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Abstract

Powerful statistical models that can be learned efficiently from large
amounts of data are currently revolutionizing computer vision. These
models possess a rich internal structure reflecting task-specific relations
and constraints. This monograph introduces the reader to the most
popular classes of structured models in computer vision. Our focus is
discrete undirected graphical models which we cover in detail together
with a description of algorithms for both probabilistic inference and
maximum a posteriori inference. We discuss separately recently success-
ful techniques for prediction in general structured models. In the second
part of this monograph we describe methods for parameter learning
where we distinguish the classic maximum likelihood based methods
from the more recent prediction-based parameter learning methods.
We highlight developments to enhance current models and discuss ker-
nelized models and latent variable models. To make the monograph
more practical and to provide links to further study we provide exam-
ples of successful application of many methods in the computer vision
literature.
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1

Introduction

In a very general sense computer vision is about automated systems
making sense of image data by extracting some high-level information
from it. The image data can come in a large variety of formats and
modalities. It can be a single natural image, or it can be a multi-spectral
satellite image series recorded over time. Likewise, the high-level infor-
mation to be recovered is diverse, ranging from physical properties such
as the surface normal at each image pixel to object-level attributes such
as its general object class (“car,” “pedestrian,” etc.).

The above task is achieved by building a model relating the image
data to the high-level information. The model is represented by a set of
variables that can be divided into the observation variables describing
the image data, the output variables defining the high-level informa-
tion, and optionally a set of additional auxiliary variables. Besides the
variables a model defines how the variables interact with each other.
Together the variables and interactions form the structure of the model.

Structured models allow a large number of variables and interac-
tions, leading to rich models that are able to represent the complex
relationships that exist between the image data and the quantities of
interest.

1
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2 Introduction

Instead of specifying a single-fixed model we can also introduce
free parameters into the interactions. Given some annotated data with
known values for the output variables we can then adjust the param-
eters to effectively learn a good mapping between observation and
output variables. This is known as parameter learning and training
the model.

1.1 An Example: Image Segmentation

We will now use the task of foreground–background image segmentation
to make concrete the abstract concepts just discussed. In foreground–
background image segmentation we are given a natural image and need
to determine for each pixel whether it represents the foreground object
or the background. To this end we define one binary output variable
yi ∈ {0,1} for each pixel i, taking yi = 1 if i belongs to the foreground,
yi = 0 otherwise. A single observation variable x ∈ X will represent the
entire observed image.

To define the interactions between the variables we consider the fol-
lowing: if the image around a pixel i looks like a part of the foreground
object, then yi = 1 should be preferred over yi = 0. More generally we
may assume a local model gi(yi,x), where gi(1,x) takes a high value if
x looks like a foreground object around pixel i, and a low value other-
wise. If this were the only component of the model we would make
independent decisions for each pixel. But this is clearly insufficient. For
example the model gi might be inaccurate or the image locally really
does resemble the foreground object. Therefore we introduce an inter-
action aimed at making locally consistent decisions about the output
variables: for each pair (i, j) of pixels that are close to each other in
the image plane — say within the 4-neighborhood J — we introduce
a pairwise interaction term gi,j(yi,yj) that takes a large value if yi = yj
and a small value otherwise.

We can now pose segmentation as a maximization problem over all
possible segmentations on n pixels,

y∗ = argmax
y∈{0,1}n

 n∑
i=1

gi(yi,x) +
∑

(i,j)∈J

gi,j(yi,yj)

. (1.1)
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1.1 An Example: Image Segmentation 3

Fig. 1.1 Input image to be segmented into foreground and background. (Image source:

http://pdphoto.org).

Fig. 1.2 Pixelwise separate classification by gi only: noisy, locally inconsistent decisions.

Fig. 1.3 Joint optimum y∗ with spatially consistent decisions.

The optimal prediction y∗ will trade off the quality of the local model gi
with making decisions that are spatially consistent according to gi,j .
This is shown in Figures 1.1 to 1.3.

We did not say how the functions gi and gi,j can be defined. In the
above model we would use a simple binary classification model

gi(yi,x) = 〈wyi ,ϕi(x)〉, (1.2)

where ϕi:X → Rd extracts some image features from the image around
pixel i, for example color or gradient histograms in a fixed window
around i. The parameter vector wy ∈ Rd weights these features. This
allows the local model to represent interactions such as “if the picture
around i is green, then it is more likely to be a background pixel.” By
adjusting w = (w0,w1) suitably, a local score gi(yi,x) can be computed
for any given image. For the pairwise interaction gi,j(yi,yj) we ignore
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http://pdphoto.org


4 Introduction

the image x and use a 2 × 2 table of values for gi,j(0,0), gi,j(0,1),
gi,j(1,0), and gi,j(1,1), for all adjacent pixels (i, j) ∈ J .

1.2 Outline

In Graphical Models we introduce an important class of discrete struc-
tured models that can be concisely represented in terms of a graph.
In this and later parts we will use factor graphs, a useful special class
of graphical models. We do not address in detail the important class of
directed graphical models and temporal models.

Computation in undirected discrete factor graphs in terms of proba-
bilities is described in Inference in Graphical Models. Because for most
models exact computations are intractable, we discuss a number of pop-
ular approximations such as belief propagation, mean field, and Monte
Carlo approaches.

In Structured Prediction we generalize prediction with graphical
models to the general case where a prediction is made by maximizing an
arbitrary evaluation function, i.e., y = f(x) = argmaxy g(x,y). Solving
this problem — that is, evaluating f(x) — is often intractable as well
and we discuss general methods to approximately make predictions.

After having addressed these basic inference problems we consider
learning of structured models. In Conditional Random Fields we intro-
duce popular learning methods for graphical models. In particular we
focus on recently proposed efficient methods able to scale to large
training sets.

In Structured Support Vector Machines we show that learning is
also possible in the general case where the model does not represent a
probability distribution. We describe the most popular techniques and
discuss in detail the structured support vector machine.

Throughout the monograph we interleave the main text with suc-
cessful computer vision applications of the explained techniques. For
convenience the reader can find a summary of the notation used at the
end of the monograph.
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[153] D. Tuia, J. Muñoz-Maŕı, M. Kanevski, and G. Camps-Valls, “Structured out-
put SVM for remote sensing image classification,” Journal of Signal Processing
Systems, 2010.

[154] V. Vapnik and A. Chervonenkis, Theory of Pattern Recognition (in Russian).
Nauka, Moscow, 1974.

[155] V. V. Vazirani, Approximation Algorithms. Springer, 2001.
[156] A. Vedaldi and A. Zisserman, “Structured output regression for detection with

partial occulsion,” in Conference on Neural Information Processing Systems
(NIPS), 2009.

[157] S. Vicente, V. Kolmogorov, and C. Rother, “Graph cut based image segmen-
tation with connectivity priors,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

[158] S. Vicente, V. Kolmogorov, and C. Rother, “Joint optimization of segmen-
tation and appearance models,” in International Conference on Computer
Vision (ICCV), 2009.

[159] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy,
“Accelerated training of conditional random fields with stochastic gradient
methods,” in International Conference on Machine Learing (ICML), pp. 969–
976, 2006.

[160] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fami-
lies and variational inference,” Foundations and Trends in Machine Learning,
vol. 1, no. 1-2, pp. 1–305, 2008.

[161] J. J. Weinman, L. Tran, and C. J. Pal, “Efficiently learning random fields
for stereo vision with sparse message passing,” in European Conference on
Computer Vision (ECCV), 2008.

[162] T. Werner, “A linear programming approach to max-sum problem: A review,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),
vol. 29, no. 7, pp. 1165–1179, 2007.

Full text available at: http://dx.doi.org/10.1561/0600000033



References 185

[163] T. Werner, “High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF),” in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR),
2008.

[164] T. Werner, “Revisiting the decomposition approach to inference in exponen-
tial families and graphical models,” Center for Machine Perception, Czech
Technical University Prague, Research Report, CTU-CMP-2009-06, ftp://
cmp.felk.cvut.cz/pub/cmp/articles/werner/Werner-TR-2009-06.pdf, 2009.

[165] T. Werner, “Belief propagation fixed points as zero gradients of a func-
tion of reparameterizations,” Center for Machine Perception, Czech
Technical University Prague, Research Report, CTU-CMP-2010-05,
ftp://cmp.felk.cvut.cz/pub/cmp/articles/werner/Werner-TR-2010-05.pdf,
2010.

[166] H. P. Williams, Model Building in Mathematical Programming. New York:
John Wiley & Sons, 4 Edition, 1999.

[167] J. Winn and C. M. Bishop, “Variational message passing,” Journal of Machine
Learning Research (JMLR), vol. 6, pp. 661–694, 2005.

[168] L. A. Wolsey, Integer Programming. New York: John Wiley & Sons, 1998.
[169] O. J. Woodford, C. Rother, and V. Kolmogorov, “A global perspective on

MAP inference for low-level vision,” in International Conference on Computer
Vision (ICCV), 2009.

[170] E. P. Xing, M. I. Jordan, and S. J. Russell, “A generalized mean field algorithm
for variational inference in exponential families,” in Uncertainty in Artificial
Intelligence (UAI), pp. 583–591, 2003.

[171] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy approx-
imations and generalized belief propagation algorithms,” MERL Technical
Report, 2004-040, http://www.merl.com/papers/docs/TR2004-040.pdf, 2004.

[172] C. N. J. Yu and T. Joachims, “Learning structural SVMs with latent vari-
ables,” in International Conference on Machine Learing (ICML), 2009.

[173] A. Yuille, “The convergence of contrastive divergences,” in Conference on
Neural Information Processing Systems (NIPS), pp. 1593–1600, 2005.

[174] A. L. Yuille, “CCCP algorithms to minimize the Bethe and Kikuchi free
energies: Convergent alternatives to belief propagation,” Neural Computation,
vol. 14, no. 7, pp. 1691–1722, 2002.

[175] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural
Computation, vol. 15, no. 4, pp. 915–936, 2003.

[176] T. Zhang, “Statistical behavior and consistency of classification methods based
on convex risk minimization,” Annals of Statistics, vol. 32, no. 1, pp. 56–85,
2004.

[177] S. C. Zhu, Y. N. Wu, and D. Mumford, “Filters, random fields and maximum
entropy (FRAME): Towards a unified theory for texture modeling,” Interna-
tional Journal of Computer Vision (IJCV), vol. 27, no. 2, pp. 107–126, 1998.

Full text available at: http://dx.doi.org/10.1561/0600000033


	Introduction
	An Example: Image Segmentation
	Outline

	Graphical Models
	Factor Graphs
	Energy Minimization and Factor Graphs
	Parameterization
	Inference and Learning Tasks

	Inference in Graphical Models
	Belief Propagation and the Sum-Product Algorithm
	Loopy Belief Propagation
	Mean Field Methods
	Sampling

	Structured Prediction
	Introduction
	Prediction Problem
	Solving the Prediction Problem
	Giving up Generality
	Giving up Optimality
	Giving up Worst-case Complexity
	Giving Up Integrality: Relaxations and Decompositions
	Giving up Determinism

	Conditional Random Fields
	Maximizing the Conditional Likelihood
	Gradient Based Optimization
	Numeric Optimization
	Faster Training by Use of the Output Structure
	Faster Training by Stochastic Example Selection
	Faster Training by Stochastic Gradient Approximation
	Faster Training by Two-Stage Training
	Latent Variables
	Other Training Objectives

	Structured Support Vector Machines
	Structural Risk Minimization
	Numeric Optimization
	Kernelization
	Latent Variables
	Other Training Objectives
	Approximate Training

	Conclusion
	Notations and Acronyms
	References



