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ABSTRACT
Despite the growing interest in diffusion models, gaining a
deep understanding of the model class remains an elusive en-
deavour, particularly for the uninitiated in non-equilibrium
statistical physics. Thanks to the rapid rate of progress in the
field, most existing work on diffusion models focuses on ei-
ther applications or theoretical contributions. Unfortunately,
the theoretical material is often inaccessible to practitioners
and new researchers, leading to a risk of superficial under-
standing in ongoing research. Given that diffusion models
are now an indispensable tool, a clear and consolidating
perspective on the model class is needed to properly contex-
tualize recent advances in generative modelling and lower
the barrier to entry for new researchers. To that end, we
revisit predecessors to diffusion models, such as hierarchical
latent variable models, and synthesize a holistic perspective
using only directed graphical modelling and variational in-
ference principles. The resulting narrative is easier to follow
as it imposes fewer prerequisites on the average reader rela-
tive to the view from non-equilibrium thermodynamics or
stochastic differential equations.

Fabio De Sousa Ribeiro and Ben Glocker (2025), “Demystifying Variational Diffusion
Models”, Foundations and Trends® in Computer Graphics and Vision: Vol. 17, No.
2, pp 76–170. DOI: 10.1561/0600000113.
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1
Introduction

A generative model is a simulation of a data-generating process. Under-
standing the true generative process of data is valuable as it naturally
reveals the causal relationships in the world. These causal relationships
are advantageous as they tend to generalize more effectively to new
situations than mere correlations, which may be spurious and unreliable.
Generative modelling typically consists of using data from observations
of x to estimate the marginal distribution p(x). Knowing p(x) facilitates
many useful tasks, such as: (i) sample generation, (ii) density estimation,
(iii) compression, (iv) data imputation, (v) model selection, etc. As p(x)
is typically unknown and/or intractable, we often have to approximate it
with a model pθ(x) ≈ p(x), by optimizing some parameters θ. Although
various generative modelling strategies exist, diffusion models [14, 60]
have emerged as the latest dominant paradigm. With that said, gaining
a deep understanding of the model class remains an elusive endeavour,
particularly for the uninitiated in non-equilibrium statistical physics.

Thanks to the rapid rate of progress in the field, existing work on
diffusion models focuses on either applications or theoretical contribu-
tions. However, research material on diffusion is often inaccessible to
practitioners and new researchers. Given that diffusion models are now

2
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3

an indispensable tool, we argue that a clear, consolidating perspective
on the model class is needed to properly contextualize recent advances
in generative modelling and lower the barrier to entry. To that end, we
revisit predecessors to diffusion models like hierarchical latent variable
models (HLVMs) [57, 61, 70], and synthesize a holistic perspective
using only directed graphical modelling and variational inference prin-
ciples. The resulting narrative is easier to follow as it imposes fewer
prerequisites on the reader relative to the view from non-equilibrium
thermodynamics [60] or stochastic differential equations (SDEs) [62,
66]. Other variational perspectives on diffusion have been studied [21,
28, 69], but their expositions are optimized for technical and empirical
contributions to the model class rather than accessibility. A notable
exception is the technical review by Luo [36]; however, our account is
far more comprehensive, covers a lot more recent material, and is more
mathematically consistent with the seminal works in the field [28, 29].

We begin our exposition by revisiting deep latent variable models [30,
48] and their hierarchical counterparts (Section 2). We then highlight the
difficulties with bottom-up inference procedures for even modestly deep
hierarchies and present a compelling argument in favour of the top-down
hierarchical model using a concept called generative feedback (Section
2.3). This contrasts with prior work [5, 36], which offers an incomplete
efficiency-based view. We then show that the top-down hierarchy is
ubiquitous in both classical HLVMs [32, 61, 70] and diffusion models. We
explain how both model classes share optimization objectives and offer
an intuitive understanding of diffusion models as a specific instantiation
of HLVMs with top-down inference. In Section 2.5, we reproduce the
hole problem in LVMs, explain how diffusion models overcome it by
construction, and stress its importance for sample quality. In Section 3,
we provide a comprehensive account of modern diffusion models from
the top-down hierarchy perspective, and in Section 5, we conclude with
a forward-looking discussion.
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A
Notation and Extras

A.1 Notation

Symbol Description Section

x Observed datapoint, e.g. input image §1

t Time index variable t ∈ {1, 2, . . . , T}, or
t ∈ [0, 1] for continuous-time

§2.2

zt Latent variable at time t §2.2

z1:T Finite set of latent variables representing
z1, z2, . . . , zT

§2.2

z0:1 Set of latent variables in continuous-time
from t = 0 to t = 1

§3.1

αt Noise schedule coefficient αt ∈ (0, 1) §3.1

σ2
t Noise schedule variance σ2

t ∈ (0, 1) §3.1

ϵt Isotropic random noise, ϵt ∼ N (0, I) §1

79
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80 Notation and Extras

SNR(t) Signal-to-noise ratio (SNR) function at
time t, defined as α2

t /σ2
t

§A.2

q(zt | x) Latent variable distribution given x §3.1

q(zt | zs) Transition distribution from time s to time
t, where s < t

§3.2

αt|s Transition coefficient from time s to t §3.2

σ2
t|s Variance of transition distribution §3.2

q(zs | zt, x) Top-down posterior distribution at time s §2.4

µQ(zt, x; s, t) Mean of top-down posterior distribution at
time s; µQ for short

§3.3

σ2
Q(s, t) Variance of top-down posterior distribution;

σ2
Q for short

§3.3

p(zs | zt) Generative transition distribution defined
as q(zs | zt, x = x̂θ(zt, t))

§3.4

p(x | z0) Observation likelihood (e.g. input image),
analogous to p(x | z1) in discrete-time

§3.4

ϕ Variational parameters related to qϕ §1

θ Model parameters pertaining to pθ §1

x̂θ(zt, t) Denoising model mapping any zt to x §3.5

ϵ̂θ(zt, t) Noise prediction model, which approxi-
mates ∇zt log q(zt)

§3.5

ŝθ(zt, t) Score prediction model, equivalent to
−ϵ̂θ(zt, t)/σt

§3.5

µθ(zt; s, t) Predicted posterior mean at time s < t §3.5

VLB(x) Single-datapoint variational lower bound;
also denoted as ELBO(x)

§1

LT (x) Discrete-time diffusion loss §3.6

L∞(x) Continuous-time diffusion loss §3.9
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A.2. Learning the Noise Schedule 81

Lw(x) Weighted diffusion loss; also L∞(x, w) §4.4

γη(t) Neural network with parameters η for learn-
ing the noise schedule

§A.2

w(·) Noise level weighting function §4.4

λ Logarithm of SNR(t); also λt §4.5

fλ(t) Noise schedule function, mapping t to λ §4.5

λmin Lowest log SNR given by fλ(t = 1) §4.5

λmax Highest log SNR given by fλ(t = 0) §4.5

p(λ) Density over noise levels §4.5

L(t; x) Joint KL divergence up to time t §4.7

pw(t) Augmentation kernel specified by w(·) §4.7

A.2 Learning the Noise Schedule

Perturbing data with multiple noise scales and choosing an appropriate
noise schedule is instrumental to the success of diffusion models. The
noise schedule of the forward process is typically pre-specified and has
no learnable parameters, however, VDMs learn the noise schedule via
the parameterization:

σ2
t = sigmoid (γη(t)) , (A.1)

where γη(t) is a monotonic neural network comprised of linear layers
with weights η restricted to be positive. A monotonic function is a
function defined on a subset of the real numbers which is either entirely
non-increasing or entirely non-decreasing. As explained later, the noise
schedule can be conveniently parameterized in terms of the signal-to-
noise ratio. The signal-to-noise ratio (SNR) is defined as SNR(t) =
α2

t /σ2
t , and since zt grow noisier over time we have that: SNR(t) <

SNR(s) for any t > s.

To remain consistent with prior work and avoid notational clutter, we may use
the same symbols to denote random variables and their outcomes whenever our
intentions can be clearly understood from context.
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82 Notation and Extras

For now, we provide some straightforward derivations of the ex-
pressions for α2

t and SNR(t) as a function of γη(t). Recall that in a
variance-preserving diffusion process α2

t = 1− σ2
t , therefore:

α2
t = 1− σ2

t (A.2)

= 1− sigmoid (γη(t)) (A.3)

=⇒ α2
t = sigmoid (−γη(t)) , (A.4)

as for an input x ∈ R the following holds

1− sigmoid (x) = 1− 1
1 + e−x

(A.5)

= 1 + e−x

1 + e−x
− 1

1 + e−x
(A.6)

= e−x

1 + e−x
· ex

ex
(A.7)

= sigmoid (−x) . (A.8)

To derive SNR(t) as a function of γη(t), we simply substitute in the
above equations and simplify:

SNR(t) = α2
t

σ2
t

= sigmoid (−γη(t))
sigmoid (γη(t)) (by definition) (A.9)

= (1 + eγη(t))−1

(1 + e−γη(t))−1 (A.10)

= 1 + e−γη(t)

1 + eγη(t) (A.11)

=
eγη(t)

eγη(t) + 1
eγη(t)

1 + eγη(t) · eγη(t)

eγη(t) (A.12)

= eγη(t) + 1
eγη(t)(1 + eγη(t))

(A.13)

= 1
eγη(t) , (A.14)

which is equivalently expressed as SNR(t) = exp(−γη(t)).
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A.3. Numerically Stable Primitives 83

A.3 Numerically Stable Primitives

The closed-form expressions for the mean and variance of p(zs | zt)
can be further simplified to include more numerically stable functions
like expm1(·) = exp(·)− 1, which are available in standard numerical
packages. The resulting simplified expressions – which we derive in detail
next – enable more numerically stable implementations as highlighted
by [28].

Recall from Appendix A.2 that the noise schedule parameters are
given by: σ2

t = sigmoid(γη(t)), and α2
t = sigmoid(−γη(t)), for any

t. For brevity, let s and t be shorthand notation for γη(s) and γη(t)
respectively. The posterior variance simplifies to:

σ2
Q(s, t) =

σ2
t|sσ2

s

σ2
t

=
σ2

s

(
σ2

t −
α2

t
α2

s
σ2

s

)
σ2

t

(A.15)

=
1

1+e−s ·
(

1
1+e−t − (1+et)−1

(1+es)−1 · 1
1+e−s

)
1

1+e−t

(cancel denominator) (A.16)

=
(
1 + e−t

)
· 1

1 + e−s
·
( 1

1 + e−t
− 1 + es

1 + et
· 1

1 + e−s

)
(distribute 1 + e−t) (A.17)

= 1
1 + e−s

·
(

1− 1 + es

1 + et
· 1 + e−t

1 + e−s

)
(A.18)

= 1
1 + e−s

·
(

1− es (1 + e−s)
1 + et

· e−t
(
1 + et

)
1 + e−s

)
(cancel common factors) (A.19)

= 1
1 + e−s

·
(
1− es−t

)
(A.20)

= σ2
s · (−expm1 (γη(s)− γη(t))) .

(expm1(·) = exp(·)− 1) (A.21)
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84 Notation and Extras

The posterior mean – under a noise-prediction model ϵ̂θ(zt; t) – simplifies
in a similar fashion to:

µθ(zt; s, t) = 1
αt|s

zt −
σ2

t|s
αt|sσt

ϵ̂θ(zt; t) (A.22)

= αs

αt

(
zt −

σ2
t|s

σt
ϵ̂θ(zt; t)

)
(A.23)

= αs

αt

zt −
σ2

t −
α2

t
α2

s
σ2

s

σt
ϵ̂θ(zt; t)


(substituting σ2

t|s = σ2
t − α2

t|sσ2
s) (A.24)

= αs

αt

zt −
1

1+e−t − 1+es

1+et · 1
1+e−s√

1
1+e−t

ϵ̂θ(zt; t)

 (A.25)

= αs

αt

(
zt − (1 + e−t) ·

√
1

1 + e−t
(A.26)

·
( 1

1 + e−t
− 1 + es

1 + et
· 1

1 + e−s

)
ϵ̂θ(zt; t)

)
(A.27)

= αs

αt

(
zt − σt

(
1− es−t

)
ϵ̂θ(zt; t)

)
(A.28)

= αs

αt
(zt + σtexpm1 (γη(s)− γη(t)) ϵ̂θ(zt; t)) , (A.29)

where Equation (A.27) simplifies significantly via the same logical steps
in Equations (A.17)-(A.20) above.

A.3.1 Numerically Stable Loss Estimator

The estimator of the discrete-time diffusion loss can be made more
numerically stable in practice by re-expressing the constant term inside
the expectation using more numerically stable primitives. Specifically:

SNR(s)
SNR(t) − 1 = α2

s

σ2
s

÷ α2
t

σ2
t

− 1 (A.30)
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A.3. Numerically Stable Primitives 85

= α2
sσ2

t

α2
t σ2

s

− 1 (A.31)

= sigmoid(−γη(s)) · sigmoid(γη(t))
sigmoid(−γη(t)) · sigmoid(γη(s)) − 1, (A.32)

letting s and t denote γη(s) and γη(t) for brevity we have:
1

1+es · 1
1+e−t

1
1+et · 1

1+e−s

− 1 =
(
1 + et

)
(1 + e−s)

(1 + es) (1 + e−t) − 1 (A.33)

= et
(
1 + e−t

)
e−s (1 + es)

(1 + es) (1 + e−t) − 1 (A.34)

= ete−s − 1 (A.35)

= expm1 (γη(t)− γη(s)) . (A.36)

Substituting the above back into the (noise-prediction-based) diffusion
loss estimator gives:

LT (x) = T

2 Eϵ∼N (0,I),i∼U{1,T }
[

(A.37)

expm1 (γη(t)− γη(s)) ∥ϵ− ϵ̂θ(zt; t)∥22
]
, (A.38)

which is the final form of the objective we wanted to show.

A.3.2 Dealing with Edge Effects

There is an edge effect at diffusion time t = 0, possibly causing numerical
issues [60, 62], which we can avoid by setting the likelihood term to:

p(x | z1) = q(z1 | x)p(x)
p(z1) , (A.39)

and removing it from the variational lower bound. In discrete-time, this
looks like:

VLB = Eq(z1:T ,x)

[
log p(x | z1)

q(z1 | x) + log p(zT ) +
T∑

t=2
log p(zt−1 | zt)

q(zt | zt−1)

]
(A.40)

=
((((((((((((((
Eq(z1,x)

[
log q(z1 | x)p(x)

q(z1 | x)p(z1)

]
(A.41)
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86 Notation and Extras

+ Eq(z1:T ,x)

[
log p(zT ) +

T∑
t=2

log p(zt−1 | zt)
q(zt | zt−1)

]
. (A.42)

The left-hand side (LHS) term above cancels out as the SNR →∞ (i.e.
α1 → 1 and σ1 → 0) since the least noisy latent variable z1 = α1x + σ1ϵ

approaches x, meaning p(z1) ≈ p(x). Note that p in p(z1) and p(x)
above refers to the (tractable) prior distribution of choice.

For continuous-time diffusion where T →∞ and t ∈ [0, 1], we have
that learning a model p(z0) is practically equivalent to learning a model
p(x) since z0 (the least noisy latent variable) is almost identical to x
in the limit given large enough log-SNR λmax = log

(
α2

0/σ2
0
)
. However,

if one chooses to learn the noise schedule rather than fixing it, the
p(x | z0) term may need to be incorporated back into the VLB objective,
representing a final discrete step from latent space to image space. This
manifests as some variation of a decoding step in both VDMs [28] and
score-based diffusion models [62].

A.4 Equivalence of Diffusion Specifications

Kingma et al. [28] elaborate on the equivalence of diffusion noise-schedule
specifications using the following straightforward example. Firstly, the
change of variables we used implies that σv is given by:

v = α2
v

σ2
v

=⇒
√

v = αv

σv
=⇒ σv = αv√

v
, (A.43)

therefore, zv can be equivalently expressed as

zv = αvx + σvϵ = αvx + αv√
v

ϵ = αv

(
x + ϵ√

v

)
, (A.44)

which holds for any diffusion specification (forward process) by defi-
nition. Now, consider two distinct diffusion specifications denoted as{

αA
v , σA

v , x̃A
θ

}
and

{
αB

v , σB
v , x̃B

θ

}
. Due to Equation (A.44), any two dif-

fusion specifications produce equivalent latents, up to element-wise
rescaling:

zA
v = αA

v

αB
v

zB
v (A.45)
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αA
v

(
x + ϵ√

v

)
= αA

v

αB
v

αB
v

(
x + ϵ√

v

)
. (A.46)

This implies that we can denoise from any latent zB
v using a model x̃A

θ

trained under a different noise specification, by trivially rescaling the
latent zB

v such that it’d be equivalent to denoising from zA
v :

x̃B
θ

(
zB

v , v
)
≡ x̃A

θ

(
αA

v

αB
v

zB
v , v

)
. (A.47)

Furthermore, when two diffusion specifications have equal SNRmin and
SNRmax, then the marginal distributions pA(x) and pB(x) defined by
the two generative models are equal:

x̃B
θ

(
zB

v , v
)
≡ x̃A

θ

(
αA

v

αB
v

zB
v , v

)
=⇒ pA(x) = pB(x), (A.48)

and both specifications yield identical diffusion loss in continuous time:
LA

∞(x) = LB
∞(x), due to Equation (4.80). Importantly, this does not

mean that training under different noise specifications will result in the
same model. To be clear, the x̃B

θ model is fully determined by the x̃A
θ

model and the rescaling operation αA
v /αB

v . Furthermore, this invariance
to the noise schedule does not hold for the Monte Carlo estimator of the
diffusion loss, as the noise schedule affects the variance of the estimator
and therefore affects optimization efficiency.
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