ∥y∥2
2 − ⟨ϕi,y⟩2

∥ϕi∥2
2
.

(5.10)

From this formula, we can find one index i∗ that satisfies e(i∗) = 0 (if it
exists) by computing e(i) for i = 1, 2, . . . , n. Then we have

y = x∗ϕi∗ , x∗ ≜
⟨ϕi∗ ,y⟩
∥ϕi∗∥2

2
, (5.11)

and the corresponding 1-sparse vector x∗ is given by

x∗ = [0, . . . , 0,
i∗

∨
x∗, 0, . . . , 0]⊤. (5.12)

This computation requires O(n) computational time at the worst case.
Let us generalize this observation. Assume that there exists a natural

number k that satisfies
µ(Φ) < 1

2k − 1 . (5.13)

Then we have
1
2

(
1 + 1

µ(Φ)

)
>

1
2(1 + 2k − 1) = k. (5.14)

Assume also that there exists a k-sparse solution (i.e. ∥x∥0 ≤ k) of the
linear equation Φx = y. From Theorem 5.1, this is the sparsest solution.
Then, the vector y is a linear combination of k vectors in the dictionary
{ϕ1,ϕ2, . . . ,ϕn}. As we have seen in Section 2.5 in Chapter 2 (p. 27), to
find the k-sparse solution by the exhaustive search, we need

(n
k

)
or O(nk)

computations, which cannot be acceptable in large-scale problems.
For such problems, a method called the greedy method is available. This

method is an iterative method for a global solution, in which the locally

5.2. Orthogonal Matching Pursuit 103

optimal choice is made at each stage. Although this method does not always
give a global solution, this method is a powerful tool for combinatorial
problems. In the next section, we introduce greedy algorithms for the ℓ0
optimization problem in (5.1).

5.2 Orthogonal Matching Pursuit

5.2.1 Matching pursuit (MP)

First, we introduce the simplest greedy algorithm called matching pursuit
(MP for short) to solve the ℓ0 optimization problem in (5.1). This algorithm
iteratively seeks a 1-sparse vector that is a solution of a local ℓ0 optimiza-
tion problem. As mentioned above, a 1-sparse optimal vector is easily
obtained with O(n) computations. Matching pursuit aims at finding an
optimal solution by iteratively solving a series of simpler local optimization
problems.

The algorithm of matching pursuit iteratively approximates the solution
of linear equation Φx = y by decreasing the residual r[k] = y − Φx[k] at
each step. The procedure is shown as follows:

1. Find a 1-sparse vector x[1] that minimizes ∥Φx − y∥2.

2. For k = 1, 2, 3, . . . do

• Compute the residual r[k] = y − Φx[k].

• Find a 1-sparse vector x∗ that minimizes ∥Φx − r[k]∥2 and set

x[k + 1] = x[k] + x∗.

At the first step, we seek a 1-sparse vector x[1] that minimizes ∥Φx−y∥2.
Let x[1] be the non-zero element of x[1] and i[k] the corresponding index,
that is,

x[1] =
[
0, . . . , 0,

i[1]
∨
x[1], 0, . . . , 0

]⊤ = x[1]ei[1], (5.15)

where ei, i ∈ {1, . . . , n} is the standard basis in Rn defined by

ei ≜
[
0, . . . , 0,

i
∨
1, 0, . . . , 0

]⊤ ∈ Rn. (5.16)

104 Greedy Algorithms

φ2

φ1

φ3

y

x[1]φ2

r[1]

Figure 5.3: Vector ỹ[1] = x[1]ϕ2 with i[1] = 2 that is the best 1-sparse approximation of y.
The residual vector r[1] is orthogonal to ϕ2.

Then, from (5.10), i[1] and x[1] are easily obtained as

i[1] = arg min
i∈{1,...,n}

e(i)

= arg min
i∈{1,...,n}

{
∥y∥2

2 − ⟨ϕi,y⟩2

∥ϕi∥2
2

}

= arg max
i∈{1,...,n}

⟨ϕi,y⟩2

∥ϕi∥2
2
,

x[1] =
⟨ϕi[1],y⟩
∥ϕi[1]∥2

2
.

(5.17)

The residual is given by

r[1] = y − Φx[1] = y − x[1]ϕi[1], (5.18)

and we have
y = x[1]ϕi[1] + r[1]. (5.19)

We can easily check (see Exercise 5.1 below) that the residual vector r[1]
is orthogonal to ϕi[1], and hence we have

∥y∥2
2 = ∥x[1]ϕi[1]∥2

2 + ∥r[1]∥2
2. (5.20)

If the residual ∥r[1]∥2 is sufficiently small, then

ỹ[1] ≜ x[1]ϕi[1] = Φx[1] (5.21)

is a good approximation of y. Figure 5.3 illustrates this observation.

Exercise 5.1. Prove that the residual vector r[1] is orthogonal to ϕi[1].
Also prove that the equation (5.20) holds.

At the second step, we seek a 1-sparse vector that is the best approxi-
mation of the residual vector r[1] in (5.18). The 1-sparse vector is easily

5.2. Orthogonal Matching Pursuit 105

φ2

φ1

φ3

y

x[1]φ2

r[1]
x[2]φ3

r[2]

Figure 5.4: Vector x[2]ϕ3 with i[2] = 3 that is the best 1-sparse approximation of the residual
vector r[1]. The residual vector r[2] is orthogonal to ϕ3, and y = x[1]ϕ2 + x[2]ϕ3 + r[2] holds.

obtained by (5.10) with r[1] instead of y. Let x[2] be the 1-sparse vector,
x[2] its non-zero element, and i[2] the corresponding index. Then we have

i[2] = arg max
i∈{1,...,n}

⟨ϕi, r[1]⟩2

∥ϕi∥2
2

, x[2] =
⟨ϕi[2], r[1]⟩

∥ϕi[2]∥2
2
. (5.22)

The residual vector r[2] is given by

r[2] = r[1] − Φx[2] = r[1] − x[2]ϕi[2], (5.23)

and from (5.19), we have

y = x[1]ϕi[1] + x[2]ϕi[2] + r[2]. (5.24)

It is easily shown that ϕi[2] and r[2] are orthogonal to each other, and

∥r[1]∥2
2 = ∥x[2]ϕi[2]∥2

2 + ∥r[2]∥2
2. (5.25)

From this with (5.20), we have

∥y∥2
2 = ∥x[1]ϕi[1]∥2

2 + ∥x[2]ϕi[2]∥2
2 + ∥r[2]∥2

2. (5.26)

Now we obtain a 2-sparse vector

x[2] ≜
[
0, . . . , 0,

i[1]
∨
x[1], 0, . . . , 0,

i[2]
∨
x[2], 0, . . . , 0

]⊤ = x[1]ei[1] + x[2]ei[2], (5.27)

which gives a 2-sparse approximation of y as

ỹ[2] ≜ x[1]ϕi[1] + x[2]ϕi[2] = Φx[2]. (5.28)

Figure 5.4 illustrates this.
If we continue the same procedure, we have the following equation at

the k-th step:

y = x[1]ϕi[1] + x[2]ϕi[2] + · · · + x[k]ϕi[k] + r[k]. (5.29)

106 Greedy Algorithms

Define the k-sparse vector by

x[k] ≜ x[1]ei[1] + x[2]ei[2] + · · · + x[k]ei[k]. (5.30)

Then the vector y is approximated by using this k-sparse vector as

ỹ[k] ≜ x[1]ϕi[1] + x[2]ϕi[2] + · · · + x[k]ϕi[k] = Φx[k]. (5.31)

If the residual r[k] is sufficiently small, we can terminate the algo-
rithm at iteration k. This yields a k-sparse approximated solution to the
ℓ0 optimization problem in (5.1). The exhaustive search requires O(nk)
computations to obtain a k-sparse vector, while matching pursuit needs
just O(nk) computations.

We summarize the algorithm of matching pursuit as follows:
MP for ℓ0 optimization (5.1)� �

Initialization: set x[0] = 0, r[0] = y, and k = 1.
Iteration: while ∥r[k]∥2 ≥ eps, do

i[k] := arg max
i∈{1,...,n}

⟨ϕi, r[k − 1]⟩2

∥ϕi∥2
2

,

x[k] :=
⟨ϕi[k], r[k − 1]⟩

∥ϕi[k]∥2
2

,

x[k] := x[k − 1] + x[k]ei[k],

r[k] := r[k − 1] − x[k]ϕi[k],

k := k + 1.

(5.32)

� �
In this algorithm, eps is the termination tolerance that should be fixed
beforehand.

Exercise 5.2. Prove that the following equality holds at the k-th step in
the MP algorithm:

∥y∥2
2 =

k∑
j=1

∥x[j]ϕi[j]∥2
2 + ∥r[k]∥2

2. (5.33)

Moreover, show that if ϕ1,ϕ2, . . . ,ϕn are normalized, that is,

∥ϕi∥2 = 1, ∀i ∈ {1, 2, . . . , n}, (5.34)

then the following equality holds:

∥y∥2
2 =

k∑
j=1

|x[j]|2 + ∥r[k]∥2
2. (5.35)

5.2. Orthogonal Matching Pursuit 107

The following theorem gives the convergence property of the MP algo-
rithm [89].

Theorem 5.2. Assume that dictionary {ϕ1,ϕ2, . . . ,ϕn} has m lin-
early independent vectors (i.e. rank(Φ) = m). Then there exists a
constant c ∈ (0, 1) such that

∥r[k]∥2
2 ≤ ck∥y∥2

2, k = 0, 1, 2, (5.36)

From this theorem, it follows that the residual r[k] monotonically
decreases and

lim
k→∞

r[k] = 0 (5.37)

holds.
The convergence rate in (5.36) is first-order or linear, and the residual

decreases exponentially, that is, O(ck). This rate is much faster than FISTA
in (4.95) (p. 85) for the ℓ1 regularization, which has O(1/k2) convergence.

5.2.2 Orthogonal matching pursuit (OMP)

We have seen that the residual r[k] by the matching pursuit (MP) algorithm
(5.32) decreases very fast. However, in general, it does not always achieve
r[k] = 0 in a finite number of iterations, and the output vector x[k]
for large k, or limk→∞ x[k] may not be sparse. This is because MP may
choose an index i[k] that was already chosen in previous steps. Orthogonal
Matching Pursuit (OMP) is an algorithm to improve MP to achieve a finite
number of iterations to obtain a sparse solution. This is done by removing
an index from candidates if it was once chosen. Let us see the procedure
of OMP precisely.

At the k-th step in MP, we choose the index by

i[k] = arg max
i∈{1,...,n}

⟨ϕi, r[k − 1]⟩2

∥ϕi∥2
2

, r[0] = y, k = 1, 2, . . . (5.38)

To memorize indices that were chosen in the previous steps, we define Sk
as the set of indices chosen by the k-th step:

Sk = Sk−1 ∪ {i[k]}, S0 = ∅, k = 1, 2, . . . (5.39)

Also, let us define a linear subspace Ck of Rm spanned by vectors ϕi, i ∈ Sk,

108 Greedy Algorithms

φ2

φ1

y

Ck = span{φi : i ∈ Sk}

ỹ[k]

r[k]

Figure 5.5: The k-th step of OMP: find the best approximation ỹ[k] of y in the linear subspace
Ck = span{ϕi : i ∈ Sk}. The residual vector r[k] = y − ỹ[k] is orthogonal to Ck.

that is,

Ck ≜ span{ϕi : i ∈ Sk} =

∑
i∈Sk

xiϕi : xi ∈ R

 . (5.40)

OMP approximates the vector y at each step by a vector in Ck, while MP
approximates it by just one vector ϕi[k]. More precisely, OMP chooses
a vector ỹ[k] in Ck that has the minimum ℓ2 distance from y. This is
obtained by the orthogonal projection of y onto Ck:

ỹ[k] = arg min
v∈Ck

∥v − y∥2
2 = ΠCk

(y), (5.41)

where ΠCk
is the projection operator onto Ck. Figure 5.5 illustrates this

projection at the k-th step.
Using the restriction notation,1 we can characterize the condition v ∈ Ck

as
v =

∑
i∈Sk

xiϕi = ΦSk
x̃, (5.42)

for some x̃ ∈ Rk. Note that #(Sk) = k holds as explained later. Then,
the projection in (5.41) is obtained by finding the coefficients of ỹ[k] with
respect to the basis functions ϕi, i ∈ Sk in Ck. That is, we find

x̃[k] = arg min
x̃∈Rk

1
2∥ΦSk

x̃ − y∥2
2. (5.43)

This is the least squares solution2

x̃[k] =
(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y. (5.44)

Note that the matrix Φ⊤
Sk

ΦSk
is always invertible (this will be explained

later). Then ỹ[k] is given by

ỹ[k] = ΦSk
x̃[k] = ΦSk

(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y. (5.45)
1For the restriction notation, see (2.51), (2.52), and (2.53) in Chapter 2 (p. 28).
2For the least squares solution, see Section 3.1.2 in Chapter 3 and equation (3.24).

5.2. Orthogonal Matching Pursuit 109

Define the coefficient vector x[k] ∈ Rn with respect to ϕi, i ∈ {1, 2, . . . , n}
by (

x[k]
)

Sk
= x̃[k],

(
x[k]

)
Sc

k
= 0, (5.46)

where Sck is the complement of Sk. Then we have

ỹ[k] = Φx[k]. (5.47)

The residual vector r[k] = y − ỹ[k] is given by

r[k] = y − ỹ[k] =
{
I − ΦSk

(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

}
y. (5.48)

It is easily shown that the residual vector r[k] is orthogonal to the linear
subspace Ck (see Figure 5.5), that is,

⟨v, r[k]⟩ = 0, ∀v ∈ Ck. (5.49)

This means that any vector ϕi in Ck will never be chosen by the maximiza-
tion at the next step:

i[k + 1] = arg max
i∈{1,2,...,n}

⟨ϕi, r[k]⟩2

∥ϕi∥2
2

= arg max
i∈{1,2,...,n}

ϕi ̸∈Ck

⟨ϕi, r[k]⟩2

∥ϕi∥2
2

, (5.50)

since ⟨ϕi, r[k]⟩ = 0 holds for any ϕi ∈ Ck, from (5.49). Also, we see that
ϕi, i ∈ Sk are always linearly independent since ϕi[k+1] ̸∈ Ck holds for any
k, and hence Φ⊤

Sk
ΦSk

is invertible. The name orthogonal matching pursuit
comes from this property of orthogonality.

We summarize the algorithm of OMP as follows.
OMP for ℓ0 optimization (5.1)� �

Initialization: set x[0] = 0, r[0] = y, S0 = ∅, and k = 1.
Iteration: while r[k] ̸= 0 do

i[k] := arg max
i∈{1,...,n}

⟨ϕi, r[k − 1]⟩2

∥ϕi∥2
2

,

Sk := Sk−1 ∪ {i[k]},

x̃[k] :=
(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y,

(x[k])Sk
:= x̃[k],

(x[k])Sc
k

:= 0,
r[k] := y − ΦSk

x̃[k],
k := k + 1.

(5.51)

� �

110 Greedy Algorithms

The following theorem shows that if there exists a sufficiently sparse
solution of the equation Φx = y, then OMP gives the solution of the ℓ0
optimization (5.1) in a finite number of iterations [43, Theorem 4.3]:

Theorem 5.3. Assume that Φ ∈ Rm×n is surjective, that is,
rank(Φ) = m. Assume also that there exists a vector x ∈ Rn

such that Φx = y and

∥x∥0 <
1
2

(
1 + 1

µ(Φ)

)
, (5.52)

where µ(Φ) is the mutual coherence of matrix Φ. Then, this vector
x is the unique solution of the ℓ0 optimization (5.1), and OMP gives
it in k = ∥x∥0 steps.

We should note that at each step of OMP we need to compute the
matrix inversion of (Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y. If the number k = ∥x∥0 in Theorem
5.3 is very large, then this inversion may impose a heavy computational
burden.

5.3 Thresholding Algorithms

In this section, we consider the following optimization problems:

minimize
x∈Rn

1
2∥Φx − y∥2

2 + λ∥x∥0, (5.53)

minimize
x∈Rn

1
2∥Φx − y∥2

2 subject to ∥x∥0 ≤ s. (5.54)

The first problem (5.53) is called the ℓ0 regularization, and the second
problem (5.54) is called the s-sparse approximation. Note that these opti-
mization problems are non-convex and combinatorial. For these problems,
we introduce efficient greedy algorithms by borrowing the idea of the
proximal gradient algorithm introduced in Chapter 4.

5.3.1 Iterative hard-thresholding algorithm (IHT)

Let us consider the following optimization problem:

minimize
x∈Rn

f1(x) + f2(x), (5.55)

where f1 is a differentiable and convex function satisfying dom(f1) = Rn,
and f2 is a proper, closed, and convex function. The proximal gradient

5.3. Thresholding Algorithms 111

0

v

θ

−θ

Hθ(v)

Figure 5.6: Hard-thresholding operator Hθ(v)

algorithm for this is given by3

x[k + 1] = proxγf2

(
x[k] − γ∇f1(x[k])

)
. (5.56)

For the ℓ0 regularization of (5.53), we have

f1(x) ≜ 1
2∥Φx − y∥2

2, f2(x) ≜ λ∥x∥0. (5.57)

Although the function f2 is not convex in this case, we naively apply
the proximal gradient algorithm (5.56). Now, the proximal operator of
f2(x) = λ∥x∥0 has a closed form, called the hard-thresholding operator
(see Figure 5.6), defined by

[Hθ(v)]i ≜

vi, |vi| ≥ θ,

0, |vi| < θ, i = 1, 2, . . . , n,
(5.58)

with θ =
√

2γλ. That is,

proxγf2(v) = H√
2γλ(v). (5.59)

See Exercise 4.12 (p. 76) for details. As shown in Figure 5.6, the hard-
thresholding operator rounds small elements (|vi| < θ) to 0. Figure 5.7
illustrates this operation. By using this operator, the proximal gradient
algorithm for the ℓ0 regularization (5.53) is given as follows:

3See Section 4.4 (p. 81).

112 Greedy Algorithms

vi vi

θ

−θ−θ

θ
ii

Hθ(v)

Figure 5.7: Hard-thresholding operator Hθ(v) rounds small elements (|vi| < θ) to 0, where
θ =
√

2γλ.

IHT for ℓ0 regularization (5.53)� �
Initialization: give an initial vector x[0] and positive number γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = H√
2γλ
(
x[k] − γΦ⊤(Φx[k] − y)

)
. (5.60)� �

This algorithm is called the iterative hard-thresholding algorithm (IHT).
For the convergence of the iterative hard-thresholding algorithm (5.60),

the following theorem is proved in [11]:

Theorem 5.4. Assume that

γ <
1

∥Φ∥2 (5.61)

holds where ∥Φ∥ is the maximum singular value of Φ. Then
the sequence {x[0],x[1],x[2], . . .} generated by the iterative hard-
thresholding algorithm (5.60) converges to a local minimizer of the
ℓ0 regularization (5.53). Moreover, the convergence is first-order,
that is, there exists a constant c ∈ (0, 1) such that

∥x[k + 1] − x∗∥2 ≤ c∥x[k] − x∗∥2, k = 0, 1, 2, . . . , (5.62)

where x∗ is a local minimizer.

The condition in (5.61) is very similar to the condition in (4.94) (p. 85)
for the proximal gradient algorithm for ℓ1 regularization. The convergence
rate O(ck) of IHT is much faster than that of ISTA, O(1/k), or FISTA,
O(1/k2). Note also that IHT may only converge to a local minimum, which
may not necessarily be identical to the global minimum.

5.3. Thresholding Algorithms 113

5.3.2 Iterative s-sparse algorithm

Here we consider the s-sparse approximation (5.54). By using the indicator
function (4.37) in Chapter 4 (p. 72), we rewrite the constrained problem of
s-sparse approximation (5.54) as an unconstrained optimization problem.
Let Σs denote the set of s-sparse vectors in Rn, that is,

Σs ≜ {x ∈ Rn : ∥x∥0 ≤ s}. (5.63)

Exercise 5.3. Show that Σs is a non-convex set.

The indicator function IΣs for the set Σs is given by

IΣs(x) =

0, ∥x∥0 ≤ s,

∞, ∥x∥0 > s.
(5.64)

By using this, the s-sparse approximation (5.54) is equivalently described
by

minimize
x∈Rn

1
2∥Φx − y∥2

2 + IΣs(x). (5.65)

Note that since Σs is non-convex (see Exercise 5.3), the indicator function
IΣs is not a convex function. Anyhow, let us apply this to the proximal
gradient algorithm (5.56). To do this, we should compute the proximal
operator of the indicator function IΣs , which is equal to the projection
onto the set Σs. The projection is actually obtained by

ΠΣs(v) = arg min
x∈Σs

∥x − v∥2 = Hs(v), (5.66)

where Hs(v) is the s-sparse operator that sets all but the s largest (in
magnitude) elements of v to 0. Figure 5.8 illustrates this operation. Note
that the projection is in general not unique. If s largest elements are not
uniquely determined, then they can be chosen either randomly or based
on a fixed ordering rule.

Exercise 5.4. Prove that the equation (5.66) holds.

Let γs(v) denote the s-th largest element of vector v ∈ Rn. Then the
s-sparse operator Hs(v) can be represented by using the hard-thresholding
operator (5.58) as

Hs(v) = Hγs(v)(v). (5.67)
By using the s-sparse operator (5.66) as the proximal operator of the

indicator function IΣs , we obtain the proximal gradient algorithm (5.56)
for the s-sparse approximation (5.65).

114 Greedy Algorithms

H3(v)

1
2

3

vi

i

1
2

3

vi

i

Figure 5.8: s-sparse operator Hs(v) with s = 3: the 3 largest elements in magnitude are
unchanged and the other elements are set to 0. The numbers 1, 2, 3 indicates the rank of the
absolute values of the elements.

Iterative s-sparse algorithm for s-sparse approximation (5.54)� �
Initialization: give an initial vector x[0] and a positive number γ > 0.
Iteration: for k = 0, 1, 2, . . . do

x[k + 1] = Hs
(
x[k] − γΦ⊤(Φx[k] − y)

)
. (5.68)� �

We call this algorithm the iterative s-sparse algorithm.

For the iterative s-sparse algorithm, we have the following convergence
theorem [11].

Theorem 5.5. Assume that the matrix Φ ∈ Rm×n is surjective, that
is, rank(Φ) = m, and the column vectors ϕi, i = 1, 2, . . . , n, are
non-zero, that is,

∥ϕi∥2 > 0, ∀i ∈ {1, 2, . . . , n}. (5.69)

Assume also that the constant γ > 0 satisfies

γ <
1

∥Φ∥2 . (5.70)

Then the sequence {x[0],x[1],x[2], . . .} generated by the s-sparse
algorithm (5.68) converges to a local minimizer of the s-sparse
approximation problem (5.54). Moreover, the convergence is first-
order, that is, there exists a constant c ∈ (0, 1) such that

∥x[k + 1] − x∗∥2 ≤ c∥x[k] − x∗∥2, k = 0, 1, 2, . . . , (5.71)

where x∗ is a local minimizer.

5.3. Thresholding Algorithms 115

5.3.3 Compressive sampling matching pursuit (CoSaMP)

For the s-sparse approximation (5.54), we can extend the algorithm of
OMP in Section 5.2.2 with the s-sparse operator Hs. This algorithm is
called the compressive sampling matching pursuit (CoSaMP).

In the OMP algorithm (5.51), we choose one index i[k] as

i[k] = arg max
i∈{1,...,n}

⟨ϕi, r[k − 1]⟩2

∥ϕi∥2
2

. (5.72)

Alternatively, CoSaMP chooses 2s largest values of

⟨ϕi, r[k − 1]⟩2

∥ϕi∥2
2

=
〈

ϕi

∥ϕi∥2
, r[k − 1]

〉2
, (5.73)

and includes these 2s indices in the index set Sk, that is,

Sk = Sk−1 ∪ supp
{

H2s

(〈
ϕi

∥ϕi∥2
, r[k − 1]

〉2)}
. (5.74)

As in OMP, we then find the projection of y onto the linear subspace
Ck = {ϕi : i ∈ Sk}. That is,

x̃[k] =
(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y. (5.75)

From this, we define an n-dimensional coefficient vector z[k] as

(z[k])i ≜


(
x̃[k]

)
i
, i ∈ Sk,

0, i ̸∈ Sk.
(5.76)

Note that the number of nonzero coefficients in z[k] is larger than 2s. We
then prune z[k] to an s-sparse vector x[k] as

x[k] = Hs
(
z[k]

)
. (5.77)

Also, we update the index set Sk to

Sk = supp(x[k]). (5.78)

Finally, we obtain the CoSaMP algorithm to solve the s-sparse approxi-
mation (5.54).

116 Greedy Algorithms

CoSaMP algorithm for s-sparse approximation (5.54)� �
Initialization: set x[0] = 0, r[0] = y, and S0 = ∅.
Iteration: for k = 1, 2, . . . do

I[k] := supp
{

H2s

(〈
ϕi

∥ϕi∥2
, r[k − 1]

〉2)}
,

Sk := Sk−1 ∪ I[k],

x̃[k] :=
(
Φ⊤

Sk
ΦSk

)−1Φ⊤
Sk

y,

(z[k])Sk
:= x̃[k],

(z[k])Sc
k

:= 0,
x[k] := Hs (z[k]) ,

Sk := supp{x[k]},
r[k] := y − ΦSk

x̃[k].

(5.79)

� �
For the convergence of the CoSaMP algorithm, see the original paper

[118].

5.4 Numerical Example

Here we solve sparse optimization numerically by using greedy algorithms
studied in this chapter. Let us consider the problem of curve fitting studied
in Section 3.3 (p. 54) with the sparse polynomial y = −t80 + t. As in
Section 3.3, the data points are given by

ti = 0.1(i− 1), i = 1, 2, . . . , 11, (5.80)

from which we reconstruct the 80-th order polynomial. Here we consider
the following 6 algorithms:

1. ℓ1 optimization considered in Section 3.3 (p. 54)

2. matching pursuit (MP)

3. orthogonal matching pursuit (OMP)

4. iterative hard-thresholding (IHT)

5. iterative s-sparse algorithm (ISS)

6. compressive sampling matching pursuit (CoSaMP)

5.4. Numerical Example 117

0 50
1.0

0.5

0.0

0.5

1.0
L1 OPT

0 50
1.0

0.5

0.0

0.5

1.0
MP

0 50
1.0

0.5

0.0

0.5

1.0
OMP

0 50
1.0

0.5

0.0

0.5

1.0
IHT

0 50
1.0

0.5

0.0

0.5

1.0
ISS

0 50
1.0

0.5

0.0

0.5

1.0
CoSAMP

Figure 5.9: Estimation of sparse coefficients

The matrix Φ ∈ R11×81 is the Vandermonde matrix defined by (3.16),
which satisfies

0.012 < 1
∥Φ∥2 < 0.013. (5.81)

We choose the parameter γ for IHT and ISS as

γ = 0.01 < 0.012 < 1
∥Φ∥2 . (5.82)

From Theorems 5.4 and 5.5, the condition (5.82) guarantees convergence to
local minimizers for IHT and ISS. We also choose λ in the ℓ0 regularization
problem as λ = 0.001.

Figure 5.9 shows the coefficients obtained by the algorithms. The
coefficients are ordered from the highest degree to the lowest degree. We
see that the ℓ1 optimization, MP, OMP, and CoSaMP give exact coefficients,
while IHT and ISS show incorrect reconstruction. To see this more precisely,
we check the estimation error r = y − Φx̃, where x̃ is the obtained vector
when the algorithm stops. Table 5.1 shows the error with the number of
iterations required to achieve the error.

118 Greedy Algorithms

Table 5.1: Estimation error ∥y − Φx̃∥2 and number of iterations. IHT and ISS reached the
maximum number 105 of iterations.

Methods ℓ1 OPT MP OMP IHT ISS CoSaMP
Error 2.8 × 10−12 9.1 × 10−6 2.5 × 10−16 0.0017 0.83 4.1 × 10−16

Iterations 9 18 2 105 105 3

All but ℓ1 optimization stop the iteration when the error ∥r[k]∥2 is less
than 10−5 or the number of iterations is larger than 105.

IHT and ISS attained the maximum number of iterations 105, and their
errors are much larger than those of the other methods. This is because
they were trapped into local minimizers. The other methods show fast
convergence, among which OMP (2 iterations) and CoSaMP (3 iterations)
especially present surprising results. In view of the error and the number
of iterations, OMP is the best method in this case. It should be noted that
greedy algorithms do not necessarily give a global solution. OMP is the
best in this case but in other cases, another method may be the best. This
depends on the problem and data, and we should adopt trial and error to
seek the best algorithm.

5.5 Further Readings

Basics of greedy algorithms can be found in [30], [75]. For the characteri-
zation of ℓ0 optimality by using the mutual coherence and the restricted
isometry property (RIP), you can refer to [43], [45].

The matching pursuit (MP) was first proposed in [89], while the or-
thogonal matching pursuit (OMP) was introduced in [33], [124]. For the
iterative hard-thresholding algorithm and the iterative s-sparse algorithm,
see the paper [11]. The compressive sampling matching pursuit (CoSaMP)
was proposed in [118].

5.6 Python Programs

The following program defines the algorithms studied in this chapter.

1 import numpy as np
2

3 # Matching Pursuit (MP) algorithm

5.6. Python Programs 119

4 def MP(y, Phi , EPS =1e-5, MAX_ITER =10000) :
5 m, n = Phi.shape
6 x = np.zeros(n)
7 r = y
8 k = 0
9 Phi_norm = np.diag(Phi.T @ Phi)

10 while np. linalg .norm(r) > EPS and k < MAX_ITER
:

11 p = Phi.T @ r
12 v = p / np.sqrt(Phi_norm)
13 ik = np. argmax (np.abs(v))
14 v2 = p / Phi_norm
15 z = v2[ik]
16 x[ik] += z
17 r -= z * Phi [:, ik]
18 k += 1
19 nitr = k
20 return x, nitr
21

22 # Orthogonal Matching Pursuit (OMP) algorithm
23 def OMP(y, Phi , EPS =1e-5, MAX_ITER =10000) :
24 m, n = Phi.shape
25 x = np.zeros(n)
26 r = y
27 k = 0
28 S = []
29 Phi_norm = np.diag(Phi.T @ Phi)
30 while (np. linalg .norm(r) > EPS) and (k <

MAX_ITER):
31 p = Phi.T @ r
32 v = p / np.sqrt(Phi_norm)
33 ik = np. argmax (np.abs(v))
34 if ik not in S:
35 S. append (ik)
36 Phi_S = Phi [:, S]
37 x_S = np. linalg .lstsq(Phi_S , y, rcond=None

)[0]
38 x = np.zeros(n)

120 Greedy Algorithms

39 x[S] = x_S
40 r = y - Phi @ x
41 k += 1
42

43 nitr = k
44 return x, nitr
45

46 # Hard thresholding operator
47 def hard_thresholding (lambda_val , v):
48 hv = np.where(np.abs(v) <= lambda_val , 0, v)
49 return hv
50

51 # Support function
52 def supp(x):
53 return np. nonzero (np.abs(x) > 0) [0]
54

55 # Iterative Hard Thresholding (IHT) algorithm
56 def IHT(y, Phi , lambda_val =1, gamma =1, EPS =1e-5,

MAX_ITER =10000) :
57 m, n = Phi.shape
58 x = np.zeros(n)
59 r = y
60 k = 0
61 while np. linalg .norm(r) > EPS and k < MAX_ITER

:
62 p = x + gamma * (Phi.T @ r)
63 x = hard_thresholding (np.sqrt (2 *

lambda_val * gamma), p)
64 S = supp(x)
65 r = y - Phi [:, S] @ x[S]
66 k += 1
67 nitr = k
68 return x, nitr
69

70 # s- sparse operator
71 def s_sparse_operator (A, s):
72 x = A. flatten ()
73 y = np. zeros_like (x)

5.6. Python Programs 121

74 indx = np. argsort (-np.abs(x))[:s]
75 y[indx] = x[indx]
76 return y. reshape (A.shape)
77

78 # Iterative s- sparse algorithm
79 def iterative_s_sparse (y, Phi , s, gamma =1, EPS =1e

-5, MAX_ITER =10000) :
80 m, n = Phi.shape
81 x = np.zeros(n)
82 r = y
83 k = 0
84 while np. linalg .norm(r) > EPS and k < MAX_ITER

:
85 p = x + gamma * (Phi.T @ r)
86 x = s_sparse_operator (p, s)
87 S = supp(x)
88 r = y - Phi [:, S] @ x[S]
89 k += 1
90 nitr = k
91 return x, nitr
92

93 # CoSaMP algorithm
94 def CoSaMP (y, Phi , s, EPS =1e-5, MAX_ITER =10000) :
95 m, n = Phi.shape
96 x = np.zeros(n)
97 r = y
98 k = 0
99 S = []

100 Lambda = []
101 Phi_norm = np.diag(Phi.T @ Phi)
102 while np. linalg .norm(r) > EPS and k < MAX_ITER

:
103 p = s_sparse_operator ((Phi.T @ r) / np.

sqrt(Phi_norm), 2 * s)
104 Ik = supp(p)
105 S = np. union1d (Lambda , Ik)
106 Phi_S = Phi [:, S. astype (int)]
107 z = np.zeros(n)

122 Greedy Algorithms

108 z[S. astype (int)] = np. linalg .pinv(Phi_S) @
y

109 x = s_sparse_operator (z, s)
110 Lambda = supp(x)
111 r = y - Phi_S @ z[S. astype (int)]
112 k += 1
113 nitr = k
114 return x, nitr

The following is the program to obtain the result by OMP. Other
algorithms can be tested by changing the 29th line to one of the algorithms
defined above.

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import cvxpy as cp
4

5 # Polynomial coefficients
6 x_orig = np.zeros (80)
7 x_orig [0] = -1
8 x_orig [78] = 1
9

10 # Data
11 t = np. arange (0, 1.1, 0.1)
12 y = np. polyval (x_orig , t)
13

14 # Data size
15 N = len(t)
16 M = N - 1
17

18 # Order of polynomial
19 M_l = len(x_orig) - 1
20

21 # Vandermonde matrix
22 Phi = np. vander (t, N=M_l +1)
23

24 # Parameters for iteration
25 EPS = 1e-5 # if the residue < EPS then the

iteration will stop

5.6. Python Programs 123

26 MAX_ITER = 100000 # maximum number of iterations
27

28 # OMP
29 x_omp , nitr_omp = OMP(y, Phi ,EPS ,10)
30 # Result
31 fig = plt. figure ()
32 ax1 = fig. add_subplot (1, 2, 1)
33 ax1.stem(x_orig)
34 ax1. set_title (" Original ")
35 plt.ylim (-1.1 ,1.1)
36 ax2 = fig. add_subplot (1, 2, 2)
37 ax2.stem(x_omp)
38 ax2. set_title (" OMP ")
39 plt.ylim (-1.1 ,1.1)

Chapter 6

Distributed Optimization

Distributed optimization focuses on solving an optimization problem by
dividing it into smaller sub-problems, which are then solved by a lot of
small processors called agents working collaboratively over a network. This
approach can leverage the computational power of multiple processors,
which is suitable for handling large-scale optimization problems that are
difficult to solve on a single processor.

Key ideas of Chapter 6� �
• Algebraic graph theory is a fundamental tool for the analysis and

design of distributed optimization algorithms.

• Distributed optimization algorithms solve an optimization prob-
lem by multiple computer agents, each of which solves a local
subproblem while exchanging information with its neighbors over
a network.

• The distributed gradient descent algorithm is derived from the
combination of gradient descent and average consensus control.

• The ADMM algorithm is extended to a distributed algorithm by
employing the consensus set. This distributed implementation
uses a special agent called the central collector.� �

6.1 Network Model and Algebraic Graph Theory

To study distributed optimization, we need the knowledge of networks. A
network is mathematically modeled by a graph, which consists of a finite

126 Distributed Optimization

1

2

3
4

5

Undirected Graph

Figure 6.1: An undirected graph G = (V, E).

number of nodes (or vertices) with edges that connect pairs of nodes.
Let V = {1, 2, . . . , n} be the set of n nodes (or vertices) in a network,

and let E ⊂ V × V be the set of edges in a network. The graph G with the
node set V and the edge set E is defined as the pair (V, E). There are two
types of graphs: undirected graphs and directed graphs (or digraphs). For
a directed graph G = (V, E), (i, j) ∈ E (i, j ∈ V) does not always imply
(j, i) ∈ E . For an undirected graph, on the other hand, (i, j) ∈ E holds if
and only if (j, i) ∈ E holds. Therefore, for an undirected graph, we only
include (i, j) in E when i < j and exclude (j, i) from E for simplicity. In
this chapter, we only consider undirected graphs and adopt this simple
notation. Also, we assume

• there is no self-connection, which is an edge starting and ending at
the same node,

• and there is at most one edge between any two vertices (no multiple
edges).

Such a graph is called a simple graph.

Example 6.1. Figure 6.1 shows an undirected graph G = (V, E) with
V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)}. □

Let us consider an undirected graph G = (V, E). A neighbor, or an
adjacent node, of i ∈ V is a node connected to i by an edge in E . We denote
by Ni the set of all neighbors of i ∈ V. The number of nodes adjacent to
i ∈ V, or the number of entries in Ni, is called the degree of node i, which

6.1. Network Model and Algebraic Graph Theory 127

is denoted by di. The maximum degree, denoted by ∆, is the maximum
degree among all nodes, that is,

∆ ≜ max{di : i ∈ V}. (6.1)

To numerically analyze a graph, particularly for large-scale graphs, we
employ techniques from linear algebra. The method of graph theory based
on linear algebra is called the algebraic graph theory. For this, we define
some matrices related to a graph.

The adjacency matrix A = [aij] of a graph G = (V, E) with V =
{1, 2, . . . , n} is defined by

aij ≜

1, if (i, j) ∈ E ,
0, otherwise.

(6.2)

We note that A is a symmetric binary-valued n × n matrix since G is
undirected. Also, we have aii = 0 for any i ∈ V since G is simple.

The degree matrix D is a diagonal matrix defined by

D ≜ diag(d1, d2, . . . , dn) =


d1 0 . . . 0

0 d2
.

... 0
0 . . . 0 dn

 . (6.3)

With the adjacency matrix A and the degree matrix D, the graph
Laplacian is defined by

L ≜ D −A. (6.4)

We note that we have

di =
n∑
j=1

aij , (6.5)

and hence the graph Laplacian is represented as

L =



n∑
j=1

a1j −a12 . . . −a1n

−a21

n∑
j=1

a2j
.

... −an−1,n

−an1 . . . −an,n−1

n∑
j=1

anj


. (6.6)

128 Distributed Optimization

By using the graph Laplacian, we can check the connectivity of a graph.
Two nodes i, j ∈ V are said to be connected if there exists a path between i
and j. A graph is said to be connected if any nodes i, j ∈ V are connected
to each other. We have the following theorem [98, Corollary 2.1]:

Theorem 6.1. Let G be an undirected simple graph. G is connected
if and only if the eigenvalue 0 of the graph Laplacian of G is simple.

We note that the graph Laplacian L has at least one zero eigenvalue,
since we have

L


1
1
...
1

 = 0. (6.7)

Example 6.2. Let us consider the graph in Fig.6.1. The adjacency matrix
A and the degree matrix D are given by

A =


0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 1 0

 , D =


3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2

 . (6.8)

The graph Laplacian L = A−D is then given by

L =


3 −1 −1 −1 0

−1 2 0 0 −1
−1 0 2 −1 0
−1 0 −1 3 −1
0 −1 0 −1 2

 . (6.9)

The eigenvalues of L are numerically computed as {0, 4.62, 3.62, 2.38, 1.38},
and hence the zero eigenvalue is simple. The graph shown in Fig. 6.1 is
obviously connected, but this can be proved by numerical computation,
thanks to Theorem 6.1. □

6.2 Consensus Algorithm

Let us consider an undirected graph G = (V, E) with V = {1, 2, . . . , n}.
Each node i ∈ V represents a small computer called an agent. Agent i can

6.2. Consensus Algorithm 129

process information from its neighbors j ∈ Ni, and update its state xi
according to

xi[k + 1] = xi[k] + ui[k], k = 0, 1, 2, . . . , (6.10)

where ui[k] is determined by the current state xi[k] of agent i and the state
xj [k] of its neighbors j ∈ Ni at discrete time k ∈ {0, 1, 2, . . .}. The variable
ui[k] is called the local control, for which we consider the following linear
control:

ui[k] = ϵ
∑
j∈Ni

(xj [k] − xi[k]). (6.11)

The parameter ϵ > 0 is called the control gain, or the step size. We can
rewrite (6.11) as

ui[k] = ϵdi × 1
di

∑
j∈Ni

(xj [k] − xi[k]), (6.12)

where di is the degree of node i, or the number of nodes in Ni, and ui[k]
is proportional to the average of the difference xj [k] − xi[k], j ∈ Ni. This
property is important to analyze the limiting value of xi[k] (see Theorem
6.2 below). Inserting (6.11) into (6.10) gives

x[k + 1] = Pϵx[k], (6.13)

where

x[k] ≜


x1[k]
x2[k]

...
xn[k]

 , Pϵ ≜ I − ϵL, (6.14)

and L is the graph Laplacian defined in (6.6). The matrix Pϵ is called the
Perron matrix.

In this section, we discuss the consensus of the network system (6.13).

Definition 6.1. The network system (6.13) is said to achieve con-
sensus if

lim
k→∞

|xi[k] − xj [k]| = 0, (6.15)

for any i, j ∈ V.

The following theorem shows the condition for consensus.

130 Distributed Optimization

Theorem 6.2. Let ∆ be the maximum degree of the undirected
graph G = (V, E). Suppose G is connected and ϵ∆ < 1 holds. Then
the network system (6.13) achieves consensus, and the consensus
value is given by the average of the initial states, that is,

lim
k→∞

xi[k] = x[0] = 1
n

n∑
j=1

xj [0], (6.16)

holds for any i ∈ V.

Since all the states converge to the average of the initial states, this
control is called the average consensus control. Also, since the local control
is distributed over the network, we call the control scheme the distributed
control.

Example 6.3. Let us consider the network in Fig. 6.1. Over this graph,
we simulate the average consensus control in (6.11). Since the maximum
degree is ∆ = 3, we choose the step size ϵ = 1/4. We set the initial states
as

x1[0] = 10, x2[0] = 5, x3[0] = 0, x4[0] = −5, x5[0] = −10. (6.17)

We note that the average of the initial states is given by x[0] = 0. Fig. 6.2
shows the state trajectories of xi[k], i ∈ {1, 2, 3, 4, 5}. We can see that all
the states converge to the average value. The Python program for this
simulation is given in Section 6.5.1 □

6.3 Distributed Optimization

In this section, we consider the following optimization problem:

minimize
x∈Rn

N∑
i=1

fi(x), (6.18)

where f1, f2, . . . , fN : Rn → R ∪ {∞} are proper, closed, and convex
functions. For this problem, we adapt the idea of consensus control to
construct a distributed optimization algorithm with N agents where the i-th
agent, i ∈ {1, 2, . . . , N}, solves the following local optimization problem:

minimize
x∈Rn

fi(x). (6.19)

The agents form a network G = (V, E) with V = {1, 2, . . . , N} over which
each agent exchanges its local computation results with neighboring agents.

6.3. Distributed Optimization 131

0 2 4 6 8 10
Iteration (k)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

St
at

es
 (x

_i[
k]

)

Average Consensus Algorithm
Node 1
Node 2
Node 3
Node 4
Node 5

Figure 6.2: State trajectories of xi[k] with average consensus control.

6.3.1 Distributed gradient descent

In this section, we solve the optimization problem (6.18) by a distributed
algorithm based on gradient descent over a network G = (V, E) with
V = {1, 2, . . . , N}. Namely, each agent i ∈ V solves the local problem
(6.19) and communicates local results with neighboring agents. We here
assume G is undirected, simple, and connected, and f1, f2, . . . , fN are
differentiable.

First, the problem (6.18) can be solved by the gradient descent algorithm
given by

x[k + 1] = x[k] − α∇f(x[k]), k = 0, 1, 2, . . . , (6.20)

where f ≜ f1 + f2 + . . .+ fN , and ∇f is the gradient of f defined by

∇f(x) =
[
∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
]⊤
. (6.21)

Since the gradient is linear, we have

x[k + 1] = x[k] − α
N∑
i=1

∇fi(x[k]), k = 0, 1, 2, . . . (6.22)

The idea of distributed gradient descent is to compute the local gradient
∇fi(x[k]) by agent i ∈ V. However, agent i can communicate only with

132 Distributed Optimization

its neighboring agents j ∈ Ni, and the global variable x[k] is not directly
accessible to each agent. Then, we adapt the consensus algorithm discussed
in the previous section. Namely, we consider the following iteration for
agent i ∈ V:

xi[k + 1] = xi[k] − α∇fi(xi[k]) + ui[k], (6.23)

ui[k] = ϵ
∑
j∈Ni

(xj [k] − xi[k]), k = 0, 1, 2, (6.24)

We note that if we take ui[k] = 0, then the iteration is the gradient descent
algorithm to find the minimizer of fi(x). Through the vector ui[k], agent i
obtains the partial information on the global variable x[k]. Inserting (6.24)
into (6.23) gives

xi[k + 1] =
N∑
j=1

pijxj [k] − α∇fi(xi[k]), (6.25)

where pij is the (i, j)-entry of the Perron matrix Pϵ defined in (6.14). This
is called the distributed gradient descent algorithm. For the convergence of
this algorithm, see the paper [154].

Example 6.4. Let us consider a toy problem of minimizing the following
cost function:

f(x) =
5∑
i=1

(x− i)2. (6.26)

This is a convex function, and the minimizer is x = 3, which can be found
by

∇f(x) =
5∑
i=1

2(x− i) = 10(x− 3) = 0. (6.27)

The local cost function is fi(x) = (x− i)2 and its gradient (or derivative)
is ∇fi(x) = 2(x− i). The distributed gradient descent algorithm is then
described as

xi[k + 1] =
5∑
j=1

pijxj [k] − 2α(xi[k] − i), k = 0, 1, 2, . . . , i = 1, 2, 3, 4, 5.

(6.28)

We use the network in Figure 6.1, and implement the distributed gradient
descent algorithm (6.25) with Python. We set the initial states xi[0] = 0

6.3. Distributed Optimization 133

0 20 40 60 80 100
Iteration (k)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

St
at

es
 (x

_i[
k]

)

Distributed Gradient Descent Algorithm

Figure 6.3: State trajectories of xi[k] with distributed gradient descent algorithm.

for all i, and the parameters ϵ = 1/4 and α = 0.1. Figure 6.3 shows
the trajectories of xi[k]. We can see that the states converge around the
optimal value 3. Although there remain errors in the states, the average
value x[99] = 1

5
∑5
i=1 xi[99] = 2.99992 is close to the optimal value.

The Python program for this simulation is given in Section 6.5.2. □

6.3.2 Distributed ADMM algorithm

Here we form a distributed optimization problem for (6.18) based on
ADMM (alternating direction method of multipliers; see Section 4.5, p. 90).

The optimization problem (6.18) is equivalently represented by

minimize
x1,x2,...,xN ∈Rn

N∑
i=1

fi(xi) subject to x1 = x2 = · · · = xN . (6.29)

Let us define the indicator function (see Section 4.2.4, p. 72) IC with

C ≜ {(x1,x2, . . . ,xN) : x1 = x2 = · · · = xN} . (6.30)

The set C is a closed convex set, which is called the consensus set. Using
this, we rewrite the optimization problem (6.29) as

minimize
x1,x2,...,xN ∈Rn

N∑
i=1

fi(xi) + IC(x1,x2, . . . ,xN). (6.31)

134 Distributed Optimization

Defining new variables zi = xi, i = 1, 2, . . . , N , we have

minimize
x,z∈RnN

f(x) + IC(z) subject to z = x, (6.32)

where

x ≜
[
x⊤

1 ,x
⊤
2 , . . . ,x

⊤
N

]⊤
∈ RnN , z ≜

[
z⊤

1 , . . . ,z
⊤
2 , z

⊤
N

]⊤
∈ RnN , (6.33)

and

f(x) ≜
N∑
i=1

fi(xi). (6.34)

Now, the problem is equivalent to (4.99) with f1(x) = f(x), f2(z) = IC(z)
and Ψ = I, and the associated ADMM algorithm is given by

x[k + 1] = arg min
x

{
f(x) + 1

2γ ∥x − z[k] + v[k]∥2
2

}
, (6.35)

z[k + 1] = ΠC (x[k + 1] + v[k]) , (6.36)
v[k + 1] = v[k] + x[k + 1] − z[k + 1]. (6.37)

Then we will reformulate this iteration algorithm in a distributed algorithm.
First, the objective function in (6.35) can be rewritten as

f(x) + 1
2γ ∥x − z[k] + v[k]∥2

2 =
N∑
i=1

{
fi(xi) + 1

2γ ∥xi − zi[k] + vi[k]∥2
2

}
.

(6.38)
Therefore, the update (6.35) for x[k + 1] is divided into N updates as

xi[k + 1] = arg min
xi

{
fi(xi) + 1

2γ ∥xi − zi[k] + vi[k]∥2
2
}

= proxγfi
(zi[k] − vi[k]), i = 1, 2, . . . , N,

(6.39)

where we used the proximal operator (see Definition 4.4, p. 68).
For the projection ΠC onto the set C defined in (6.30) is given by the

following lemma.

Lemma 6.1. The projection ΠC(x) with x = [x⊤
1 ,x

⊤
2 , . . . ,x

⊤
N]⊤ is

given by

ΠC(x) =


x
...
x

 , x ≜
1
N

N∑
j=1

xj . (6.40)

6.3. Distributed Optimization 135

Using this lemma, we rewrite the update in (6.36) as

zi[k + 1] = x[k + 1] + v[k] = 1
N

N∑
j=1

(xj [k + 1] + vj [k]), i = 1, . . . , N.

(6.41)
Finally, from (6.37) and (6.41), we have

vi[k + 1] = vi[k] + xi[k + 1] − x[k + 1] − v[k], i = 1, . . . , N. (6.42)

On the other hand, we have

v[k + 1] = 1
N

N∑
i=1

vi[k + 1]

= 1
N

N∑
i=1

{
vi[k] + xi[k + 1] − x[k + 1] − v[k]

}
= v[k] + x[k + 1] − x[k + 1] − v[k]
= 0.

(6.43)

If we set v[0] such that v[0] = 0, then we have v[k] = 0 holds for k =
0, 1, 2, . . ., and we have the following distributed ADMM algorithm:

xi[k + 1] = proxγfi

(
x[k] − vi[k]

)
,

vi[k + 1] = vi[k] + xi[k + 1] − x[k + 1], i = 1, . . . , N.
(6.44)

The important point of this algorithm is that we can compute xi[k+ 1]
locally by agent i ∈ {1, 2, . . . , N} with global information x[k] given by a
special agent called the central collector or the fusion center. The central
collector collects data xi[k], i = 1, . . . , N, from all the agents, computes
the average x[k], and sends it back to the agents. Figure 6.4 shows the
network for the distributed ADMM algorithm. The central collector C
connects all agents, and each agent (i = 1, 2, 3) only exchanges data with
C. Such a network is called a star network as depicted in Figure 6.4.

6.3.3 Distributed least squares

As an application of the ADMM-based distributed optimization algorithm,
we consider the problem of least squares. The optimization problem is
minimizing the following objective function:

f(x) ≜ ∥Ax − b∥2
2, (6.45)

136 Distributed Optimization

<latexit sha1_base64="tAs+UWPmEFXc2fw1ql3k43cAzK0=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQypseBF48T3AdspaRpuoWlSUlSsZT5r3jxoIhX/xBv/jemWw+6+SDk8d7vR15ekDCqtON8W5WNza3tnepubW//4PDIPj7pK5FKTHpYMCGHAVKEUU56mmpGhokkKA4YGQSzm8IfPBCpqOD3OkuIF6MJpxHFSBvJt+vjQLBQZbG58se5745mnm83nKazAFwnbkkaoETXt7/GocBpTLjGDCk1cp1EezmSmmJG5rVxqkiC8AxNyMhQjmKivHwRfg7PjRLCSEhzuIYL9fdGjmJV5DOTMdJTteoV4n/eKNXRtZdTnqSacLx8KEoZ1AIWTcCQSoI1ywxBWFKTFeIpkghr01fNlOCufnmd9C+bbrvZvms1Oq2yjio4BWfgArjgCnTALeiCHsAgA8/gFbxZT9aL9W59LEcrVrlTB39gff4AOKqVHA==</latexit>

x1[k]

<latexit sha1_base64="WXNXDzLLIkkSZE+fzMBc8yruplw=">AAAB/HicbVDNS8MwHE39nPOruqOX4BA8jXaM6XHgxeME9wFdKWmabmFpUpJULGX+K148KOLVP8Sb/43ptoNuPgh5vPf7kZcXpowq7Tjf1sbm1vbObmWvun9weHRsn5z2lcgkJj0smJDDECnCKCc9TTUjw1QSlISMDMLpTekPHohUVPB7nafET9CY05hipI0U2LVRKFik8sRcxeMsaHpTP7DrTsOZA64Td0nqYIluYH+NIoGzhHCNGVLKc51U+wWSmmJGZtVRpkiK8BSNiWcoRwlRfjEPP4MXRolgLKQ5XMO5+nujQIkq85nJBOmJWvVK8T/Py3R87ReUp5kmHC8eijMGtYBlEzCikmDNckMQltRkhXiCJMLa9FU1JbirX14n/WbDbTfad616p7WsowLOwDm4BC64Ah1wC7qgBzDIwTN4BW/Wk/VivVsfi9ENa7lTA39gff4AOjGVHQ==</latexit>

x2[k]

<latexit sha1_base64="cQBDNegj6Xk0CEXVqYpGiAscSiw=">AAAB/HicbVDNS8MwHE39nPOruqOX4BA8jVbH9Djw4nGC+4CtlDRNt7A0KUkqljL/FS8eFPHqH+LN/8Z060E3H4Q83vv9yMsLEkaVdpxva219Y3Nru7JT3d3bPzi0j457SqQSky4WTMhBgBRhlJOuppqRQSIJigNG+sH0pvD7D0QqKvi9zhLixWjMaUQx0kby7dooECxUWWyu/HHmXw6nnm/XnYYzB1wlbknqoETHt79GocBpTLjGDCk1dJ1EezmSmmJGZtVRqkiC8BSNydBQjmKivHwefgbPjBLCSEhzuIZz9fdGjmJV5DOTMdITtewV4n/eMNXRtZdTnqSacLx4KEoZ1AIWTcCQSoI1ywxBWFKTFeIJkghr01fVlOAuf3mV9C4abqvRumvW282yjgo4AafgHLjgCrTBLeiALsAgA8/gFbxZT9aL9W59LEbXrHKnBv7A+vwBO7iVHg==</latexit>

x3[k]

<latexit sha1_base64="sptQGwhpITp8yDkFtI5EX9VEtcM=">AAACFHicbVDLSsNAFJ34rPUVdelmsAiCUBIp1Y1QcOOqVLAPSGKYTCbt0MmDmYlYQj7Cjb/ixoUibl2482+ctFlo64FhDufcy733eAmjQhrGt7a0vLK6tl7ZqG5ube/s6nv7PRGnHJMujlnMBx4ShNGIdCWVjAwSTlDoMdL3xleF378nXNA4upWThDghGkY0oBhJJbn6qR1whDMzz9q5LdLQzeilmd+1oe3FzBeTUH3ZQ+5Sa+y4es2oG1PARWKWpAZKdFz9y/ZjnIYkkpghISzTSKSTIS4pZiSv2qkgCcJjNCSWohEKiXCy6VE5PFaKD4OYqxdJOFV/d2QoFMV+qjJEciTmvUL8z7NSGVw4GY2SVJIIzwYFKYMyhkVC0KecYMkmiiDMqdoV4hFSKUmVY1WFYM6fvEh6Z3WzWW/eNGqtRhlHBRyCI3ACTHAOWuAadEAXYPAInsEreNOetBftXfuYlS5pZc8B+APt8wfmb59W</latexit>

1

N

NX

i=1

xi[k]

<latexit sha1_base64="eiAiBzY/cgxQ7ci/Sp1GEei0DIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqicpePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5By8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVA04S7kd0qEQoGEUr3Yf983654lbdOchf4uWkAjka/fJnbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JiVUGJIy1LYVkrv6cyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWX/5LWWdWrVWt3F5X6dR5HEY7gGE7Bg0uowy00oAkMhvAEL/DqSOfZeXPeF60FJ585hF9wPr4B9ZuNlw==</latexit>

f3

<latexit sha1_base64="jXDiX+zjELClXDd40zaVTtFSAnQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6kkKXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPYT9ar9UdivuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5qVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0ijYEb/nlVdKqVrxapXZ/Wa7f5HEU4BTO4AI8uII63EEDmsBgCM/wCm+OdF6cd+dj0brm5DMn8AfO5w/0F42W</latexit>

f2

<latexit sha1_base64="zgbh8cBXi0ND3OT83HS6VLOURA0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqicpePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWegj7Xr9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHq1au3+slK/yeMowgmcwjl4cAV1uIMGNIHBEJ7hFd4c6bw4787HorXg5DPH8AfO5w/yk42V</latexit>

f1

<latexit sha1_base64="Vh9w4gwdyPZ30Isds4evBtu06WM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyItK6k0I3LCvaB7VAyaaYNTTJDkhHK0L9w40IRt/6NO//GTDsLbT0QOJxzLzn3BDFn2rjut1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaDaTPzu09UaRbJBzOLqS/wWLKQEWys9DgQ2EyUSJvzYbniVt0F0DrxclKBHK1h+WswikgiqDSEY637nhsbP8XKMMLpvDRINI0xmeIx7VsqsaDaTxeJ5+jCKiMURso+adBC/b2RYqH1TAR2MkuoV71M/M/rJya88VMm48RQSZYfhQlHJkLZ+WjEFCWGzyzBRDGbFZEJVpgYW1LJluCtnrxOOldVr1at3V9XGrd5HUU4g3O4BA/q0IA7aEEbCEh4hld4c7Tz4rw7H8vRgpPvnMIfOJ8/0j+RBQ==</latexit>

C

Figure 6.4: The network for distributed optimization (6.44).

where A ∈ Rm×n and b ∈ Rm are given. We assume that A has full column
rank, that is, rank(A) = n.

Now we solve the problem by distributed optimization. For this, let
A ≜ [a1,a2, . . . ,am]⊤ with ai ∈ Rn and b ≜ [b1, b2, . . . , bm]⊤. Then we
have

Ax − b =


a⊤

1 x − b1
a⊤

2 x − b2
...

a⊤
mx − bm

 , (6.46)

and hence

f(x) = ∥Ax − b∥2
2 =

m∑
i=1

(a⊤
i x − bi)2 =

m∑
i=1

fi(x), (6.47)

where fi(x) ≜ (a⊤
i x − bi)2. The proximal operator of fi is derived as (see

Section 4.2.3, p. 71)

proxγfi
(v) =

(
aia

⊤
i + γ−1I

)−1 (
biai + γ−1v

)
. (6.48)

Finally, the ADMM-based distributed algorithm is given by

xi[k + 1] = Mi

(
biai + γ−1(x[k] − vi[k])

)
,

vi[k + 1] = vi[k] + xi[k + 1] − x[k + 1],
(6.49)

where

Mi ≜
(
aia

⊤
i + γ−1I

)−1
, i = 1, 2, . . . ,m. (6.50)

The matrices M1,M2, . . . ,Mm are fixed and can be computed beforehand
to reduce the computational burden in the iteration.

6.3. Distributed Optimization 137

0 2000 4000 6000 8000 10000
Iteration (k)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

St
at

es

Distributed Least Squares by ADMM

Figure 6.5: Average state x[k], k = 0, 1, 2, . . . by distributed ADMM.

Example 6.5. We here execute an experiment of distributed least squares
based on the ADMM-based algorithm (6.49). The matrix A is constructed
as a binary-valued matrix of size 30 × 30. Let xorig ∈ R30 be the original
vector to be estimated, which is a sparse binary-valued vector with 2 non-
zero elements. We note that ∥x∥0 = 2. The vector b ∈ R30 is computed
by b = Axorig + w where w ∈ R30 is a Gaussian noise vector with mean
0 and covariance 0.012I. We take the parameter γ in the ADMM-based
algorithm (6.35) as γ = 1.

Figure 6.5 illustrates the convergence of the average state x[k] over
iterations k = 0, 1, 2, As shown in this figure, the average x[k] converges
to the original vector xorig, which consists of all zeros except for two
elements with a value of one. Figure 6.6 shows the reconstructed vector
x[10000]. While the reconstructed vector contains some errors, rounding it
exactly recovers the original binary-valued vector.

The Python program for this simulation is shown in Section 6.5.3.

138 Distributed Optimization

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.6: The original vector xorig (left) and the reconstructed vector by distributed ADMM
(right).

6.3.4 Distributed sparse regularization

Let us consider the following regularized optimization problem:

minimize
x∈Rn

N∑
i=1

fi(x) + g(x), (6.51)

where g : Rn → R ∪ {∞} is a proper, closed, and convex function such
as ∥x∥1 for sparse regularization. In this formulation, the regularization
function g is assumed to be known to all agents.

The optimization problem (6.51) can be transformed into

minimize
x1,x2,...,xN ,z∈Rn

N∑
i=1

fi(xi) + g(z) subject to x1 = x2 = · · · = xN = z.

(6.52)
Using the same idea used in Section 6.3.2, we have the following ADMM

6.4. Further Readings 139

algorithm:

xi[k + 1] = proxγfi

(
z[k] − vi[k]

)
, (6.53)

z[k + 1] = proxγg/N
(
x[k + 1] + v[k]

)
, (6.54)

vi[k + 1] = vi[k] + xi[k + 1] − z[k + 1]. (6.55)

In this distributed algorithm, the i-th agent locally updates the vectors
xi[k] and vi[k] using the vector z[k], which is updated and transmitted by
the central collector C as shown in Figure 6.4.

Example 6.6. Let us consider the following problem of regularized least
squares:

minimize
x

∥Ax − b∥2
2 + λ∥x∥1. (6.56)

This problem is for sparse vector reconstruction, and can be effectively
solved by proximal gradient algorithms such as ISTA and FISTA as dis-
cussed in Section 4.4 (p. 81). We here solve this by a distributed optimiza-
tion algorithm.

The distributed algorithm in (6.53)–(6.55) for (6.56) is given by

xi[k + 1] = Mi

(
biai + γ−1(z[k] − vi[k]

))
, (6.57)

z[k + 1] = Sγλ/N
(
x[k + 1] + v[k]

)
, (6.58)

vi[k + 1] = vi[k] + xi[k + 1] − z[k + 1], (6.59)

where Mi is given in (6.50) and Sγλ/N is the soft-thresholding operator,
the proximal operator of the ℓ1 norm (see Section 4.2.5, p. 73).

Let A and xorig be the same as in Example 6.5, and b = Axorig + w

where w is a Gaussian vector with mean 0 and covariance 0.012I. We take
the regularization parameter λ = 1 in (6.56) and the step size γ = 1 for
the ADMM algorithm (6.57)–(6.59). Figure 6.7 shows the average x[1000]
after 1000 iterations. The ℓ1 norm in the regularization term promotes
sparsity in the reconstructed vector, which contains smaller errors than
that of the unregularized least squares discussed in Example 6.5.3.

The Python program in this simulation is given in Section 6.5.4. □

6.4 Further Readings

For the algebraic graph theory, the readers can refer to a nice book [5]. The
consensus algorithm is the fundamental topic in the control of multi-agent
systems, for which [17], [42], [98] are good references. In particular, the

140 Distributed Optimization

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.7: The original vector xorig (left) and the reconstructed vector by distributed ADMM
with regularization (right).

graph Laplacian plays an important role in multi-agent control systems
[18].

For distributed optimization, you can refer to survey papers [20], [94],
[116]. For the distributed gradient descent method, see papers [117], [154].
ADMM-based distributed optimization algorithms are explained in detail
in [13].

6.5 Python Programs

6.5.1 Example 6.3

The following program is for the simulation of average consensus control
shown in Example 6.3.

1 # Average consensus control
2

3 import networkx as nx
4 import numpy as np

6.5. Python Programs 141

5 import matplotlib . pyplot as plt
6

7 # Create a graph object
8 G = nx.Graph ()
9

10 # Add vertices (nodes)
11 V = [1 ,2 ,3 ,4 ,5]
12 G. add_nodes_from (V)
13

14 # Add edges
15 E = [(1 ,2) ,(1,3) ,(1,4) ,(3,4) ,(2,5) ,(4,5)]
16 G. add_edges_from (E)
17

18 # Initialize the states of the nodes
19 x = np.array ([10.0 , 5.0, 0.0, -5.0, -10.0])
20

21 # Define the epsilon value
22 epsilon = 1 / 4
23

24 # Run the average consensus algorithm for a
certain number of iterations

25 N_itr = 10
26 N_agents = len(V)
27 x_history = np.zeros ([N_itr , N_agents]) # Store

initial state
28 for k in range(N_itr):
29 x_history [k ,:] = x
30 u = np. zeros_like (x)
31 for i in range(len(V)):
32 for j in range(len(V)):
33 if (V[i], V[j]) in E or (V[j], V[i]) in E:
34 u[i] += x[j] - x[i]
35 u *= epsilon
36 x += u
37

38 # Plot the time series for x_i[k]
39 plt. figure (figsize =(10 , 6))
40 plt.plot(x_history)

142 Distributed Optimization

41 plt. xlabel (’ Iteration (k) ’)
42 plt. ylabel (’ States (x_i[k]) ’)
43 plt.title(’ Average Consensus Algorithm ’)
44 plt.grid(True)
45 plt.show ()

6.5.2 Example 6.4

The following program is for the simulation of the distributed gradient
descent algorithm shown in Example 6.4.

1 # Distributed Gradient Descent
2

3 import networkx as nx
4 import numpy as np
5 import matplotlib . pyplot as plt
6

7 # Create a graph object
8 G = nx.Graph ()
9

10 # Add vertices (nodes)
11 V = [1 ,2 ,3 ,4 ,5]
12 G. add_nodes_from (V)
13

14 # Add edges
15 E = [(1 ,2) ,(1,3) ,(1,4) ,(3,4) ,(2,5) ,(4,5)]
16 G. add_edges_from (E)
17

18 # Initialize the states of the nodes
19 x = np.array ([10.0 , 5.0, 0.0, -5.0, -10.0])
20

21 # Define the epsilon value
22 epsilon = 1 / 4
23

24 # Step size of DGD
25 alpha = 0.1
26

27 # Run the average consensus algorithm for a

6.5. Python Programs 143

certain number of iterations
28 N_itr = 100
29 N_agents = len(V)
30 x_history = np.zeros ([N_itr , N_agents]) # Store

initial state
31 v = np.array ([1 ,2 ,3 ,4 ,5])
32 for k in range(N_itr):
33 x_history [k ,:] = x
34 u = np. zeros_like (x)
35 for i in range(len(V)):
36 for j in range(len(V)):
37 if (V[i], V[j]) in E or (V[j], V[i]) in E:
38 u[i] += x[j] - x[i]
39 u *= epsilon
40 x += u - alpha * (x - v)
41

42 # Estimation
43 x_est = np.sum(x) / N_agents
44 error = x_est - 3
45 print(x_est)
46

47 # Plot the time series for x_i[k]
48 plt. figure (figsize =(10 , 6))
49 plt.plot(x_history)
50 plt. xlabel (’ Iteration (k) ’)
51 plt. ylabel (’ States (x_i[k]) ’)
52 plt.title(’ Distributed Gradient Descent Algorithm

’)
53 plt.grid(True)
54 plt.show ()

6.5.3 Example 6.5

The following program is for the simulation of distributed least squares by
the ADMM-based algorithm shown in Example 6.5.

1 # Distributed least squares by the ADMM -based
algorithm

144 Distributed Optimization

2

3 import numpy as np
4 import numpy. linalg as LA
5 import matplotlib . pyplot as plt
6

7 # Parameter settings
8 # random seed
9 np. random .seed (1)

10 # matrix A
11 n = 30
12 m = n
13 A = np. random .randn(m, n)
14 # original vector (n- dimensional , k- sparse)
15 k = 2
16 x_orig = np.zeros(n)
17 S = np. random . randint (n,size=k)
18 x_orig [S] = 1
19

20 # vector b
21 b = A @ x_orig + 0.01 * np. random .randn(m)
22

23 # Distributed ADMM
24 # Parameters
25 gamma = 1
26 N_agents = m
27 M = np.zeros ([n,n, N_agents])
28 for i in range(N_agents):
29 fi = A[i ,:]. reshape (1,-1)
30 M[:,:,i] = LA.inv(fi.T @ fi + np.eye(n) / gamma)
31 # Iterations
32 max_itr = 10000 # number of iterations
33 x = np.zeros ([n, N_agents])
34 u = np.zeros ([n, N_agents])
35 x_bar = np.sum(x,axis =1) / N_agents
36 x_history = np.zeros ([max_itr , N_agents])
37 for k in range(max_itr):
38 x_history [k ,:] = x_bar
39 for i in range(N_agents):

6.5. Python Programs 145

40 qi = b[i] * A[i ,:]
41 x_next = M[:,:,i] @ (qi + (x_bar - u[:,i]) /

gamma)
42 x[:,i] = x_next
43 x_bar = np.sum(x,axis =1) / N_agents
44 for i in range(N_agents):
45 u_next = u[:,i] + x[:,i] - x_bar
46 u[:,i] = u_next
47

48 # Estimation
49 x_est = np.sum(x,axis =1) / N_agents
50

51 # Reconstructed vector
52 fig = plt. figure ()
53 ax1 = fig. add_subplot (1, 2, 1)
54 ax1.stem(x_orig)
55 ax1. set_ylim (-0.1 ,1.1)
56 ax2 = fig. add_subplot (1, 2, 2)
57 ax2.stem(x_est)
58 ax2. set_ylim (-0.1 ,1.1)
59 plt.show ()
60

61 # Average state trajectory
62 fig = plt. figure ()
63 plt.plot(x_history)
64 plt. xlabel (’ Iteration (k) ’)
65 plt. ylabel (’ Average States ’)
66 plt.title(’ Distributed Least Squares by ADMM ’)
67 plt.grid(True)
68 plt.show ()

6.5.4 Example 6.6

The following program is for the simulation of distributed least squares
with sparse regularization shown in Example 6.6.

1 # Distributed sparse regularization
2 import cvxpy as cp

146 Distributed Optimization

3 import numpy as np
4 import numpy. linalg as LA
5 import matplotlib . pyplot as plt
6 from mpl_toolkits . mplot3d import axes3d
7 import networkx as nx
8

9 ## Parameter settings
10 # random seed
11 np. random .seed (1)
12 # matrix A
13 n = 30
14 m = n
15 A = np. random .randn(m, n)
16 # original vector (n- dimensional , k- sparse)
17 k = 2
18 x_orig = np.zeros(n)
19 S = np. random . randint (n,size=k)
20 x_orig [S] = 1
21

22 # vector b
23 b = A @ x_orig + 0.01 * np. random .randn(m)
24

25 # Optimization parameter settings
26 lmbd = 1
27

28 # Optimization by distributed ADMM
29 # Soft - thresholding function
30 def St(lmbd , v):
31 n = v.shape [0]
32 Sv = np.zeros(n)
33 i = np.abs(v) > lmbd
34 Sv[i] = v[i] - np.sign(v[i]) * lmbd
35 return Sv
36

37 # Parameters
38 gamma = 1
39 N_agents = m
40

6.5. Python Programs 147

41 M = np.zeros ([n,n, N_agents])
42 for i in range(N_agents):
43 fi = A[i ,:]. reshape (1,-1)
44 M[:,:,i] = LA.inv(fi.T @ fi + rho * np.eye(n))
45

46 Ap = np. linalg .pinv(A) # Moore - Penrose pseudo
inverse of A

47

48 # Iterations
49 max_itr = 1000 # number of iterations
50 x = np.zeros ([n, N_agents])
51 u = np.zeros ([n, N_agents])
52 z = np.zeros(n)
53 x_bar = np.sum(x,axis =1) / N_agents
54 x_history = np.zeros ([max_itr , N_agents])
55 for k in range(max_itr):
56 x_history [k ,:] = x_bar
57 for i in range(N_agents):
58 qi = b[i] * A[i ,:]
59 x_next = M[:,:,i] @ (qi + (z - u[:,i]) / gamma

)
60 x[:,i] = x_next
61 x_bar = np.sum(x,axis =1) / N_agents
62 u_bar = np.sum(u,axis =1) / N_agents
63 z = St(gamma * lmbd/ N_agents , x_bar + u_bar)
64 for i in range(N_agents):
65 u_next = u[:,i] + x[:,i] - z
66 u[:,i] = u_next
67

68 # Estimation
69 x_est = np.sum(x,axis =1) / N_agents
70

71 # Reconstructed vector
72 fig = plt. figure ()
73 ax1 = fig. add_subplot (1, 2, 1)
74 ax1.stem(x_orig)
75 ax1. set_ylim (-0.1 ,1.1)
76 ax2 = fig. add_subplot (1, 2, 2)

148 Distributed Optimization

77 ax2.stem(x_est)
78 ax2. set_ylim (-0.1 ,1.1)
79 plt.show ()
80

81 # Average state trajectory
82 fig = plt. figure ()
83 plt.plot(x_history)
84 plt. xlabel (’ Iteration (k) ’)
85 plt. ylabel (’ Average States ’)
86 plt.title(’ Distributed Sparse Regularization by

ADMM ’)
87 plt.grid(True)
88 plt.show ()

Chapter 7

Applications of Compressed Sensing

In this section, we showcase applications of compressed sensing and sparse
optimization to systems and control.

7.1 Sparse Representations for Splines

Here we consider curve fitting by using splines. As in Chapter 3, we consider
the following two-dimensional dataset:

D = {(t1, y1), (t2, y2), . . . , (tm, ym)}, (7.1)

where 0 ≤ t1 < t2 < · · · < tm = T represent the sampling times, and
y1, y2, . . . , ym are the corresponding observations. We assume that these
observations are generated from the following model:

yi = y(ti) + ϵi, i = 1, 2, . . . ,m, (7.2)

where y is a function and ϵi is additive noise. The problem of curve fitting
is to estimate the unknown function y from the dataset D.

In Chapter 3, we have assumed that the function is a polynomial
function with a fixed order, and shown that the problem becomes a convex
optimization. Here we seek a function among more general functions called
splines. Namely, we consider the following optimization problem:

minimize
y

m∑
i=1

|y(ti) − yi|2 + λ

∫ T

0
|ÿ(t)|2dt, (7.3)

where we assume the second derivative ÿ is in L2(0, T). The first term is
for the fidelity of curve fitting to the data, and the second term is for the
smoothness of the curve. In general, if you increase the fidelity then the

150 Applications of Compressed Sensing

curve becomes less smooth, and hence we need to control the trade-off
between them to appropriately choose the parameter λ > 0.

Note that since y is not a finite-dimensional vector but a function, the
problem is an infinite-dimensional problem. However, to use techniques in
Hilbert space theory, the problem can be reduced to a finite-dimensional
optimization problem. Let us first show this in this section. For this, we
introduce the formulation of control theoretic splines [42], [145].

7.1.1 Solution by projection theorem

First, let us define

x1(t) ≜ y(t), x2(t) ≜ ẏ(t), u(t) ≜ ÿ(t). (7.4)

Then, the optimization problem can be described as

minimize
u∈L2(0,T)

m∑
i=1

|y(ti) − yi|2 + λ

∫ T

0
|u(t)|2dt

subject to ẋ(t) = Ax(t) + bu(t), y(t) = c⊤x(t), t ∈ [0, T],
x(0) = 0,

(7.5)

where x(t) ≜ [x1(t), x2(t)]⊤ and

A ≜

[
0 1
0 0

]
, b ≜

[
0
1

]
, c ≜

[
1
0

]
. (7.6)

Note that this formulation is for more general optimization than (7.3) by
choosing another set of (A, b, c).

Define

l(τ, t) ≜

c⊤eA(t−τ)b, if 0 ≤ t ≤ τ,

0, otherwise,
(7.7)

and
ϕi(t) ≜ l(t, ti), i = 1, 2, . . . ,m. (7.8)

Then, we have

y(ti) = ⟨ϕi, u⟩L2 =
∫ T

0
ϕi(t)u(t)dt, i = 1, 2, . . . ,m. (7.9)

From this, the problem (7.5) becomes

minimize
u∈L2(0,T)

m∑
i=1

∣∣⟨ϕi, u⟩L2 − yi
∣∣2 + λ

∫ T

0
|u(t)|2dt. (7.10)

7.1. Sparse Representations for Splines 151

Then, if we define zi ≜ ⟨ϕi, u⟩L2 , the optimization problem is described as

minimize
u∈L2(0,T)

m∑
i=1

|zi − yi|2 + λ

∫ T

0
|u(t)|2dt

subject to zi = ⟨ϕi, u⟩L2 , i = 1, 2, . . . ,m.
(7.11)

Define a new Hilbert space H by

H = L2(0, T) × Rm, (7.12)

with inner product〈[
v

w

]
,

[
u

z

]〉
H

≜ w⊤z +
∫ T

0
v(t)u(t)dt. (7.13)

Then, consider a closed linear subspace M of H defined by

M ≜

{[
u

z

]
∈ H : zi = ⟨ϕi, u⟩L2

}
, (7.14)

and a vector p ∈ H defined by

p ≜

[
0
y

]
∈ H, (7.15)

where y = [y1, y2, . . . , ym]⊤ ∈ Rm. Then, for r ≜ (u, z) ∈ H, we have

∥r − p∥2
H =

m∑
i=1

|zi − yi|2 + λ

∫ T

0
|u(t)|2dt, (7.16)

where ∥ · ∥H is the norm induced by the inner product ⟨·, ·⟩H , that is

∥r − p∥H =
√

⟨r − p, r − p⟩H . (7.17)

The optimization problem (7.11) is now rewritten as

minimize
r∈H

∥r − p∥2
H subject to r ∈ M. (7.18)

The minimizer is given by the projection of p ∈ H onto the closed linear
subspace M ⊂ H. Let M⊥ denote the orthogonal complement of M in H.
That is,

M⊥ ≜

{[
v

w

]
:
〈[

v

w

]
,

[
u

z

]〉
H

= 0, ∀
[
u

z

]
∈ M

}
. (7.19)

152 Applications of Compressed Sensing

0 M

M⊥ + p

p

M⊥

r∗

Figure 7.1: Projection theorem: the projection of p onto M is given by r∗ ∈ (M⊥ + p) ∩M .

Then, from the projection theorem, the minimizer r∗ is in the set (M⊥ +
p) ∩M (see [42, Section 2.3]). Figure 7.1 illustrates this property from the
projection theorem.

Now, let us characterize the set M⊥ + p. Take (v,w) ∈ M⊥. Then,
from (7.14), for any (u, z) ∈ M , we have

0 =
〈[

v

w

]
,

[
u

z

]〉
H

= w⊤z + λ

∫ T

0
v(t)u(t)dt

= w⊤


⟨ϕ1, u⟩L2

⟨ϕ2, u⟩L2

...
⟨ϕm, u⟩L2

+ λ⟨v, u⟩L2

=
m∑
i=1

wi⟨ϕi, u⟩L2 + λ⟨v, u⟩L2

=
〈

m∑
i=1

wiϕi + λv, u

〉
L2

.

(7.20)

This equation holds for any u ∈ L2(0, T), and hence we have

m∑
i=1

wiϕi + λv = 0, (7.21)

or

v = − 1
λ

m∑
i=1

wiϕi. (7.22)

7.1. Sparse Representations for Splines 153

From this, the subspace M⊥ can be represented by

M⊥ =
{[

− 1
λ

∑m
i=1wiϕi
w

]
: w ∈ Rm

}
, (7.23)

and also we have

M⊥ + p =
{[

− 1
λ

∑m
i=1wiϕi

w + y

]
: w ∈ Rm

}
. (7.24)

Now, let us obtain the minimizer r∗ = (u∗, z∗) ∈ (M⊥ + p) ∩ M of
(7.18) (see also Figure 7.1). First, since r∗ ∈ M , we have

z∗
i = ⟨ϕi, u∗⟩L2 , i = 1, 2, . . . ,m. (7.25)

Next, since r∗ ∈ M⊥ + p, we have

u∗ = − 1
λ

m∑
i=1

wiϕi, (7.26)

z∗
i = wi + yi. (7.27)

Inserting (7.26) into (7.25) gives

z∗
i =

〈
ϕi,−

1
λ

m∑
j=1

wjϕj

〉
L2

= − 1
λ

m∑
j=1

wj⟨ϕi, ϕj⟩L2 . (7.28)

From (7.27), we have

− 1
λ

m∑
j=1

wj⟨ϕi, ϕj⟩L2 = wi + yi, (7.29)

or
(λI +G)w = −λy, (7.30)

where G is the Gram matrix defined by

G ≜


⟨ϕ1, ϕ1⟩ ⟨ϕ1, ϕ2⟩ . . . ⟨ϕ1, ϕm⟩
⟨ϕ2, ϕ1⟩ ⟨ϕ2, ϕ2⟩ . . . ⟨ϕ2, ϕm⟩

...
...

⟨ϕm, ϕ1⟩ ⟨ϕm, ϕ2⟩ . . . ⟨ϕm, ϕm⟩

 . (7.31)

Since λ > 0, the matrix λI +G is non-singular, and hence

w = −λ(λI +G)−1y. (7.32)

154 Applications of Compressed Sensing

Finally, from (7.26), we obtain the solution

u∗ = − 1
λ

m∑
i=1

[
−(λI +G)−1λy

]
i
ϕi

=
m∑
i=1

[
(λI +G)−1y

]
i
ϕi

=
m∑
i=1

α∗
iϕi,

(7.33)

where

α∗ ≜


α∗

1
...
α∗
m

 = (λI +G)−1y. (7.34)

The important point of the solution is that the optimal solution of
the infinite-dimensional optimization problem in (7.5) is described as a
finite number of spline functions ϕ1, . . . , ϕm and the problem is reduced
to computing the unknown coefficients α∗

1, . . . , α
∗
m. In other words, the

original problem (7.5) is fundamentally a finite-dimensional optimization
problem. Note that this property is generalized to the representer theorem
in statistical machine learning [139].

Finally, the optimal solution y∗ of the original optimization problem
(7.3) is given by

y∗(t) =
∫ t

0

∫ τ

0
u∗(s)dsdτ. (7.35)

7.1.2 Sparse representation

From (7.33), the number of coefficients is equal to m, the number of
data. If the data is very big (i.e., m is very large), then we need many
coefficients to represent the fitting curve y(t). Then, to use the idea of
sparse representation, we can reduce the number of coefficients. For this,
we restrict the feasible solutions of the optimization problem (7.10) to be

u(t) =
m∑
i=1

ziϕi(t), (7.36)

where z1, . . . , zm are unknown coefficients to be obtained. With this, we
have

⟨ϕi, u⟩L2 =
〈
ϕi,

m∑
j=1

zjϕj

〉
L2

=
m∑
j=1

zj⟨ϕi, ϕj⟩L2 , (7.37)

7.2. Sparse System Identification 155

and hence 
⟨ϕ1, u⟩L2

⟨ϕ2, u⟩L2

...
⟨ϕm, u⟩L2

 = Gz, (7.38)

and
m∑
i=1

∣∣⟨ϕi, u⟩L2 − yi
∣∣ = ∥Gz − y∥2. (7.39)

Also, we have

λ

∫ T

0
|u(t)|2dt = λ

∫ T

0

(
m∑
i=1

ziϕi(t)
) m∑

j=1
zjϕj(t)

 dt
= λ

m∑
i=1

m∑
j=1

zizj⟨ϕi, ϕj⟩L2

= λz⊤Gz.

(7.40)

Therefore, under the assumption of (7.36), the optimization problem (7.10)
is rewritten as

minimize
z∈Rm

∥Gz − y∥2 + λz⊤Gz. (7.41)

Then, to promote the sparsity of z, we add the ℓ0 norm as a regularization
term:

minimize
z∈Rm

∥Gz − y∥2 + λz⊤Gz + ρ∥z∥0, (7.42)

where ρ > 0 is the regularization parameter. As usual, we can adopt the ℓ1
norm as convex relaxation of the ℓ0 norm. The relaxed convex optimization
problem is described as follows:

minimize
z∈Rm

∥Gz − y∥2 + λz⊤Gz + ρ∥z∥1. (7.43)

This can be easily solved by the proximal gradient algorithm studied in
Section 4.4 (p. 81).

7.2 Sparse System Identification

System identification is the process of constructing mathematical models
of dynamical systems from input-output data. In system identification, we
use the input-output data to estimate the characteristics of a system, such
as its impulse response, transfer function, and state-space equations. In

156 Applications of Compressed Sensing

<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+
<latexit sha1_base64="2dgzoczMByquTl6tO+xSujBYCwQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI8BD3pMxDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mHGCfkQHkoecUWOl+m2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUq5Ur8sVe+zOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6RXjOY=</latexit>

G
<latexit sha1_base64="hw472tbkW2FsnoCcti0nhNcswaw=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8FBKIlK9CEUvHivYVmhC2Gy27dLNbtjdCCH24F/x4kERr/4Nb/4bt20O2vpg4PHeDDPzwoRRpR3n2yotLa+srpXXKxubW9s79u5eR4lUYtLGggl5HyJFGOWkralm5D6RBMUhI91wdD3xuw9EKir4nc4S4sdowGmfYqSNFNgHGbyEXp4FTi0L3JrHIqGVNw7sqlN3poCLxC1IFRRoBfaXFwmcxoRrzJBSPddJtJ8jqSlmZFzxUkUShEdoQHqGchQT5efT+8fw2CgR7Atpims4VX9P5ChWKotD0xkjPVTz3kT8z+ulun/h55QnqSYczxb1Uwa1gJMwYEQlwZplhiAsqbkV4iGSCGsTWcWE4M6/vEg6p3W3UW/cnlWbV0UcZXAIjsAJcME5aIIb0AJtgMEjeAav4M16sl6sd+tj1lqyipl98AfW5w92m5Uj</latexit>

y = {y0, y1, . . .}
<latexit sha1_base64="TQNY2EB9J7T5+xhQcfr6zETCNnU=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJSSiFQ3QtGNywq2FZoQJpNJO3QyCfMQSuzCX3HjQhG3/oY7/8Zpm4W2HrhwOOde7r0nzBiVynG+rdLS8srqWnm9srG5tb1j7+51ZKoFJm2cslTch0gSRjlpK6oYuc8EQUnISDccXk/87gMRkqb8To0y4ieoz2lMMVJGCuwDDS+hl+vAqenArXksSpX0xoFdderOFHCRuAWpggKtwP7yohTrhHCFGZKy5zqZ8nMkFMWMjCueliRDeIj6pGcoRwmRfj69fwyPjRLBOBWmuIJT9fdEjhIpR0loOhOkBnLem4j/eT2t4gs/pzzTinA8WxRrBlUKJ2HAiAqCFRsZgrCg5laIB0ggrExkFROCO//yIumc1t1GvXF7Vm1eFXGUwSE4AifABeegCW5AC7QBBo/gGbyCN+vJerHerY9Za8kqZvbBH1ifP2OvlRc=</latexit>

u = {u0, u1, . . .}

<latexit sha1_base64="6Wi4zReDefFK60fTmWNK0olb8yM=">AAACFHicbZDLSgMxFIYzXmu9jbp0EyyCYCkzItWNUHTjsoK9QGcYMplMG5pJhiQjlKEP4cZXceNCEbcu3Pk2phdFW38IfPnPOSTnD1NGlXacT2thcWl5ZbWwVlzf2Nzatnd2m0pkEpMGFkzIdogUYZSThqaakXYqCUpCRlph/2pUb90Rqajgt3qQEj9BXU5jipE2VmAfeyRVlAkOL6CXf18Cp/yDbtljkdDKGwZ2yak4Y8F5cKdQAlPVA/vDiwTOEsI1Zkipjuuk2s+R1BQzMix6mSIpwn3UJR2DHCVE+fl4qSE8NE4EYyHN4RqO3d8TOUqUGiSh6UyQ7qnZ2sj8r9bJdHzu55SnmSYcTx6KMwa1gKOEYEQlwZoNDCAsqfkrxD0kEdYmx6IJwZ1deR6aJxW3WqnenJZql9M4CmAfHIAj4IIzUAPXoA4aAIN78AiewYv1YD1Zr9bbpHXBms7sgT+y3r8AkUGejA==</latexit>

✏ = {✏0, ✏1, . . .}

<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+

Figure 7.2: Block diagram

this section, we focus on a linear time-invariant discrete-time system. In
particular, we focus on the finite impulse response (FIR) model, which is
described as

yk =
m−1∑
i=0

giuk−i + ϵk, k = 0, 1, 2, . . . , N, (7.44)

where u = {u0, u1, . . . , uN} and y = {y0, y1, . . . , yN} are respectively
the input and output sequences, ϵ = {ϵ0, ϵ1, . . . ϵN} is noise, and g =
{g0, g1, . . . , gm−1} is the finite impulse response. In (7.44), we set ui = 0
for i < 0. Also, we assume N > m. The block diagram of the system (7.44)
is shown in Figure 7.2, where G denotes the linear system with impulse
response g. The problem is to estimate the impulse response parameters
g0, g1, . . . , gm−1 from the input/output dataset

D ≜ {(u0, y0), (u1, y1), . . . , (uN , yN)}. (7.45)

First, we define the following vectors:

y ≜


y0
y1
...
yN

 , ϵ ≜


ϵ0
ϵ1
...
ϵN

 , g ≜


g0
g1
...

gm−1

 . (7.46)

Also, we define the following matrix called the Toeplitz matrix:

U ≜



u0 0 . . . 0

u1 u0
.

u2 u1
. . . 0

...
... u0

...
...

...
uN−1 uN−2 . . . uN−m


∈ RN×m. (7.47)

7.2. Sparse System Identification 157

We assume U has full column rank, that is, rank(U) = m. Then, the
relation (7.44) is rewritten as

y = Ug + ϵ. (7.48)

To estimate the vector g, we consider the squared ℓ2 error:

E(g) ≜ 1
2∥y − Ug∥2

2. (7.49)

The minimizer gLS that minimizes E(g) is the least squares solution, which
is given by (see Exercise 3.3, p. 42)

gLS = (U⊤U)−1U⊤y. (7.50)

Now, we further assume that the impulse response is sparse. For example,
a delayed impulse response has zero coefficients for the first several steps
and can thus be considered sparse. Applying the idea of ℓ1 regularization
discussed in Section 4.4, we minimize the following cost function:

J(g) ≜ E(g) + λ∥g∥1 = 1
2∥y − Ug∥2

2 + λ∥g∥1. (7.51)

Minimizing this is easily done by the proximal gradient algorithm studied
in Section 4.4.

Example 7.1. Here we consider a Python simulation of sparse system
identification. We set the original impulse response to be identified is given
by

gi =

1, i = 5, 6, 7, 8, 9,
0, otherwise.

(7.52)

We set the length m of impulse response g as m = 20. The input u is
a random sequence that takes values of ±1. The length N = 100. Then,
we generate the output y by (7.44) with Gaussian noise ϵ with mean 0
and variance σ2 = 0.1. With these input/output data, we reconstruct the
impulse response vector g by minimizing (7.51) with λ = 5. We adopt the
FISTA algorithm (see 4.4.2, p. 83).

Figure 7.3 shows the original impulse response and the reconstructed
impulse response. We can see that the sparse regularization accurately
reconstructs the zero values in the impulse response. This property is
useful when detecting the delay time in the response. Since the sparse
regularization can accurately reconstruct the inactive portions of the
response, it can precisely detect the delay time.

The Python program for this simulation is shown in Section 7.6.1. □

158 Applications of Compressed Sensing

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.3: Original impulse response (left) and reconstructed response (right)

7.3 Sparse Controller Design

In this section, we consider stabilizing feedback control of continuous-time
systems. We design a feedback controller that stabilizes an unstable system.
In particular, we seek a sparse feedback gain matrix that has many zero
entries.

Let us consider a linear time-invariant system described by the following
state equation:

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, (7.53)
where x(t) ∈ Rd, u(t) ∈ Rm, A ∈ Rd×d, and B ∈ Rd×m. We assume the
pair (A,B) is stabilizable, or asymptotically controllable [142]. Then there
exists a state feedback gain K ∈ Rm×d such that the control

u(t) = Kx(t), (7.54)

asymptotically stabilizes the system (7.53), that is, the following property
holds:

lim
t→∞

x(t) = 0. (7.55)

7.3. Sparse Controller Design 159

Inserting equation (7.54) into (7.53), we have

ẋ(t) = (A+BK)x(t), (7.56)

and hence the matrix A+BK is Hurwitz [142, Proposition 5.5.6].1 This
condition is equivalent to the existence of a positive definite matrix Q ≻ 0
such that2 the following inequality holds [141, Corollary 3.5.1]:

(A+BK)⊤Q+Q(A+BK) ≺ 0. (7.57)

The purpose is to obtain the feedback gain K, and we need to seek Q and
K that satisfy the inequality. However, the products K⊤Q and QK in
(7.57) make the inequality nonlinear, which is difficult to solve directly. To
address this, we introduce new variables P ≜ Q−1 and Y ≜ KP . Then,
from inequality (7.57), we derive the following inequalities:

P ≻ 0, AP + PA⊤ +BY + Y ⊤B⊤ ≺ 0. (7.58)

These are called linear matrix inequalities (LMIs), which play an important
role in the design of linear control systems [141].

If we find P and Y satisfying (7.58), then we can use Y as a stabilizing
feedback gain with the transformed output y(t) = P−1x(t). Namely, the
control input is given by u(t) = Y y(t) = KPy(t) = Kx(t). The problem
of sparse feedback gain is to obtain a sparse Y that stabilizes the system.
More precisely, we find matrix Y that has the minimum ℓ0 norm, the
number of nonzero elements in Y , among matrices satisfying the LMIs in
(7.58).

To solve this, we slightly change the LMIs in (7.58) as follows:

P ⪰ ϵI, AP + PA⊤ +BY + Y ⊤B⊤ ⪯ −ϵI, (7.59)

with a small number ϵ > 0, and define

Λ ≜ {Y ∈ Rm×d : ∃P ⪰ ϵI, AP + PA⊤ +BY + Y ⊤B⊤ ⪯ −ϵI}. (7.60)

We note that Λ is a closed subset of Rm×d, and if Y ∈ Λ then this Y
satisfies (7.58).

Now, our problem is formulated as the following optimization problem:

minimize
Y

∥Y ∥0 subject to Y ∈ Λ. (7.61)

1A matrix is said to be Hurwitz if all the eigenvalues of the matrix lie in the open left half
plane in C.

2 We denote Q ≻ 0 and Q ⪰ 0 if Q is positive definite and positive semi-definite, respectively.
Similarly, Q ≺ 0 and Q ⪯ 0 means Q is negative definite and negative semi-definite, respectively.

160 Applications of Compressed Sensing

As always, we approximate the ℓ0 norm of the matrix Y by the ℓ1 norm
∥Y ∥1, the sum of absolute values of the elements in Y . That is, we consider
the following optimization problem:

minimize
Y

∥Y ∥1 subject to Y ∈ Λ. (7.62)

We can adopt the Douglas-Rachford splitting algorithm (see Section
4.3.1, p. 77) to numerically solve this optimization problem. The algorithm
is given by

Y [k + 1] = Sγ(Z[k]),
Z[k + 1] = Z[k] + ΠΛ(2Y [k + 1] − Z[k]) − Y [k + 1],

k = 0, 1, 2,
(7.63)

The operator Sγ is the soft-thresholding function (see Section 4.2.5, p. 73)
for a matrix defined by

[Sγ(V)]ij ≜


Vij − γ, if Vij ≥ γ,

0, if − γ < Vij < γ,

Vij + γ, if Vij ≤ −γ,
(7.64)

where [Sγ(V)]ij is the (i, j)-th entry of Sγ(V) ∈ Rm×d. The operator ΠΛ is
the projection onto the set closed and convex Λ, which can be computed
by solving another LMI optimization [12, Section 2.1] (see also [102]):

Lemma 7.1. For matrix Y ∈ Rm×d, the projection ΠΛ(Y) is the
solution of the following optimization problem:

minimize
S,Z

trace(S) subject to
[

S (Z − Y)⊤

(Z − Y) I

]
≻ 0, Z ∈ Λ.

(7.65)

We can also use a greedy method for the original problem (7.61). The
iterative greedy LMI [102] is an alternating projection method to find an
s-sparse matrix Y that satisfies ∥Y ∥0 ≤ s in the LMI subset Λ for given
s ∈ N. The projection of matrix Y onto the subset of s-sparse matrices is
given by

arg min
Z

∥Z − Y ∥ subject to ∥Z∥0 ≤ s. (7.66)

This projection is given by the s-sparse operator Hs(Y), which sets all but
the s largest (in magnitude) elements of Y to 0 (see Section 5.3.2, p. 113).

7.4. Discrete-time Hands-off Control 161

The algorithm is given by

Y [k + 1] = Hs ◦ ΠΛ(Y [k]), k = 0, 1, 2, . . . , (7.67)

with an initial guess Y [0].

Example 7.2. Let us consider a linear system (7.53) with

A =


0 0 1.1320 0 −1.0000
0 −0.0538 −0.1712 0 0.0705
0 0 0 1.0000 0
0 0.0485 0 −0.8556 −1.0130
0 −0.2909 0 1.0532 −0.6859

 , (7.68)

B =


0 0 0

−0.1200 1.0000 0
0 0 0

4.4190 0 −1.6650
1.5750 0 −0.0732

 . (7.69)

This is the AC1 model in the well-known benchmark problem set in
COMPLeib library [81].

For this system, we design a sparse feedback gain by solving the ℓ1 norm
optimization in (7.62). We set ϵ = 0.01 for (7.60). The optimal solution is
given by

Yalt =

0 0 0 0 0
0 −0.00553 0 0 0
0 0 0 0 0

 . (7.70)

This is sufficiently sparse, and we successfully obtain a sparse feedback
gain.

The Python program to obtain the sparse feedback gain is shown in
Section 7.6.2. □

7.4 Discrete-time Hands-off Control

In this section, we introduce sparse control (or hands-off control) for
discrete-time systems.

7.4.1 Feasible control

Let us consider a linear time-invariant discrete-time system described by
the following state equation:

x[k + 1] = Ax[k] + bu[k], k = 0, 1, 2, . . . , n− 1, (7.71)

162 Applications of Compressed Sensing

where x[k] ∈ Rd is the state and u[k] ∈ R is the control at time step
k ∈ {0, 1, 2, . . . , n − 1}. The matrix A ∈ Rd×d and the vector b ∈ Rd are
assumed to be exactly known. The number n is the horizon length of the
system.

Assume that the initial state x[0] = ξ is given by state observation. Then
the control objective is to find a control sequence {u[0], u[1], . . . , u[n− 1]}
such that the control drives the state x[k] from x[0] = ξ to the origin, that
is,

x[n] = 0. (7.72)

From the state equation (7.71), we have

x[k] = Akx[0] +
k−1∑
i=0

Ak−1−ibu[i] = Akξ +
k−1∑
i=0

Ak−1−ibu[i], (7.73)

for k ∈ {0, 1, . . . , n − 1}. Then, the terminal constraint (7.72) can be
described as

x[n] = Anξ +
n−1∑
i=0

An−1−ibu[i] = Anξ + Φu = 0, (7.74)

where

Φ ≜
[
An−1b An−2b . . . Ab b

]
, u ≜


u[0]
u[1]

...
u[n− 1]

 . (7.75)

We define the set of feasible controls that achieve (7.72) as

U(n, ξ) ≜
{
u ∈ Rn : Anξ + Φu = 0

}
. (7.76)

For the feasibility, we have the following lemma.

Lemma 7.2. Suppose n ≥ d and the following matrix M is non-
singular:

M ≜
[
b Ab . . . Ad−1b

]
∈ Rd×d. (7.77)

Then the feasible set U(n, ξ) is non-empty for any ξ ∈ Rd.

Note that the matrix M is called the controllability matrix, and the
pair (A, b) is called controllable if M is non-singular.

7.4. Discrete-time Hands-off Control 163

Proof of Lemma 7.2: Since n ≥ d and the matrix M is non-singular,
the matrix Φ in (7.75) has full row rank. It follows that Φ is surjective and
there exists at least one vector u that satisfies Φu = −Anξ for any ξ ∈ Rd.
□

7.4.2 Discrete-time maximum hands-off control

Now we consider optimal control that minimizes a cost function among
control vectors in the feasible set U(n, ξ). A general form of the cost
function is given by

J(u) =
n−1∑
k=0

L(x[k], u[k]), (7.78)

where the function L is called the stage cost function.
The linear quadratic control, or LQ control for short, has the following

stage cost function
L(x, u) = x⊤Qx + r|u|2, (7.79)

where Q ∈ Rd×d is a positive semidefinite matrix, and r > 0. In this
section, we are interested in sparse control, also known as maximum hands-
off control, which has the following stage cost function:

L(x, u) = |u|0. (7.80)

With this, the cost function is given by

J(u) =
n−1∑
k=0

|u[k]|0 = ∥u∥0. (7.81)

The optimization problem is then described as

minimize
u∈Rn

∥u∥0 subject to u ∈ U(n, ξ). (7.82)

As usual, we approximate the ℓ0 optimization by

minimize
u∈Rn

∥u∥1 subject to u ∈ U(n, ξ), (7.83)

which is the ℓ1 optimization problem discussed in Section 4.3, and is
efficiently solved by the Douglas-Rachford splitting algorithm (see Section
4.3.1).

Also one can consider the following cost function

J(u) =
n−1∑
k=0

{
x[k]⊤Qx[k] + λ|u[k]|

}
, (7.84)

164 Applications of Compressed Sensing

with positive semidefinite Q ∈ Rd×d and λ > 0. Inserting (7.73) into (7.84),
we have

J(u) = u⊤Ru + 2q⊤u + λ∥u∥1 + c, (7.85)

for some R ∈ Rn×n, q ∈ Rn, and c ∈ R. For this optimization, we can
apply the ADMM algorithm discussed in Section 4.5.

7.4.3 Model predictive control

As discussed above, the control sequence u ∈ Rn is obtained by numerical
optimization with a given initial state observation ξ ∈ Rd. Let C denote
the mapping from the initial state ξ ∈ Rd to the optimal control sequence
u ∈ Rn, that is,

u = C(ξ). (7.86)

Then u = C(ξ) is a finite-horizon control (i.e., the control is applied to
a plant in a finite length of time), and this is open-loop control. Open-loop
control is something like riding a bicycle with your eyes closed, which is
very fragile against disturbances. To make the control system robust, you
need to implement the control as feedback control, where the controller
constantly observes the state and updates the control based on the latest
state observation.

To implement feedback control from the finite-horizon control u = C(ξ),
we adopt the model predictive control (also known as receding horizon
control). The model predictive control is described as follows:

1. Observe the state x[k] at time k.

2. Compute the optimal control sequence

u[k] =


u0[k]
u1[k]

...
un−1[k]

 = C(x[k]). (7.87)

3. Use the first element of u[k], that is, u0[k], as the control at time k.

From this, the control u[k] to the discrete-time plant (7.71) is obtained by

u[k] = u0[k] =
[
1 0 . . . 0

]
C(x[k]). (7.88)

Figure 7.4 shows the block diagram of the feedback control system where
P is the plant given in (7.71).

7.4. Discrete-time Hands-off Control 165

P

[1, 0, . . . , 0] C

x[k]

u[k]

u[k] = u0[k]

Figure 7.4: Feedback control by model predictive control u[k] = C(x[k]). P is the plant given
by (7.71).

The important thing we should do next is to study the stability of
the feedback system. The closed-loop system in Figure 7.4 may exhibit
instability, that is, x[k] may diverge, if we do not care about the stability.
The instability is possible even when P and C are both stable. Therefore, to
prove the stability is very important to design a feedback control system.

First, we define the value function V (ξ) of the optimal control problem
(7.83) by

V (ξ) ≜ min
u∈U(n,ξ)

∥u∥1. (7.89)

We have the following lemma:

Lemma 7.3. Assume that the controllability matrix M in (7.77)
and the matrix A in (7.71) are non-singular. Assume also that n ≥ d.
Then the value function V (ξ) is convex, continuous, and positive
definite.

Exercise 7.1. Prove Lemma 7.3.

Now, we give a detailed definition of stability.

Definition 7.1. Let us consider the following discrete-time system

x[k + 1] = f(x[k]), k = 0, 1, 2, . . . (7.90)

Suppose that there exists the unique sequence {x[0],x[1], . . .} satis-
fying (7.90) for any initial state x[0] ∈ Rd. Suppose also that the
origin is an equilibrium of the system, namely, f(0) = 0 holds. Then
the origin is said to be stable if for each ϵ > 0 there exists δ > 0
such that

∥x[0]∥2 < δ ⇒ ∥x[k]∥2 < ϵ, ∀k ≥ 0. (7.91)

166 Applications of Compressed Sensing

The concept is very simple; the state trajectory {x[k]}∞
k=0 starting out

near the origin will keep on staying near the origin and never diverge.
From (7.71) and (7.88), the closed-loop system is described as

x[k + 1] = Ax[k] +
[
1 0 . . . 0

]
C(x[k]) ≜ f(x[k]). (7.92)

It is easily shown that the origin 0 is an equilibrium of this difference
equation. To show the stability of this equilibrium, Lyapunov’s theorem is
available.

Theorem 7.1. Suppose that there exists a function V : Rd → R
satisfying

1. V (0) = 0.

2. V (ξ) is continuous.

3. V (ξ) > 0 for any ξ ̸= 0.

4. V (x[k+1]) ≤ V (x[k]) for k = 0, 1, 2, . . ., for the state trajectory
{x[k]}∞

k=0 of the system (7.90).

Then the origin 0 is stable under the system equation (7.90).

A function V in Theorem 7.1 is called a Lyapunov function. The idea
to prove the stability of our system (7.92) is to show the value function
(7.89) to be a Lyapunov function. In fact, it is a Lyapunov function and
we have the following theorem.

Theorem 7.2. Assume M and A are non-singular, and n ≥ d. Then
the origin is stable under the system equation (7.92).

Proof: We prove the value function V (ξ) in (7.89) is a Lyapunov
function of (7.92). The properties 1 to 3 in Theorem 7.1 are directly from
Lemma 7.3. We here prove 4. Let

u∗[k] ≜
[
u∗

0[k] u∗
1[k] . . . u∗

n−1[k]
]⊤

= C(x[k]), (7.93)

and define
ũ[k] ≜

[
u∗

1[k] u∗
2[k] . . . u∗

n−1[k], 0
]⊤
. (7.94)

Note that ũ[k] is a shifted control sequence by one time step of the optimal
control sequence u∗[k] at time k. It is then easily shown that ũ[k] is a

7.5. Further Readings 167

feasible control for x[k + 1], that is,

ũ[k] ∈ U(n,x[k + 1]). (7.95)

In fact, since u∗[k] ∈ U(n,x[k]) we have

Anx[k + 1] + Φũ[k]
= An(Ax[k] + bu∗

0[k]) +An−1bu∗
1[k] + · · · +Abu∗

n−1[k]
= A

(
Anx[k] +An−1bu∗

0[k] +An−2bu∗
1[k] + · · · + bu∗

n−1[k]
)

= A
(
Anx[k] + Φu∗[k]

)
= A× 0
= 0.

(7.96)

Then, from the optimality of the value function, we have

V (x[k + 1]) = min
{
∥u∥1 : u ∈ U(n,x[k + 1])

}
≤ ∥ũ[k]∥1

= |u∗
1[k]| + |u∗

2[k]| + · · · + |u∗
n−1[k]| + |0|

=
n−1∑
i=0

|u∗
i [k]| − |u∗

0[k]|

= V (x[k]) − |u∗
0[k]|

≤ V (x[k]),

(7.97)

for k = 0, 1, 2, . . . □

7.5 Further Readings

The control theoretic smoothing spline was first proposed in [145]. The book
[42] is a nice reference for the smoothing spline. The convex optimization
formulation of the constrained smoothing spline was considered in [99],
and the sparse representation was proposed in [100].

The book [85] by L. Ljung covers fundamental concepts in system
identification. Regularized system identification is discussed in [126]. A
non-convex optimization approach is found in [111].

For the design of sparse feedback control, see papers [83], [84], [96],
[102], [127]. The trade-off property between the closed-loop performance
and the sparsity of the gain is discussed in [74]. A comprehensive survey
of sparse feedback control can be found in recent books [72], [73].

The maximum hands-off control was first proposed in [105] for conti-
nuous-time and discrete-time systems. Detailed discussions of maximum

168 Applications of Compressed Sensing

hands-off control for continuous-time systems can be found in Part II of
this book. The model predictive control formulation was proposed in [113].

7.6 Python Programs

7.6.1 Example 7.1

The following program is for the simulation of sparse system identification
in Example 7.1.

1 import numpy as np
2 from scipy. linalg import toeplitz
3 from numpy. linalg import inv
4 import matplotlib . pyplot as plt
5

6 # input u
7 np. random .seed (0)
8 N = 100
9 u = np. random .rand(N)

10 u = np.where(u >= 0.5, 1, -1)
11

12 # true impulse response g*
13 m = 20
14 gstar = np.zeros ([m ,1])
15 gstar [5:10] = 1
16

17 # output y
18 sigma2 = 0.1 # noise sd
19 y = np. convolve (gstar.ravel (), u.ravel (), mode=’

full ’)[:N] + np.sqrt(sigma2)*np. random .randn(N)
20

21 # Toeplitz matrix U
22 U = toeplitz (np. concatenate (([u[0]] , np.zeros(m -

1))), u).T
23

24 ## Optimization by FISTA
25 # Soft - thresholding function
26 def St(lmbd , v):
27 n = v.shape [0]

7.6. Python Programs 169

28 Sv = np.zeros(n)
29 i = np.abs(v) > lmbd
30 Sv[i] = v[i] - np.sign(v[i]) * lmbd
31 return Sv
32

33 # parameter settings
34 lmbd = 5
35 U_norm = np. linalg .norm(U ,2)
36 gamma = 1/ U_norm **2 # step size
37 max_itr = 100 # number of iterations
38 g = np.zeros(m) # initial guess for g
39 z = g # initial guess for z
40 t = 0 # initial guess for t
41

42 # FISTA iteration
43 for k in range(max_itr):
44 res = U @ z - y
45 g2 = St(gamma*lmbd , z - gamma*U.T @ res)
46 t2 = (1 + np.sqrt (1+4*t**2))/2
47 z = g2 + (t -1)/t2 * (g2 - g)
48 g = g2
49 t = t2
50

51 # Plot the results
52 fig = plt. figure ()
53 ax1 = fig. add_subplot (1, 2, 1)
54 ax1.stem(gstar)
55 ax1. set_ylim ([-0.1 ,1.1])
56 ax2 = fig. add_subplot (1, 2, 2)
57 ax2.stem(g)
58 ax2. set_ylim ([-0.1 ,1.1])
59 plt.show ()

7.6.2 Example 7.2

The following program is for the design of a sparse feedback gain shown in
Example 7.2.

170 Applications of Compressed Sensing

1 # Import packages .
2 import cvxpy as cp
3 import numpy as np
4

5 # System matrices
6 n = 5
7 m = 3
8 A = np. matrix (
9 [[0 ,0 ,1.1320 ,0 , -1] ,

10 [0 , -0.0538 , -0.1712 ,0 ,0.0705] ,
11 [0,0,0,1,0],
12 [0 ,0.0485 ,0 , -0.8556 , -1.0130] ,
13 [0 , -0.2909 ,0 ,1.0532 , -0.6859]]
14)
15 B = np. matrix (
16 [[0 ,0 ,0] ,
17 [-0.12 ,1 ,0] ,
18 [0,0,0],
19 [4.419 ,0 , -1.6650] ,
20 [1.575 ,0 , -0.0732]])
21

22 # LMIs
23 epsil = 0.01
24 eI = epsil * np.eye(n)
25 P = cp. Variable ((n,n), symmetric =True)
26 Y = cp. Variable ((m,n))
27 objective = cp. Minimize (cp.norm1(Y))
28 constraints = [P - eI >> 0]
29 constraints += [A @ P + P @ A.T + B @ Y + Y.T @ B.

T + eI << 0]
30

31 # Optimization
32 prob = cp. Problem (objective , constraints)
33 prob.solve ()
34 Y_ = Y.value
35 Y_[np.abs(Y_) < 1e -6] = 0
36

37 # Print result .

7.6. Python Programs 171

38 print (" The optimal value is", prob.value)
39 print ("A solution Y is")
40 print(Y_)

Part II

Maximum Hands-off Control:
Compressed Sensing for

Continuous-time Systems

Chapter 8

Dynamical Systems and Optimal Control

We have studied the idea, algorithms, and applications of compressed
sensing in Part I. In Part II, we will extend the method to continuous-
time dynamical systems. For this, we here review the basics of dynamical
systems and optimal control.

Key ideas of Chapter 8� �
• A dynamical system is modeled by a differential equation called

the state-space equation.

• We cannot control uncontrollable systems.

• Optimal control is the best control among feasible controls for a
controllable system.� �

8.1 Dynamical Systems

A dynamical system is a system whose state changes over time. That is, a
dynamical system is a moving system. Dynamical systems are all around
us. They encompass a wide range of phenomena, from engineered systems
like vehicles, airplanes, motors, and electric circuits, to natural phenomena
like the movement of planets, changes in weather, ant swarms, and cell
movement. Even social and economic systems, such as fluctuations in stock
prices and the spread of viruses, can be modeled as dynamical systems.

176 Dynamical Systems and Optimal Control

r(0) = ξ1
rocket

ṙ(0) = ξ2 r(t), ṙ(t)

r
m F (t)

Figure 8.1: Rocket example

8.1.1 State equation

In Part II, we focus on a dynamical system that is described by a linear
differential equation:

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (8.1)

where A ∈ Rd×d, b ∈ Rd, x(t) ∈ Rd, and u(t) ∈ R. We call x(t) the state,
and u(t) the control. The state x(0) = ξ at time t = 0 is called the initial
state, and the differential equation in (8.1) is called the state equation. The
dynamical system in (8.1) is controlled by the control u(t), and is called a
controlled object or a plant.

Exercise 8.1. Show that the solution of the differential equation (8.1) is
given by

x(t) = eAtξ +
∫ t

0
eA(t−τ)bu(τ)dτ, t ≥ 0. (8.2)

Example 8.1 (Rocket). Let us consider the control of a rocket in outer
space where no friction nor gravity acts (see Figure 8.1). The rocket is
accelerated by thrust from a rocket engine. Let the mass of the rocket be
m. We assume that the rocket can move on a 1-dimensional straight line.
Let the position of the rocket at time t ≥ 0 be r(t) with initial position
r(0) = ξ1, and initial velocity v(0) = ṙ(0) = ξ2. We denote the thrust force
by F (t). From Newton’s second law of motion, we have1

mr̈(t) = F (t), r(0) = ξ1, ṙ(0) = ξ2. (8.3)

Let us transform this differential equation into the state equation in
(8.1). For this, define the state x(t) by

x(t) ≜
[
x1(t)
x2(t)

]
≜

[
r(t)
ṙ(t)

]
. (8.4)

1Strictly speaking, the thrust of a rocket is obtained by emitting its mass (e.g., fuel) to
the opposite direction, and hence the model is not correct. That is, the mass m should be
time-varying m(t) that decreases in time. In this example, however, we assume that the mass of
the rocket is sufficiently large and the variation can be ignored.

8.1. Dynamical Systems 177

Then we have

ẋ(t) =
[
ṙ(t)
r̈(t)

]
=
[

x2(t)
m−1F (t)

]
=
[
0 1
0 0

] [
x1(t)
x2(t)

]
+
[

0
m−1

]
F (t) (8.5)

Defining u(t) ≜ F (t) and

A ≜

[
0 1
0 0

]
, b ≜

[
0

m−1

]
, ξ ≜

[
ξ1
ξ2

]
, (8.6)

we obtain the state equation of the form (8.1). □

The system (8.3) or (8.5) is sometimes called the double integrator,
since the position r(t) is obtained by integrating u(t) = F (t) twice.

Let us investigate the meaning of the state-space equation (8.1). Assume
that the initial state x(0) = ξ at time t = 0 is obtained from observation
by a sensor attached to the system. Then we design u(t) for t ≥ 0 to realize
a desired trajectory of the state x(t). In the rocket control considered in
Example 8.1, we design the thrust force u(t) = F (t) to drive the rocket,
for example, within time T > 0 from the earth (x(0) = ξ) to the moon
x(T) = 0 with minimum fuel consumption. This is a typical problem of
control.

If the control u(t) for t ≥ 0 depends only on the initial state x(0) = ξ,
then the control is called feedforward control. Instead, if the control u(t)
for t ≥ 0 is determined by a constant (or an intermittent) observation of
the state x(τ) with 0 ≤ τ ≤ t, then the control is called feedback control.
Feedforward control uses only one observation x(0) at time t = 0. This is,
so to speak, driving a bicycle (or a car) with eyes closed, while feedback
control uses information from the eyes which is always (or sometimes)
open. From this observation, we can easily understand that feedforward
control is very fragile against uncertainties and disturbances. The feedback
structure solves this fragility and leads to robustness. However, we mainly
consider feedforward control since it gives clear mathematical structures of
the optimal control. For feedback control implementation, one can adopt
the receding horizon control, also known as the model predictive control
[88] as discussed in Section 7.4.3, or self-triggered control [56].

8.1.2 Controllability and controllable set

We can consider many types of objectives of controlling the plant (8.1).
For example, we set several target points x1,. . . , xs to control the plant so

178 Dynamical Systems and Optimal Control

x1

x2

x(0) = ξ

x(T) = 0

Figure 8.2: State transfer problem: finding a control u(t), 0 ≤ t ≤ T that drives the state x(t)
from a given initial state x(0) = ξ to 0.

that the state x(t) passes approximately through these points at time t =
T1, . . . , Ts, that is, x(Ti) ≈ xi. This control is called trajectory generation,
or trajectory planning. We can also consider a control problem to keep the
state x(t), t ≥ 0, in a prescribed set X in the state space, that is, x(t) ∈ X
for all t ≥ 0, assuming x(0) ∈ X . This problem arises, for example, in
keeping a drone hovering in a region.

In this book, we mainly focus on the problem of state transfer. This
problem is finding a control u(t) that drives the state x(t) from a given
initial state ξ to the origin 0 in a given time T > 0 (see also Figure 8.2).

First, we discuss the existence of the control. For this, we introduce the
notion of controllability.

Definition 8.1 (Controllability). We call the system (8.1) is control-
lable if for any initial state x(0) = ξ ∈ Rd, there exists a time T > 0
and a control u(t), 0 ≤ t ≤ T such that the state x(t) in (8.1) is
driven to the origin at time t = T , that is x(T) = 0.

If the system is not controllable, then there exists an initial state
that cannot be achieved to the origin with any u(t) in finite time. The
controllability is a fundamental requirement for control systems, and in
this book we always assume that the system (8.1) is controllable.

Given a linear system, to check its controllability is an easy task. In
fact, we have the following theorem for the controllability:

8.1. Dynamical Systems 179

Theorem 8.1. The dynamical system (8.1) is controllable if and
only if any of the following equivalent conditions are satisfied:

1. The following matrix called the controllability matrix

M ≜
[
b Ab A2b . . . Ad−1b

]
(8.7)

is non-singular.

2. The following matrix called the controllability grammian

G(T) ≜
∫ T

0
eAtbb⊤eA

⊤tdt (8.8)

is non-singular for any T > 0.

3. For any λ ∈ C,
rank

[
A− λI b

]
= d. (8.9)

4. For any left eigenvector v⊤ of A,

v⊤b ̸= 0. (8.10)

From this theorem, to check the controllability of the dynamical system
(8.1) is just to compute the determinant of the matrix M .

The controllability of the system (8.1) is completely determined by the
matrix pair (A, b). From this, we often say the pair (A, b) is controllable,
which means the system (8.1) is controllable.

Example 8.2. Let us consider the rocket model (8.5) and (8.6) in Example
8.1. The controllability matrix is given by

M =
[
b Ab

]
=
[
0 1
1 0

]
. (8.11)

Since this matrix is non-singular, the system is controllable from Theorem
8.1. □

Note that if the dynamical system (8.1) is controllable, then for any
initial state ξ ∈ Rd, any final state ζ ∈ Rd, and any time T > 0, there
exists a control u(t), 0 ≤ t ≤ T that drives the state x(t) from x(0) = ξ

to x(T) = ζ.

Exercise 8.2. Prove the above fact.

180 Dynamical Systems and Optimal Control

In general, the shorter the time T > 0 is, the larger the magnitude
and the shorter the support of u(t) should be. The shape of u(t) may
approach something like the Dirac delta function when T approaches
zero. However, in real-world systems, actuators have limitations on their
output, preventing them from generating arbitrarily large control signals.
For example, can you imagine a vehicle capable of traveling at 1000 km/h?
Hence, we assume the following limitation on u(t):

|u(t)| ≤ 1, ∀t ∈ [0, T]. (8.12)

We call a control that satisfies this constraint an admissible control. In
(8.12), we assume the maximum magnitude is normalized to one, but if
the maximum magnitude is Umax > 0 and the limitation is represented by

|u(t)| ≤ Umax, ∀t ∈ [0, T], (8.13)

then we can redefine the vector b in the plant (8.1) as

b′ ≜
b

Umax
, (8.14)

then the limitation is reduced to (8.13).
Under the constraint (8.12), there may be an initial state ξ that cannot

be steered to the origin by any admissible control u(t) that satisfies (8.12)
within time T > 0 even if the system is controllable. To discuss this, we
introduce the notion of the T -controllable set:

Definition 8.2 (T -Controllable Set). Fix T > 0. The set of initial
states that can be steered to the origin by some admissible control
u(t), 0 ≤ t ≤ T , is called the T -controllable set. We denote this set
by R(T).

Exercise 8.3. Prove that R(T) can be represented by

R(T) =
{

−
∫ T

0
e−Atbu(t)dt : |u(t)| ≤ 1, ∀t ∈ [0, T]

}
. (8.15)

For the T -controllable set, we have the following theorem:

Theorem 8.2. For any T > 0, the T -controllable set R(T) is a
bounded, closed, and convex set. Also, if T1 < T2 then R(T1) ⊂

8.1. Dynamical Systems 181

x1

x2

x(0) = ξ

x(T) = 0

R(T)

Figure 8.3: T -Controllable set R(T) in R2

R(T2).

Exercise 8.4. Prove Theorem 8.2.

Figure 8.3 shows an illustration of a T -controllable set R(T) in R2. If
an initial state x(0) = ξ is in the T -controllable set R(T), then there exists
an admissible control u(t), 0 ≤ t ≤ T , that steers the state to x(T) = 0 in
time T . If an initial state is outside the set R(T), then such control does
not exist. We show an easy example to illustrate this property.

Example 8.3. Let us consider the problem of controlling a ball on an
inclined plane shown in Figure 8.4. Let x(t) denote the position of the ball
on the x axis parallel to the slope. The origin is set at the top of the slope.
The control objective is to move the ball from the initial position x(0) < 0
to the origin within time T > 0, that is, x(T) = 0.

The differential equation of x(t) is given from Newton’s second law of
motion:

mẍ(t) = F (t) −mg sin θ. (8.16)
Now, we assume

x(0) = −ξ, ẋ(0) = 0, (8.17)
where ξ > 0. From (8.16), we have

ẋ(t) = 1
m

∫ t

0
F (τ)dτ − gt sin θ + ẋ(0), (8.18)

182 Dynamical Systems and Optimal Control

θ

mg

mg sin θ

F (t)

x
0

Figure 8.4: A ball on an inclined plane: m is the mass, g is the acceleration of gravity, θ is the
angle of the slope, and F (t) is the force (i.e., control) applied to the ball.

and

x(t) = 1
m

∫ t

0

∫ s

0
F (τ)dτds− 1

2gt
2 sin θ + ẋ(0)t+ x(0). (8.19)

Suppose that there exists an admissible control {F (t) : 0 ≤ t ≤ T} that
satisfies

∥F∥∞ ≜ sup
t∈[0,T]

|F (t)| ≤ 1, (8.20)

where ∥F∥∞ is the L∞ norm, such that x(T) = 0. Then we have

0 = x(T) = 1
m

∫ T

0

∫ s

0
F (τ)dτds− 1

2gT
2 sin θ − ξ, (8.21)

where we used the initial conditions in (8.17). From the above equation,
we have ∣∣∣∣12gT 2 sin θ + ξ

∣∣∣∣ ≤ 1
m

∫ T

0

∫ s

0
|F (τ)|dτds

≤ 1
m

∫ T

0

∫ s

0
∥F∥∞dτds

= T 2

2m∥F∥∞.

(8.22)

Since the variables m, g, T , and ξ are all positive, and sin θ is also positive,
we have

∥F∥∞ ≥ mg sin θ + 2mξ
T 2 . (8.23)

On the other hand, since F is an admissible control, it should satisfy

∥F∥∞ ≤ 1. (8.24)

8.1. Dynamical Systems 183

From (8.23) and (8.24), we have

1 ≥ mg sin θ + 2mξ
T 2 . (8.25)

It follows that mg sin θ < 1 and

T ≥
√

2mξ
1 −mg sin θ ≜ T ∗. (8.26)

From this, if the final time T is small such that T < T ∗, then there is no
admissible control with time T that achieves x(T) = 0. Conversely, let
T = T ∗ and take F (t) ≡ 1, 0 ≤ t ≤ T ∗. Then from (8.19), we can easily
compute that

x(T ∗) = 0. (8.27)

Hence, F (t) ≡ 1 is a solution with T = T ∗. Also, if T > T ∗, we can choose
F (t) as

F (t) =

1, if 0 ≤ t ≤ T ∗,

mg sin θ, if T ∗ < t ≤ T,
(8.28)

which is a solution with time T . □

From this example, the time T ∗ is the threshold that determines the T -
controllability with a fixed initial state. The time T ∗ is called the minimum
time, which is in general defined by

T ∗(ξ) ≜ inf{T ≥ 0 : ξ ∈ R(T)}. (8.29)

To consider the minimum time, we define the controllable set by the union
of all R(T) with T > 0, that is,

R ≜
⋃
T>0

R(T). (8.30)

Even if the system is controllable, the controllable set R may not be
Rd. That is, R may be a strict subset of Rd. Then, if ξ ̸∈ R, then there
exists no admissible control on any finite time interval [0, T] that achieves
x(T) = 0. For this case, we write T ∗(ξ) = ∞. Conversely, if ξ ∈ R then
the set {T ≥ 0 : ξ ∈ R(T)} is non-empty, and the minimum time (8.29) is
finite, that is, T ∗(ξ) < ∞.

Assume that ξ ∈ R. Then T ∗(ξ) < ∞. Let us consider T1 and T2 such
that

T1 < T ∗(ξ) < T2. (8.31)

184 Dynamical Systems and Optimal Control

R(T1)

R(T2)

R

R(T ∗(ξ))

ξ

0

x1

x2

Figure 8.5: Controllable sets R(T1) ⊂ R(T ∗(ξ)) ⊂ R(T2) ⊂ R, where T1 < T ∗(ξ) < T2. The
minimum time T ∗(ξ) is the threshold for the feasibility from the initial state ξ.

Then we have

R(T1) ⊂ R(T ∗(ξ)) ⊂ R(T2) ⊂ R. (8.32)

This inclusion relation is shown in Figure 8.5. From this figure, we have
ξ ∈ R(T2) and ξ ̸∈ R(T1). This means that if the final time is greater than
T ∗(ξ), then there exists a feasible control, while if it is less than T ∗(ξ),
then there is no control. The minimum time T ∗(ξ) is the threshold for the
controllability, that is, ξ is on the boundary of the T ∗(ξ)-controllability set
R(T ∗(ξ)). We will discuss the minimum time further in the next subsection.

For a stable system, the minimum time always exists for any initial
state. In fact, we have the following theorem [57, Theorem 17.6]:

Theorem 8.3. Assume that (A, b) is controllable. Assume also that
A is stable, that is,

λ(A) ⊂ C− ≜ {z ∈ C : Re z ≤ 0}, (8.33)

where λ(A) is the set of eigenvalues of A. Then the controllable set
R is Rd, and the minimum time T ∗(ξ) is finite for any ξ ∈ Rd.

8.1. Dynamical Systems 185

8.1.3 Feasible control and minimum-time control

Fix T > 0 and assume x(0) = ξ ∈ R(T). Then by the definition of the
T -controllable set in Definition 8.2, there exists an admissible control u(t)
that steers the state from x(0) to x(T) = 0. We call such a control a
feasible control. Let U(T, ξ) denote the set of feasible controls with initial
state ξ and final time T . This set can be represented by

U(T, ξ) =
{

u ∈ L∞(0, T) : ξ = −
∫ T

0
e−Atbu(t)dt, |u(t)| ≤ 1, ∀t ∈ [0, T]

}
. (8.34)

Exercise 8.5. Prove that the set of feasible controls is represented by
(8.34).

It is easily shown that ξ ∈ R(T) if and only if there exists an admissible
control u such that u ∈ U(T, ξ). Hence the minimum time T ∗(ξ) in (8.29)
is formulated by

T ∗(ξ) = inf{T ≥ 0 : ∃u, u ∈ U(T, ξ)}. (8.35)

From the discussion in the previous subsection, T ∗(ξ) is finite if and only
if ξ ∈ R. From this, if ξ ∈ R, then there exists a final time T ≥ 0 and an
admissible control u such that u ∈ U(T, ξ), and hence the set of the right
hand side of (8.35) is non-empty.

Now we find the control that achieves the minimum time. That is, we
consider the following optimization problem:

minimize
u

T subject to u ∈ U(T, ξ). (8.36)

The solution is called the minimum-time control or the time-optimal control.
The minimum-time control exists if ξ ∈ R or equivalently T ∗(ξ) < ∞. In
fact, we have the following lemma:

Theorem 8.4. Assume T ∗(ξ) < ∞. Then there exists a minimum-
time control u∗ ∈ U(T ∗(ξ), ξ). Moreover, for any T > T ∗(ξ), U(T, ξ)
is non-empty.

Exercise 8.6. Prove Theorem 8.4

8.1.4 Optimal control and Pontryagin minimum principle

From Theorem 8.4, if ξ ∈ R and T > T ∗(ξ), then the set of feasible controls
U(T, ξ) is non-empty, and in general U(T, ξ) has infinitely many elements.

186 Dynamical Systems and Optimal Control

Optimal control is the control that minimizes a given cost function among
all feasible controls in U(T, ξ).

The following is the formulation of the optimal control that is mainly
considered in Part II of this book:

Problem 8.1 (Optimal Control Problem). For the plant modeled by

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (8.37)

find an admissible control u (i.e., ∥u∥∞ ≤ 1) that achieves

x(T) = 0, (8.38)

and minimizes the following cost function:

J(u) =
∫ T

0
L
(
u(t)

)
dt. (8.39)

We here assume that the function L(u), called the stage cost function,
is continuous in u. We call the solution the optimal control. Note that the
optimal control problem can also be written by using the set of feasible
controls U(T, ξ) as

minimize
u

J(u) subject to u ∈ U(T, ξ). (8.40)

The minimum-time control (8.36) is the optimal control with L(u) = 1.
Let us assume that there exists an optimal control for Problem 8.1.

We here introduce Pontryagin’s minimum principle that gives necessary
conditions for the optimal control.

First, define the following function called Hamiltonian:

Hη(x,p, u) ≜ p⊤(Ax + bu) + ηL(u), (8.41)

where η ∈ {0, 1} is called the abnormal multiplier. The following theorem
is Pontryagin’s minimum principle.

Theorem 8.5 (Pontryagin’s Minimum Principle (PMP)). Assume that
an optimal control u∗ of the optimal control problem (Problem 8.1)
exists. Let us denote by {x∗(t) : 0 ≤ t ≤ T} the optimal state with
the optimal control {u∗(t) : 0 ≤ t ≤ T}, that is,

x∗(t) ≜ eAtξ +
∫ t

0
eA(t−τ)bu∗(τ)dτ, ∀t ∈ [0, T]. (8.42)

8.1. Dynamical Systems 187

Then there exist η ∈ {0, 1} and the optimal costate {p∗(t) : 0 ≤ t ≤
T} that satisfy the following conditions.

(non-triviality condition) The abnormal multiplier η and the
optimal costate p∗ satisfy the non-triviality condition:

|η| + ∥p∗∥∞ > 0. (8.43)

(canonical equation) The following canonical equations hold:

ẋ∗(t) = Ax∗(t) + bu∗(t),
ṗ∗(t) = −A⊤p∗(t), ∀t ∈ [0, T].

(8.44)

The differential equation for p∗(t) is called the adjoint equation.

(minimum condition) The optimal control u∗(t) minimizes
Hamiltonian at each time t ∈ [0, T]. That is,

u∗(t) = arg min
u∈[−1,1]

Hη(x∗(t),p∗(t), u
)
, ∀t ∈ [0, T]. (8.45)

(consistency) Hamiltonian satisfies

Hη(x∗(t),p∗(t), u∗(t)
)

= c, ∀t ∈ [0, T], (8.46)

where c is a constant independent of t. If T is not fixed (as in
the minimum-time control), then

Hη(x∗(t),p∗(t), u∗(t)
)

= 0, ∀t ∈ [0, T]. (8.47)

Note that the canonical equation in (8.44) can be rewritten in terms of
Hamiltonian Hη as

ẋ∗(t) = ∂Hη

∂p

(
x∗(t),p∗(t), u∗(t)

)
,

ṗ∗(t) = −∂Hη

∂x

(
x∗(t),p∗(t), u∗(t)

)
, ∀t ∈ [0, T].

(8.48)

These equations are also called Hamilton’s canonical equations.
Pontryagin’s minimum principle is a powerful tool to analyze the optimal

control (if it exists). For simple problems, we can obtain a closed form of
the control that satisfies the necessary conditions. We call this an extremal

188 Dynamical Systems and Optimal Control

control. We should note that an extremal control is not necessarily the
optimal control. However, in some cases, we can determine the optimal
control from the minimum principle. One example is shown in Section
8.3, the minimum-time control for the rocket in Example 8.1. Before the
example, we will formulate the minimum-time control for general linear
systems.

8.2 Minimum-time Control

Let us consider the following linear system:

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd. (8.49)

For this system, we consider the minimum-time control, which is given by
the optimal control problem (Problem 8.1) with the stage cost L(u) = 1.
Then the Hamiltonian is given by

Hη(x,p, u) = p⊤(Ax + bu) + η. (8.50)

Let us assume that the minimum-time control exists. Then from Pontrya-
gin’s minimum principle, the optimal control u∗(t) should satisfy

u∗(t) = arg min
u∈[−1,1]

Hη(x∗(t),p∗(t), u), ∀t ∈ [0, T ∗(ξ)], (8.51)

where x∗(t) and p∗(t) are respectively the optimal state and costate by the
optimal control u∗(t), and T ∗(ξ) is the minimum time. From this, we have

u∗(t) = arg min
u∈[−1,1]

p∗(t)⊤bu = −sgn(p∗(t)⊤b), (8.52)

where sgn(·) is the sign function defined by

sgn(a) =

1, a > 0,
−1, a < 0,

sgn(a) ∈ [−1, 1], a = 0.

(8.53)

If the function p∗(t)⊤b is not zero for almost all t ∈ [0, T ∗(ξ)], then the
control u∗(t) takes values of only ±1 for almost all t. Such a control is
called a bang-bang control.

8.3. Rocket Control Example 189

Lemma 8.1. If (A, b) is controllable, then the function p∗(t)⊤b is
not zero for almost all t ∈ [0, T ∗(ξ)].

Exercise 8.7. Prove Lemma 8.1.

For the minimum-time control problem, we have the following existence
and uniqueness theorems.

Theorem 8.6 (Existence). If the initial state ξ is in the controllable
set R defined in (8.30), then a minimum-time control exists.

Theorem 8.7 (Uniqueness). Assume that (A, b) is controllable. Then
the minimum-time control is (if it exists) unique.

Exercise 8.8. Prove Theorems 8.6 and 8.7.

The following corollary is easily proved from Theorems 8.3, 8.6, and
8.7.

Corollary 8.1. Assume that (A, b) is controllable and A is stable.
Then for any ξ ∈ Rd, the minimum-time control u∗ ∈ U(ξ) uniquely
exists.

8.3 Rocket Control Example

Here we derive the minimum-time control of the rocket in Example 8.1 by
using Pontryagin’s minimum principle.

Now, from Example 8.2, the pair (A, b) is controllable. It is also easily
seen that A is stable since A has a multiple eigenvalue of 0. Therefore,
from Theorem 8.1, there uniquely exists the minimum-time control u∗.

Let us define the optimal state and costate by

x∗(t) =
[
x∗

1(t)
x∗

2(t)

]
, p∗(t) =

[
p∗

1(t)
p∗

2(t)

]
. (8.54)

For simplicity, we assume the mass of the rocket m = 1.
Then the Hamiltonian Hη(x,p, u) in (8.50) is given by

Hη(x,p, u) = p⊤(Ax + bu) + η = p1x2 + p2u+ η. (8.55)

190 Dynamical Systems and Optimal Control

The canonical equation (8.44) for the costate p∗(t) is given by

ṗ∗
1(t) = 0,
ṗ∗

2(t) = −p∗
1(t).

(8.56)

Let p∗
1(0) = π1 and p∗

2(0) = π2. Then the solution to the differential
equation (8.56) is given by

p∗
1(t) = π1,

p∗
2(t) = π2 − π1t.

(8.57)

Since T is not fixed, from the condition (8.47), we have Hη(x∗(t),p∗(t), u∗)
= 0. That is,

p∗
1(t)x∗

2(t) + p∗
2(t)u∗ + η = 0. (8.58)

If π1 = π2 = 0, then p∗
1(t) = p∗

2(t) = 0 from (8.57), and hence η = 0 from
(8.58). But this contradicts the non-triviality condition (8.43). Therefore,
π1 ̸= 0 or π2 ̸= 0, that is, p∗(0) ̸= 0.

Next, from (8.52), we have

u∗(t) = −sgn
(
p∗(t)⊤b

)
= −sgn

(
p∗

2(t)
)
. (8.59)

From (8.57), p∗
2(t) is a linear function p∗

2(t) = π2 − π1t. Then we need
to check the following cases:

(i) π1 ≤ 0, π2 ≤ 0 with (π1, π2) ̸= (0, 0),

(ii) π1 ≥ 0, π2 ≥ 0 with (π1, π2) ̸= (0, 0),

(iii) π1 < 0, π2 > 0,

(iv) π1 > 0, π2 < 0.

Extremum controls given in (8.59) for the four cases are shown in Figure
8.6. From this figure, it is easily shown that each extremum control takes
its values of ±1 for almost all t, that is, bang-bang. We note that the
number of switching is at most one from Figure 8.6.

Next, we compute the trajectory x(t) when u(t) is constant (i.e., ±1).
From (8.5), we have

ẋ1(t) = x2(t), x1(0) = ξ1,

ẋ2(t) = u(t), x2(0) = ξ2.
(8.60)

8.3. Rocket Control Example 191

0

t
π2

u∗(t)

p∗2(t)

0

tπ2

1

−1
u∗(t)

p∗2(t)
0 t

π2

1

−1

u∗(t)

p∗2(t)

0

t

π2

1
u∗(t)

p∗2(t)

(i) (ii)

(iii) (iv)

−1

Figure 8.6: Costate p∗
2(t) = π2 − π1t and corresponding extremum control u∗(t) from (8.59)

If u(t) = ±1, then

x1(t) = ±1
2 t

2 + ξ2t+ ξ1,

x2(t) = ±t+ ξ2.
(8.61)

Eliminating the time variable t gives

x1(t) = ±1
2x2(t)2 + ξ1 ∓ 1

2ξ
2
2 . (8.62)

That is, when the control u(t) is constant ±1, then the state (x1(t), x2(t))
moves on the following parabolic curves:

x1 = 1
2x

2
2 + ξ1 − 1

2ξ
2
2 , if u(t) = 1, (8.63)

x1 = −1
2x

2
2 + ξ1 + 1

2ξ
2
2 , if u(t) = −1. (8.64)

Figure 8.7 shows the flow of the state (x1(t), x2(t)) by some of these
parabolic curves with directions of the state to move. Note that the
parabolic curves defined in (8.63) and (8.64) go through the point (ξ1, ξ2).

192 Dynamical Systems and Optimal Control

0

u(t) = 1u(t) = −1

x1

x2

Figure 8.7: Flow of state (x1(t), x2(t)) by constant control u(t) = 1 (solid curve) and u(t) = −1
(dashed curve).

To achieve the terminal state x(T) = 0, the final trajectory must be on
the parabolic curve that goes through the origin:

x1 = 1
2x

2
2, if u(t) = 1,

x1 = −1
2x

2
2, if u(t) = −1.

(8.65)

From this, if there is no switching, that is, in the cases of (see Figure 8.7)

(i) u∗(t) ≡ 1,

(ii) u∗(t) ≡ −1,

then, the initial state (ξ1, ξ2) should be on the parabolic curve

γ+ ≜
{
(x1, x2) ∈ R2 : x1 = x2

2/2, x2 ≤ 0
}
, (8.66)

or
γ− ≜

{
(x1, x2) ∈ R2 : x1 = −x2

2/2, x2 ≤ 0
}
. (8.67)

Figure 8.8 shows the two curves γ+ and γ−. In fact, we can easily show
that

• if the initial state (ξ1, ξ2) is on the curve γ+, then u∗(t) ≡ 1 is the
unique extremum control.

• if the initial state (ξ1, ξ2) is on the curve γ−, then u∗(t) ≡ −1 is the
unique extremum control.

The proof is shown below.
Assume (ξ1, ξ2) ∈ γ+. As mentioned above, there are four extremum

controls with (i)–(iv). Now, u∗(t) ≡ 1 is for the case (i). The point A

8.3. Rocket Control Example 193

0

γ+

x1

x2

γ− R−

R+

γ = γ+ ∪ γ−

Figure 8.8: Switching curve γ = γ+ ∪ γ− and regions R+ and R−

0

γ+A
C

Bγ′
+ γ′

−γ′′
−

x1

x2

Figure 8.9: Four cases of state trajectories from initial state (ξ1, ξ2) on the curve γ+.

in Figure 8.9 is the initial point, and the state can reach the origin by
u∗(t) ≡ 1 through the curve γ+. However, for the other cases (ii), (iii), and
(iv), the state never reaches the origin from the initial point A. For the
case (ii), by the control u∗(t) ≡ −1, the state starts at A on the curve
γ′

− to the direction to C, and never reaches the origin. For the case (iii),
the state moves on the curve γ′

− from A to C by the control u∗(t) = −1,
which is switched to u∗(t) = +1 at C. Then the state moves on the curve
γ′

+, which never reaches the origin. Finally, for the case (iv), the state
starts from A to B on the curve γ′

+ by the control u∗(t) = +1, which is
switched to u∗(t) = −1 at B. The state then moves from B on the curve
γ′′

− to the indicated direction and never reaches the origin. In summary, (i)
u∗(t) ≡ 1 is the unique extremum control, and hence if the minimum-time
control exists, this is actually the optimal control. The same discussion
can be applied for the initial state (ξ1, ξ2) on the curve γ−, and the unique
extremum control is u∗(t) ≡ −1.

194 Dynamical Systems and Optimal Control

0

γ+

A’

A

B’

x1

x2

B

γ′
+

γ′
−γ−

Figure 8.10: State trajectories from initial points A and A’

Next, let us consider the initial state (ξ1, ξ2) is outside the curve

γ ≜ γ+ ∪ γ− = {(x1, x2) ∈ R2 : x1 = −x2|x2|/2}. (8.68)

Let us define two regions R+ and R− divided by the curve γ:
R+ ≜ {(x1, x2) ∈ R2 : x1 < −x2|x2|/2},
R− ≜ {(x1, x2) ∈ R2 : x1 > −x2|x2|/2}.

(8.69)

Figure 8.8 shows these regions. We call the curve γ the switching curve.
Now assume the initial state (ξ1, ξ2) is at A in R+ as in Figure 8.10.

From the point A, the curve γ′
+ defined in (8.63) is plotted. By a constant

control u(t) ≡ 1, the state moves on the curve γ′
+ to the indicated direction

from A. At some time, the state touches the switching curve γ− at B,
and the control is switched to u(t) = −1. From B, the state goes on the
switching curve to the origin. The control switched from +1 to −1 is the
control in (iii) in Figure 8.6. We can easily show that this is the unique
extremum control from any initial point in R+, in a similar way to the
case where the initial state is on the curve γ = γ+ ∪ γ−.

Then, let us consider the initial state (ξ1, ξ2) ∈ R− at A’ in Figure 8.10.
First, by the constant control u(t) = −1, the state moves on the curve γ′

−
from A’ to B’. Then the control is switched from −1 to +1, and the state
is steered to the origin along the curve γ+. This control is for the case (iv)
in Figure 8.6, and actually this is the unique extremum solution.

In summary, the extremum control u∗(t) of the minimum-time control
problem is given by

u∗(t) =


1, if x(t) ∈ γ+ ∪R+ \ {0},
−1, if x(t) ∈ γ− ∪R− \ {0},
0, if x(t) = 0.

(8.70)

8.4. Further Readings 195

The control u∗(t) depends on the state x(t), and hence the control is a
feedback control, which changes its value (±1 or 0) based on the observation
of the state x(t).

Exercise 8.9. Compute the minimum time T ∗(ξ) from ξ = (ξ1, ξ2) to the
origin, and the switching time when ξ ∈ R+ and ξ ∈ R−.

8.4 Further Readings

For the basics of control theory with state-space formulations, I recommend
a nice book by Ogata [119]. For the controllable set, see [138]. The proof
of Pontryagin’s minimum principle is found in [82]. Pontryagin’s minimum
principle is also referred to as Pontryagin’s maximum principle, which is
mathematically equivalent to the minimum principle. The book by Clarke
[28] is one of the most reliable books on Pontryagin’s maximum principle.
For the minimum-time control, see the classical books of [3], [57], [128].

Chapter 9

Maximum Hands-off Control

In this chapter, we introduce a new optimal control problem called max-
imum hands-off control, which is the sparsest control among all feasible
controls.

Key ideas of Chapter 9� �
• Maximum hands-off control is described as L0-optimal control.

• Under the assumption of non-singularity, L0-optimal control is
equivalent to L1-optimal control.

• Maximum hands-off control is a ternary signal that takes values of
±1 and 0. Such a ternary control is called bang-off-bang control.� �

9.1 L0 Norm and Sparsity

Here we introduce mathematical preliminaries for maximum hands-off
control.

First, we define the support of a function u(t) on a finite interval [0, T]
by

supp(u) ≜ {t ∈ [0, T] : u(t) ̸= 0}. (9.1)

By using the support, we define the L0 norm by the length of the support
of function u, that is,

∥u∥0 ≜ µ
(
supp(u)

)
, (9.2)

where µ(S) is the Lebesgue measure of a subset S ⊂ [0, T]. From this
definition, the L0 norm of a continuous-time signal is the total length of
time duration on which the signal takes nonzero values.

198 Maximum Hands-off Control

0
T

u(t) = 0

t

u(t)

t1

t2

Figure 9.1: The L0 norm of the function u(t) is t1 + (T − t2).

The L0 norm can be represented as an integral. Define

|u|0 ≜

0, if u = 0,
1, if u ̸= 0,

(9.3)

then the L0 norm in (9.2) can be written as

∥u∥0 =
∫ T

0
|u(t)|0dt. (9.4)

Example 9.1. Let us consider a function u(t), as shown in Figure 9.1. The
function u(t) is zero over the interval [t1, t2], and the support set of u is

supp(u) = (0, t1) ∪ (t2, T) ⊂ [0, T]. (9.5)

From this, the L0 norm of u is

∥u∥0 = µ(supp(u)) = t1 + (T − t2) = T − (t2 − t1). (9.6)

□

In the above example, the value t2 − t1 is the length of the interval
[t1, t2] on which u(t) = 0. If ∥u∥0 is much smaller than the total length
T (i.e., ∥u∥0 ≪ T), then the signal is said to be sparse. This notion is an
analogy of the sparsity of vectors studied in Part I of this book.

Note that the L0 norm does not have the absolute homogeneous property
(see Definition 2.1, p. 21). In fact, if we take a non-zero scalar α such that
|α| ̸= 1, then

∥αu∥0 = ∥u∥0 ̸= |α|∥u∥0. (9.7)

Note also that a sparse signal u(t) on [0, T] has a time duration whose
length is positive, on which the control u(t) is exactly zero. This means

9.2. Practical Benefits of Sparsity in Control 199

that the function u(t) is not a real analytic function1. For example, a
polynomial function

p(t) = tn + an−1t
n−1 + · · · + a1t+ a0, (9.8)

a trigonometric function sin(ωt) (ω ≠ 0), an exponential function eλt, and
their sum or product are never sparse.

9.2 Practical Benefits of Sparsity in Control

Let us consider a sparse control signal u(t), t ∈ [0, T], as depicted in
Figure 9.1. This control signal is exactly zero on the time interval [t1, t2].
In an electromechanical system, the control signal is typically transformed
into mechanical motion by an actuator, such as an electric motor. This
transformation often involves an amplifier attached between the controller
and the actuator to provide sufficient energy to drive the actuator and
generate the desired mechanical motion. Consequently, effective actuation
requires not only a suitable control signal but also an adequate energy
supply.

By using a sparse signal as in Figure 9.1, we can effectively deactivate
the actuator over the time interval [t1, t2]. This strategic deactivation allows
for significant energy savings, such as reduced consumption of electric power
or fuel during this period. This control strategy, characterized by periods
of actuator inactivity, is referred to as hands-off control, also known as
gliding or coasting.

This control strategy is actually used in practical control systems. A
stop-start system [40], [77] in automobiles is an example of hands-off
control. It automatically shuts down the engine to avoid it idling for a long
duration of time. By this, we can reduce CO or CO2 emissions as well as
fuel consumption. Also in hybrid vehicles [21], [115], [140], the internal
combustion engine is stopped when the vehicle is at a stop or the speed
is lower than a preset threshold, and the electric motor is alternatively
used. Other examples are found in railway vehicles [22], [76] and free-flying
robots [150].

Hands-off control is also desirable for networked and embedded systems.
During periods of zero-valued control, communication can be temporarily

1A function u(t) is said to be real analytic if it is an infinitely differentiable function such
that the Taylor series at any point t0 ∈ (0, T) converges to u(t) for t in a neighborhood of t0
pointwise. See [132, Chapter 8] for details.

200 Maximum Hands-off Control

suspended, which is advantageous in particular for wireless communications
[71].

Due to the characteristics mentioned above, hands-off control is also
known as green control.

9.3 Problem Formulation of Maximum Hands-off Control

Let us consider the optimal control problem (Problem 8.1, p. 186) with
the stage cost function

L(u) = |u|0. (9.9)

This is called an L0-optimal control problem or a maximum hands-off
control problem.

Problem 9.1 (L0-optimal control problem). For the linear time-invariant
system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (9.10)

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J0(u) = ∥u∥0 =
∫ T

0
|u(t)|0dt, (9.11)

subject to
x(T) = 0, (9.12)

and
∥u∥∞ ≤ 1. (9.13)

The solution of this optimal control problem is called the L0-optimal
control, or the maximum hands-off control.

The stage cost function (9.9) is discontinuous and non-convex, as shown
in Figure 9.2. By borrowing the idea of sparse representation to use the ℓ1
norm for ℓ0 norm optimization, we introduce the following cost function
with the L1 norm:

J1(u) ≜ ∥u∥1 =
∫ T

0
|u(t)|dt. (9.14)

As shown in Figure 9.2, the stage cost function |u| is an approximation of
|u|0. In fact, this approximation is mathematically explained as the convex
relaxation. That is, the L1 norm ∥u∥1 is the convex relaxation of ∥u∥0
when ∥u∥∞ ≤ 1. See [149, Section 1.3.2] for details.

Now we formulate the L1-optimal control problem.

9.4. L1-optimal Control 201

−1 0 1

u

|u||u|01

L(u)

Figure 9.2: Stage cost functions |u|0 and |u| in L0 and L1 optimal control problems.

Problem 9.2 (L1-optimal control problem). For the linear time-invariant
system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (9.15)
find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J1(u) = ∥u∥1 =
∫ T

0
|u(t)|dt, (9.16)

subject to
x(T) = 0, (9.17)

and
∥u∥∞ ≤ 1. (9.18)

We call the solution of this optimal control problem the L1-optimal
control. This optimal control is also known as minimum-fuel control, which
was widely studied in the 60s for rocket control.

The L1-optimal control (Problem 9.2) is a convex optimization problem
since the stage cost L(u) = |u| is convex in u and the constraints are also
convex. Although the variable u is a function, which is a member of the
infinite dimensional function space L∞(0, T), the problem can be reduced
to a finite-dimensional optimization problem via time discretization. See
Chapter 10 for details.

9.4 L1-optimal Control

Here we investigate properties of L1 optimal control by using necessary
conditions from Pontryagin’s minimum principle.

For the L1-optimal control problem (Problem 9.2), the Hamiltonian is
given by

Hη(x,p, u) = p⊤(Ax + bu) + η|u|. (9.19)

202 Maximum Hands-off Control

0

1

−1

w−1

1

dez(w)

Figure 9.3: Dead-zone function dez(w)

We first consider the case η = 1 (the normal case). Let u∗ denote the L1

optimal control, and x∗ and p∗ the associated optimal state and costate,
respectively. From the minimum condition in the minimum principle, we
have

u∗(t) = arg min
u∈[−1,1]

H1(x∗(t),p∗(t), u)

= arg min
u∈[−1,1]

{
p∗(t)⊤(Ax∗(t) + bu

)
+ |u|

}
= arg min

u∈[−1,1]

{
p∗(t)⊤bu+ |u|

}
.

(9.20)

Now, from

p∗(t)⊤bu+ |u| =


(
p∗(t)⊤b + 1

)
u, if u ≥ 0,(

p∗(t)⊤b − 1
)
u, if u < 0,

(9.21)

we have the solution to the minimization problem in (9.20) as

u∗(t) = −dez
(
p∗(t)⊤b

)
, (9.22)

where dez(·) is the dead-zone function defined by

dez(w) ≜


−1, if w < −1,
0, if − 1 < w < 1,
1, if 1 < w,

dez(w) ∈ [−1, 0], if w = −1,
dez(w) ∈ [0, 1], if w = 1.

(9.23)

Figure 9.3 shows the graph of the dead-zone function.

Exercise 9.1. Show that (9.22) is the solution to the minimization problem
(9.20).

9.4. L1-optimal Control 203

If there is a time interval (t1, t2) on which p∗(t)⊤b ≡ ±1 holds, then
from (9.23), we cannot uniquely determine u∗(t) on this interval. We call
such a time interval a singular interval. If an L1-optimal control problem
has a singular interval whose length is positive, then we call the problem a
singular problem. On the other hand, if

µ
(
{t ∈ [0, T] : |p∗(t)⊤b| = 1}

)
= 0 (9.24)

holds, then the L1-optimal control problem is said to be non-singular. The
following lemma gives a sufficient condition for the non-singularity.

Lemma 9.1. If (A, b) in (9.10) is controllable and A is non-singular,
then (9.24) holds (i.e., the L1-optimal control problem is non-
singular).

From now on, we say (A, b) is non-singular if (A, b) is controllable and
A is non-singular.

Exercise 9.2. Prove Lemma 9.1.

From Lemma (9.1), if (A, b) is non-singular, then we have

p∗(t)⊤b ̸= ±1, for almost all t ∈ [0, T]. (9.25)

Then, from (9.22) and (9.23), the L1-optimal control takes values ±1 or
0 for almost all t in [0, T]. We call such a control a bang-off-bang control.
Figure 9.4 illustrates the bang-off-bang property of L1-optimal control. We
summarize this property as a theorem.

Theorem 9.1. Assume that (A, b) is non-singular. Then the L1-
optimal control is bang-off-bang (if it exists).

The bang-off-bang property is important to examine the relation be-
tween L1 and L0 controls as shown in the next section.

Remark 9.1. The function p∗(t)⊤b is given by

p∗(t)⊤b =
(
e−A⊤tp∗(0)

)⊤
b = p∗(0)⊤e−Atb, (9.26)

from the adjoint equation for p∗(t) in (8.44). Therefore, the function
p∗(t)⊤b is continuous and represented by

p∗(0)⊤e−Atb =
d∑
i=1

ci(t)e−λit, (9.27)

204 Maximum Hands-off Control

0
T t

u(t)

t1

t2

0
t

Tt2t1

p∗(t)⊤b

1

1

−1

−1

Figure 9.4: L1-optimal control (bang-off-bang) u∗(t) (top) and function p∗(t)⊤b

where λi is the i-th eigenvalue of A and ci(t) is a polynomial with degrees
up to d. It follows that the number of switchings in the L1-optimal control
u∗(t) is finite, and the value changes between 1 and 0 or −1 and 0, and
never changes between 1 and −1. Therefore, if u∗(t) switches, then there
exists a time duration with positive length on which u∗(t) = 0, in the
non-singular case.

Finally, let us consider the case η = 0 (the abnormal case). The Hamil-
tonian is given by

H0(x,p, u) = p⊤(Ax + bu). (9.28)

Then, the optimal control u∗(t) satisfies

u∗(t) = arg min
u∈[−1,1]

H0(x∗(t),p∗(t), u)

= arg min
u∈[−1,1]

p∗(t)⊤bu

=


−1, if p∗(t)⊤b > 0,
1, if p∗(t)⊤b < 0,
[−1, 1], if p∗(t)⊤b = 0.

(9.29)

If (A, b) is controllable, then p∗(t)⊤b ̸≡ 0, and hence the control is bang-

9.5. Equivalence Theorem 205

bang, taking values of ±1. With this control, the L1-optimal value is

J1(u∗) =
∫ T

0
|u∗(t)|dt = T. (9.30)

Moreover, if T ∗(ξ) < T < ∞, then there exists the minimum-time control
u∗

time(t) to achieve x(T ∗(ξ)) = 0. By using this minimum-time control,
define the following control:

ū(t) =

u∗
time(t), if 0 ≤ t ≤ T ∗(ξ),

0, if T ∗(ξ) < t ≤ T.
(9.31)

It is easily shown that ū is a feasible control, that is ū ∈ U(T, ξ). Also,
with this ū, we have

J1(ū) =
∫ T

0
|ū(t)|dt =

∫ T ∗(ξ)

0
|u∗

time(t)|dt = T ∗(ξ) < T = J1(u∗). (9.32)

Hence, the control u∗(t) can never be L1 optimal, and hence the case η = 0
never happens.

The abnormal case (η = 0) happens when T = T ∗(ξ). In this case,
the set of feasible controls is U(T ∗(ξ), ξ) = {u∗

time}, a singleton of the
minimum-time control, and hence the cost function is meaningless to
choose a control from the feasible set. In this book, we do not discuss the
abnormal case any further.

9.5 Equivalence Theorem

In this section, we study the equivalence between L0 and L1 optimal
controls.

The following theorem is a fundamental theorem for the equivalence.

Theorem 9.2. Assume that there exists an L1-optimal control that
is bang-off-bang. Then it is also L0 optimal.

Proof: Define J0(u) ≜ ∥u∥0 and J1(u) ≜ ∥u∥1. From the assumption,
there exists an L1-optimal control u∗

1 that is bang-off-bang. Since u∗
1 is a

feasible control, the set of feasible controls U(T, ξ) is non-empty. Then, for
any u ∈ U(T, ξ) we have

J1(u∗
1) ≤ J1(u) =

∫ T

0
|u(t)|dt =

∫
supp(u)

|u(t)|dt ≤
∫

supp(u)
1dt = J0(u).

(9.33)

206 Maximum Hands-off Control

Since u∗
1 is bang-off-bang, we have

J1(u∗
1) =

∫ T

0
|u∗

1(t)|dt =
∫

supp(u∗
1)

1dt = J0(u∗
1). (9.34)

From (9.33) and (9.34), we have

J0(u∗
1) ≤ J0(u), ∀u ∈ U(T, ξ), (9.35)

and hence u∗
1 minimizes J0(u). That is, u∗

1 is also L0 optimal. □
From Theorem 9.1, if (A, b) is non-singular, then the L1-optimal control

is bang-off-bang, that is, the optimal control u∗(t) takes values 0 or ±1
for almost all t ∈ [0, T]. From this property, we can obtain the following
theorem.

Theorem 9.3. Assume that there exists at least one L1-optimal
control. Assume also that (A, b) is non-singular. Then there exists
at least one L0-optimal control, and the set of L0-optimal controls
is identical to the set of L1-optimal controls.

Proof: Let U∗
0 and U∗

1 be the sets of L0 and L1 optimal controls, respec-
tively. From the assumption, U∗

1 is non-empty. Take u∗
1 ∈ U∗

1 arbitrarily.
Then, from Theorem 9.1, u∗

1 is bang-off-bang. It follows from Theorem 9.2
that u∗

1 ∈ U∗
0 , and hence U∗

1 ⊂ U∗
0 .

Then we prove U∗
0 ⊂ U∗

1 . Take u∗
0 ∈ U∗

0 ⊂ U(T, ξ) arbitrarily. Take also
u∗

1 ∈ U∗
1 ⊂ U(T, ξ) independently. From (9.34) and the L1 optimality of

u∗
1, we have

J0(u∗
1) = J1(u∗

1) ≤ J1(u∗
0). (9.36)

On the other hand, from (9.33) and the L0 optimality of u∗
0, we have

J1(u∗
0) ≤ J0(u∗

0) ≤ J0(u∗
1). (9.37)

From (9.36) and (9.37), we have

J0(u∗
1) = J1(u∗

1) ≤ J1(u∗
0) ≤ J0(u∗

0) ≤ J0(u∗
1). (9.38)

It follows that J1(u∗
1) = J1(u∗

0), and u∗
0 minimizes J1(u). That is, we have

u∗
0 ∈ U∗

1 and hence U∗
0 ⊂ U∗

1 . □

9.6 Existence of L0-optimal Control

Here we consider the existence of L0-optimal control.

9.6. Existence of L0-optimal Control 207

9.6.1 Lp-optimal control

To consider the existence of L0-optimal control, we introduce the Lp-
optimal control with p ∈ (0, 1). The optimal control problem is described
as follows:

Problem 9.3 (Lp-optimal control problem). For the linear time-invariant
system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (9.39)

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

Jp(u) = ∥u∥pp =
∫ T

0
|u(t)|pdt (9.40)

with p ∈ (0, 1), subject to
x(T) = 0, (9.41)

and
∥u∥∞ ≤ 1. (9.42)

First, we prove an interesting relation between the Lp norm2 with
p ∈ (0, 1) and the L0 norm.

Lemma 9.2. Suppose u ∈ L1(0, T). Then u is also in Lp(0, T) for
any p ∈ (0, 1), and

lim
p→0+

∥u∥pp = ∥u∥0. (9.43)

Exercise 9.3. Prove Lemma 9.2.

Now, let us look into the Lp-optimal control with p ∈ (0, 1). The
Hamiltonian is given by

Hη(x,p, u) = p⊤(Ax + bu) + η|u|p. (9.44)

Let us consider the normal case (η = 1). From the minimum condition in

2Strictly speaking, the Lp "norm" with p ∈ (0, 1) is not a proper norm since the triangle
inequality does not always hold.

208 Maximum Hands-off Control

Pontryagin’s minimum principle, we have

u∗(t) = arg min
u∈[−1,1]

H1(x∗(t),p∗(t), u)

= arg min
u∈[−1,1]

{
p∗(t)⊤bu+ |u|p

}

=



−1, if p∗(t)⊤b > 1,
0, if − 1 < p∗(t)⊤b < 1,
1, if p∗(t)⊤b < −1,
{−1, 0}, if p∗(t)⊤b = 1,
{0, 1}, if p∗(t)⊤b = −1.

(9.45)

From this, Lp-optimal control is always bang-off-bang. We mention this in
the following theorem.

Theorem 9.4. The Lp-optimal control with p ∈ (0, 1) is bang-off-
bang (if it exists).

Also, it is shown that the set of Lp-optimal control is identical to the
set of L0-optimal controls.

Theorem 9.5. Assume that there exists at least one Lp-optimal
control with p ∈ (0, 1). Let U∗

0 and U∗
p be the sets of L0 and Lp

optimal controls respectively. Then we have

U∗
0 = U∗

p . (9.46)

Exercise 9.4. Prove Theorem 9.5.

From Theorems 9.4 and 9.5, we have the following theorem.

Theorem 9.6. The L0-optimal control is bang-off-bang (if it exists).

The difference of Theorem 9.5 from Theorem 9.3 for the L1-optimal
control is that for the Lp optimal control we do not need the assumption
of the non-singularity of (A, b). This is the key to prove the existence of
L0 optimal control.

9.6. Existence of L0-optimal Control 209

9.6.2 Existence theorems

From Theorem 9.5, if we show the existence of Lp-optimal control for
some p ∈ (0, 1), then U∗

0 is non-empty, and hence there exists at least one
L0-optimal control. The following theorem is on the existence of Lp-optimal
control with p > 0.3

Theorem 9.7. Suppose that the initial state ξ ∈ Rd and the time
T > 0 are chosen such that ξ ∈ R(T). Then, there exists an Lp-
optimal control with p > 0.

Proof: Assume ξ ∈ Rd and T > 0 satisfy ξ ∈ R(T). Then there exists a
feasible control u ∈ U(T, ξ), and hence the feasible set U(T, ξ) is non-empty.
Define

J∗
p ≜ inf{∥u∥pp : u ∈ U(T, ξ)}. (9.47)

Since u ∈ U(T, ξ) satisfies ∥u∥∞ ≤ 1, we have J∗
p < ∞. Then, from the

definition of J∗
p , there exists a sequence {ul}l∈N ⊂ U(T, ξ) such that

lim
l→∞

∥ul∥pp = J∗
p . (9.48)

Now, since ul ∈ U(T, ξ), we have

∥ul∥∞ ≤ 1, (9.49)

and hence {ul}l∈N ⊂ B∞ ≜ {u ∈ L∞(0, T) : ∥u∥∞ ≤ 1}. It is known that
the unit ball B∞ is sequentially compact in the weak∗ topology of L∞(0, T)
[92, Theorem A.9]. That is, there exists a subsequence {ul′}l′∈S , S ⊂ N,
such that there exists u∞ ∈ B∞ and

lim
l′→∞

∫ T

0
f(t)

(
ul′(t) − u∞(t)

)
dt = 0, (9.50)

for any f ∈ L1(0, T). Now, since ul′ ∈ U(T, ξ), we have

ξ = −
∫ T

0
e−Atbul′(t)dt, ∀l′ ∈ S. (9.51)

On the other hand, from (9.50) with f(t) = e−Atb, we have

lim
l′→∞

∫ T

0
e−Atbul′(t)dt =

∫ T

0
e−Atbu∞(t)dt. (9.52)

3To show the existence of L0-optimal control, we just need to prove the existence of
Lp-optimal control with p ∈ (0, 1). However, Theorem 9.7 gives more general result.

210 Maximum Hands-off Control

That is,

ξ = −
∫ T

0
e−Atbu∞(t)dt. (9.53)

Also since u∞ ∈ B∞, we have ∥u∞∥∞ ≤ 1. Therefore, u∞ ∈ U(T, ξ).
Next, from (9.50) with f(t) = sgn

(
ul′(t) − u∞(t)

)
, 4 we have

lim
l′→∞

∫ T

0
|ul′(t) − u∞(t)|dt = 0. (9.54)

Then, the following inequalities hold:∣∣∥ul′∥pp − ∥u∞∥pp
∣∣ ≤

∫ T

0

∣∣|ul′(t)|p − |u∞(t)|p
∣∣dt

≤
∫ T

0

∣∣ul′(t)p − u∞(t)p
∣∣pdt

≤
(∫ T

0
|ul′(t) − u∞(t)|dt

)p
T 1−p,

(9.55)

where the third inequality is from Hölder’s inequality. It follows from (9.54)
and (9.55) that

lim
l′→∞

∥ul′∥pp = ∥u∞∥pp. (9.56)

The left-hand side of the above equation is equivalent to J∗
p by definition,

and hence ∥u∞∥pp = J∗
p . That is, u∞ ∈ U(T, ξ) is an Lp-optimal control. □

From Theorem 9.7 and Theorem 9.5, we have the following theorem.

Theorem 9.8 (Existence of L0 optimal control). If ξ ∈ R(T), then
there exists an L0-optimal control.

The condition of ξ ∈ R(T) is equivalent to ξ ∈ R and T ≥ T ∗(ξ).
Hence, we have the following lemma.

Lemma 9.3. Let u∗ be the L0-optimal control with ξ ∈ R(T). Then
∥u∗∥0 ≤ T ∗(ξ).

Proof: This is easily shown by considering a feasible control in (9.31).
□

4Here sgn(·) is the sign function defined by

sgn(v) ≜

−1, if v < 0,
0, if v = 0,
1, if v > 0.

9.7. Rocket Control Example 211

9.7 Rocket Control Example

Here we compute the maximum hands-off control of the rocket considered
in Example 8.1 (p. 176) in the previous chapter. We assume the mass
m = 1 for simplicity.

We now compute the L1-optimal control. From (9.19), the Hamiltonian
with η = 1 is given by

H1(x,p, u) = p⊤
([

0 1
0 0

]
x +

[
0
1

]
u

)
+ |u| = p1x1 + p2u+ |u|, (9.57)

where p = (p1, p2). Let u∗ denote the L1-optimal control, and x∗ = (x∗
1, x

∗
2),

p∗ = (p∗
1, p

∗
2) the associated optimal state and costate, respectively. From

(9.22), the L1-optimal control u∗(t) satisfies

u∗(t) = −dez
(
p∗

2(t)
)
, (9.58)

where dez(·) is the dead-zone function defined in (9.23) (see also Figure
9.3).

Then, the adjoint equation of the costate p∗(t) becomes

[
ṗ∗

1(t)
ṗ∗

2(t)

]
= −

[
0 1
0 0

]⊤ [
p∗

1(t)
p∗

2(t)

]
=
[

0
−p∗

1(t)

]
. (9.59)

The solution of this differential equation is given by

p∗
1(t) = π1, p∗

2(t) = π2 − π1t, (9.60)

where

π1 = p∗
1(0), π2 = p∗

2(0). (9.61)

It follows from (9.60) that if π1 ≠ 0 then p∗
2(t) is a first-order linear function

of t and hence p∗
2(t) is monotone. Therefore, from (9.58) and the definition

of the dead-zone function (9.23), switching occurs at most twice, and the
value changes between −1 and 0, or between 0 and 1. From this observation,
the L1-optimal control is given as follows (for details, refer to [3, Section
8.5]).

212 Maximum Hands-off Control

0
x1

x2γ

R1R2

R3 R4

Figure 9.5: Curve γ (thick solid line) and regions R1, R2, R3, and R4

Define the following regions (see Figure 9.5):

γ =
{

(x1, x2) ∈ R2 : x1 = −x2|x2|/2
}
,

R1 =
{

(x1, x2) ∈ R2 : x1 > −x2
2/2, x2 ≥ 0

}
,

R2 =
{

(x1, x2) ∈ R2 : x1 < −x2
2/2, x2 > 0

}
,

R3 =
{

(x1, x2) ∈ R2 : x1 < x2
2/2, x2 ≤ 0

}
,

R4 =
{

(x1, x2) ∈ R2 : x1 > x2
2/2, x2 < 0

}
.

(9.62)

Also, define the following two regions:

V− =
{

(x1, x2) ∈ R2 : −x2/2 − x1/x2 ≥ T
}
,

V+ =
{

(x1, x2) ∈ R2 : x2/2 − x1/x2 ≥ T
}
.

(9.63)

Then, the L1-optimal control is given as follows.

1. If (ξ1, ξ2) ∈ R1 or (ξ1, ξ2) ∈ R4 ∩V−, then the optimal control is given
by

u∗(t) =


−1, if 0 ≤ t < t1,

0, if t1 ≤ t < t2,

1, if t2 ≤ t ≤ T,

(9.64)

where

t1 =
T + ξ2 −

√
(T − ξ2)2 − 4ξ1 − 2ξ2

2

2 ,

t2 =
T + ξ2 +

√
(T − ξ2)2 − 4ξ1 − 2ξ2

2

2 .

(9.65)

9.7. Rocket Control Example 213

0 1 2 3 4 5

time (sec)

-1

-0.5

0

0.5

1

u
(t

)

optimal control

L
1
 optimal

L
2
 optimal

Figure 9.6: L1-optimal control (solid line) and L2-optimal control (dashed line)

2. If (ξ1, ξ2) ∈ R3 or (ξ1, ξ2) ∈ R2 ∩V+ then the optimal control is given
by

u∗(t) =


1, if 0 ≤ t < t3,

0, if t3 ≤ t < t4,

−1, if t4 ≤ t ≤ T,

(9.66)

where

t3 =
T − ξ2 −

√
(T + ξ2)2 + 4ξ1 − 2ξ2

2

2 ,

t4 =
T − ξ2 +

√
(T + ξ2)2 + 4ξ1 − 2ξ2

2

2 .

(9.67)

3. If (ξ1, ξ2) ∈ γ then the optimal control is given by

u∗(t) =

−sgn(ξ2), if 0 ≤ t < |ξ2|,
0, if |ξ2| ≤ t ≤ T.

(9.68)

4. If (ξ1, ξ2) ∈ R4 ∩ (V−)c or (ξ1, ξ2) ∈ R2 ∩ (V+)c, 5 then the control
problem is singular, and the optimal control cannot be uniquely
determined from the minimum principle.

5(·)c denotes the complement set.

214 Maximum Hands-off Control

0 0.5 1 1.5

x1

-0.5

0

0.5

1

x
2

state-space trajectory

L
1
 optimal

L
2
 optimal

Figure 9.7: Optimal state trajectory (x∗
1(t), x∗

2(t)): L1-optimal control (solid line) and L2-
optimal control (dashed line)

Figure 9.6 shows the L1-optimal control with the final time T = 5 and
the initial state (ξ1, ξ2) = (1, 1) ∈ R1. Figure 9.7 shows the associated
optimal state trajectory {(x∗

1(t), x∗
2(t)) : 0 ≤ t ≤ 5}. In these figures, we

also show the results of L2-optimal control that minimizes the L2 cost
function

∥u∥2
2 =

∫ T

0
|u(t)|2dt, (9.69)

among the feasible controls. From Figure 9.6, we can see that the L1-
optimal control is sparse while the L2-optimal control is not. In fact, the
L1-optimal control is bang-off-bang, and hence this is equivalent to L0-
optimal control. That is, the L1-optimal control has the maximum length
of time duration on which the control is exactly zero. From (9.65), this
time length is given by

[t1, t2] = [3 −
√

10/2, 3 +
√

10/2] ≈ [1.4189, 4.5811], (9.70)

and the L0 norm of the L1-optimal control u∗ is ∥u∗∥0 =
√

10 ≈ 3.1623.
On this time duration, the state trajectory (x∗

1(t), x∗
2(t)) is parallel to the

x1 axes. Since x1 is the portion and x2 is the velocity of the rocket, this
state trajectory means that the rocket moves at a constant velocity. The
rocket consumes no fuel on this time duration, and hence we can cut fuel
consumptions and also we can reduce CO2 emissions etc. That is, the
control is green. It is clear that L2-optimal control does not have such a
nice property of sparsity.

9.8. Further Readings 215

9.8 Further Readings

For the L1-optimal control (minimum-fuel control), the most detailed
information can be obtained from the classical book by Athans and Falb
[3]. The equivalence theorem between L0 and L1 optimal controls was
first proved in [104], [105]. For the equivalence, we need the assumption of
non-singularity of A. In the case of singular A, we can adopt non-convex
surrogate functions, such as the Lp norm with p ∈ (0, 1) and the minimax
concave penalty, with which we can show the equivalence to the L0-optimal
control [55], [59], [63].

In this book, we consider linear systems, but the equivalence property
holds for non-linear systems of the following type:

ẋ(t) = f
(
x(t)

)
+ g

(
x(t)

)
u(t), t ≥ 0. (9.71)

See [104], [105] for details.
Necessary conditions of the L0-optimal control are also obtained in

[23] by the non-smooth version of Pontryagin’s minimum (or maximum)
principle [28]. For the theory of Lp spaces, see [79], [133], [152].

For feedback control implementation of maximum hands-off control, one
can adopt the model predictive control [32], [64], [113] and the self-triggered
control [105].

Chapter 10

Numerical Optimization by Time Discretization

As we have seen in Section 9.7, the L1-optimal control is obtained in
a closed form when the plant is very simple, as the double integrator.
However, for general systems described by

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (10.1)
we need to rely on numerical computation to obtain the optimal control. In
this chapter, we introduce the method of time discretization to numerically
obtain the L1-optimal control.

Key ideas of Chapter 10� �
• By time discretization, the L1-optimal control problem (Problem

9.2) is reduced to a finite-dimensional ℓ1 optimization problem.

• In time discretization, the control is assumed to be piecewise
constant by a zero-order hold.

• The reduced ℓ1 optimization can be efficiently solved by ADMM.� �
10.1 Time Discretization

First, we discretize the time interval [0, T] into n subintervals as
[0, T] = [0, h) ∪ [h, 2h) ∪ · · · ∪ [nh− h, nh], (10.2)

where h > 0 is the sampling time and n ∈ N is the number of subintervals
such that T = nh.

On each subinterval, we assume the control u(t) is constant. More
precisely, we assume the control is given by
u(t) = u(kh) = ud[k], t ∈ [kh, (k + 1)h), k = 0, 1, 2, . . . , n− 1. (10.3)

218 Numerical Optimization by Time Discretization

t

0 h 2h

u(t)

ud[0] ud[1]
ud[2]

Figure 10.1: Zero-order hold output of discrete-time signal {ud[k]}

This is the output of a zero-order hold of a discrete-time signal

ud ≜ {ud[0], ud[1], . . . , ud[n− 1]}. (10.4)

This assumption is actually reasonable for networked digital control sys-
tems where control values are computed in a digital computer, transmitted
through a wireless communication network, and applied to an actuator
through a D/A converter. The zero-order hold is the simplest model of a
D/A converter.

Let us compute the state transition under the zero-order assumption
on the control. The solution to the state-space equation in (10.1) is given
by (see Exercise 8.1 on p. 176)

x(t1) = eA(t1−t0)x(t0) +
∫ t1

t0
eA(t1−τ)bu(τ)dτ, (10.5)

where 0 ≤ t0 ≤ t1. Take

t0 = kh, t1 = kh+ h, k ∈ {0, 1, 2, . . . , n− 1}. (10.6)

Then from (10.5) we have

x(kh+ h) = eAhx(kh) +
∫ kh+h

kh
eA(kh+h−τ)bu(τ)dτ

= eAhx(kh) +
∫ h

0
eA(h−t)bu(t+ kh)dt.

(10.7)

Define

xd[k] ≜ x(kh), ud[k] ≜ u(kh), k = 0, 1, . . . , n− 1, (10.8)

and
xd[n] ≜ x(T). (10.9)

10.2. Controllability of Discretized Systems 219

From the zero-order-hold assumption (10.3), the control u(t) takes a con-
stant value ud[k] = u(kh) on the subinterval [kh, kh + h) as shown in
Figure 10.1. Then from (10.7) we have

xd[k + 1] = eAhxd[k] +
(∫ h

0
eA(h−t)b dt

)
ud[k]. (10.10)

It follows that the differential equation (10.1) is transformed into the
following difference equation:

xd[k + 1] = Adxd[k] + bdud[k], k = 0, 1, . . . , n− 1, (10.11)

where
Ad ≜ eAh, bd ≜

∫ h

0
eAtb dt. (10.12)

Next, define the control vector

u ≜


ud[0]
ud[1]

...
ud[n− 1]

 ∈ Rn. (10.13)

By using this, the terminal state x(T) is described as

x(T) = xd[n] = −ζ + Φu, (10.14)

where

Φ ≜
[
An−1

d bd An−2
d bd . . . bd

]
, ζ ≜ −Andξ. (10.15)

Exercise 10.1. Show the equation (10.14) by solving the difference equation
(10.11).

10.2 Controllability of Discretized Systems

The discrete-time system (10.11) is called the zero-order-hold discretization
or step-invariant discretization of the continuous-time system (10.1). Figure
10.2 shows the zero-order hold discretization of (10.1). In this figure Hh

is the zero-order hold with sampling time h, which outputs a constant
value ud[k] = u(kh) over [kh, (k + 1)h), k = 0, 1, 2, . . . (see Figure 10.1).
Also, Sh is the ideal sampler that outputs the sampled data xd[k] = x(kh),
k = 0, 1, 2, . . . of the continuous-time signal x(t).

220 Numerical Optimization by Time Discretization

ẋ(t) = Ax(t) + bu(t)
x(t)ud[k] u(t)

ShHh

xd[k]

Figure 10.2: Zero-order-hold discretization: continuous-time system ẋ(t) = Ax(t) + bu(t) is
discretized by zero-order hold Hh and ideal sampler Sh with sampling time h.

As discussed above, the discrete-time system from ud[k] to xd[k] in
Figure 10.2 is a linear time-invariant discrete-time system as in (10.11).
Then, under this discretization, the stability is preserved; if A is stable,
that is, if the eigenvalues of A have non-positive real parts then Ad is
Schur stable, that is, the eigenvalues of Ad lie in the closed unit circle in
C. This is easily shown from the spectral mapping theorem: the set of the
eigenvalues of Ad = eAh is given by {eλ1h, . . . , eλdh}, where λi is the i-th
eigenvalue of A.

On the other hand, we cannot say the controllability is not always
preserved under the zero-order-hold discretization. To discuss this, we
introduce the concept of pathological sampling.

Definition 10.1 (pathological sampling). Let λ(A) be the set of
eigenvalues of A. The sampling time h > 0 is said to be pathological
if there exist λ1, λ2 ∈ λ(A) such that

1. λ1 ̸= λ2,

2. Reλ1 = Reλ2,

3. there exists k ∈ {±1,±2, . . .} such that

Imλ1 − Imλ2 = 2πk
h
. (10.16)

Intuitively, pathological sampling synchronizes an oscillation mode in
the plant. The following illustrates pathological sampling.

Example 10.1. Let us consider a linear system

ÿ(t) = −y(t), y(0) = 0, ẏ(0) = 1. (10.17)

Then the solution of this differential equation is given by

y(t) = sin t. (10.18)

10.3. Reduction to Finite-dimensional Optimization 221

If we sample this output with sampling period h = π, then we have

y(kh) = sin kh = 0, k = 0, 1, 2, . . . (10.19)

This is an example of pathological sampling. The state-space representation
of (10.17) is given by

d

dt

[
x1(t)
x2(t)

]
=
[

0 1
−1 0

] [
x1(t)
x2(t)

]
,

[
x1(0)
x2(0)

]
=
[
0
1

]
, (10.20)

where x1(t) ≜ y(t) and x2(t) ≜ ẏ(t). Then the matrix

A =
[

0 1
−1 0

]
(10.21)

has two eigenvalues λ± = ±j satisfying

Imλ+ − Imλ− = 2 = 2πk
h
, (10.22)

with k = 1. Therefore, h = π is certainly pathological. □

When the sampling is non-pathological, then the controllability is
preserved as shown in the following theorem.

Theorem 10.1. Assume that the sampling time h is non-pathological.
Then, (A, b) is controllable if and only if (Ad, bd) is controllable.

The proof is found in [26].

10.3 Reduction to Finite-dimensional Optimization

Now we reduce the L1-optimal control problem (Problem 9.2, p. 201) into
a finite-dimensional ℓ1 optimization problem by the time discretization.

First, the constraint on the magnitude of control ∥u∥∞ ≤ 1 is equiva-
lently written by

|ud[k]| ≤ 1, ∀k ∈ {0, 1, 2, . . . , n− 1}, (10.23)

under the zero-order-hold assumption (10.3). Let us denote by ∥u∥ℓ∞ the
ℓ∞ norm of a vector u (see (2.29) in Chapter 2). Then the above inequality
is equivalent to

∥u∥ℓ∞ ≤ 1. (10.24)

222 Numerical Optimization by Time Discretization

Next, under the zero-order-hold assumption, the L1 cost function be-
comes

J1(u) =
∫ T

0
|u(t)|dt

=
n−1∑
k=0

∫ (k+1)h

kh
|u(t)|dt

=
n−1∑
k=0

∫ (k+1)h

kh
|ud[k]|dt

=
n−1∑
k=0

|ud[k]|h

= h∥u∥ℓ1 .

(10.25)

Now the L1-optimal control problem (Problem 9.2) is reduced to the
following finite-dimensional ℓ1 optimization problem:

minimize
u∈Rn

∥u∥ℓ1 subject to Φu = ζ, ∥u∥ℓ∞ ≤ 1. (10.26)

This optimization problem is a convex optimization since the cost function
(the ℓ1 norm) is a convex function, and the constraint set

C ≜ {u ∈ Rn : Φu = ζ, ∥u∥ℓ∞ ≤ 1} (10.27)

is a convex set in Rn. We can easily solve this problem by using CVXPY
with Python (see Section 3.3 in Chapter 3, p. 54). A Python program to
solve the ℓ1 optimization (10.26) using CVXPY is given in Section 10.6.1.

10.4 Fast Algorithm by ADMM

If the order d of the system (10.1) and the number n for discretization are
not so large, you can obtain a solution easily by CVXPY. However, in real
systems, the numerical optimization algorithm should be implemented in
a microcomputer, which often has just a cheap computational ability and
is hard to run CVXPY. Also, if you want to use the control in a feedback
loop, then you must solve the problem in real time. In such a case, we need
to implement a fast and simple algorithm for the specific ℓ1 optimization
problem (10.26). For this purpose, we can use the efficient algorithms
studied in Chapter 4. In particular, we here use ADMM (Alternating
Direction Method of Multipliers) studied in Section 4.5 to solve (10.26).

10.4. Fast Algorithm by ADMM 223

First, define the unit ball C1 ⊂ Rn with the ℓ∞ norm by

C1 ≜ {u ∈ Rn : ∥u∥ℓ∞ ≤ 1}. (10.28)

Also, let C2 be a singleton of ζ ∈ Rd, that is,

C2 ≜ {ζ}. (10.29)

Define the indicator functions of the sets C1 and C2 respectively by

IC1(u) ≜

0, if ∥u∥ℓ∞ ≤ 1,
∞, if ∥u∥ℓ∞ > 1,

(10.30)

IC2(x) ≜

0, if x = ζ,

∞, if x ̸= ζ.
(10.31)

Then the optimization problem (10.26) is equivalently described by

minimize
u∈Rn

{
∥u∥ℓ1 + IC1(u) + IC2(Φu)

}
. (10.32)

Next, define new variables z0, z1 ∈ Rn, z2 ∈ Rd by

z0 = z1 = u, z2 = Φu. (10.33)

Then the problem (10.32) becomes

minimize
u∈Rn,z∈Rν

{
∥z0∥ℓ1 + IC1(z1) + IC2(z2)

}
subject to z = Ψu, (10.34)

where ν ≜ 2n+ d, and

z ≜

z0
z1
z2

 ∈ Rν , Ψ ≜

II
Φ

 ∈ Rν×n. (10.35)

Defining two functions f1 and f2 by

f1(u) ≜ 0, f2(z) ≜ ∥z0∥ℓ1 + IC1(z1) + IC2(z2) (10.36)

we finally obtain the standard optimization problem for ADMM (see (4.99),
p. 90):

minimize
u∈Rn,z∈Rν

f1(u) + f2(z) subject to z = Ψu, (10.37)

for which the ADMM algorithm is given by (see Section 4.5.1, p. 90)

u[k + 1] := arg min
u∈Rn

{
f1(u) + 1

2γ
∥∥Ψu − z[k] + v[k]

∥∥2
ℓ2

}
, (10.38)

z[k + 1] := proxγf2

(
Ψu[k + 1] + v[k]

)
, (10.39)

v[k + 1] := v[k] + Ψu[k + 1] − z[k + 1]. (10.40)

224 Numerical Optimization by Time Discretization

Let us compute the functions in (10.38)–(10.40). First, since f1 = 0, the
first step (10.38) is minimization of a quadratic function, and it is reduced
to the following linear transformation:

u[k + 1] = arg min
u∈Rn

{ 1
2γ
∥∥Ψu − z[k] + v[k]

∥∥2
ℓ2

}
= (Ψ⊤Ψ)−1Ψ⊤(z[k] − v[k]).

(10.41)

Note that Ψ⊤Ψ = 2I + Φ⊤Φ is non-singular and the matrix

M ≜ (Ψ⊤Ψ)−1Ψ⊤ (10.42)

can be computed off-line (i.e., outside the iteration).
The size of Ψ⊤Ψ is n× n, and if the number n of time discretization

is very large, then the computation of the inversion may take large com-
putational time. In this case, we can adopt the matrix inversion lemma

(X + UY V)−1 = X−1 −X−1U(Y −1 + V X−1U)−1V X−1. (10.43)

By this, the inverse matrix (Ψ⊤Ψ)−1 can be rewritten as

(Ψ⊤Ψ)−1 = (2I + Φ⊤Φ)−1 = 1
2I − 1

2Φ⊤(2I + ΦΦ⊤)−1Φ. (10.44)

This requires inversion of matrix 2I + ΦΦ⊤ of size d× d, and if d ≪ n then
the computational time can be significantly reduced.

The second step (10.39) in the ADMM algorithm can be split into three
simple optimization problems with variables z0, z1, and z2 defined in
(10.35). For the variable z0, we use the proximal operator of the ℓ1 norm,
which is the soft-thresholding operator defined in (4.46) (see also Figure
4.8 on p .74). That is, the i-th element of proxγ∥·∥ℓ1 (u) is given by

[
proxγ∥·∥ℓ1 (u)

]
i

= [Sγ(u)]i ≜


ui − γ, ui ≥ γ,

0, |ui| < γ,

ui + γ, ui ≤ −γ,
(10.45)

where ui is the i-th element of vector u.
For the variables z1 and z2, we need to compute the proximal operators

of indicator functions. From (4.38) (p. 73), the proximal operator of the
indicator function on a closed and convex set C is given by the projection
ΠC onto C. Therefore, the second step for variables z1 and z2 are reduced
to ΠC1 and ΠC2 .

10.4. Fast Algorithm by ADMM 225

0

sat(u)

u

1

−1

1

−1

Figure 10.3: Saturation function sat(u) = sgn(u) min{|u|, 1}.

The projection ΠC1 is given by

ΠC1(u) =


sat(u1)
sat(u2)

...
sat(un)

 , sat(u) ≜ sgn(u) min{|u|, 1}, (10.46)

where the function sat(·) is called the saturation function. Figure 10.3 shows
the graph of the saturation function. The other projection ΠC2 = Π{ζ} is
simply given by

ΠC2(z) ≜ ζ. (10.47)

In summary, the second step for variable z is given by

z[k + 1] =

 Sγ(u[k + 1] + v0[k])
ΠC1(u[k + 1] + v1[k])

ζ

 , (10.48)

where we split the vector v[k] as v = [v⊤
0 ,v

⊤
1 ,v

⊤
2]⊤ consistent with the

split of z in (10.35).

Now we obtain the ADMM algorithm to solve the ℓ1 optimization
(10.26):

226 Numerical Optimization by Time Discretization

ADMM algorithm to solve the ℓ1 optimization problem (10.26)� �
Initialization: give initial vectors z[0], v[0] ∈ Rν , and real number
γ > 0.
Iteration: for k = 0, 1, 2, . . . do

u[k + 1] = M(z[k] − v[k]), (10.49)

z[k + 1] =

 Sγ(u[k + 1] + v0[k])
ΠC1(u[k + 1] + v1[k])

ζ

 , (10.50)

v[k + 1] = v[k] + Ψu[k + 1] − z[k + 1], k = 0, 1, 2, . . . (10.51)� �
In this algorithm, the matrix M in (10.49) is given by (10.42). The Python
implementation of the above algorithm is given in Section 10.6.2.

As mentioned in [13], the ADMM algorithm is very fast and requires
just a few dozens of iterations to obtain a solution with sufficient precision.
This property is very important if you adapt the finite-horizon L1 optimal
control to model predictive control [88], where real-time computation is
essential.

10.5 Further Readings

The time discretization discussed in this section is based on the fundamental
theory of sampled-data control, for which you can refer to a standard
textbook by Chen and Francis [26]. The concept of pathological sampling
is also found in this book.

10.6 Python Programs

We show Python programs to solve the ℓ1 optimization problem (10.26).
One is a program using CVXPY. The other is an implementation of the
ADMM algorithm.

10.6.1 Python program based on CVXPY

The following program solves the ℓ1 optimization problem in (10.26) via
CVXPY.

1 import numpy as np
2 from numpy import linalg as LA
3 import cvxpy as cp

10.6. Python Programs 227

4 import matplotlib . pyplot as plt
5 from scipy. signal import cont2discrete as c2d
6

7 # System model
8 A = np.array ([[0 , 1], [0, 0]])
9 b = np.array ([[0] , [1]])

10 d = len(b) # system size
11 x0 = np.array ([[1] , [1]]) # initial states
12 T = 5 # Horizon length
13

14 # Time discretization
15 n = 1000 # grid size
16 h = T / n # discretization interval
17 Ad ,bd ,_,_,_ = c2d ((A,b,None ,None), h) #c2d
18

19 # Matrix Phi
20 Phi = np.zeros ((d, n))
21 v = bd
22 Phi [:, -1] = v. flatten ()
23 for j in range (1, n):
24 v = Ad @ v
25 Phi [:, -j - 1] = v. flatten ()
26

27 # Vector zeta
28 Ad_n = LA. matrix_power (Ad , n)
29 zeta = -Ad_n @ x0. flatten ()
30

31 # Convex optimization via CVXPY
32 u = cp. Variable (n)
33 objective = cp. Minimize (cp.norm(u, 1))
34 constraints = [Phi @ u == zeta] + [cp.norm(u, np.

inf) <= 1]
35 problem = cp. Problem (objective , constraints)
36 problem .solve ()
37

38 # Plot
39 plt. figure ()
40 plt.plot(np. arange (0, T, h), u.value)

228 Numerical Optimization by Time Discretization

41 plt.title(’ Sparse control ’)
42 plt. xlabel (’Time ’)
43 plt. ylabel (’ Control input ’)
44 plt.show ()

10.6.2 Python program based on ADMM

The following program solves the ℓ1 optimization problem in (10.26) based
on the ADMM algorithm.

1 import numpy as np
2 from numpy import linalg as LA
3 import matplotlib . pyplot as plt
4 from scipy. signal import cont2discrete as c2d
5

6 # System model
7 A = np.array ([[0 , 1], [0, 0]])
8 b = np.array ([[0] , [1]])
9 d = len(b) # system size

10 x0 = np.array ([[1] , [1]]) # initial states
11 T = 5 # Horizon length
12

13 # Time discretization
14 n = 1000 # grid size
15 h = T / n # discretization interval
16 Ad ,bd ,_,_,_ = c2d ((A,b,None ,None), h) #c2d
17

18 # Matrix Phi
19 Phi = np.zeros ((d, n))
20 v = bd
21 Phi [:, -1] = v. flatten ()
22 for j in range (1, n):
23 v = Ad @ v
24 Phi [:, -j - 1] = v. flatten ()
25

26 # Vector zeta
27 Ad_n = LA. matrix_power (Ad , n)
28 zeta1 = -Ad_n @ x0. flatten ()

10.6. Python Programs 229

29 zeta = zeta1. reshape (-1,1)
30

31 # ADMM parameters
32 mu = 2 * n + d
33 Psi = np. vstack ((np.eye(n), np.eye(n), Phi))
34 PsiT = Psi.T
35 In = np.eye(n)
36 Id = np.eye(d)
37 M2 = 0.5* In - 0.5* Phi.T@ fcduikmLA .inv (2* Id +

Phi@Phi .T)@Phi
38 EPS = 1e-4
39 MAX_ITER = 10000
40 z = np. concatenate ((np.zeros ((2 * n, 1)), zeta))
41 v = np.zeros ((mu , 1))
42 r = zeta
43 k = 0
44 gamma = 0.05
45

46 # Soft - thresholding function
47 def soft_thresholding (gamma , x):
48 return np.sign(x) * np. maximum (np.abs(x)-gamma

,0)
49

50 # Saturation function
51 sat = lambda x: np.sign(x) * np. minimum (np.abs(x),

1)
52

53 # ADMM iterations
54 while (LA.norm(r) > EPS) and (k < MAX_ITER):
55 u2 = PsiT @ (z-v)
56 u = M2 @ u2
57 z0 = soft_thresholding (gamma , u[:n] + v[:n])
58 z1 = sat(u + v[n:n + n])
59 z2 = zeta
60 z = np. concatenate ((z0 , z1 , z2))
61 v = v + Psi @ u - z
62 r = Phi @ u - zeta
63 k = k + 1

230 Numerical Optimization by Time Discretization

64

65 # Plot
66 plt. figure ()
67 plt.plot(np. arange (0, T, h), u, linewidth =2)
68 plt.title(’ Sparse control ’)
69 plt. xlabel (’Time ’)
70 plt. ylabel (’ Control input ’)
71 plt.show ()

Chapter 11

Advanced Topics

In this chapter, we introduce advanced topics in maximum hands-off
control.

11.1 Smooth Hands-off Control by Mixed L1/L2 Optimization

As we studied in Chapter 9, the maximum hands-off control (the L0-optimal
control) is bang-off-bang (Theorem 9.6, p. 208). That is, the maximum
hands-off control is a piecewise constant function taking values of ±1 and
0. This means that the maximum hands-off control is discontinuous; the
control changes its value between 1 and 0, or 0 and −1 at switching times.
This is undesirable for some applications where actuators cannot move
abruptly. In this case, one may want to make the control continuous. For
this purpose, we add a regularization term to the L1 cost J1(u) in the L1

optimal control problem (Problem 9.2, p. 201). That is, we consider the
following cost function:

J12(u) = λ∥u∥1 + 1
2∥u∥2

2 =
∫ T

0

(
λ|u(t)| + 1

2 |u(t)|2
)
dt, (11.1)

where λ > 0 is a fixed parameter.
The idea of adding the L2 norm term is borrowed from the elastic net

regularization1 in compressed sensing [158]. The elastic net regularization
promotes sparsity with the grouping effect, where strongly correlated
vectors are chosen at the same time. This ensures that the solution is not
overly sensitive to small changes in the observation. From this idea, the
L2 term in (11.1) enhances the continuity of the solution.

1The name “elastic net” is meant to suggest a stretchable fishing net that retains all the big
fish.

232 Advanced Topics

With the cost function (11.1), we consider the following mixed L1/L2-
optimal control problem.

Problem 11.1 (L1/L2-optimal control problem). For the linear time-invari-
ant system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (11.2)

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J12(u) = λ∥u∥1 + 1
2∥u∥2

2, (11.3)

subject to x(T) = 0 and ∥u∥∞ ≤ 1.

To discuss properties of the L1/L2-optimal control, we give necessary
conditions of the optimality by Pontryagin’s minimum principle.

The Hamiltonian function associated with Problem 11.1 is given by

Hη(x,p, u) = p⊤(Ax + bu) + η

(
λ|u| + 1

2 |u|2
)
. (11.4)

We do not consider the abnormal case (i.e., η = 0) and assume η = 1. Let
u∗(t) denote the optimal control and x∗(t) and p∗(t) the resultant optimal
state and costate, respectively. Then, we have the following result.

Lemma 11.1. The L1/L2-optimal control u∗(t) satisfies

u∗(t) = −sat
(
Sλ
(
p∗(t)⊤b

))
, (11.5)

where Sλ(·) is the soft-thresholding operator (see Section 4.2.5, p. 73)
defined by

Sλ(v) ≜


v + λ if v < −λ,
0, if − λ ≤ v ≤ λ,

v − λ, if λ < v,

(11.6)

and sat(·) is the saturation function defined by

sat(v) ≜


−1, if v < −1,
v, if − 1 ≤ v ≤ 1,
1, if 1 < v.

(11.7)

See Figure 11.1 for the graphs of sat(Sλ(v)) in (11.5).

11.1. Smooth Hands-off Control by Mixed L1/L2 Optimization 233

0

v

1

−1

λ

−λ−λ − 1

λ + 1

sat
(
Sλ(v)

)

Figure 11.1: Saturated shrinkage function sat(Sλ(v))

Proof of Lemma 11.1: From Pontryagin’s minimum principle, we
have

u∗(t) = arg min
u∈[−1,1]

{(
p∗(t)⊤b

)
u+ λ|u| + 1

2 |u|2
}

=



1, if p∗(t)⊤b ≤ −λ− 1,
−
(
p∗(t)⊤b + λ

)
, if − λ− 1 < p∗(t)⊤b < −λ,

0, if − λ ≤ p∗(t)⊤b ≤ λ,

−
(
p∗(t)⊤b − λ

)
, if λ < p∗(t)⊤b < λ+ 1,

−1, if λ+ 1 ≤ p∗(t)⊤b,

= −sat
(
Sλ
(
p∗(t)⊤b

))
.

(11.8)

□
From Lemma 11.1, we have the following theorem.

Theorem 11.1 (Continuity). The L1/L2-optimal control u∗(t) is
continuous in t over [0, T].

Proof: Define
ū(p) ≜ −sat

(
Sλ
(
p⊤b

))
. (11.9)

Since the composite function sat ◦ Sλ is continuous (see Figure 11.1), ū(p)
is also continuous in p. It follows from Lemma 11.1 that the optimal control
u∗ given in (11.5) is continuous in p∗. Hence, u∗(t) is continuous, if p∗(t)
is continuous in t over [0, T]. In fact, from (9.26) (p. 203), p∗(t)⊤b is given
by

p∗(t)⊤b = p∗(0)⊤e−Atb, (11.10)

which is continuous in t over R. □

234 Advanced Topics

0 2 4 6 8 10

time (sec)

-1

-0.5

0

0.5

1

u
(t

)

Optimal Control

L
1
/L

2
 optimal

L
1
 optimal

Figure 11.2: Maximum hands-off control (dashed) and L1/L2-optimal control (solid)

Theorem 11.1 motivates us to use the L1/L2-optimal control for contin-
uous hands-off control. In general, the degree of continuity (or smoothness)
and the sparsity of the control input cannot be optimized at the same
time. The parameter λ can be used for trading smoothness for sparsity.
Lemma 11.1 suggests that increasing the parameter λ makes the L1/L2

optimal control u∗(t) sparser (see also Fig. 11.1). On the other hand,
decreasing λ smoothens u∗(t).

Example 11.1. Let us consider the following linear system

dx(t)
dt

=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

x(t) +


0
0
0
1

u(t). (11.11)

We set the final time T = 10, and the initial and final states as

x(0) = [0.5, 0.5, 0.5, 0.5]⊤, x(10) = 0. (11.12)

Fig. 11.2 shows the L1/L2 optimal control with weights λ = 1. The
maximum hands-off control is also illustrated. We can see that the L1/L2-
optimal control is continuous but sufficiently sparse. □

11.2. Discrete-valued Control 235

0

u(t)

U1

U2

U3

t

Figure 11.3: An example of discrete-valued control that takes three values of U1, U2, and U3.

11.2 Discrete-valued Control

As we observed in Chapter 9, the maximum hands-off control (or the
L0-optimal control) takes values in an alphabet2 {−1, 0, 1}. Such a control
is called a discrete-valued control, since the control takes a finite number of
values. Discrete-valued control is important in networked control systems
where the bandwidth of the network is limited, since discrete-valued signals
can be effectively compressed.

We here generalize the property of discreteness in maximum hands-off
control by the sum-of-absolute-values (SOAV) optimization.

11.2.1 Sum-of-absolute-values (SOAV) optimization

Let us consider discrete-valued control for the linear time-invariant plant

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (11.13)

where the control u(t) takes N real numbers

U1 < U2 < · · · < UN . (11.14)

That is, we consider a discrete-valued control with alphabet {U1, U2, . . . ,

UN}. Figure 11.3 shows an example of discrete-valued control. The purpose
we consider here is to seek a discrete-valued control that achieves x(T) = 0,
given the initial state x(0) = ξ and the control time T > 0.

A standard method to obtain discrete-valued control is to describe
the problem as a mixed-integer programming problem [8]. However, this
method requires a lot of computational time, which grows exponentially
as the size of the problem grows, and hence this method is hard to apply

2The word alphabet is borrowed from information theory [31]. An alphabet is a set of a finite
number of elements that are used to represent signals of interest.

236 Advanced Topics

to a large-scale problem. Instead, we consider convex relaxation of this
optimization problem of discrete-valued control.

We first define the feasible controls that drive the state x(t) from the
initial state x(0) = ξ to the origin in time T > 0, satisfying

U1 ≤ u(t) ≤ UN , ∀t ∈ [0, T]. (11.15)

We denote by U(T, ξ) the set of feasible controls. We assume that ξ ∈ Rd

and T > 0 are given such that U(T, ξ) is non-empty. For a feasible control
u ∈ U(T, ξ), define the following cost function:

J0(u) ≜
N∑
j=1

wj∥u− Uj∥0, (11.16)

where w1, w2, . . . , wN are weights that satisfy

wi > 0, w1 + w2 + · · · + wN = 1. (11.17)

Minimizing the cost function (11.16) may promote discreteness of the
control to take values in {U1, . . . , UN}. This can be explained as follows.
A discrete-valued control is a piecewise constant signal as shown in Figure
11.3. If u(t) = Uj for t in some time intervals with a positive length, then
the function u(t) − Uj is zero over the intervals, and hence it is sparse.
Namely, the L0 norm of the function u − Uj should be smaller than T .
If we choose the weights w1, . . . , wN according to the importance of the
values U1, . . . , UN and minimize the cost function (11.16), we may obtain
a discrete-valued feasible control.

The cost function (11.16) is discontinuous and non-convex, and hence
it is difficult to directly obtain the optimal solution as in the case of
L0-optimal control. We then adopt the L1 relaxation, that is, we use the
L1 norm instead of the L0 norm in (11.16):

J1(u) ≜
N∑
j=1

wj∥u− Uj∥1 =
∫ T

0

N∑
j=1

wj |u(t) − Uj |dt. (11.18)

We call this cost function the sum of absolute values or SOAV for short.
Then, we describe the SOAV-optimal control problem as follows:

Problem 11.2 (SOAV-optimal control problem). For the linear time-invariant
system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (11.19)

11.2. Discrete-valued Control 237

u

L(u)

U1 U2 U3 U4 U5

Figure 11.4: Piecewise linear function L(u)

find a control {u(t) : t ∈ [0, T]} that minimizes

J1(u) =
N∑
j=1

wj∥u− Uj∥1 =
∫ T

0

N∑
j=1

wj |u(t) − Uj |dt, (11.20)

subject to x(T) = 0 and U1 ≤ u(t) ≤ UN for all t ∈ [0, T].

The optimal control is called the sum-of-absolute-values optimal control
or SOAV-optimal control.

11.2.2 Discreteness of SOAV-optimal control

Here we show that the SOAV-optimal control is a discrete-valued control
taking values in {U1, . . . , UN} under some conditions.

Let u∗ ∈ U(T, ξ) be an SOAV-optimal control minimizing the cost
function (11.18), that is,

u∗ = arg min
u

J1(u) subject to u ∈ U(T, ξ). (11.21)

For the optimal control problem (Problem 11.2), we analyze the solution
u∗ by using Pontryagin’s minimum principle.

The stage cost function L(u) of the SOAV cost function (11.18) is given
by

L(u) =
N∑
j=1

wj |u− Uj |. (11.22)

Figure 11.4 shows an example of function L(u). As shown in this figure,
the stage cost function L(u) is a continuous and piecewise linear function.
Also, since the function L(u) is a convex combination of convex functions
|u − Uj |, j = 1, . . . , N , L(u) is convex in u. That is, the optimization
problem in Problem 11.2 is a convex optimization problem.

238 Advanced Topics

Then the Hamiltonian for Problem 11.2 is defined by

Hη(x,p, u) = p⊤(Ax + bu) + ηL(u)

= p⊤(Ax + bu) + η
N∑
j=1

wj |u− Uj |.
(11.23)

Here we assume η = 1. Let x∗ and p∗ be respectively the optimal state
and costate with the optimal control u∗. From the minimum principle, we
have

u∗(t) = arg min
u∈[U1,UN]

{
p∗(t)⊤(Ax∗(t) + bu) + L(u)

}
= arg min

u∈[U1,UN]

{
p∗(t)⊤bu+ L(u)

}
.

(11.24)

Let us solve the minimization problem in (11.24).
Since the function L(u) is piecewise linear, L(u) can be written as

L(u) =



a1u+ b1, u ∈ [U1, U2],
a2u+ b2, u ∈ [U2, U3],

...
aN−1u+ bN−1, u ∈ [UN−1, UN],

(11.25)

where

ak =
k∑
j=1

wj −
N∑

j=k+1
wj ,

bk = −
k∑
j=1

wjUj +
N∑

j=k+1
wjUj , k = 1, 2, . . . , N − 1.

(11.26)

Fix t ∈ [0, T] and define α ≜ p∗(t)⊤b ∈ R. Since L(u) is continuous,
and the following inequality

a1 < a2 < · · · < aN−1 (11.27)

holds, we can compute the minimizer of

h(u) ≜ αu+ L(u) =



(a1 + α)u+ b1, u ∈ [U1, U2],
(a2 + α)u+ b2, u ∈ [U2, U3],

...
(aN−1 + α)u+ bN−1, u ∈ [UN−1, UN],

(11.28)

for u ∈ [U1, UN].

11.2. Discrete-valued Control 239

u
U1 U2 U3 U4

(i)

h(u)

u
U1 U2 U3 U4

(ii)

h(u)

u
U1 U2 U3 U4

(iii)

h(u)

u
U1 U2 U3 U4

(iv)

h(u)

Figure 11.5: 4 cases of piecewise linear function h(u) = αu+ L(u)

(i) If a1 + α > 0, then from (11.27) we have

0 < a1 + α < a2 + α < · · · < aN−1 + α, (11.29)

and the slopes (ak + α) of the linear functions in (11.28) are all
positive. See (i) of Figure 11.5. Hence we have

arg min
u∈[U1,UN]

h(u) = U1. (11.30)

(ii) If ak +α < 0 and ak+1 +α > 0 (k = 1, . . . , N − 2), then from (11.27)
we have

a1 + α < a2 + α < · · · < ak + α < 0, (11.31)

and
0 < ak+1 + α < ak+2 + α < · · · < aN−1 + α. (11.32)

The sign of the slopes of the linear functions in (11.28) changes from
negative to positive at u = Uk+1. See (ii) of Figure 11.5. Hence, we
have

arg min
u∈[U1,UN]

h(u) = Uk+1. (11.33)

240 Advanced Topics

(iii) If aN−1 + α < 0, then we have

a1 + α < a2 + α < · · · < aN−1 + α < 0, (11.34)

and the slopes (ak + α) in (11.28) are all negative. See (iii) of Figure
11.5. Hence we have

arg min
u∈[U1,UN]

h(u) = UN . (11.35)

(iv) If there exists k ∈ {1, 2, . . . , N − 1} such that ak + α = 0, then the
slope becomes zero over the interval [Uk, Uk+1]. Hence we have

arg min
u∈[U1,UN]

h(u) = [Uk, Uk+1]. (11.36)

In this case, we cannot determine the unique value for u∗(t).

In summary, the SOAV-optimal control u∗(t) satisfies the following:

u∗(t) =



U1, if − a1 < p∗(t)⊤b,

U2, if − a2 < p∗(t)⊤b < −a1,
...

UN−1, if − aN−1 < p∗(t)⊤b < −aN−2,

UN , if p∗(t)⊤b < −aN−1,

(11.37)

and

u∗(t) ∈ [Uk, Uk+1], if p∗(t)⊤b = −ak, k = 1, 2, . . . , N − 1. (11.38)

From (11.38), if

p∗(t)⊤b ̸= −ak, k = 1, 2, . . . , N − 1, (11.39)

holds for almost all t ∈ [0, T], then we can see that u∗(t) takes discrete-
values in {U1, . . . , UN} for almost all t ∈ [0, T]. Let us consider a sufficient
condition for this.

We see that (11.39) holds for almost all t ∈ [0, T] if and only if

µ
(
{t ∈ [0, T] : p∗(t)⊤b = −ak}

)
= 0 (11.40)

for k = 1, 2, . . . , N − 1. We say the SOAV-optimal control is non-singular
if (11.40) holds for all k ∈ {1, 2, . . . , N − 1}. Then we have the following
theorem:

11.2. Discrete-valued Control 241

Theorem 11.2. Assume that the SOAV-optimal control is non-
singular. Then the optimal control u∗(t) takes values in {U1, . . . , UN}
for almost all t ∈ [0, T].

For the non-singularity, we have the following theorem.

Theorem 11.3. Assume that the pair (A, b) is non-singular. That
is, the pair (A, b) is controllable and A is non-singular. Assume also
that

k∑
j=1

wj ̸=
N∑

j=k+1
wj (11.41)

holds for k = 1, 2, . . . , N − 1. Then the SOAV-optimal control is
non-singular.

Exercise 11.1. Prove Theorem 11.3.

The condition (11.41) in Theorem 11.3 is a sufficient and necessary
condition for the slopes of the linear functions in (11.28) to be nonzero.

Example 11.2. Let us consider a design example of SOAV-optimal control.
We consider the 4-th order plant given in (11.11) in Example 11.1. The
final time T = 10 and the initial and final states are the same as (11.12).

The alphabet is given by {−1,−0.5, 0, 0.5, 1}, that is, N = 5 and

U1 = −1, U2 = −0.5, U3 = 0, U4 = 0.5, U5 = 1. (11.42)

The weights in the cost function (11.18) are set as

w1 = w2 = w3 = w4 = w5 = 1
5 . (11.43)

□

Figure 11.6 shows the obtained SOAV-optimal control. In this figure,
the L1-optimal control (or the maximum hands-off control) discussed in
Chapter 9 and the L2-optimal control3 that minimizes the L2 norm

J2(u) =
∫ T

0
|u(t)|2dt, (11.44)

are also shown. Note that the L1-optimal control is bang-off-bang and
takes values of ±1 and 0. On the other hand, the L2-optimal control is

3The L2-optimal control is also known as minimum-energy control [3, Section 6-18].

242 Advanced Topics

0 2 4 6 8 10

time (sec)

-1

-0.5

0

0.5

1

u
(t

)

Optimal Control

SOAV

L
1
 optimal

L
2
 optimal

Figure 11.6: SOAV-optimal control (solid), L1-optimal control (dashed), and L2-optimal
control (dotted).

a smooth control. The SOAV-optimal control is between them. It takes
discrete values in the alphabet {−1,−0.5, 0, 0.5, 1}, that is a quantization
of the L2-optimal control.

Figure 11.7 shows the state variables x1(t), . . . , x4(t) in the state x(t)
and the SOAV-optimal control. We can see that by the obtained discrete-
valued control u(t), all the state variables converge to the origin in the
time T = 10. Note that this cannot be possible when one uses a quantized
version of the L2-optimal control by a static quantizer; there should be
quantization errors that perturb the state trajectory.

11.3 Time-optimal Hands-off Control

In this section, we consider an optimal control that takes account of sparsity
and time-optimality at the same time. Let us consider the following linear
time-invariant system:

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd. (11.45)

The control objective is to drive the state to the origin. Here we do not fix
the final time T . As in the minimum-time control in Chapter 8, the final
time T is also an optimization variable.

First, we consider the feasibility of the control. For the system (11.45),
a control u is said to be feasible if there exists a finite time T > 0 such

11.3. Time-optimal Hands-off Control 243

0 2 4 6 8 10

time (sec)

-2

-1

0

1

2

3

4

x
i(t

)

state variables x
i
(t) and control u(t)

Figure 11.7: State variables x1(t), . . . , x4(t) and the SOAV-optimal control u(t), t ∈ [0, 10].

that by {u(t) : t ∈ [0, T]} satisfying

|u(t)| ≤ 1, ∀t ∈ [0, T], (11.46)

the state x(t) in (11.45) is steered from x(0) = ξ to x(T) = 0. From the
definition of the controllable set R in (8.30) (p. 183), there exists a feasible
control if the initial state ξ is in the controllable set R. Therefore, we
assume ξ ∈ R. Using the feasible set U(T, ξ) with fixed T > 0 (see Section
8.1.3), the set of all feasible controls is given by

U(ξ) ≜
⋃
T≥0

U(T, ξ). (11.47)

Next, we formulate the optimal control problem. We seek a feasible
control u ∈ U(ξ) that minimizes the L0 norm of u and the response time
T at the same time. For this, we consider the following cost function:

J0(u) ≜ λ∥u∥0 + T, (11.48)

where λ > 0 is a parameter for a tradeoff between the two requirements.
As usual, we relax the L0 norm in (11.48) by the L1 norm ∥u∥1, namely,
we consider the following cost function:

J1(u) ≜ λ∥u∥1 + T. (11.49)

Now we formulate our problem.

244 Advanced Topics

Problem 11.3 (L1-time-optimal control problem). For the linear time-
invariant system

ẋ(t) = Ax(t) + bu(t), t ≥ 0, x(0) = ξ ∈ Rd, (11.50)

find a control {u(t) : t ∈ [0,∞)} that minimizes

J1(u) = λ∥u∥1 + T, (11.51)

subject to x(T) = 0 and ∥u∥∞ ≤ 1.

We call the optimal solution the L1-time-optimal control.
The existence theorem for the L1-time-optimal control is proved simi-

larly to the time-optimal control (Theorem 9.7, p. 209).

Theorem 11.4. For any initial state ξ ∈ R, there exists at least one
L1-time-optimal control.

You can find the proof in [66].
The Hamiltonian for Problem 11.3 is given by

Hη(x,p, u) = p⊤(Ax + bu) + η(λ|u| + 1). (11.52)

We do not consider the abnormal case (η = 0) and assume η = 1. Then
the optimal control u∗(t) for Problem 11.3 satisfies

u∗(t) = arg min
u∈[−1,1]

H1(x,p, u) = arg min
u∈[−1,1]

{
p∗(t)⊤bu+ λ|u|

}
. (11.53)

From this, we have

u∗(t) =


1, if p∗(t)⊤b < −λ,
0, if − λ < p∗(t)⊤b < λ,

−1, if λ < p∗(t)⊤b,

u∗(t) ∈ [0, 1], if p∗(t)⊤b = −λ,
u∗(t) ∈ [−1, 0], if p∗(t)⊤b = λ.

(11.54)

If p∗(t)⊤b = ±λ holds only on sets of measure zero (i.e., if p∗(t)⊤b ≠ ±λ
almost all t ∈ [0, T]), then the L1-time-optimal control is bang-off-bang.
From Lemma 9.1, we have the following theorem:

11.4. Distributed Hands-off Control 245

Theorem 11.5. Assume that the pair (A, b) is non-singular. Then
the L1-time-optimal control is bang-off-bang (if it exists).

This theorem, along with Theorem 11.4, leads to the following equiva-
lence theorem:

Theorem 11.6. Assume ξ ∈ R and the pair (A, b) is non-singular.
Then the L1-time-optimal control is equivalent to the L0-time-
optimal control that minimizes the cost function (11.48).

11.4 Distributed Hands-off Control

In this section, we introduce distributed hands-off control over a network.
As discussed in Section 6.2 (p. 128), consensus can be achieved by local
averaging control. The local control is in general not sparse, and we can
adapt the idea of maximum hands-off control to the consensus control.

Let us consider an undirected graph G = (V, E) with V = {1, 2, . . . , N}.
We assume G is connected. The i-th agent (i ∈ V) has the following
dynamics:

ẋi(t) = ui(t), i ∈ V, t ≥ 0, (11.55)

where we consider a 1-dimensional state xi(t) ∈ R and a single input
ui(t) ∈ R. We here assume a sampled-data control where the i-th agent
can obtain the sampled data of states. More precisely, the agent i can get
sampled-data xi(kT) and xj(kT), j ∈ Ni (the set of all neighbors of agent
i), k = 0, 1, 2, . . ., with a given sampling period T > 0.

Now we formulate the problem of distributed hands-off control.

Problem 11.4 (Distributed hands-off control problem). Find a control {ui(t) :
t ≥ 0} for agent i ∈ V that satisfies the following:

1. limt→∞ |xi(t) − xj(t)| = 0 for all i, j ∈ V.

2. |u(t)| ≤ 1 for all i ∈ V and all t ≥ 0.

3. The local control ui(t), t ∈ Ik ≜ [kT, (k + 1)T) is determined by
sampled states xi(kT) and kj(kT), j ∈ Ni.

246 Advanced Topics

Adapting the consensus algorithm discussed in Section 6.2, we have the
following local control of agent i ∈ V over k-th time interval Ik:

ui(t) = arg min
{

∥u∥0 : u ∈ U
(
T, xi(kT), xfi [k]

)}
, t ∈ Ik, (11.56)

where xfi [k] is the local final state defined by

xfi [k] ≜ xi(kT) − ϵ
∑
j∈Ni

(
xi(kT) − xj(kT)

)
, (11.57)

and U(T, ξ, ζ) is the feasible set for the system (11.55) from ξ ∈ R to ζ ∈ R
by control u with ∥u∥∞ ≤ 1. Namely,

U(T, ξ, ζ) =
{
u ∈ L∞(0, T) : ζ = ξ +

∫ T

0
u(t)dt, ∥u∥∞ ≤ 1

}
. (11.58)

Since the local control {ui(t) : t ∈ Ik} minimizes the L0 norm, it is expected
to be sparse. Moreover, the distributed control system achieves average
consensus as described below.

Let L be the graph Laplacian of the graph G, and ∆ be the maximum
degree of G. Define the state vector x(t) by

x(t) ≜


x1(t)
x2(t)

...
xN (t)

 . (11.59)

Then we have the following theorem [60]:

Theorem 11.7. Assume G is connected. Assume also that the gain
ϵ in (11.56) satisfies

0 < ϵ∆ < 1, (11.60)

and the initial state vector x(0) satisfies

−T1N ≤ ϵLx(0) ≤ T1N , (11.61)

where 1N =
[
1 1 . . . 1

]⊤
∈ RN . Then, there exists the local

control ui(t) defined in (11.56), t ∈ Ik for any i ∈ V and any
k ∈ {0, 1, 2, . . .}, and all states xi(t) converge to the average of the

11.5. Further Readings 247

initial states:

α ≜
1
N

N∑
i=1

xi(0). (11.62)

11.5 Further Readings

The smooth hands-off control by the mixed L1/L2 optimization was first
proposed in [105]. Another formulation for smooth hands-off control by
the CLOT (Combined L-One and Two) norm was also proposed in [110].
The CLOT norm is defined by

∥u∥CLOT ≜ λ1∥u∥1 + λ2∥u∥2, (11.63)

with parameters λ1 > 0 and λ2 > 0 such that λ1 + λ2 = 1. Compared with
the mixed L1/L2 cost function in (11.1), the L2 term in the CLOT norm
is not squared. The CLOT-optimal control is also continuous but sparser
than the mixed L1/L2-optimal control in Problem 11.1.

The SOAV-optimal control has been proposed in [61], [65]. The idea
of the SOAV cost function was first proposed in [97] for discrete-valued
signal reconstruction. The SOAV optimization was then applied to digital
communications [53], [135], [136].

The L1-time-optimal control was first proposed in [66] and extended
to L1/ℓ1-time-optimal control for sparsity in both time and space domain
[68].

The theory of distributed hands-off control was established in [60], and
then it was applied to distributed drone control in [95].

References

[1] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms: Bounds
and simulations”, IEEE Trans. Inf. Theory, vol. 60, no. 6, Jun. 2014, pp. 3671–
3687.

[2] R. Amirifar and N. Sadati, “Low-order H∞ controller design for an active
suspension system via LMIs”, IEEE Trans. Ind. Electron., vol. 53, no. 2, Apr.
2006.

[3] M. Athans and P. L. Falb, Optimal Control. Dover Publications, 2007.
[4] G. K. Atia and V. Saligrama, “Boolean compressed sensing and noisy group

testing”, IEEE Trans. Inf. Theory, vol. 58, no. 3, Mar. 2012, pp. 1880–1901.
[5] R. B. Bapat, Graphs and Matrices. Splinger, 2014.
[6] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces. Springer, 2011.
[7] A. Beck and M. Teboulle, “Gradient-based algorithms with applications to

signal-recovery problems”, in Convex Optimization, Cambridge University Press,
2010.

[8] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics,
and constraints”, Automatica, vol. 35, 1999, pp. 407–427.

[9] D. Bertsekas, Convex Optimization Algorithms. Athena Scientific, 2015.
[10] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[11] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approxi-

mations”, Journal of Fourier Analysis and Applications, vol. 14, no. 5, 2008,
pp. 629–654.

[12] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory. SIAM, 1994.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers”,
Foundations and Trends in Machine Learning, vol. 3, no. 1, 2011, pp. 1–122.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[15] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the
intersection of convex sets in Hilbert spaces”, in Advances in Order Restricted
Statistical Inference, Lecture Notes in Statistics, R. Dykstra, T. Robertson, and
F. T. Wright, Eds., vol. 37, New York: Springer, 1986.

[16] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data. Springer,
2011.

[17] F. Bullo, Lectures on Network Systems, 1.7. Kindle Direct Publishing, 2024.
[18] K. Cai and M. Nagahara, “A new perspective on cooperative control of multi-

agent systems through different types of graph laplacians”, Advanced Robotics,
vol. 37, no. 1-2, 2023, pp. 2–11.

250 References

[19] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections:
Universal encoding strategies?”, IEEE Trans. Inf. Theory, vol. 52, no. 12, Dec.
2006, pp. 5406–5425.

[20] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the
study of distributed multi-agent coordination”, IEEE Transactions on Industrial
informatics, vol. 9, no. 1, 2012, pp. 427–438.

[21] C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles”, Proc.
IEEE, vol. 95, no. 4, Apr. 2007, pp. 704–718.

[22] C. Chang and S. Sim, “Optimising train movements through coast control using
genetic algorithms”, IEE Proceedings-Electric Power Applications, vol. 144, no. 1,
1997, pp. 65–73.

[23] D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. M. Rao, “Characterization of
maximum hands-off control”, Systems & Control Letters, vol. 94, 2016, pp. 31–36.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit”, SIAM J. Sci. Comput., vol. 20, no. 1, Aug. 1998, pp. 33–61.

[25] S. Chen and D. Donoho, “Basis pursuit”, in Signals, Systems and Computers,
Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 1, pp. 41–
44, Oct. 1994.

[26] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems. Springer,
1995.

[27] J. F. Claerbout and F. Muir, “Robust modeling with erratic data”, Geophysics,
vol. 38, no. 5, 1973, pp. 826–844.

[28] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Con-
trol, vol. 264, ser. Graduate Texts in Mathematics. Springer, London, 2013,
pp. xiv+591. doi: 10.1007/978-1-4471-4820-3.

[29] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal process-
ing”, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
New York, NY: Springer New York, 2011, pp. 185–212.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd. MIT Press, 2009.

[31] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd. Wiley–
Interscience, 2006.

[32] M. S. Darup, G. Book, D. E. Quevedo, and M. Nagahara, “Fast hands-off control
using admm real-time iterations”, IEEE Trans. Autom. Control, vol. 67, no. 10,
2021, pp. 5416–5423.

[33] G. M. Davis, S. G. Mallat, and Z. Zhang, “Adaptive time-frequency decomposi-
tions”, Optical Engineering, vol. 33, no. 7, 1994, pp. 2183–2191.

[34] N. K. Dhingra, M. R. Jovanović, and Z. Luo, “An ADMM algorithm for optimal
sensor and actuator selection”, in 53rd IEEE Conference on Decision and Control,
pp. 4039–4044, 2014.

[35] R. Doelman and M. Verhaegen, “Sequential convex relaxation for robust static
output feedback structured control”, in IFAC-PapersOnLine, pp. 15 518–15 523,
2017.

[36] D. L. Donoho, “Compressed sensing”, IEEE Trans. Inf. Theory, vol. 52, no. 4,
Apr. 2006, pp. 1289–1306.

[37] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery”,
SIAM Journal on Applied Mathematics, vol. 49, no. 3, 1989, pp. 906–931.

[38] R. Dorfman, “The detection of defective members of large populations”, Ann.
Math. Statist., vol. 14, no. 4, Dec. 1943, pp. 436–440.

[39] G.-R. Duan and H.-H. Yu, LMIs in Control Systems. CRC Press, 2013.

https://doi.org/10.1007/978-1-4471-4820-3

References 251

[40] B. Dunham, “Automatic on/off switching gives 10-percent gas saving”, Popular
Science, vol. 205, no. 4, Oct. 1974, p. 170.

[41] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and
proximal point algorithm for maximal monotone operators”, Math. Program.,
vol. 55, 1992, pp. 293–318.

[42] M. B. Egerstedt and C. F. Martin, Control Theoretic Splines: Optimal Control,
Statistics, and Path Planning. Princeton University Press, 2009.

[43] M. Elad, Sparse and Redundant Representations. Springer, 2010.
[44] M. Fazel, H. Hindi, and S. Boyd, “Rank minimization and applications in system

theory”, in Proceedings of the 2004 American Control Conference, vol. 4, pp. 3273–
3278, 2004.

[45] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing.
Birkhäuser, 2013.

[46] M. Gallieri and J. M. Maciejowski, “ℓasso MPC: Smart regulation of over-actuated
systems”, in Proc. Amer. Contr. Conf. Jun. 2012, pp. 1217–1222.

[47] C. Giraud, Introduction to High-Dimensional Statistics. CRC Press, 2015.
[48] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th. Johns Hopkins

University Press, 2012.
[49] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[50] D. A. Harville, Matrix Algebra From a Statistician’s Perspective. Springer, 1997.
[51] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

Springer, 2009.
[52] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity:

The Lasso and Generalizations. CRC Press, 2015.
[53] R. Hayakawa and K. Hayashi, “Discreteness-aware approximate message passing

for discrete-valued vector reconstruction”, IEEE Trans. Signal Process., vol. 66,
no. 24, 2018, pp. 6443–6457.

[54] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed sensing
for communications systems”, IEICE Trans. on Communications, vol. E96-B,
no. 3, Mar. 2013, pp. 685–712.

[55] N. Hayashi, T. Ikeda, and M. Nagahara, “Design of sparse control with minimax
concave penalty”, IEEE Control Systems Letters, 2024.

[56] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control”, in 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp. 3270–3285, Dec. 2012.

[57] H. Hermes and J. P. Lasalle, Functional Analysis and Time Optimal Control.
Academic Press, 1969.

[58] T. Ikeda and K. Kashima, “Sparsity-constrained controllability maximization
with application to time-varying control node selection”, IEEE Control Systems
Letters, vol. 2, 2018, pp. 321–326.

[59] T. Ikeda and K. Kashima, “On sparse optimal control for general linear systems”,
IEEE Trans. Autom. Control, vol. 64, no. 5, 2019, pp. 2077–2083.

[60] T. Ikeda, M. Nagahara, and K. Kashima, “Maximum hands-off distributed control
for consensus of multi-agent systems with sampled-data state observation”, IEEE
Trans. Control Netw. Syst., vol. 6, no. 2, Jun. 2019, pp. 852–862.

[61] T. Ikeda, M. Nagahara, and S. Ono, “Discrete-valued control of linear time-
invariant systems by sum-of-absolute-values optimization”, IEEE Trans. Autom.
Control, vol. 62, no. 6, 2017, pp. 2750–2763.

252 References

[62] T. Ikeda, D. Zelazo, and K. Kashima, “Maximum hands-off distributed bearing-
based formation control”, in 2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 4459–4464, 2019.

[63] T. Ikeda, “Non-convex optimization problems for maximum hands-off control”,
IEEE Trans. Autom. Control, 2024, pp. 1–8.

[64] T. Ikeda and M. Nagahara, “Value function in maximum hands-off control for
linear systems”, Automatica, vol. 64, 2016, pp. 190–195.

[65] T. Ikeda and M. Nagahara, “Discrete-valued model predictive control using
sum-of-absolute-values optimization”, Asian Journal of Control, vol. 20, no. 1,
2018, pp. 196–206.

[66] T. Ikeda and M. Nagahara, “Time-optimal hands-off control for linear time-
invariant systems”, Automatica, vol. 99, 2019, pp. 54–58.

[67] T. Ikeda and M. Nagahara, “Maximum hands-off control with time-space sparsity”,
IEEE Contr. Syst. Lett., vol. 5, no. 4, 2020, pp. 1213–1218.

[68] T. Ikeda and M. Nagahara, “Resource-aware time-optimal control with multiple
sparsity measures”, Automatica, vol. 135, 2022, p. 109 957.

[69] M. Ishikawa, “Structural learning with forgetting”, Neural Netw., vol. 9, no. 3,
Apr. 1996, pp. 509–521.

[70] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal reachability
is hard to approximate”, IEEE Trans. Autom. Control, vol. 64, no. 2, 2019,
pp. 783–789.

[71] D. Jeong and W. Jeon, “Performance of adaptive sleep period control for wireless
communications systems”, IEEE Trans. Wireless Commun., vol. 5, no. 11, Nov.
2006, pp. 3012–3016.

[72] G. Joseph, “Sparse actuator control of discrete-time linear dynamical systems”,
Foundations and Trends in Systems and Control, vol. 11, no. 3, 2024, pp. 186–284.

[73] G. Joseph and C. R. Murthy, Sparsity-Constrained Linear Dynamical Systems.
Springer, 2024.

[74] M. R. Jovanović and N. K. Dhingra, “Controller architectures: Tradeoffs between
performance and structure”, European Journal of Control, vol. 30, 2016, pp. 76–
91.

[75] N. Karumanchi, Data Structures and Algorithms Made Easy, 2nd. CareerMonk,
2011.

[76] E. Khmelnitsky, “On an optimal control problem of train operation”, IEEE
Trans. Autom. Control, vol. 45, no. 7, 2000, pp. 1257–1266.

[77] R. Kirchhoff, M. Thele, M. Finkbohner, P. Rigley, and W. Settgast, “Start-stop
system distributed in-car intelligence”, ATZextra worldwide, vol. 15, no. 11, Jan.
2010, pp. 52–55.

[78] M. Kishida and M. Nagahara, “Risk-aware maximum hands-off control using
worst-case conditional value-at-risk”, IEEE Trans. Autom. Control, vol. 68, no. 10,
2023, pp. 6353–6360.

[79] E. Kreyszig, Introductory Functional Analysis with Applications. Wiley, 1989.
[80] Y. Kumar, S. Srikant, D. Chatterjee, and M. Nagaraha, “Sparse optimal control

problems with intermediate constraints: Necessary conditions”, Optimal Control
Applications and Methods, vol. 43, no. 2, 2022, pp. 369–385.

[81] F. Leibfritz, Compleib: Constraint matrix optimization problem library, ver-
sion Version 1.1, 2005. URL: http://www.complib.de/.

[82] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2012.

http://www.complib.de/

References 253

[83] F. Lin, M. Fardad, and M. R. Jovanović, “Augmented Lagrangian approach to
design of structured optimal state feedback gains”, IEEE Trans. Autom. Control,
vol. 56, no. 12, 2011, pp. 2923–2929.

[84] F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal sparse feedback
gains via the alternating direction method of multipliers”, IEEE Trans. Autom.
Control, vol. 58, no. 9, 2013, pp. 2426–2431.

[85] L. Ljung, System Identification: Theory for the User, 2nd. Upper Saddle River,
New Jersey: Prentice Hall, 1999.

[86] B. F. Logan, “Properties of high-pass signals”, Ph.D. dissertation, Columbia
University, 1965.

[87] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks
through L0 regularization”, arXiv preprint arXiv:1712.01312, 2017.

[88] J. M. Maciejowski, Predictive Control with Constraints. Prentice-Hall, 2002.
[89] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries”,

IEEE Trans. Signal Process., vol. 41, no. 12, Nov. 1993, pp. 3397–3415.
[90] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd. Academic

Press, 2008.
[91] I. Markovsky, Low Rank Approximation. Springer, 2012.
[92] R. Martin, K. L. Teo, and M. D’lncalci, Optimal Control of Drug Administration

in Cancer Chemotherapy. Singapore: World Scientific, 1994.
[93] M. Mesbahi and G. P. Papavassilopoulos, “On the rank minimization problem over

a positive semidefinite linear matrix inequality”, IEEE Trans. Autom. Control,
vol. 42, no. 2, Feb. 1997, pp. 239–243.

[94] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick,
and J. Lavaei, “A survey of distributed optimization and control algorithms for
electric power systems”, IEEE Trans. Smart Grid, vol. 8, no. 6, 2017, pp. 2941–
2962.

[95] K. Motonaka, T. Watanabe, Y. Kwon, M. Nagahara, and S. Miyoshi, “Control of a
quadrotor group based on maximum hands-off distributed control”, International
Journal of Mechatronics and Automation, vol. 8, no. 4, 2021, pp. 200–207.

[96] U. Münz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement for linear
systems based on H2 and H∞ optimization”, IEEE Trans. Autom. Control,
vol. 59, no. 11, 2014, pp. 2984–2989.

[97] M. Nagahara, “Discrete signal reconstruction by sum of absolute values”, IEEE
Signal Process. Lett., vol. 22, no. 10, Oct. 2015, pp. 1575–1579.

[98] M. Nagahara, S. Azuma, and H. Ahn, Control of Multi-agent Systems—Theory
and Simulations with Python. Springer, 2024.

[99] M. Nagahara and C. F. Martin, “Monotone smoothing splines using general
linear systems”, Asian Journal of Control, vol. 5, no. 2, Mar. 2013, pp. 461–468.

[100] M. Nagahara and C. F. Martin, “L1 control theoretic smoothing splines”, IEEE
Signal Process. Lett., vol. 21, no. 11, Nov. 2014, pp. 1394–1397.

[101] M. Nagahara, T. Matsuda, and K. Hayashi, “Compressive sampling for remote
control systems”, IEICE Trans. on Fundamentals, vol. E95-A, no. 4, Apr. 2012,
pp. 713–722.

[102] M. Nagahara, M. Ogura, and Y. Yamamoto, “Iterative greedy LMI for sparse
control”, IEEE Contr. Syst. Lett., vol. 6, 2022, pp. 986–991.

[103] M. Nagahara and D. E. Quevedo, “Sparse representations for packetized predictive
networked control”, in IFAC 18th World Congress, pp. 84–89, Aug. 2011.

254 References

[104] M. Nagahara, D. E. Quevedo, and D. Nešić, “Maximum hands-off control and L1

optimality”, in 52nd IEEE Conference on Decision and Control (CDC), pp. 3825–
3830, Dec. 2013.

[105] M. Nagahara, D. E. Quevedo, and D. Nešić, “Maximum hands-off control: A
paradigm of control effort minimization”, IEEE Trans. Autom. Control, vol. 61,
no. 3, 2016, pp. 735–747.

[106] M. Nagahara, D. Quevedo, and J. Østergaard, “Sparse packetized predictive
control for networked control over erasure channels”, IEEE Trans. Autom. Control,
vol. 59, no. 7, Jul. 2014, pp. 1899–1905.

[107] M. Nagahara, “Sparse control for continuous-time systems”, International Journal
of Robust and Nonlinear Control, vol. 33, no. 1, 2023, pp. 6–22.

[108] M. Nagahara, “Introduction to compressed sensing with python”, IEICE Trans-
actions on Communications, vol. 107, no. 1, 2024, pp. 126–138.

[109] M. Nagahara, S.-I. Azuma, and H.-S. Ahn, Control of Multi-agent Systems:
Theory and Simulations with Python. Springer Nature, 2024.

[110] M. Nagahara, D. Chatterjee, N. Challapalli, and M. Vidyasagar, “CLOT norm
minimization for continuous hands-off control”, Automatica, vol. 113, 2020,
p. 108 679.

[111] M. Nagahara, Y. Fujimoto, and Y. Yamamoto, “Sparse system identification
with kernel regularization”, in 25th International Symposium on Mathematical
Theory of Networks and Systems (MTNS2022), 2022.

[112] M. Nagahara, Y. Iwai, and N. Sebe, “Projection onto the set of rank-constrained
structured matrices for reduced-order controller design”, Algorithms, vol. 15,
no. 9, 2022, p. 322.

[113] M. Nagahara, J. Østergaard, and D. E. Quevedo, “Discrete-time hands-off control
by sparse optimization”, EURASIP Journal on Advances in Signal Processing,
vol. 2016, no. 1, 2016, pp. 1–8.

[114] M. Nagahara and Y. Yamamoto, “A survey on compressed sensing approach to
systems and control”, Mathematics of Control, Signals, and Systems, vol. 36,
no. 1, 2024, pp. 1–20.

[115] M. Nalbach, A. Korner, and S. Kahnt, “Active engine-off coasting using 48V:
Economic reduction of CO2 emissions”, in 17th International Congress ELIV,
pp. 41–51, Oct. 2015.

[116] A. Nedic, “Distributed gradient methods for convex machine learning problems in
networks: Distributed optimization”, IEEE Signal Processing Magazine, vol. 37,
no. 3, 2020, pp. 92–101.

[117] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization”, IEEE Transactions on Automatic Control, vol. 54, no. 1, 2009,
pp. 48–61.

[118] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples”, Appl. Comput. Harmonic Anal., vol. 26, no. 3, 2008,
pp. 301–321.

[119] K. Ogata, Modern Control Engineering, 5th. Pearson, 2009.
[120] A. Olshevsky, “Minimal controllability problems”, IEEE Trans. Control Netw.

Syst., vol. 1, no. 3, 2014, pp. 249–258.
[121] S. K. Pakazad, H. Ohlsson, and L. Ljung, “Sparse control using sum-of-norms

regularized model predictive control”, in 52nd IEEE Conference on Decision and
Control, pp. 5758–5763, 2013.

[122] N. Parikh and S. Boyd, “Proximal algorithms”, Foundations and Trends in
Optimization, vol. 1, no. 3, 2013, pp. 123–231.

References 255

[123] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limitations
and algorithms for complex networks”, IEEE Trans. Control Netw. Syst., vol. 1,
no. 1, 2014, pp. 40–52.

[124] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition”,
in Proc. the 27th Annual Asilomar Conf. on Signals, Systems and Computers,
pp. 40–44, Nov. 1993.

[125] S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output
and control configuration selection of large-scale systems”, IEEE Trans. Autom.
Control, vol. 61, no. 2, Feb. 2016, pp. 303–318.

[126] G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, and L. Ljung, Regularized
system identification: Learning dynamic models from data. Springer Nature, 2022.

[127] B. Polyak, M. Khlebnikov, and P. Shcherbakov, “An LMI approach to structured
sparse feedback design in linear control systems”, in 2013 European Control
Conference (ECC), pp. 833–838, 2013.

[128] L. S. Pontryagin, Mathematical Theory of Optimal Processes, vol. 4. CRC Press,
1987.

[129] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of
linear matrix equations via nulcear norm minimization”, SIAM Review, vol. 52,
no. 3, 2010, pp. 451–501.

[130] B. Recht, W. Xu, and B. Hassibi, “Necessary and sufficient conditions for success of
the nuclear norm heuristic for rank minimization”, in 2008 47th IEEE Conference
on Decision and Control, pp. 3065–3070, 2008.

[131] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms”, Physica D, vol. 60, 1992, pp. 259–268.

[132] W. Rudin, Principles of Mathematical Analysis, 3rd International. McGraw-Hill,
1976.

[133] W. Rudin, Real and Complex Analysis, 3rd International. McGraw-Hill, 2005.
[134] F. Santosa and W. W. Symes, “Linear inversion of band-limited reflection seis-

mograms”, SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4,
1986, pp. 1307–1330.

[135] H. Sasahara, K. Hayashi, and M. Nagahara, “Symbol detection for faster-than-
Nyquist signaling by sum-of-absolute-values optimization”, IEEE Signal Process.
Lett., vol. 23, no. 12, 2016, pp. 1853–1857.

[136] H. Sasahara, K. Hayashi, and M. Nagahara, “Multiuser detection based on MAP
estimation with sum-of-absolute-values relaxation”, IEEE Trans. Signal Process.,
vol. 65, no. 21, 2017, pp. 5621–5634.

[137] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group sparse
regularization for deep neural networks”, Neurocomputing, vol. 241, 2017, pp. 81–
89.

[138] H. Schättler and U. Ledzewicz, Geometric Optimal Control. Springer, 2012.
[139] B. Schölkopf and A. J. Smola, Learning with Kernels. The MIT Press, 2002.
[140] P. Shakouri, A. Ordys, P. Darnell, and P. Kavanagh, “Fuel efficiency by coasting

in the vehicle”, International Journal of Vehicular Technology, vol. 2013, 2013,
p. 14.

[141] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic Approach to
Linear Control Design. London: Taylor & Francis, 1998.

[142] E. D. Sontag, Mathematical Control Theory, second. New York: Springer, 1998.

256 Index

[143] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, Journal of
Machine Learning Research, vol. 15, 2014, pp. 1929–1958.

[144] G. Strang and T. Nguyen, Wavelets and Filter Banks, 2nd. Wellesley-Cambridge
Press, 1996.

[145] S. Sun, M. B. Egerstedt, and C. F. Martin, “Control theoretic smoothing splines”,
IEEE Trans. Autom. Control, vol. 45, no. 12, Dec. 2000, pp. 2271–2279.

[146] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the ℓ1 norm”,
Geophysics, vol. 44, no. 1, 1979, pp. 39–52.

[147] R. Tibshirani, “Regression shrinkage and selection via the LASSO”, J. R. Statist.
Soc. Ser. B, vol. 58, no. 1, 1996, pp. 267–288.

[148] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal actuator
placement with bounds on control effort”, IEEE Trans. Control Netw. Syst., vol. 3,
no. 1, 2016, pp. 67–78.

[149] M. Vidyasagar, An Introduction to Compressed Sensing. SIAM, 2019.
[150] G. Vossen and H. Maurer, “On L1-minimization in optimal control and appli-

cations to robotics”, Optimal Control Applications and Methods, vol. 27, no. 6,
2006, pp. 301–321.

[151] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks”, Advances in neural information processing systems,
vol. 29, 2016.

[152] Y. Yamamoto, From Vector Spaces to Function Spaces: Introduction to Functional
Analysis with Applications. SIAM, 2012.

[153] N. Young, An Introduction to Hilbert Space. Cambridge University Press, 1988.
[154] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient

descent”, SIAM Journal on Optimization, vol. 26, no. 3, 2016, pp. 1835–1854.
[155] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped

variables”, Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 68, no. 1, Feb. 2006, pp. 49–67.

[156] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Pearson, 1995.
[157] M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image processing”,

IEEE Signal Process. Mag., vol. 27, May 2010, pp. 76–88.
[158] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net”,

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67,
no. 2, Apr. 2005, pp. 301–320.

Index

abnormal multiplier, 186
adjacency matrix, 127
adjacent node, 126
adjoint equation, 187
admissible control, 180
ADMM, 90, 222, 226
agent, 128
algebraic graph theory, 127
alphabet, 235
Alternating Direction Method of

Multipliers, 90, 222, 226
atom, 18
augmented Lagrangian, 90
average consensus control, 130

bang-bang control, 188, 205
bang-off-bang control, 8, 203, 208
basis pursuit, 7, 51
best Lipschitz constant, 83
bilinear matrix inequality (BMI), 10
brute-force search, 27

canonical equation, 187
cardinality (of a vector), 23
central collector, 135
closed function, 63
coasting, 199
combinatorial optimization, 29
compressive sampling matching

pursuit (CoSaMP), 115
condition number, 72
connected graph, 128

consensus, 129
consensus set, 133
consistency (of Hamiltonian), 187
constraint, 64
constraint set, 64
control, 176
control gain, 129
control theoretic splines, 150
controllability grammian, 179
controllability matrix, 162, 179
controllable, 162, 178
controlled object, 176
convex function, 63
convex optimization problem, 53,

64
convex relaxation, 53, 200
convex set, 62
CoSaMP, 115
cost function, 64
CVXPY, 54, 226

data compression, 17
dead-zone function, 202
degree, 126
degree matrix, 127
dictionary, 18
dictionary matrix, 18
digraph, 126
dimension theorem, 20
directed graph, 126
discrete-time system, 161
discrete-valued control, 235

258 Index

discreteness, 8
distributed control, 130, 245
distributed gradient descent

algorithm, 132
double integrator, 177
Douglas-Rachford splitting

algorithm, 78
dropout, 6
Dykstra projection algorithm, 80
Dykstra-like splitting algorithm, 80
dynamical system, 175

edge, 126
effective domain, 62
elastic net regularization, 7, 231
epigraph, 63
Euclidean inner product, 21
Euclidean norm, 21
exhaustive search, 27, 102
extended real numbers, 62
extremal control, 188

fat matrix, 18
feasible control, 185, 236
feasible set, 64
feasible solutions, 64
feedback control, 164, 177, 195
feedforward control, 177
first-order convergence, 84, 107
FISTA, 85
fixed point, 70, 83
Fourier basis, 31
Fourier series, 31
frame, 33
free parameter, 21
full column rank, 41
full row rank, 20
fusion center, 135

generalized LASSO, 90

geophysics, 5
Gibbs phenomenon, 32
gliding, 199
global minimizer, 66
Goldberg machine, 3
gradient, 2, 66, 131
gradient descent algorithm, 72, 131
Gram matrix, 153
graph Laplacian, 127, 246
greedy method, 102
green control, 200
group testing, 24

adaptive, 26
non-adaptive, 26

H∞ control, 9
Haar basis, 33
Haar function, 33
Hamilton’s canonical equations, 187
Hamiltonian, 186
hands-off control, 199
hard-thresholding operator, 75, 111
horizon length, 162
Hurwitz matrix, 159

IHT, 112
ill-conditioned, 72
indicator function, 72, 223
initial state, 176
injective, 41
interior, 79
interpolating polynomial, 37
invariant set, 69
inverse problem, 6
ISTA, 85
iterative s-sparse algorithm, 114
iterative greedy LMI, 160
iterative hard-thresholding

algorithm, 112

Index 259

iterative shrinkage thresholding
algorithm, 85

kernel, 20

L∞ norm, 2, 182
ℓ∞ norm, 1, 22
Lp norm, 2
ℓp norm, 1, 22
Lp-optimal control, 207
L-smooth, 83
L0 norm, 197
ℓ0 norm, 1, 23
L0-optimal control, 200
L0-optimal control problem, 200
ℓ0 optimization, 24, 99
ℓ0 pseudo-norm, 23
ℓ0 regularization, 53, 110
ℓ1 norm, 22, 51
L1-optimal control, 201
L1-optimal control problem, 200
ℓ1 optimization, 51
ℓ1 regularization, 53, 81
L1-time-optimal control, 244
L2 inner product, 30
ℓ2 inner product, 21
L2 norm, 30
ℓ2 norm, 21
ℓ2 optimization, 36
Lagrange function, 36
Lagrange multiplier, 36
Lagrangian, 36, 91
LASSO, 7, 53, 81
law of parsimony, 3
least squares, 41, 135
least squares solution, 41, 157
linear convergence, 84, 107
linear matrix inequality (LMI), 9,

159

linear quadratic control, 163
Lipschitz constant, 83
Lipschitz continuity, 83
LMI, 159
local control, 129
local minimizer, 66
Logan’s phenomenon, 5
lower level set, 63
LQ control, 163
Lyapunov function, 166
Lyapunov’s theorem, 166

matching pursuit (MP), 103, 106
matrix inversion lemma, 224
maximum degree, 127
maximum eigenvalue, 85
maximum hands-off control, 8, 163,

200
maximum norm, 22
maximum singular value, 85
measurement matrix, 18, 26
measurement vector, 26
method of Lagrange multipliers, 36
minimum condition (of

Hamiltonian), 187
minimum ℓ2-norm solution, 36
minimum time, 185
minimum-energy control, 241
minimum-fuel control, 8, 201
minimum-time control, 185
model predictive control, 11, 164
mutual coherence, 100

neighbor, 126
networked control systems, 10
neural networks, 6
node, 126
noise, 40
non-convex function, 63

260 Index

non-convex set, 62
non-singular problem, 203
non-singularity of (A, b), 203, 241
non-triviality condition, 187
norm, 21
nuclear norm, 10
nuclear norm minimization, 10
null space, 20
numerical optimization, 53

objective function, 64
Occam’s razor, 3
open loop control, 164
optimal control, 163, 186
optimal costate, 187
optimal state, 186
orthogonal complement, 151
orthogonal matching pursuit

(OMP), 107
orthogonal matrix, 75
orthonormal basis, 16
over-complete dictionary, 18
overfitting, 40

particular solution, 21
pathological sampling, 220
Perron matrix, 129
plant, 176
polynomial curve fitting, 37
Pontryagin’s minimum principle,

186
positive definite, 49, 71, 159
projection, 69, 73, 108, 151
proper function, 63
proximable function, 71
proximal algorithm, 70
proximal gradient algorithm, 82,

111
proximal operator, 68

proximal splitting algorithm, 77
pruning, 115

quadratic function, 71

receding horizon control, 11, 164
redundant dictionary, 18
reflection seismic survey, 6
regression analysis, 37
regularization parameter, 47
regularization term, 47
regularized least squares, 47, 139
relative interior, 79
representer theorem, 154
residual, 42, 103
resource-aware control, 11
restricted isometry property (RIP),

118
ridge regression, 47
RIP, 118
robust control, 9
robustness (of feedback control),

177
Rube Goldberg machine, 3

s-sparse approximation, 110
s-sparse operator, 113, 160
salt-and-pepper noise, 93
sampled-data control, 245
saturation function, 225, 232
sign function, 188
signal reconstruction, 5
simple graph, 126
singular, 213
singular interval, 203
singular problem, 203
SOAV, 9, 236
SOAV-optimal control, 237
soft-thresholding operator, 74, 232

Index 261

sparse control, 163
sparse optimization, 35
sparse polynomial, 51
sparse representation, 17
sparsity (of a function), 198
sparsity (of a vector), 23, 51
spline, 149
stability, 165
stage cost function, 163, 186
standard basis, 15, 103
star network, 135
state, 129, 176
state equation, 161, 176
state transfer, 178
step size, 82, 129
step-invariant discretization, 219
strictly convex function, 67
strongly convex function, 67, 71
structure learning with forgetting, 6
sublevel set, 63
sum of absolute values, 9, 236
sum-of-absolute-values optimal

control, 237
support (of a function), 2, 197
support (of a vector), 1, 23
surjective, 20
switching curve, 194

system identification, 6, 155

T -controllable set, 180
tall matrix, 41
termination tolerance, 106
testing matrix, 26
time-optimal control, 185
Toeplitz matrix, 156
total variation, 93
total variation denoising, 7, 93
trajectory generation, 178
trajectory planning, 178
tridiagonal matrix, 92

uncertainty, 9
underdetermined system of

equations, 19, 27, 36
undirected graph, 126

value function, 165
Vandermonde matrix, 38
vertex, 126

wavelet, 33
weighted ridge regression, 49

Z matrix, 10
zero-order hold, 218, 219
zero-order-hold discretization, 219

About the Author

Masaaki Nagahara received a bachelor’s degree
in engineering from Kobe University in 1998 and
a master’s degree and a doctoral degree in infor-
matics from Kyoto University in 2000 and 2003,
respectively.

He is currently a Full Professor at the Gradu-
ate School of Advanced Science and Engineering,
Hiroshima University. He has been a Visiting Pro-

fessor at Indian Institute of Technology Bombay since 2017. His research
interests include control theory, machine learning, and sparse modeling.

He received remarkable international awards: Transition to Practice
Award in 2012 and George S. Axelby Outstanding Paper Award in 2018
from the IEEE Control Systems Society. Also, he received many awards
from Japanese research societies, such as SICE Young Authors Award in
1999, SICE Best Paper Award in 2012, SICE Best Book Authors Awards in
2016 and 2021, SICE Control Division Research Award (Kimura Award) in
2020, and the Best Tutorial Paper Award from the IEICE Communications
Society in 2014.

He is a senior member of IEEE, and a member of IEICE, SICE, ISCIE,
and RSJ.

	Preface
	Introduction
	Occam's Razor
	Optimization with 1 Norm
	Sparsity Methods for Systems and Control

	I Compressed Sensing in Finite-dimensional Spaces
	What is Sparsity?
	Redundant Dictionary
	Underdetermined Systems
	The 0 Norm
	Group Testing
	Exhaustive Search
	Advanced Topic: Sparse Representation for Functions
	Further Readings

	Sparse Optimization
	Least Squares and Regularization
	Sparse Polynomial and 1-norm Optimization
	Python Examples
	Further Readings

	Algorithms for Convex Optimization
	Basics of Convex Optimization
	Proximal Operators
	Proximal Splitting Methods for 1 Optimization
	Proximal Gradient Methods for 1 Regularization
	Generalized LASSO and ADMM
	Further Readings

	Greedy Algorithms
	0 Optimization
	Orthogonal Matching Pursuit
	Thresholding Algorithms
	Numerical Example
	Further Readings
	Python Programs

	Distributed Optimization
	Network Model and Algebraic Graph Theory
	Consensus Algorithm
	Distributed Optimization
	Further Readings
	Python Programs

	Applications of Compressed Sensing
	Sparse Representations for Splines
	Sparse System Identification
	Sparse Controller Design
	Discrete-time Hands-off Control
	Further Readings
	Python Programs

	II Maximum Hands-off Control: Compressed Sensing for Continuous-time Systems
	Dynamical Systems and Optimal Control
	Dynamical Systems
	Minimum-time Control
	Rocket Control Example
	Further Readings

	Maximum Hands-off Control
	L0 Norm and Sparsity
	Practical Benefits of Sparsity in Control
	Problem Formulation of Maximum Hands-off Control
	L1-optimal Control
	Equivalence Theorem
	Existence of L0-optimal Control
	Rocket Control Example
	Further Readings

	Numerical Optimization by Time Discretization
	Time Discretization
	Controllability of Discretized Systems
	Reduction to Finite-dimensional Optimization
	Fast Algorithm by ADMM
	Further Readings
	Python Programs

	Advanced Topics
	Smooth Hands-off Control by Mixed L1/L2 Optimization
	Discrete-valued Control
	Time-optimal Hands-off Control
	Distributed Hands-off Control
	Further Readings

	References
	Index
	About the Author

