
Sparse Modeling for Image
and

Vision Processing

Julien Mairal
Inria

julien.mairal@inria.fr

Francis Bach
Inria

francis.bach@inria.fr

Jean Ponce
Ecole Normale Supérieure

jean.ponce@ens.fr

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0600000058



Foundations and Trends R© in
Computer Graphics and Vision

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

J. Mairal, F. Bach and J. Ponce. Sparse Modeling for Image and

Vision Processing. Foundations and Trends R© in Computer Graphics and Vision,
vol. 8, no. 2-3, pp. 85–283, 2012.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-009-5
c© 2014 J. Mairal, F. Bach and J. Ponce

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0600000058



Foundations and Trends R© in

Computer Graphics and Vision

Volume 8, Issue 2-3, 2012

Editorial Board

Editors-in-Chief

Brian Curless

University of Washington
United States

William T. Freeman

Massachusetts Institute of Technology
United States

Luc Van Gool

KU Leuven, Belgium
ETH Zurich, Switzerland

Editors

Marc Alexa
TU Berlin

Ronen Basri
Weizmann Institute

of Science

Peter Belhumeur
Columbia University

Andrew Blake
Microsoft Research

Chris Bregler
New York University

Joachim Buhmann
ETH Zurich

Michael Cohen
Microsoft Research

Paul Debevec
USC Institute

for Creative Technologies

Julie Dorsey
Yale University

Fredo Durand
MIT

Olivier Faugeras
INRIA

Mike Gleicher
University of Wisconsin

Richard Hartley
Australian National

University

Aaron Hertzmann
University of Toronto

Hugues Hoppe
Microsoft Research

David Lowe
University of

British Columbia

Jitendra Malik
UC Berkeley

Steve Marschner
Cornell University

Shree Nayar
Columbia University

James O’Brien
UC Berkeley

Tomas Pajdla
Czech TU

Pietro Perona
Caltech

Marc Pollefeys
UNC Chapel Hill

Jean Ponce
UIUC

Long Quan
Hong Kong University

of Science and Technology

Cordelia Schmid
INRIA

Steve Seitz
University of Washington

Amnon Shashua
Hebrew University

of Jerusalem

Peter Shirley
University of Utah

Stefano Soatto
UCLA

Richard Szeliski
Microsoft Research

Joachim Weickert
Saarland University

Song Chun Zhu
UCLA

Andrew Zisserman
University of Oxford

Full text available at: http://dx.doi.org/10.1561/0600000058



Editorial Scope

Topics

Foundations and Trends R© in Computer Graphics and Vision publishes

survey and tutorial articles in the following topics:

• Rendering

• Shape

• Mesh simplification

• Animation

• Sensors and sensing

• Image restoration and

enhancement

• Segmentation and grouping

• Feature detection and selection

• Color processing

• Texture analysis and synthesis

• Illumination and reflectance

modeling

• Shape representation

• Tracking

• Calibration

• Structure from motion

• Motion estimation and

registration

• Stereo matching and

reconstruction

• 3D reconstruction and

image-based modeling

• Learning and statistical

methods

• Appearance-based matching

• Object and scene recognition

• Face detection and recognition

• Activity and gesture

recognition

• Image and video retrieval

• Video analysis and event

recognition

• Medical image analysis

• Robot localization and

navigation

Information for Librarians

Foundations and Trends R© in Computer Graphics and Vision, 2012, Volume 8,

4 issues. ISSN paper version 1572-2740. ISSN online version 1572-2759. Also

available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0600000058



Foundations and Trends R© in

Computer Graphics and Vision

Vol. 8, No. 2-3 (2012) 85–283
c© 2014 J. Mairal, F. Bach and J. Ponce

DOI: 10.1561/0600000058

Sparse Modeling for Image and

Vision Processing

Julien Mairal
Inria 1

julien.mairal@inria.fr

Francis Bach
Inria2

francis.bach@inria.fr

Jean Ponce
Ecole Normale Supérieure3

jean.ponce@ens.fr

1LEAR team, laboratoire Jean Kuntzmann, CNRS, Univ. Grenoble Alpes,
France.

2SIERRA team, département d’informatique de l’Ecole Normale Supérieure,
ENS/CNRS/Inria UMR 8548, France.

3WILLOW team, département d’informatique de l’Ecole Normale Supérieure,
ENS/CNRS/Inria UMR 8548, France.

Full text available at: http://dx.doi.org/10.1561/0600000058



Contents

1 A Short Introduction to Parsimony 2

1.1 Early concepts of parsimony in statistics . . . . . . . . . . 6

1.2 Wavelets in signal processing . . . . . . . . . . . . . . . . 8

1.3 Modern parsimony: the ℓ1-norm and other variants . . . . 14

1.4 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Compressed sensing and sparse recovery . . . . . . . . . . 35

1.6 Theoretical results about dictionary learning . . . . . . . . 39

2 Discovering the Structure of Natural Images 44

2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Principal component analysis . . . . . . . . . . . . . . . . 52

2.3 Clustering or vector quantization . . . . . . . . . . . . . . 56

2.4 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Structured dictionary learning . . . . . . . . . . . . . . . . 60

2.6 Other matrix factorization methods . . . . . . . . . . . . . 64

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Sparse Models for Image Processing 75

3.1 Image denoising . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Image inpainting . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Image demosaicking . . . . . . . . . . . . . . . . . . . . . 84

ii

Full text available at: http://dx.doi.org/10.1561/0600000058



iii

3.4 Image up-scaling . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Inverting nonlinear local transformations . . . . . . . . . . 92

3.6 Video processing . . . . . . . . . . . . . . . . . . . . . . . 94

3.7 Face compression . . . . . . . . . . . . . . . . . . . . . . 96

3.8 Other patch modeling approaches . . . . . . . . . . . . . 99

4 Sparse Coding for Visual Recognition 106

4.1 A coding and pooling approach to image modeling . . . . 107

4.2 The botany of sparse feature coding . . . . . . . . . . . . 115

4.3 Face recognition . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Patch classification and edge detection . . . . . . . . . . . 124

4.5 Connections with neural networks . . . . . . . . . . . . . . 130

4.6 Other applications . . . . . . . . . . . . . . . . . . . . . . 135

5 Optimization Algorithms 140

5.1 Sparse reconstruction with the ℓ0-penalty . . . . . . . . . 141

5.2 Sparse reconstruction with the ℓ1-norm . . . . . . . . . . . 148

5.3 Iterative reweighted-ℓ1 methods . . . . . . . . . . . . . . . 154

5.4 Iterative reweighted-ℓ2 methods . . . . . . . . . . . . . . . 156

5.5 Optimization for dictionary learning . . . . . . . . . . . . . 158

5.6 Other optimization techniques . . . . . . . . . . . . . . . 169

6 Conclusions 170

Acknowledgments 172

References 173

Full text available at: http://dx.doi.org/10.1561/0600000058



Abstract

In recent years, a large amount of multi-disciplinary research has been

conducted on sparse models and their applications. In statistics and

machine learning, the sparsity principle is used to perform model

selection—that is, automatically selecting a simple model among a large

collection of them. In signal processing, sparse coding consists of rep-

resenting data with linear combinations of a few dictionary elements.

Subsequently, the corresponding tools have been widely adopted by sev-

eral scientific communities such as neuroscience, bioinformatics, or com-

puter vision. The goal of this monograph is to offer a self-contained view

of sparse modeling for visual recognition and image processing. More

specifically, we focus on applications where the dictionary is learned

and adapted to data, yielding a compact representation that has been

successful in various contexts.

J. Mairal, F. Bach and J. Ponce. Sparse Modeling for Image and

Vision Processing. Foundations and Trends R© in Computer Graphics and Vision,
vol. 8, no. 2-3, pp. 85–283, 2012.
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1

A Short Introduction to Parsimony

In its most general definition, the principle of sparsity, or parsimony,

consists of representing some phenomenon with as few variables as

possible. It appears to be central to many research fields and is often

considered to be inspired from an early doctrine formulated by the

philosopher and theologian William of Ockham in the 14th century,

which essentially favors simple theories over more complex ones. Of

course, the link between Ockham and the tools presented in this mono-

graph is rather thin, and more modern views seem to appear later in

the beginning of the 20th century. Discussing the scientific method,

Wrinch and Jeffreys [1921] introduce indeed a simplicity principle re-

lated to parsimony as follows:

The existence of simple laws is, then, apparently, to be re-

garded as a quality of nature; and accordingly we may infer

that it is justifiable to prefer a simple law to a more complex

one that fits our observations slightly better.

Remarkably, Wrinch and Jeffreys [1921] further discuss statistical mod-

eling of physical observations and relate the concept of “simplicity” to

the number of learning parameters; as a matter of fact, this concept is

relatively close to the contemporary view of parsimony.

2
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3

Subsequently, numerous tools have been developed by statisticians

to build models of physical phenomena with good predictive power.

Models are usually learned from observed data, and their generaliza-

tion performance is evaluated on test data. Among a collection of plau-

sible models, the simplest one is often preferred, and the number of

underlying parameters is used as a criterion to perform model selec-

tion [Mallows, 1964, 1966, Akaike, 1973, Hocking, 1976, Barron et al.,

1998, Rissanen, 1978, Schwarz, 1978, Tibshirani, 1996].

In signal processing, similar problems as in statistics arise, but a

different terminology is used. Observations, or data vectors, are called

“signals”, and data modeling appears to be a crucial step for perform-

ing various operations such as restoration, compression, or for solving

inverse problems. Here also, the sparsity principle plays an important

role and has been successful [Mallat and Zhang, 1993, Pati et al., 1993,

Donoho and Johnstone, 1994, Cotter et al., 1999, Chen et al., 1999,

Donoho, 2006, Candès et al., 2006]. Each signal is approximated by

a sparse linear combination of prototypes called dictionary elements,

resulting in simple and compact models.

However, statistics and signal processing remain two distinct fields

with different objectives and methodology; specifically, signals of-

ten come from the same data source, e.g., natural images, whereas

problems considered in statistics are unrelated to each other in gen-

eral. Then, a long series of works has been devoted to finding ap-

propriate dictionaries for signal classes of interest, leading to vari-

ous sorts of wavelets [Freeman and Adelson, 1991, Simoncelli et al.,

1992, Donoho, 1999, Candès and Donoho, 2002, Do and Vetterli, 2005,

Le Pennec and Mallat, 2005, Mallat, 2008]. Even though statistics and

signal processing have devised most of the methodology of sparse

modeling, the parsimony principle was also discovered independently

in other fields. To some extent, it appears indeed in the work

of Markowitz [1952] about portfolio selection in finance, and also in

geophysics [Claerbout and Muir, 1973, Taylor et al., 1979].

In neuroscience, Olshausen and Field [1996, 1997] proposed a

significantly different approach to sparse modeling than previ-

ously established practices. Whereas classical techniques in signal

Full text available at: http://dx.doi.org/10.1561/0600000058



4 A Short Introduction to Parsimony

processing were using fixed off-the-shelf dictionaries, the method

of Olshausen and Field [1996, 1997] consists of learning it from train-

ing data. In a pioneer exploratory experiment, they demonstrated that

dictionary learning could easily discover underlying structures in nat-

ural image patches; later, their approach found numerous applica-

tions in many fields, notably in image and audio processing [Lewicki,

2002, Elad and Aharon, 2006, Mairal et al., 2009, Yang et al., 2010a]

and computer vision [Raina et al., 2007, Yang et al., 2009, Zeiler et al.,

2011, Mairal et al., 2012, Song et al., 2012, Castrodad and Sapiro,

2012, Elhamifar et al., 2012, Pokrass et al., 2013].

The goal of this monograph is to present basic tools of sparse mod-

eling and their applications to visual recognition and image processing.

We aim at offering a self-contained view combining pluri-disciplinary

methodology, practical advice, and a large review of the literature. Most

of the figures in the paper are produced with the software SPAMS1, and

the corresponding Matlab code will be provided on the first author’s

webpage.

The monograph is organized as follows: the current introductory

section is divided into several parts providing a simple historical view

of sparse estimation. In Section 1.1, we start with early concepts of

parsimony in statistics and information theory from the 70’s and 80’s.

We present the use of sparse estimation within the wavelet framework

in Section 1.2, which was essentially developed in the 90’s. Section 1.3

introduces the era of “modern parsimony”—that is, the ℓ1-norm and

its variants, which have been heavily used during the last two decades.

Section 1.4 is devoted to the dictionary learning formulation originally

introduced by Olshausen and Field [1996, 1997], which is a key com-

ponent of most applications presented later in this monograph. In Sec-

tions 1.5 and 1.6, we conclude our introductory tour with some theo-

retical aspects, such as the concept of “compressed sensing” and sparse

recovery that has attracted a large attention in recent years.

With all these parsimonious tools in hand, we discuss the use of

sparse coding and related sparse matrix factorization techniques for

discovering the underlying structure of natural image patches in Sec-

1available here http://spams-devel.gforge.inria.fr/.

Full text available at: http://dx.doi.org/10.1561/0600000058

http://spams-devel.gforge.inria.fr/


5

tion 2 . Even though the task here is subjective and exploratory, it is

the first successful instance of dictionary learning; the insight gained

from these early experiments forms the basis of concrete applications

presented in subsequent sections.

Section 3 covers numerous applications of sparse models of natural

image patches in image processing, such as image denoising, super-

resolution, inpainting, or demosaicking. This section is concluded with

other related patch-modeling approaches.

Section 4 presents recent success of sparse models for visual recogni-

tion, such as codebook learning of visual descriptors, face recognition,

or more low-level tasks such as edge detection and classification of tex-

tures and digits. We conclude the section with other computer vision

applications such as visual tracking and data visualization.

Section 5 is devoted to optimization algorithms. It presents in a

concise way efficient algorithms for solving sparse decomposition and

dictionary learning problems.

We see our monograph as a good complement of other books and

monographs about sparse estimation, which offer different perspec-

tives, such as Mallat [2008], Elad [2010] in signal and image processing,

or Bach et al. [2012a] in optimization and machine learning. We also

put the emphasis on the structure of natural image patches learned with

dictionary learning, and thus present an alternative view to the book

of Hyvärinen et al. [2009], which is focused on independent component

analysis.

Notation. In this monograph, vectors are denoted by bold lower-case

letters and matrices by upper-case ones. For instance, we consider in

the rest of this paragraph a vector x in R
n and a matrix X in R

m×n.

The columns of X are represented by indexed vectors x1, . . . ,xn such

that we can write X = [x1, . . . ,xn]. The i-th entry of x is denoted

by x[i], and the i-th entry of the j-th column of X is represented

by X[i, j]. For any subset g of {1, . . . , n}, we denote by x[g] the vec-

tor in R
|g| that records the entries of x corresponding to indices in g.

For q ≥ 1, we define the ℓq-norm of x as ‖x‖q , (
∑n

i=1 |x[i]|q)1/q,

and the ℓ∞-norm as ‖x‖∞ , limq→+∞ ‖x‖q = maxi=1,...,n |x[i]|.

Full text available at: http://dx.doi.org/10.1561/0600000058



6 A Short Introduction to Parsimony

For q < 1, we define the ℓq-penalty as ‖x‖q ,
∑n

i=1 |x[i]|q, which,

with an abuse of terminology, is often referred to as ℓq-norm. The ℓ0-

penalty simply counts the number of non-zero entries in a vec-

tor: ‖x‖0 , ♯{i s.t. x[i] 6= 0}. For a matrix X, we define the Frobenius

norm ‖X‖F =
(
∑m

i=1

∑n
j=1 X[i, j]2

)1/2
. When dealing with a random

variable X defined on a probability space, we denote its expectation

by E[X], assuming that there is no measurability or integrability issue.

1.1 Early concepts of parsimony in statistics

A large number of statistical procedures can be formulated as maximum

likelihood estimation. Given a statistical model with parameters θ, it

consists of minimizing with respect to θ an objective function represent-

ing the negative log-likelihood of observed data. Assuming for instance

that we observe independent samples z1, . . . , zn of the (unknown) data

distribution, we need to solve

min
θ∈Rp

[

L(θ) , −
n∑

i=1

logPθ(zi)

]

, (1.1)

where P is some probability distribution parameterized by θ.

Simple methods such as ordinary least squares can be written

as (1.1). Consider for instance data points zi that are pairs (yi,xi),

with yi is an observation in R and xi is a vector in R
p, and assume that

there exists a linear relation yi = x⊤
i θ+εi, where εi is an approximation

error for observation i. Under a model where the εi’s are independent

and identically normally distributed with zero-mean, Eq. (1.1) is equiv-

alent to a least square problem:2

min
θ∈Rp

n∑

i=1

1

2

(

yi − x⊤
i θ
)2
.

To prevent overfitting and to improve the interpretability of the learned

model, it was suggested in early work that a solution involving only a

2Note that the Gaussian noise assumption is not necessary to justify the ordinary
least square formulation. It is only sufficient to interpret it as maximum likelihood
estimation. In fact, as long as the conditional expectation E[y|x] is linear, the ordi-
nary least square estimator is statistically consistent under mild assumptions.

Full text available at: http://dx.doi.org/10.1561/0600000058



1.1. Early concepts of parsimony in statistics 7

few model variables could be more appropriate than an exact solution

of (1.1); in other words, a sparse solution involving only—let us say—

k variables might be desirable in some situations. Unfortunately, such

a strategy yields two difficulties: first, it is not clear a priori how to

choose k; second, finding the best subset of k variables is NP-hard in

general [Natarajan, 1995]. The first issue was addressed with several

criterions for controlling the trade-off between the sparsity of the so-

lution θ and the adequacy of the fit to training data. For the second

issue, approximate computational techniques have been proposed.

Mallows’s Cp, AIC, and BIC. For the ordinary least squares prob-

lem, Mallows [1964, 1966] introduced the Cp-statistics, later generalized

by Akaike [1973] with the Akaike information criterion (AIC), and then

by Schwarz [1978] with the Bayesian information criterion (BIC). Us-

ing Cp, AIC, or BIC is equivalent to solving the penalized ℓ0-maximum

likelihood estimation problem

min
θ∈Rp

L(θ) + λ‖θ‖0, (1.2)

where λ depends on the chosen criterion [see Hastie et al., 2009],

and ‖θ‖0 is the ℓ0-penalty. Similar formulations have also been derived

by using the minimum description length (MDL) principle for model

selection [Rissanen, 1978, Barron et al., 1998]. As shown by Natarajan

[1995], the problem (1.2) is NP-hard, and approximate algorithms are

necessary unless p is very small, e.g., p < 30.

Forward selection and best subset selection for least squares. To

obtain an approximate solution of (1.2), a classical approach is the for-

ward selection technique, which is a greedy algorithm that solves a se-

quence of maximum likelihood estimation problems computed on a sub-

set of variables. After every iteration, a new variable is added to the sub-

set according to the chosen sparsity criterion in a greedy manner. Some

variants allow backward steps—that is, a variable can possibly exit the

active subset after an iteration. The algorithm is presented in more

details in Section 5.1 and seems to be due to Efroymson [1960], accord-

ing to Hocking [1976]. Other approaches considered in the 70’s include

Full text available at: http://dx.doi.org/10.1561/0600000058



8 A Short Introduction to Parsimony

also the leaps and bounds technique of Furnival and Wilson [1974], a

branch-and-bound algorithm providing the exact solution of (1.2) with

exponential worst-case complexity.

1.2 Wavelets in signal processing

In signal processing, similar problems as in statistics have been studied

in the context of wavelets. In a nutshell, a wavelet basis represents a set

of functions φ1, φ2, . . . that are essentially dilated and shifted versions

of each other. Unlike Fourier basis, wavelets have the interesting prop-

erties to be localized both in the space and frequency domains, and to

be suitable to multi-resolution analysis of signals [Mallat, 1989].

The concept of parsimony is central to wavelets. When a signal f is

“smooth” in a particular sense [see Mallat, 2008], it can be well approx-

imated by a linear combination of a few wavelets. Specifically, f is close

to an expansion
∑

i αiφi where only a few coefficients αi are non-zero,

and the resulting compact representation has effective applications in

estimation and compression. The wavelet theory is well developed for

continuous signals, e.g., f is chosen in the Hilbert space L2(R), but

also for discrete signals f in R
m, making it suitable to modern digital

image processing.

Since the first wavelet was introduced by Haar [1910], much research

has been devoted to designing a wavelet set that is adapted to particular

signals such as natural images. After a long quest for finding good

orthogonal basis such as the one proposed by Daubechies [1988], a series

of works has focused on wavelet sets whose elements are not linearly

independent. It resulted a large number of variants, such as steerable

wavelets [Simoncelli et al., 1992], curvelets [Candès and Donoho, 2002],

contourlets [Do and Vetterli, 2005], or bandlets [Le Pennec and Mallat,

2005]. For the purpose of our monograph, one concept related to sparse

estimation is particularly important; it is called wavelet thresholding.

Sparse estimation and wavelet thresholding. Let us consider a dis-

crete signal represented by a vector x in R
p and an orthogonal wavelet

basis set D = [d1, . . . ,dp]—that is, satisfying D⊤D = I where I is the

Full text available at: http://dx.doi.org/10.1561/0600000058



1.2. Wavelets in signal processing 9

identity matrix. Approximating x by a sparse linear combination of

wavelet elements can be formulated as finding a sparse vector α in R
p,

say with k non-zero coefficients, that minimizes

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k. (1.3)

The sparse decomposition problem (1.3) is an instance of the best sub-

set selection formulation presented in Section 1.1 where α represents

model parameters, demonstrating that similar topics arise in statistics

and signal processing. However, whereas (1.3) is NP-hard for general

matrices D [Natarajan, 1995], we have assumed D to be orthogonal in

the context of wavelets. As such, (1.3) is equivalent to

min
α∈Rp

1

2

∥
∥
∥D⊤x−α

∥
∥
∥

2

2
s.t. ‖α‖0 ≤ k,

and admits a closed form. Let us indeed define the vector β , D⊤x

in R
p, corresponding to the exact non-sparse decomposition of x

onto D—that is, we have x = Dβ since D is orthogonal. To obtain

the best k-sparse approximation, we denote by µ the k-th largest value

among the set {|β[1]|, . . . , |β[p]|}, and the solution αht of (1.3) is ob-

tained by applying to β an operator called “hard-thresholding” and

defined as

αht[i] = 1|β[i]|≥µβ[i] =

{

β[i] if |β[i]| ≥ µ,
0 otherwise,

(1.4)

where 1|β[i]|≥µ is the indicator function, which is equal to 1 if |β[i]| ≥ µ
and 0 otherwise. In other words, the hard-thresholding operator simply

sets to zero coefficients from β whose magnitude is below the thresh-

old µ. The corresponding procedure, called “wavelet thresholding”, is

simple and effective for image denoising, even though it does not per-

form as well as recent state-of-the-art techniques presented in Section 3.

When an image x is noisy, e.g., corrupted by white Gaussian noise,

and µ is well chosen, the estimate Dαht is a good estimate of the clean

original image. The terminology “hard” is defined in contrast to an im-

portant variant called the “soft-thresholding operator”, which was in-

Full text available at: http://dx.doi.org/10.1561/0600000058



10 A Short Introduction to Parsimony

troduced by Donoho and Johnstone [1994] in the context of wavelets:3

αst[i] , sign(β[i]) max(|β[i]| − λ, 0) =







β[i]− λ if β[i] ≥ λ,
β[i] + λ if β[i] ≤ −λ,
0 otherwise,

(1.5)

where λ is a parameter playing the same role as µ in (1.4). Not only

does the operator set small coefficients of β to zero, but it also reduces

the magnitude of the non-zero ones. Both operators are illustrated and

compared to each other in Figure 1.1. Interestingly, whereas αht is the

solution of (1.3) when µ corresponds to the entry of β = D⊤x with k-

th largest magnitude, αst is in fact the solution of the following sparse

reconstruction problem with the orthogonal matrix D:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1. (1.6)

This formulation will be the topic of the next section for general non-

orthogonal matrices. Similar to statistics where choosing the parame-

ter k of the best subset selection was difficult, automatically selecting

the best thresholds µ or λ has been a major research topic [see, e.g.

Donoho and Johnstone, 1994, 1995, Chang et al., 2000a,b].

Structured group thresholding. Wavelets coefficients have a particu-

lar structure since the basis elements di are dilated and shifted versions

of each other. It is for instance possible to define neighborhood rela-

tionships for wavelets whose spatial supports are close to each other,

or hierarchical relationships between wavelets with same or similar lo-

calization but with different scales. For one-dimensional signals, we

present in Figure 1.2 a typical organization of wavelet coefficients on a

tree with arrows representing such relations. For two-dimensional im-

ages, the structure is slightly more involved and the coefficients are

usually organized as a collection of quadtrees [see Mallat, 2008, for

more details]; we present such a configuration in Figure 1.3.

3Note that the soft-thresholding operator appears in fact earlier in the statistics
literature [see Efron and Morris, 1971, Bickel, 1984], but it was used there for a
different purpose.
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β

αst

λ

−λ

(a) Soft-thresholding operator,
αst = sign(β) max(|β| − λ, 0).

β

αht

µ

−µ

(b) Hard-thresholding operator
αht = 1|β|≥µβ.

Figure 1.1: Soft- and hard-thresholding operators, which are commonly used for
signal estimation with orthogonal wavelet basis.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure 1.2: Illustration of a wavelet tree with four scales for one-dimensional
signals. Nodes represent wavelet coefficients and their depth in the tree corre-
spond to the scale parameter of the wavelet. We also illustrate the zero-tree coding
scheme [Shapiro, 1993] in this figure. Empty nodes correspond to zero coefficient:
according to the zero-tree coding scheme, their descendants in the tree are also zero.
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12 A Short Introduction to Parsimony

Figure 1.3: Wavelet coefficients displayed for the image lena using the orthogonal
basis of Daubechies [1988]. A few coefficients representing a low-resolution version
of the image are displayed on the top-left corner. Wavelets corresponding to this
low-resolution image are obtained by filtering the original image with shifted ver-
sions of a low-pass filter called “scaling function” or “father wavelet”. The rest of
the coefficients are organized into three quadtrees (on the right, on the left, and
on the diagonal). Each quadtree is obtained by filtering the original image with a
wavelet at three different scales and at different positions. The value zero is rep-
resented by the grey color; negative values appear in black, and positive values
in white. The wavelet decomposition and this figure have been produced with the
software package matlabPyrTools developed by Eero Simoncelli and available here:
http://www.cns.nyu.edu/~lcv/software.php.
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1.2. Wavelets in signal processing 13

A natural idea has inspired the recent concept of group sparsity

that will be presented in the next section; it consists in exploiting the

wavelet structure to improve thresholding estimators. Specifically, it is

possible to use neighborhood relations between wavelet basis elements

to define groups of coefficients that form a partition G of {1, . . . , p}, and

use a group-thresholding operator [Hall et al., 1999, Cai, 1999] defined

for every group g in G as

αgt[g] ,

{ (

1− λ
‖β[g]‖2

)

β[g] if ‖β[g]‖2 ≥ λ,
0 otherwise,

(1.7)

where β[g] is the vector of size |g| recording the entries of β whose

indices are in g. By using such an estimator, groups of neighbor coeffi-

cients are set to zero together when their joint ℓ2-norm falls below the

threshold λ. Interestingly, even though the next interpretation does not

appear in early work about group-thresholding [Hall et al., 1999, Cai,

1999], it is possible to view αgt with β = D⊤x as the solution of the

following penalized problem

min
α∈Rp

1

2
‖x−Dα‖22 + λ

∑

g∈G
‖α[g]‖2, (1.8)

where the closed-form solution (1.7) holds because D is orthogonal [see

Bach et al., 2012a]. Such a formulation will be studied in the next sec-

tion for general matrices.

Finally, other ideas for exploiting both structure and wavelet par-

simony have been proposed. One is a coding scheme called “zero-tree”

wavelet coding [Shapiro, 1993], which uses the tree structure of wavelets

to force all descendants of zero coefficients to be zero as well. Equiv-

alently, a coefficient can be non-zero only if its parent in the tree is

non-zero, as illustrated in Figure 1.2. This idea has been revisited later

in a more general context by Zhao et al. [2009]. Other complex models

have been used as well for modeling interactions between coefficients:

we can mention the application of hidden Markov models (HMM) to

wavelets by Crouse et al. [1998] and the Gaussian scale mixture model

of Portilla et al. [2003].
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1.3 Modern parsimony: the ℓ1-norm and other variants

The era of “modern” parsimony corresponds probably to the use

of convex optimization techniques for solving feature selection or

sparse decomposition problems. Even though the ℓ1-norm was in-

troduced for that purpose in geophysics [Claerbout and Muir, 1973,

Taylor et al., 1979], it was popularized in statistics with the Lasso es-

timator of Tibshirani [1996] and independently in signal processing

with the basis pursuit formulation of Chen et al. [1999]. Given obser-

vations x in R
n and a matrix of predictors D in R

n×p, the Lasso consists

of learning a linear model x ≈ Dα by solving the following quadratic

program:

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖1 ≤ µ. (1.9)

As detailed in the sequel, the ℓ1-norm encourages the solution α to be

sparse and the parameter µ is used to control the trade-off between

data fitting and the sparsity of α. In practice, reducing the value of µ

leads indeed to sparser solution in general, i.e., with more zeroes, even

though there is no formal relation between the sparsity of α and its ℓ1-

norm for general matrices D.

The basis pursuit denoising formulation of Chen et al. [1999] is rel-

atively similar but the ℓ1-norm is used as a penalty instead of a con-

straint. It can be written as

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1, (1.10)

which is essentially equivalent to (1.9) from a convex optimization per-

spective, and in fact (1.10) is also often called “Lasso” in the literature.

Given some data x, matrix D, and parameter µ > 0, we indeed know

from Lagrange multiplier theory [see, e.g., Borwein and Lewis, 2006,

Boyd and Vandenberghe, 2004] that for all solution α⋆ of (1.9), there

exists a parameter λ ≥ 0 such that α⋆ is also a solution of (1.10). We

note, however, that there is no direct mapping between λ and µ, and

thus the choice of formulation (1.9) or (1.10) should be made accord-

ing to how easy it is to select the parameters λ or µ. For instance, one

may prefer (1.9) when a priori information about the ℓ1-norm of the

solution is available. In Figure 1.4, we illustrate the effect of changing
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(a) Path for dataset 1
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(b) Path for dataset 2

Figure 1.4: Two examples of regularization paths for the Lasso/Basis Pursuit. The
curves represent the values of the p = 5 entries of the solutions of (1.10) when
varying the parameter λ for two datasets. On the left, the relation between λ and
the sparsity of the solution is monotonic; On the right, this is not the case. Note
that the paths are piecewise linear, see Section 5.2 for more details.

the value of the regularization parameter λ on the solution of (1.10)

for two datasets. When λ = 0, the solution is dense; in general, in-

creasing λ sets more and more variables to zero. However, the relation

between λ and the sparsity of the solution is not exactly monotonic. In

a few cases, increasing λ yields a denser solution.

Another “equivalent” formulation consists of finding a sparse de-

composition under a reconstruction constraint:

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε. (1.11)

This formulation can be useful when we have a priori knowledge about

the noise level and the parameter ε is easy to choose. The link be-

tween (1.10) and (1.11) is similar to the link between (1.10) and (1.9).

For noiseless problems, Chen et al. [1999] have also introduced a

formulation simply called “basis pursuit” (without the terminology “de-

noising”), defined as

min
α∈Rp

‖α‖1 s.t. x = Dα, (1.12)
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16 A Short Introduction to Parsimony

which is related to (1.10) in the sense that the set of solutions of (1.10)

converges to the solutions of (1.12) when λ converges to 0+, whenever

the linear system x = Dα is feasible. These four formulations (1.9-1.12)

have gained a large success beyond the statistics and signal processing

communities. More generally, the ℓ1-norm has been used as a regular-

ization function beyond the least-square context, leading to problems

of the form

min
α∈Rp

f(α) + λ‖α‖1, (1.13)

where f : Rp → R is a loss function. In the rest of this section, we will

present several variants of the ℓ1-norm, but before that, we will try to

understand why such a penalty is appropriate for sparse estimation.

Why does the ℓ1-norm induce sparsity? Even though we have

claimed that there is no rigorous relation between the sparsity of α

and its ℓ1-norm in general, intuition about the sparsity-inducing effect

of the ℓ1-norm may be obtained from several viewpoints.

Analytical point of view. In the previous section about wavelets,

we have seen that when D is orthogonal, the ℓ1-decomposition prob-

lem (1.10) admits an analytic closed form solution (1.5) obtained by

soft-thresholding. As a result, whenever the magnitude of the inner

product d⊤
i x is smaller than λ for an index i, the corresponding vari-

able α⋆[i] is equal to zero. Thus, the number of zeroes of the solution α⋆

monotonically increases with λ.

For non-orthogonal matrices D, such a monotonic relation does not

formally hold anymore; in practice, the sparsity-inducing property of

the ℓ1-penalty remains effective, as illustrated in Figure 1.4. Some in-

tuition about this fact can be gained by studying optimality conditions

for the general ℓ1-regularized problem (1.13) where f is a differentiable

function. The following lemma details these conditions.

Lemma 1.1 (Optimality conditions for ℓ1-regularized problems).

A vector α⋆ in R
p is a solution of (1.13) if and only if

∀i = 1, . . . , p

{

−∇f(α⋆)[i] = λ sign(α⋆[i]) if α⋆[i] 6= 0,

|∇f(α⋆)[i]| ≤ λ otherwise.
(1.14)
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Proof. A proof using the classical concept of subdifferential from con-

vex optimization can be found in [see,e.g., Bach et al., 2012a]. Here,

we provide instead an elementary proof using the simpler concept of

directional derivative for nonsmooth functions, defined as, when the

limit exists,

∇g(α,κ) , lim
t→0+

g(α + tκ)− g(α)

t
,

for a function g : R
p → R at a point α in R

p and a direction κ

in R
p. For convex functions g, directional derivatives always exist and

a classical optimality condition for α⋆ to be a minimum of g is to

have ∇g(α⋆,κ) non-negative for all directions κ [Borwein and Lewis,

2006]. Intuitively, this means that one cannot find any direction κ such

that an infinitesimal move along κ from α⋆ decreases the value of the

objective. When g is differentiable, the condition is equivalent to the

classical optimality condition ∇g(α⋆) = 0.

We can now apply the directional derivative condition to the func-

tion g : α 7→ f(α) + λ‖α‖1, which is equivalent to

∀κ ∈ R
p, ∇f(α⋆)⊤κ + λ

p
∑

i=1

{

sign(α⋆[i])κ[i] if α⋆[i] 6= 0,

|κ[i]| otherwise

}

≥ 0.

(1.15)

It is then easy to show that (1.15) holds for all κ if and only the

inequality holds for the specific values κ = ei and κ = −ei for all i,

where ei is the vector in R
p with zeroes everywhere except for the i-th

entry that is equal to one. This immediately provides an equivalence

between (1.15) and (1.14).

Lemma 1.1 is interesting from a computational point of view (see

Section 5.2), but it also tells us that when λ ≥ ‖∇f(0)‖∞, the condi-

tions (1.14) are satisfied for α⋆ = 0, the sparsest solution possible.

Physical point of view. In image processing or computer vision,

the word “energy” often denotes the objective function of a minimiza-

tion problem; it is indeed common in physics to have complex systems

that stabilize at a configuration of minimum potential energy. The neg-

ative of the energy’s gradient represents a force, a terminology we will
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borrow in this paragraph. Consider for instance a one-dimensional ℓ1-

regularized estimation problem

min
α∈R

1

2
(β − α)2 + λ|α|, (1.16)

where β is a positive constant. Whenever α is non-zero, the ℓ1-

penalty is differentiable with derivative λ sign(α). When interpreting

this objective as an energy minimization problem, the ℓ1-penalty can

be seen as applying a force driving α towards the origin with con-

stant intensity λ. Consider now instead the squared ℓ2-penalty, also

called regularization of Tikhonov [1963], or ridge regression regulariza-

tion [Hoerl and Kennard, 1970]:

min
α∈R

1

2
(β − α)2 +

λ

2
α2. (1.17)

The derivative of the quadratic energy (λ/2)α2 is λα. It can be inter-

preted as a force that also points to the origin but with linear intensity

λ|α|. Therefore, the force corresponding to the ridge regularization can

be arbitrarily strong when α is large, but if fades away when α gets

close to zero. As a result, the squared ℓ2-regularization does not have

a sparsity-inducing effect. From an analytical point of view, we have

seen that the solution of (1.16) is zero when |β| is smaller than λ. In

contrast, the solution of (1.17) admits a closed form α⋆ = β/(1 + λ).

And thus, regardless of the parameter λ, the solution is never zero.

We present a physical example illustrating this phenomenon in

Figure 1.5. We use springs whose potential energy is known to be

quadratic, and objects with a gravitational potential energy that is

approximately linear on the Earth’s surface.

Geometrical point of view. The sparsity-inducing effect of the ℓ1-

norm can also be interpreted by studying the geometry of the ℓ1-ball

{α ∈ R
p : ‖α‖1 ≤ µ}. More precisely, understanding the effect of the

Euclidean projection onto this set is important: in simple cases where

the design matrix D is orthogonal, the solution of (1.9) can indeed be

obtained by the projection

min
α∈Rp

1

2
‖β −α‖22 s.t. ‖α‖1 ≤ µ, (1.18)
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E1 = k1
2 (β − α)2

E2 = k2
2 α

2 α β
α

E1 = k1
2 (β − α)2

E2 = mg|α|, α ≥ 0

(a) Small regularization

E1 = k1
2 (β − α)2

E2 = k2
2 α

2 α
α⋆ = 0

E1 = k1
2 (β − α)2

E2 = mg|α|, α ≥ 0

(b) High regularization

Figure 1.5: A physical system illustrating the sparsity-inducing effect of the ℓ1-
norm (on the right) in contrast to the Tikhonov-ridge regularization (on the left).
Three springs are represented in each figure, two on the left, one on the right. Red
points are fixed and cannot move. On the left, two springs are linked to each other
by a blue point whose position can vary. On the right, a blue object of mass m is
attached to the spring. Right and left configurations define two different dynamical
systems with energies E1+E2; on the left, E1 and E2 are elastic potential energies; on
the right, E1 is the same as on the left, whereas E2 is a gravitational potential energy,
where g is the gravitational constant on the Earth’s surface. Both system can evolve
according to their initial positions, and stabilize for the value of α⋆ that minimizes
the energy E1 +E2, assuming that some energy can be dissipated by friction forces.
On the left, it is possible to show that α⋆ = βk1/(k1 + k2) and thus, the solution α⋆

is never equal to zero, regardless of the strength k2 of the bottom spring. On the
right, the solution is obtained by soft-thresholding: α⋆ = max(β − mg/k1, 0). As
shown on Figure 1.5(b), when the mass m is large enough, the blue object touches
the ground and α⋆ = 0. Figure adapted from [Mairal, 2010].
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where β = D⊤x. When D is not orthogonal, a classical algorithm for

solving (1.9) is the projected gradient method (see Section 5.2), which

performs a sequence of projections (1.18) for different values of β. Note

that how to solve (1.18) efficiently is well studied; it can be achieved

in O(p) operations with a divide-and-conquer strategy [Brucker, 1984,

Duchi et al., 2008].

In Figure 1.6, we illustrate the effect of the ℓ1-norm projection and

compare it to the case of the ℓ2-norm. The corners of the ℓ1-ball are

on the main axes and correspond to sparse solutions. Two of them are

represented by red and green dots, with respective coordinates (µ, 0)

and (0, µ). Most strikingly, a large part of the space in the figure,

represented by red and green regions, ends up on these corners after

projection. In contrast, the set of points that is projected onto the blue

dot, is simply the blue line. The blue dot corresponds in fact to a dense

solution with coordinates (µ/2, µ/2). Therefore, the figure illustrates

that the ℓ1-ball in two dimensions encourages solutions to be on its

corners. In the case of the ℓ2-norm, the ball is isotropic, and treats

every direction equally. In Figure 1.7, we represent these two balls in

three dimensions, where we can make similar observations.

More formally, we can mathematically characterize our remarks

about Figure 1.6. Consider a point y in R
p on the surface of the ℓ1-ball

of radius µ = 1, and define the set N , {z ∈ R
p : π(z) = y}, where π

is the projection operator onto the ℓ1-ball. Examples of pairs (y,N )

have been presented in Figure 1.6; for instance, when y is the red or

green dot, N is respectively the red or green region. It is particularly

informative to study how N varies with y, which is the focus of the

next proposition.

Proposition 1.1 (Characterization of the set N ).

For a non-zero vector y in R
p, the set N defined in the previous para-

graph can be written as N = y + K, where K is a polyhedral cone of

dimension p− ‖y‖0 + 1.

Proof. A classical theorem [see Bertsekas, 1999, Proposition B.11] al-

lows us to rewrite N as

N = {z ∈ R
p : ∀ ‖x‖1 ≤ 1, (z− y)⊤(x− y) ≤ 0} = y +K,
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ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

(a) Effect of the Euclidean projection onto the ℓ1-ball.

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

(b) Effect of the Euclidean projection onto the ℓ2-ball.

Figure 1.6: Illustration in two dimensions of the projection operator onto the ℓ1-
ball in Figure (a) and ℓ2-ball in Figure (b). The balls are represented in gray. All
points from the red regions are projected onto the point of coordinates (0, µ) denoted
by a red dot. Similarly, the green and blue regions are projected onto the green and
blue dots, respectively. For the ℓ1-norm, a large part of the figure is filled by the red
and green regions, whose points are projected to a sparse solution corresponding to
a corner of the ball. For the ℓ2-norm, this is not the case: any non-sparse point—say,
for instance on the blue line—is projected onto a non-sparse solution.
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(a) ℓ2-ball in 3D (b) ℓ1-ball in 3D

Figure 1.7: Representation in three dimensions of the ℓ1- and ℓ2-balls. Figure
borrowed from Bach et al. [2012a], produced by Guillaume Obozinski.

where y +K denotes the Minkowski sum {y + z : z ∈ K} between the

set {y} and the cone K defined as

K , {d ∈ R
p : ∀ ‖x‖1 ≤ 1, d⊤(x− y) ≤ 0}.

Note that in the optimization literature, K is often called the “normal

cone” to the unit ℓ1-ball at the point y [Borwein and Lewis, 2006].

Equivalently, we have

K = {d ∈ R
p : max

‖x‖1≤1
d⊤x ≤ d⊤y}

= {d ∈ R
p : ‖d‖∞ ≤ d⊤y},

(1.19)

where we have used the fact that quantity max‖x‖1≤1 d⊤x, called the

dual-norm of the ℓ1-norm, is equal to ‖d‖∞ [see Bach et al., 2012a].

Note now that according to Hölder’s inequality, we also have d⊤y ≤
‖d‖∞‖y‖1 ≤ ‖d‖∞ in Eq. (1.19). Therefore, the inequalities are in fact

equalities. It is then easy to characterize vectors d such that d⊤y =

‖d‖∞‖y‖1 and it is possible to show that K is simply the set of vectors d

satisfying d[i] = sign(y[i])‖d‖∞ for all i such that y[i] 6= 0.

This would be sufficient to conclude the proposition, but it is also

possible to pursue the analysis and exactly characterize K by finding
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a set of generators.4 Let us define the vector s in {−1, 0,+1}p that

carries the sparsity pattern of y, more precisely, with s[i] = sign(y[i])

for all i such that y[i] 6= 0, and s[i] = 0 otherwise. Let us also define

the set of indices {i1, . . . , il} corresponding to the l zero entries of y,

and ei in R
p the binary vector whose entries are all zero but the i-th one

that is equal to 1. Then, after a short calculation, we can geometrically

characterize the polyhedral cone K:

K = cone (s, s− ei1 , s + ei1 , s− ei2 , s + ei2 , . . . , s− eil
, s + eil

) ,

where the notation “cone” is defined in footnote 4.

It is now easy to see that the set K “grows” with the number l of

zero entries in y, and that K lives in a subspace of dimension l+ 1 for

all non-zero vector y. For example, when l = 0—that is, y is a dense

vector (e.g., the blue point in Figure 1.6(a)), K is simply a half-line.

To conclude, the geometrical intuition to gain from this section is

that the Euclidean projection onto a convex set encourages solutions

on singular points, such as edges or corners for polytopes. Such a prin-

ciple indeed applies beyond the ℓ1-norm. For instance, we illustrate

the regularization effect of the ℓ∞-norm in Figure 1.8, whose corners

coordinates have same magnitude.

Non-convex regularization. Even though it is well established that

the ℓ1-norm encourages sparse solutions, it remains only a con-

vex proxy of the ℓ0-penalty. Both in statistics and signal process-

ing, other sparsity-inducing regularization functions have been pro-

posed, in particular continuous relaxations of ℓ0 that are non-convex

[Frank and Friedman, 1993, Fan and Li, 2001, Daubechies et al., 2010,

Gasso et al., 2009]. These functions are using a non-decreasing concave

function ϕ : R+ 7→ R, and the sparsity-inducing penalty is defined as

ψ(α) ,
p
∑

i=1

ϕ (|α[i]|) .

4A collection of vectors z1, z2, . . . , zl are called generators for a cone K when K
consists of all positive combinations of the vectors zi. In other words, K =
{
∑l

i=1
αizi : αi ≥ 0}. In that case, we use the notation K = cone(z1, . . . , zl).
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α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

Figure 1.8: Similar illustration as Figure 1.6 for the ℓ∞-norm. The regularization
effect encourages solution to be on the corners of the ball, corresponding to points
with the same magnitude |α[1]| = |α[2]| = µ.

For example, the ℓq-penalty uses ϕ : x 7→ xq [Frank and Friedman,

1993], or an approximation ϕ : x 7→ (x + ε)q; the reweighted-ℓ1 algo-

rithm of Fazel [2002], Fazel et al. [2003], Candès et al. [2008] implicitly

uses ϕ : x 7→ log(x + ε). These penalties typically lead to intractable

estimation problems, but approximate solutions can be obtained with

continuous optimization techniques (see Section 5.3).

The sparsity-inducing effect of the penalties ψ is known to be

stronger than ℓ1. As shown in Figure 1.9(a), the magnitude of the

derivative of ϕ grows when one approaches zero because of its con-

cavity. Thus, in the one-dimensional case, ψ can be interpreted as a

force driving α towards the origin with increasing intensity when α gets

closer to zero. In terms of geometry, we also display the ℓq-ball in Fig-

ure 1.9(b), with the same red, blue, and green dots as in Figure 1.6.

The part of the space that is projected onto the corners of the ℓq-ball

is larger than that for ℓ1. Interestingly, the geometrical structure of

the red and green regions are also more complex. Their combinatorial

nature makes the projection problem onto the ℓq-ball more involved

when q < 1.
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α

ϕ(|α|) = log(|α|+ ε)

(a) Illustration of a non-convex sparsity-inducing penalty.

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1

(b) ℓq-ball with q < 1.

Figure 1.9: Illustration of the sparsity-inducing effect of a non-convex penalty.
In (a), we plot the non-convex penalty α 7→ log(|α| + ε), and in (b), we present a
similar figure as 1.6 for the ℓq-penalty, when choosing q < 1.
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elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]

Figure 1.10: Similar figure as 1.6 for the elastic-net penalty.

The elastic-net. To cope with instability issues of estimators ob-

tained with the ℓ1-regularization, Zou and Hastie [2005] have proposed

to combine the ℓ1- and ℓ2-norms with a penalty called elastic-net:

ψ(α) , ‖α‖1 + γ‖α‖22.

The effect of this penalty is illustrated in Figure 1.10. Compared to

Figure 1.6, we observe that the red and green regions are smaller for

the elastic-net penalty than for ℓ1. The sparsity-inducing effect is thus

less aggressive than the one obtained with ℓ1.

Total variation. The anisotropic total variation penalty [Rudin et al.,

1992] for one dimensional signals is the ℓ1-norm of finite differences

ψ(α) ,
p−1
∑

i=1

|α[i+ 1]−α[i]|,

which encourages piecewise constant signals. It is also known in statis-

tics under the name of “fused Lasso” [Tibshirani et al., 2005]. The

penalty can easily be extended to two-dimensional signals, and has

been widely used for regularizing inverse problems in image process-

ing [Chambolle, 2005].
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Group sparsity. In some cases, variables are organized into predefined

groups forming a partition G of {1, . . . , p}, and one is looking for a so-

lution α⋆ such that variables belonging to the same group of G are set

to zero together. For example, such groups have appeared in Section 1.2

about wavelets, where G could be defined according to neighborhood

relationships of wavelet coefficients. Then, when it is known before-

hand that a problem solution only requires a few groups of variables

to explain the data, a regularization function automatically selecting

the relevant groups has been shown to improve the prediction per-

formance or the interpretability of the solution [Turlach et al., 2005,

Yuan and Lin, 2006, Obozinski et al., 2009, Huang and Zhang, 2010].

The group sparsity principle is illustrated in Figure 1.11(b).

An appropriate regularization function to obtain a group-sparsity

effect is known as “Group-Lasso” penalty and is defined as

ψ(α) =
∑

g∈G
‖α[g]‖q, (1.20)

where ‖.‖q is either the ℓ2 or ℓ∞-norm. To the best of our knowledge,

such a penalty appears in the early work of Grandvalet and Canu [1999]

and Bakin [1999] for q = 2, and Turlach et al. [2005] for q =∞. It has

been popularized later by Yuan and Lin [2006].

The function ψ in (1.20) is a norm, thus convex, and can be in-

terpreted as the ℓ1-norm of the vector [‖α[g]‖q]g∈G of size |G|. Conse-

quently, the sparsity-inducing effect of the ℓ1-norm is applied at the

group level. The penalty is highly related to the group-thresholding

approach for wavelets, since the group-thresholding estimator (1.7) is

linked to ψ through Eq. (1.8).

In Figure 1.13(a), we visualize the unit ball of a Group-Lasso norm

obtained when G contains two groups G = {{1, 2}, {3}}. The ball has

two singularities: the top and bottom corners, corresponding to solu-

tions where variables 1 and 2 are simultaneously set to zero, and the

middle circle, corresponding to solutions where variable 3 only is set to

zero. As expected, the geometry of the ball induces the group-sparsity

effect.
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Structured sparsity. Group-sparsity is a first step towards the more

general idea that a regularization function can encourage sparse solu-

tions with a particular structure. This notion is called structured spar-

sity and has been introduced under a large number of different point

of views [Zhao et al., 2009, Jacob et al., 2009, Jenatton et al., 2011a,

Baraniuk et al., 2010, Huang et al., 2011]. To some extent, it follows

the concept of group-thresholding introduced in the wavelet literature,

which we have presented in Section 1.2. In this paragraph, we briefly

review some of these works, but for a more detailed review, we refer

the reader to [Bach et al., 2012b].

Some penalties are non-convex. For instance, Huang et al. [2011]

and Baraniuk et al. [2010] propose two different combinatorial ap-

proaches based on a predefined set G of possibly overlapping groups

of variables. These penalties encourage solutions whose support is in

the union of a few number groups, but they lead to NP-hard optimiza-

tion problems. Other penalties are convex. In particular, Jacob et al.

[2009] introduce a sparsity-inducing norm that is exactly a convex re-

laxation of the penalty of Huang et al. [2011], even though these two

approaches were independently developed at the same time. As a result,

the convex penalty of Jacob et al. [2009] encourages a similar structure

as the one of Huang et al. [2011].

By following a different direction, the Group-Lasso penalty (1.20)

has been considered when the groups are allowed to over-

lap [Zhao et al., 2009, Jenatton et al., 2011a]. As a consequence, vari-

ables belonging to the same groups are encouraged to be set to zero to-

gether. It was proposed for hierarchical structures by Zhao et al. [2009]

with the following rule: whenever two groups g and h are in G, they

should be either disjoint, or one should be included in another. Ex-

amples of such hierarchical group structures are given in Figures 1.11

and 1.12. The effect of the penalty is to encourage sparsity patterns

that are rooted subtrees. Equivalently, a variable can be non-zero only

if its parent in the tree is non-zero, which is the main property of the

zero-tree coding scheme introduced in the wavelet literature [Shapiro,

1993], and already illustrated in Figure 1.2.
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(a) Sparsity. (b) Group sparsity. (c) Hierarchical sparsity.

Figure 1.11: Illustration of the sparsity, group sparsity, and hierarchical sparsity
principles. Each column represents the sparsity pattern of a vector with 12 variables
and non-zero coefficients are represented by gray squares. On the left (a), the vectors
are obtained with a simple sparsity-inducing penalty, such as the ℓ1-norm, and
the non-zero variables are scattered. In the middle figure (b), a group sparsity-
inducing penalty with three groups of variables is used. On the right (c), we use the
hierarchical penalty consisting of the Group Lasso plus the ℓ1-norm. Some variables
within a group can be discarded.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure 1.12: Illustration of the hierarchical sparsity of Zhao et al. [2009], which
generalizes the zero-tree coding scheme of Shapiro [1993]. The groups of variables
correspond to the red rectangles. The empty nodes represent variable that are set
to zero. They are contained in three groups: {4, 8, 9}, {13}, {7, 14, 15}.
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Finally, Jenatton et al. [2011a] have extended the hierarchical

penalty of Zhao et al. [2009] to more general group structures, for ex-

ample when variable are organized on a two-dimensional grid, encour-

aging neighbor variables to be simultaneously set to zero. We conclude

this brief presentation of structured sparsity with Figure 1.13, where we

present the unit balls of some sparsity-inducing norms. Each of them

exhibits singularities and encourages particular sparsity patterns.

Spectral sparsity. Another form of parsimony has been devised in the

spectral domain [Fazel et al., 2001, Srebro et al., 2005]. For estimation

problems where model parameters are matrices, the rank has been used

as a natural regularization function. The rank of a matrix is equal to

the number of non-zero singular values, and thus, it can be interpreted

as the ℓ0-penalty of the matrix spectrum. Unfortunately, due to the

combinatorial nature of ℓ0, the rank penalization typically leads to

intractable optimization problems.

A natural convex relaxation has been introduced in the control

theory literature by Fazel et al. [2001] and consists of computing the ℓ1-

norm of the spectrum—that is, simply the sum of the singular values.

The resulting penalty appears under different names, the most common

ones being the trace, nuclear, or Schatten norm. It is defined for a

matrix A in R
p×k with k ≥ p as

‖A‖∗ ,

p
∑

i=1

si(A),

where si(A) is the i-th singular value of A. Traditional applications

of the trace norm in machine learning are matrix completion or col-

laborative filtering [Pontil et al., 2007, Abernethy et al., 2009]. These

problems have become popular with the need of scalable recommender

systems for video streaming providers. The goal is to infer movie prefer-

ences for each customer, based on their partial movie ratings. Typically,

the matrix is of size p × k, where p is the number of movies and k is

the number of users. Each user gives a score for a few movies, corre-

sponding to some entries of the matrix, and the recommender system

tries to infer the missing values. Similar techniques have also recently
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(a) Group-Lasso penalty
ψ(α) = ‖α[1, 2]‖2 + |α[3]|.

(b) Hierarchical penalty
ψ(α) = ‖α‖2 + |α[1]| + |α[2]|.

(c) Structured sparse penalty. (d) Structured sparse penalty.

Figure 1.13: Visualization in three dimensions of unit balls corresponding to var-
ious sparsity-inducing norms. (a): Group Lasso penalty; (b): hierarchical penalty
of Zhao et al. [2009]; (c) and (d): examples of structured sparsity-inducing penal-
ties of Jacob et al. [2009]. Figure borrowed from Bach et al. [2012a], produced by
Guillaume Obozinski.
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been used in other fields, such as in genomics to infer missing genetic

information [Chi et al., 2013].

1.4 Dictionary learning

We have previously presented various formulations where a signal x

in R
m is approximated by a sparse linear combination of a few columns

of a matrix D in R
m×p. In the context of signal and image processing,

this matrix is often called dictionary and its columns atoms. As seen

in Section 1.2, a large amount of work has been devoted in the wavelet

literature for designing a good dictionary adapted to natural images.

In neuroscience, Olshausen and Field [1996, 1997] have proposed a

significantly different approach to sparse modeling consisting of adapt-

ing the dictionary to training data. Because the size of natural images

is too large for learning a full matrix D, they have chosen to learn

the dictionary on natural image patches, e.g., of size m = 16 × 16

pixels, and have demonstrated that their method could automatically

discover interpretable structures. We discuss this topic in more details

in Section 2.

The motivation of Olshausen and Field [1996, 1997] was to show

that the structure of natural images is related to classical theories

of the mammalian visual cortex. Later, dictionary learning found nu-

merous applications in image restoration, and was shown to signifi-

cantly outperform off-the-shelf bases for signal reconstruction [see, e.g.,

Elad and Aharon, 2006, Mairal et al., 2008c, 2009, Protter and Elad,

2009, Yang et al., 2010a].

Concretely, given a dataset of n training signals X = [x1, . . . ,xn],

dictionary learning can be formulated as the following minimization

problem

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi), (1.21)

where A = [α1, . . . ,αn] carries the decomposition coefficients of the

signals x1, . . . ,xn, ψ is sparsity-inducing regularization function, and C
is typically chosen as the following set:

C , {D ∈ R
m×p : ∀j ‖dj‖2 ≤ 1}.
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To be more precise, Olshausen and Field [1996] proposed several

choices for ψ; their experiments were for instance conducted with the ℓ1-

norm, or with the smooth function ψ(α) ,
∑p

j=1 log(ε+ α[j]2), which

has an approximate sparsity-inducing effect. The constraint D ∈ C was

also not explicitly modeled in the original dictionary learning formu-

lation; instead, the algorithm of Olshausen and Field [1996] includes

a mechanism to control and rescale the ℓ2-norm of the dictionary ele-

ments. Indeed, without such a mechanism, the norm of D would arbi-

trarily go to infinity, leading to small values for the coefficients αi and

making the penalty ψ ineffective.

The number of samples n is typically large, whereas the signal

dimension m is small. The number of dictionary elements p is often

chosen larger than m—in that case, the dictionary is said to be over-

complete—even though a choice p < m often leads to reasonable re-

sults in many applications. For instance, a typical setting would be to

have m = 10 × 10 pixels for natural image patches, a dictionary of

size p = 256, and more than 100 000 training patches.

A large part of this monograph is related to dictionary learning and

thus we only briefly discuss this matter in this introduction. Section 2 is

indeed devoted to unsupervised learning techniques for natural image

patches, including dictionary learning; Sections 3 and 4 present a large

number of applications in image processing and computer vision; how

to solve (1.21) is explained in Section 5.5 about optimization.

Matrix factorization point of view. An equivalent representation

of (1.21) is the following regularized matrix factorization problem

min
D∈C,A∈Rp×n

1

2
‖X−DA‖2F + λΨ(A), (1.22)

where Ψ(A) =
∑n

i=1 ψ(αi). Even though the reformulation is a matter

of using different notation, seeing dictionary learning as a matrix fac-

torization problem opens up interesting perspectives. In particular, it

makes obvious some links with other unsupervised learning approaches

such as non-negative matrix factorization [Paatero and Tapper, 1994],

clustering techniques, and others [see Mairal et al., 2010a]. These links

will be further developed in Section 2.
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Risk minimization point of view. Dictionary learning can also be seen

from a machine learning point of view. Indeed, dictionary learning can

be written as

min
D∈C

{

fn(D) ,
1

n

n∑

i=1

L(xi,D)

}

,

where L : Rm × R
m×p is a loss function defined as

L(x,D) , min
α∈Rp

1

2
‖x−Dα‖22 + λψ(α).

The quantity L(x,D) should be small if D is “good” at representing

the signal x in a sparse fashion, and large otherwise. Then, fn(D) is

called the empirical cost.

However, as pointed out by Bottou and Bousquet [2008], one is usu-

ally not interested in the exact minimization of the empirical cost fn(D)

for a fixed n, which may lead to overfitting on the training data, but

instead in the minimization of the expected cost, which measures the

quality of the dictionary on new unseen data:

f(D) , Ex[L(x,D)] = lim
n→∞ fn(D) a.s.,

where the expectation is taken relative to the (unknown) probability

distribution of the data.5

The expected risk minimization formulation is interesting since

it paves the way to stochastic optimization techniques when a

large amount of data is available [Mairal et al., 2010a] and to the-

oretical analysis [Maurer and Pontil, 2010, Vainsencher et al., 2011,

Gribonval et al., 2013], which are developed in Sections 5.5 and 1.6,

respectively.

Constrained variants. Following the original formulation of

Olshausen and Field [1996, 1997], we have chosen to present dic-

tionary learning where the regularization function is used as a penalty,

even though it can also be used as a constraint as in (1.9). Then,

natural variants of (1.21) are

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ψ(αi) ≤ µ. (1.23)

5We use “a.s.” to denote almost sure convergence.
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or

min
D∈C,A∈Rp×n

n∑

i=1

ψ(αi) s.t. ‖xi −Dαi‖22 ≤ ε. (1.24)

Note that (1.23) and (1.24) are not equivalent to (1.21). For in-

stance, problem (1.23) can be reformulated using a Lagrangian func-

tion [Boyd and Vandenberghe, 2004] as

min
D∈C

n∑

i=1

(

max
λi≥0

min
αi∈Rp

1

2
‖xi −Dαi‖22 + λi(ψ(αi)− µ)

)

,

where the optimal λi’s are not necessarily equal to each other, and

their relation with the constraint parameter µ is unknown in advance.

A similar discussion can be conducted for (1.24) and it is thus important

in practice to choose one of the formulations (1.21), (1.23), or (1.24);

the best one depends on the problem at hand and there is no general

rule for preferring one instead of another.

1.5 Compressed sensing and sparse recovery

Finally, we conclude our historical tour of parsimony with recent the-

oretical results obtained in signal processing and statistics. We focus

on methods based on the ℓ1-norm, i.e., the basis pursuit formulation

of (1.9)—more results on structured sparsity-inducing norms are pre-

sented by Bach et al. [2012b].

Most analyses rely on particular assumptions regarding the prob-

lem. We start this section with a cautionary note from Hocking [1976]:

The problem of selecting a subset of independent or pre-

dictor variables is usually described in an idealized setting.

That is, it is assumed that (a) the analyst has data on a

large number of potential variables which include all rele-

vant variables and appropriate functions of them plus, possi-

bly, some other extraneous variables and variable functions

and (b) the analyst has available “good” data on which to

base the eventual conclusions. In practice, the lack of sat-

isfaction of these assumptions may make a detailed subset

selection analysis a meaningless exercise.
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In this section, we present such theoretical results where the assump-

tions are often not met in practice, but also results that either (1) can

have an impact on the practice of sparse recovery or (2) do not need

strong assumptions.

From support recovery to signal denoising. Given a signal x in R
m

and a dictionary D in R
m×p with ℓ2-normalized columns, throughout

this section, we assume that x is generated as x = Dα⋆ + ε with a

sparse vector α⋆ in R
p and an additive noise ε in R

m. For simplic-

ity, we consider α⋆ and D as being deterministic while the noise is

random, independent and identically distributed, with zero mean and

finite variance σ2.

The different formulations presented earlier in Section 1.3, for in-

stance basis pursuit, provide estimators α̂ of the “true” vector α⋆.

Then, the three following goals have been studied in sparse recovery,

typically in decreasing order of hardness:

• support recovery and sign consistency: we want the support

of α̂ (i.e., the set of non-zero elements) to be the same or to be

close to the one of α⋆. The problem is often called “model selec-

tion” in statistics and “support recovery” in signal processing; it

is often refined to the estimation of the full sign pattern—that is,

among the non-zero elements, we also want the correct sign to be

estimated.

• code estimation: the distance ‖α̂ − α⋆‖2 should be small. In

statistical terms, this correspond to the “estimation” of α⋆.

• signal denoising: regardless of code estimation, we simply want

the distance ‖Dα̂−Dα⋆‖2 to be small; the goal is not to obtain

exactly α⋆, but simply to obtain a good denoised version of the

signal x = Dα⋆ + ε.

A good code estimation performance does imply a good denoising

performance but the converse is not true in general. In most analyses,

support recovery is harder than code estimation. As detailed below,

the sufficient conditions for good support recovery lead indeed to good

estimation.
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High-dimensional phenomenon. Without sparsity assumptions, even

the simplest denoising task can only achieve denoising errors of the

order 1
n‖Dα̂ − Dα⋆‖22 ≈ σ2p

m , which is attained for ordinary least-

squares, and is the best possible [Tsybakov, 2003]. Thus, in order to

have at least a good denoising performance (prediction performance in

statistics), either the noise σ is small, or the signal dimension m (the

number of samples) is much larger than the number of atoms p (the

number of variables to select from).

When making the assumption that the true code α⋆ is sparse with

at most k non zeros, smaller denoising errors can be obtained. In

that case, it is possible indeed to replace the scaling σ2p
m by σ2k log p

m .

Thus, even when p is much larger than m, as long as log p is much

smaller than m, we may have good prediction performance. However,

this high-dimensional phenomenon currently6 comes at a price: (1) ei-

ther an exhaustive search over the subsets of size k needs to be per-

formed [Massart, 2003, Bunea et al., 2007, Raskutti et al., 2011] or (2)

some assumptions have to be made regarding the dictionary D, which

we now describe.

Sufficient conditions for high-dimensional fast rates. Most sufficient

conditions have the same flavor. A dictionary behaves well if the off-

diagonal elements of D⊤D are small, in other words, if there is little cor-

relation between atoms. However, the notion of coherence (the maximal

possible correlation between two atoms) was the first to emerge [see,

e.g., Elad and Bruckstein, 2002, Gribonval and Nielsen, 2003], but it is

not sufficient to obtain a high-dimensional phenomenon.

In the noiseless setting, Candes and Tao [2005] and Candès et al.

[2006] introduced the restricted isometry property (RIP), which states

that all submatrices of size k×k of D⊤D should be close to isometries,

that is, should have all of their eigenvalues sufficiently close to one.

With such an assumption, the Lasso behaves well: it recovers the true

support and estimates the code α⋆ and the signal Dα⋆ with an error

of order σ2k log p
m .

6Note that recent research suggests that this fast rate of σ2k log p
m

cannot be
achieved by polynomial-time algorithms [Zhang et al., 2014].
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The main advantage of the RIP assumption is that one may exhibit

dictionaries for which it is satisfied, usually obtained by normalizing

a matrix D obtained from independent Gaussian entries, which may

satisfy the condition that (k log p)/m remains small. Thus, the sufficient

conditions are not vacuous. However, the RIP assumption has two main

drawbacks: first, it cannot be checked on a given dictionary D without

checking all O(pk) submatrices of size k; second, it may be weakened

if the goal is support recovery or simply estimation (code recovery).

There is therefore a need for sufficient conditions that can be

checked in polynomial time while ensuring sparse recovery. However,

none currently exists with the same scalings between k, p and m

[see, e.g., Juditsky and Nemirovski, 2011, d’Aspremont and El Ghaoui,

2011]. When refining to support recovery, Fuchs [2005], Tropp [2004],

Wainwright [2009] provide sufficient and necessary conditions of a

similar flavor than requiring that all submatrices of size k are

sufficiently close to orthogonal. For the tightest conditions, see,

e.g., Bühlmann and Van De Geer [2011]. Note that these conditions

are also typically sufficient for algorithms that are not based explicitly

on convex optimization [Tropp, 2004].

Finally, it is important to note that (a) most of the theoretical re-

sults advocate a value for the regularization parameter λ proportional

to σ
√
m log p, which unfortunately depends on the noise level σ (which

is typically unknown in practice), and that (b) for orthogonal dictio-

naries, all of these assumptions are met; however, this imposes p = m.

Compressed sensing vs. statistics. Our earlier quote from Hocking

[1976] applies to sparse estimation as used in statistics for least-squares

regression, where the dictionary D is simply the input data and x the

output data. In most situations, there are some variables, represented

by columns of D, that are heavily correlated. Therefore, in most practi-

cal situations, the assumptions do not apply. However, it does not mean

that the high-dimensional phenomenon does not apply in a weaker

sense (see the next paragraph for slow rates); moreover it is important

to remark that there are other scenarios, beyond statistical variable

selection, where the dictionary D may be chosen.
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In particular, in signal processing, the dictionary D may be seen

as measurements—that is, we want to encode α⋆ in R
p using m linear

measurements Dα⋆ in R
m for m much larger than p. What the result

of Candes and Tao [2005] alluded to earlier shows is that for random

measurements, one can recover a k-sparse α⋆ from (a potentially noisy

version of) Dα⋆, with overwhelming probability, as long as (k log p)/m

remains small. This is the core idea behind compressive sensing. See

more details from Donoho [2006], Candès and Wakin [2008].

High-dimensional slow rates. While sufficient conditions presented

earlier are often not met beyond random dictionaries, for the basis pur-

suit/Lasso formulation, the high-dimensional phenomenon may still be

observed, but only for the denoising situation and with a weaker re-

sult. As shown by Greenshtein [2006] and Bühlmann and Van De Geer

[2011, Corollary 6.1], without assumptions regarding correlations, we

have 1
m‖Dα̂−Dα∗‖22 ≈

√
σ2k2 log p

m . Note that this slower rate does not

readily extend to non-convex formulations.

Impact on dictionary learning. The dictionary learning framework

which we describe in this monograph relies on sparse estimation, that

is, given the dictionary D, the estimation of the code α may be ana-

lyzed using the tools we have presented in this section. However, the

dictionaries that are learned do not exhibit low correlations between

atoms and thus theoretical results do not apply (see dedicated results

in the next section). However, they suggest that (a) the codes α may

not be unique in general and caution has to be observed when repre-

senting a signal x by its code α, (b) methods based on ℓ1-penalization

are more robust as they still provably perform denoising in presence

of strong correlations and (c) incoherence promoting may be used in

order to obtain better-behaved dictionaries [see Ramirez et al., 2009].

1.6 Theoretical results about dictionary learning

Dictionary learning, as formulated in Eq. (1.21), may be seen from

several perspectives, mainly as an unsupervised learning or a matrix

Full text available at: http://dx.doi.org/10.1561/0600000058



40 A Short Introduction to Parsimony

factorization problem. While the supervised learning problem from the

previous section (sparse estimation of a single signal given the dictio-

nary) comes with many theoretical analyses, there are still few theo-

retical results of the same kind for dictionary learning. In this section,

we present some of them. For simplicity, we assume that we penalize

with the ℓ1-norm and consider the minimization of

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1, (1.25)

where A = [α1, . . . ,αn] carries the decomposition coefficients of the

signals x1, . . . ,xn, and C is chosen as the following set:

C , {D ∈ R
m×p : ∀j ‖dj‖2 ≤ 1}.

Non-convex optimization problem. After imposing parsimony

through the ℓ1-norm, given D the objective function is convex in α,

given α the objective and constraints are convex in D. However, the

objective function is not jointly convex, which is typical of unsuper-

vised learning formulations. Hence, we consider an optimization prob-

lem for which it is not possible in general to guarantee that we are

going to obtain the global minimum; the same applies to EM-based

approaches [Dempster et al., 1977] or K-means [see, e.g., Bishop, 2006].

Symmetries. Worse, the problem in Equation (1.25) exhibits sev-

eral symmetries and admits multiple global optima, and the descent

methods that are described in Section 5 will also have the same in-

variance property. For example, the columns of D and rows of A can

be submitted to p! arbitrary (but consistent) permutations. There are

also sign ambiguities: in fact, if (D,A) is solution of (1.25), so is

(Ddiag(ε),diag(ε)A), where ε is a vector in {−1,+1}p that carries

a sign pattern. Therefore, for every one of the p! possible atom or-

ders, the dictionary learning problem admits 2p equivalent solutions.

In other words, for a solution (D,A), the pair (DΓ,Γ−1A) is also solu-

tion, where Γ is a generalized permutation formed by the product of a

diagonal matrix with +1 and −1’s on its diagonal with a permutation

matrix (in particular, Γ is thus orthogonal).
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The fact that there are no other transformations Γ such that

(DΓ,Γ−1A) is also solution of Eq. (1.25) for all solutions (D,A) of

this problem follows from a general property of isometries of the ℓq
norm for finite values of q such that q ≥ 1 and q 6= 2 [Li and So, 1994].

A manifold interpretation of sparse coding with projective geometry.

The interpretation of sparse coding as a locally linear representation of

a non-linear “manifold” is problematic because certain signals/features

are best thought of as “points” in some space rather than vectors. For

example, what does it mean to “add” two natural image patches? The

simplest point structure that one can think of is affine or projective,

and we show below that sparse coding indeed admits a natural inter-

pretation in this setting, at least for normalized signals.

Indeed, Let us restrict our attention from now on to unit-norm sig-

nals, as is customary in image processing after the usual centering and

normalization steps, which will be studied in Section 2.1.7 Note that

the dictionary elements dj in a solution D = [d1, . . . ,dp] of Eq. (1.25)

also have unit norm by construction.

Let us now consider the “half sphere”

S
m−1
+ ,

{

d ∈ S
m−1 : the first non-zero coefficient of d is positive

}

,

(1.26)

where S
m−1 is the unit sphere of dimension m− 1 formed by the unit

vectors of R
m.8 A direct consequence of the sign ambiguities of dic-

tionary learning discussed in the previous paragraph is that, for any

solution (D,A) of Eq. (1.25), there is an equivalent solution (D′,A′)
with all columns of D′ in S

m−1
+ . Indeed, suppose some column dj is

not in S
m−1
+ , and let dj [i] be its first non-zero coefficient (which is

necessarily negative since dj /∈ S
m−1
+ ). We can replace dj by −dj and

the corresponding row of the matrix A by its opposite to construct an

equivalent minimum of the dictionary learning problem in S
m−1
+ ×Rp×n.

7Note that the fact that the individual signals are centered does not imply that
the dictionary elements are.

8Similarly, one may define the set Sm−1
− by replacing “positive” by “non-negative”

in (1.26). The two sets S
m−1
+ and S

m−1
− form a partition of Sm−1 with equal volume,

and indeed, each one geometrically corresponds to a half sphere.
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Figure 1.14: An illustration of the projective interpretation of sparse coding.

Likewise, we can restrict the signals xi to lie in S
m−1
+ since replac-

ing xi by its opposite for a given dictionary simply amounts to replacing

the code αi by its opposite. Note that this identifies a patch with its

“negative”, but remember that the sign of its code elements is not

uniquely defined in the first place in conventional dictionary learning

settings (it is uniquely defined if we insist that the dictionary elements

belong to S
m−1
+ ). This allows us to identify both the dictionary elements

and the signals with points in the projective space P
m−1 = P (Rm).

Any k independent column vectors of D define a (k − 1)-dimensional

projective subspace of Pm−1 (see Figure 1.14).

In particular, if the data signals are assumed to be sampled from

a “noisy manifold” of dimension k− 1 embedded in P
m−1, an approxi-

mation of some sample x by a sparse linear combination of k elements

of D can be thought of as lying in (or near) the k − 1 dimensional

“tangent plane” there.

Consistency results. Given the dictionary learning problem from a

finite number of signals, there are several interesting theoretical ques-

tions to be answered. The first natural question is to understand the
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properties of the cost function that is minimized when the number of

signals tends to infinity, and in particular how it converges to the ex-

pectation under the signal generating distribution [Vainsencher et al.,

2011, Maurer and Pontil, 2010]. Then, given the non-convexity of the

optimization problems, local consistency results may be obtained, by

showing that the cost function which is minimized has a local mini-

mum around the pairs (D⋆,A⋆) that has generated the data. Given

RIP-based assumptions on the dictionary D⋆ and number of non zero

elements in the columns of A⋆, and the noise level, Gribonval et al.

[2014] show that the cost function defined in Eq. (1.25) has a local min-

imum around (D⋆,A⋆) with high probability, as long as the number of

signals n is greater than a constant times mp3. In the noiseless case,

earlier results have been also obtained Gribonval and Schnass [2010],

Geng et al. [2011], and recently it has been shown that under additional

assumptions, a good initializer could be found so that the previous type

of local consistency results can be applied [Agarwal et al., 2013].

Finally, recent algorithms have emerged in the theoretical science

community, which are not explicitly based on optimization [see, e.g.,

Spielman et al., 2013, Recht et al., 2012, Arora et al., 2014]. These

come with global convergence guarantees (with additional assumptions

regarding the signals), but their empirical performance on concrete sig-

nal and image processing problems have not yet been demonstrated.
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