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Abstract

We present a survey of recent methods for creating piecewise lin-
ear mappings between triangulations in 3D and simpler domains such
as planar regions, simplicial complexes, and spheres. We also discuss
emerging tools such as global parameterization, inter-surface mapping,
and parameterization with constraints. We start by describing the wide
range of applications where parameterization tools have been used
in recent years. We then briefly review the pertinent mathematical
background and terminology, before proceeding to survey the existing
parameterization techniques. Our survey summarizes the main ideas of
each technique and discusses its main properties, comparing it to other
methods available. Thus it aims to provide guidance to researchers and
developers when assessing the suitability of different methods for var-
ious applications. This survey focuses on the practical aspects of the
methods available, such as time complexity and robustness and shows
multiple examples of parameterizations generated using different meth-
ods, allowing the reader to visually evaluate and compare the results.
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1

Introduction

Given any two surfaces with similar topology, it is possible to compute
a one-to-one and onto mapping between them. If one of these surfaces
is represented by a triangular mesh, the problem of computing such
a mapping is referred to as mesh parameterization [7, 35]. The surface
that the mesh is mapped to is typically referred to as the parameter
domain. Parameterizations between surface meshes and a variety of
domains have numerous applications in computer graphics and geom-
etry processing as described below. In recent years numerous methods
for parameterizing meshes were developed, targeting diverse parame-
ter domains and focusing on different parameterization properties. This
survey reviews the various parameterization methods, summarizing the
main ideas of each technique and focusing on the practical aspects of
the methods. It also provides examples of the results generated by many
of the more popular methods. When several methods address the same
parameterization problem, the survey strives to provide an objective
comparison between them based on criteria such as parameterization
quality, efficiency, and robustness.

We start by surveying the applications which can benefit from
parameterization in Section 1.1 and then in Section 2 briefly review

1
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2 Introduction

the terminology commonly used in the parameterization literature. The
rest of the survey describes the different techniques available, classify-
ing them based on the parameter domain used. Section 3 describes
techniques for planar parameterization. Section 4 reviews methods for
pre-processing meshes for planar parameterization by cutting them into
one or more charts. Section 5 examines parameterization methods for
alternative domains such as a sphere or a base mesh as well as methods
for cross-parameterization between mesh surfaces. Section 6 discusses
ways to introduce constraints into a parameterization. Finally, Section 7
summarizes the paper and discusses potential open problems in mesh
parameterization.

1.1 Applications

Surface parameterization was introduced to computer graphics as a
method for mapping textures onto surfaces [7,84]. Over the last decade,
it has gradually become a ubiquitous tool, useful for many mesh pro-
cessing applications, discussed below (Figure 1.1).

Detail Mapping Detailed objects can be efficiently represented by
a coarse geometric shape (polygonal mesh or subdivision surface) with
the details corresponding to each triangle stored in a separate 2D array.
In traditional texture mapping, the detail is the local albedo of a Lam-
bertian surface. Texture maps alone can enrich the appearance of a
surface in a static picture, but since neighboring pixels will have sim-
ilar shadowing, objects may still look flat in animations with varying
lighting conditions. Bump mapping stores small deviations of the point-
wise normal from that of the smooth underlying surface and uses the
perturbed version during shading [13]. Normal mapping [130, 118] is a
similar technique that replaces the normals directly rather than storing
a perturbation. As the light direction changes, the shading variations
produced by the normal perturbations simulate the shadows caused by
small pits and dimples in the surface. Since the actual geometry of the
object is not modified, the silhouettes still look polygonal or smooth.
Displacement mapping addresses this problem by storing small local
deformations of the surface, typically in the direction of the normal.
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1.1. Applications 3

Texture Mapping [76] Normal Mapping [118] Detail Transfer [8]

Morphing [71] Mesh Completion [114] Editing [77]

Databases [3] Remeshing [98] Surface Fitting [80]

Fig. 1.1 Parameterization applications.

Recent techniques [75,93,96] model a thick region of space in the neigh-
borhood of the surface by using a volumetric texture, rather than a 2D
one. Such techniques are needed in order to model detail with compli-
cated topology or detail that cannot be easily approximated locally by
a height field, such as sparsely interwoven structures or animal fur. The
natural way to map details to surfaces is using planar parameterization
(Section 3).

Detail Synthesis While the goal of texture mapping is to represent
the complicated appearance of 3D objects, several methods make use
of mesh parameterization to create the local detail necessary for a rich
appearance. Such techniques can use as input flat patches with sample
detail [92, 97, 129, 127, 131, 119]; parametric or procedural models; or

Full text available at: http://dx.doi.org/10.1561/0600000011



4 Introduction

direct user input and editing [57, 17]. The type of detail can be quite
varied and the intermediate representations used to create it parallel
the final representations used to store it.

Morphing and Detail Transfer A map between the surfaces of
two objects allows the transfer of detail from one object to another
[81,121,99], or the interpolation between the shape and appearance of
several objects [71, 2, 66, 63, 109]. By varying the interpolation ratios
over time, one can produce morphing animations. In spatially varying
and frequency-varying morphs, the rate of change can be different for
different parts of the objects, or different frequency bands (coarseness
of the features being transformed) [71,66,63]. Such a map can either be
computed directly or, as more commonly done, computed by mapping
both object surfaces to a common domain (Sections 5 and 6).

In addition to transferring the static appearance of surfaces, inter-
surface parameterizations allow the transfer of animation data between
shapes, either by transferring the local surface influence from bones of
an animation rig, or by directly transferring the local affine transfor-
mation of each triangle in the mesh [122].

Mesh Completion Meshes from range scans often contain holes and
multiple components. Lévy [77] uses planar parameterization to obtain
the natural shape for hole boundaries and to triangulate those. In many
cases, prior knowledge about the overall shape of the scanned models
exists. For instance, for human scans, templates of a generic human
shape are readily available. Allen et al. [3], and Anguelov et al. [6] use
this prior knowledge to facilitate completion of scans by computing a
mapping between the scan and a template human model. Kraevoy and
Sheffer [67] develop a more generic and robust template-based approach
for completion of any type of scans. The techniques typically use an
inter-surface parameterization between the template and the scan (Sec-
tions 5 and 6).

Mesh Editing Editing operations often benefit from a local parame-
terization between pairs of models. Biermann et al. [8] use local parame-
terization to facilitate cut-and-paste transfer of details between models.
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1.1. Applications 5

They locally parameterize the regions of interest on the two models in
2D and overlap the two parameterizations. They use the parameteriza-
tion to transfer shape properties from one model to the other. Sorkine
et al. [121] and Lévy [77] use local parameterization for mesh composi-
tion in a similar manner. They compute an overlapping planar param-
eterization of the regions near the composition boundary on the input
models and use it to extract and smoothly blend shape information
from the two models.

Creation of Object Databases Once a large number of models
are parameterized on a common domain (Sections 5 and 6), one can
perform an analysis determining the common factors between objects
and their distinguishing traits. For example on a database of human
shapes [3], the distinguishing traits may be gender, height, and weight,
while a database of human faces may add facial expressions [12,85,10,
11]. Objects can be compared against the database and scored against
each of these dimensions, and the database can be used to create new
plausible object instances by interpolation or extrapolation of existing
ones.

Remeshing There are many possible triangulations that represent
the same shape with similar levels of accuracy. Some triangulation may
be more desirable than others for different applications. For example,
for numerical simulations on surfaces, triangles with a good aspect ratio
(that are not too small or too “skinny”) are important for convergence
and numerical accuracy. One common way to remesh surfaces, or to
replace one triangulation by another, is to parameterize the surface,
then map a desirable, well-understood, and easy to create triangu-
lation of the domain back to the original surface. For example, Gu
et al. [41] use a regular grid sampling of a planar square domain, while
subdivision based methods [49, 72, 63] use regular subdivision (usually
one-to-four triangle splits) on the faces of a simplicial domain. Such
locally regular meshes can usually support the creation of smooth sur-
faces as the limit process of applying subdivision rules. To generate
high quality triangulations Desbrun et al. [26] parameterize the input
mesh in the plane and then use planar Delaunay triangulation to obtain
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6 Introduction

a high quality remeshing of the surface. One problem these methods
face is the appearance of visible discontinuities along the cuts created
to facilitate the parameterization.

Surazhsky and Gotsman [123] avoid global parameterization, and
instead use local parameterization to move vertices along the mesh
as part of an explicit remeshing scheme. Ray et al. [102] use global
periodic parameterization to generate a predominantly quadrilateral
mesh directly on the 3D surface. Dong et al. [26] use a parameterization
induced by the Morse complex to generate a quad only mesh of the
surface.

More details on the use of parameterization for remeshing can be
found in a recent survey by Alliez et al. [5].

Mesh Compression Mesh compression is used to compactly store
or transmit geometric models [4]. As with other data, compression rates
are inversely proportional to the data entropy. Thus higher compres-
sion rates can be obtained when models are represented by meshes that
are as regular as possible, both topologically and geometrically. Topo-
logical regularity refers to meshes where almost all vertices have the
same degree. Geometric regularity implies that triangles are similar to
each other in terms of shape and size, and vertices are close to the
centroid of their neighbors. Such meshes can be obtained by parame-
terizing the original objects and then remeshing with regular sampling
patterns [41, 52]. The quality of the parameterization directly impacts
the compression efficiency.

Surface Fitting One of the earlier applications of mesh parameteri-
zation is surface fitting [32,51,54,80,82]. Many applications in geometry
processing require a smooth analytical surface to be constructed from
an input mesh. A parameterization of the mesh over a base domain sig-
nificantly simplifies this task. Earlier methods either parameterized the
entire mesh in the plane [32] or segmented it and parameterized each
patch independently (Sections 3 and 4). More recent methods [80,82,51]
focus on constructing smooth global parameterizations (Section 5.1)
and use those for fitting, achieving global continuity of the constructed
surfaces.
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1.1. Applications 7

Modeling from Material Sheets While computer graphics focuses
on virtual models, geometry processing has numerous real-world engi-
neering applications. Particularly, planar mesh parameterization is an
important tool when modeling 3D objects from sheets of material, rang-
ing from garment modeling to metal forming or forging [7, 88, 86, 60].
All of these applications require the computation of planar patterns
to form the desired 3D shapes. Typically, models are first segmented
into nearly developable charts (Section 4), and these charts are then
parameterized in the plane (Section 3).

Medical Visualization Complex geometric structures are often bet-
ter visualized and analyzed by mapping the surface normal-map, color,
and other properties to a simpler, canonical domain. One of the struc-
tures for which such mapping is particularly useful is the human brain
[42,50,56]. Most methods for brain mapping use the fact that the brain
has genus zero, and visualize it through spherical [42,50] (Section 5.2)
or planar [56] (Section 3) parameterization.

Given the vast range of processing techniques that have benefited
from parameterization, we expect that many more applications can
utilize it as a powerful processing tool.
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via circle patterns,” ACM Transactions on Graphics, vol. 25, no. 2, 2006.

[63] A. Khodakovsky, N. Litke, and P. Schröder, “Globally smooth parameteriza-
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