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Abstract

Consider coded transmission over a binary-input symmetric memory-
less channel. The channel decoder uses the noisy observations of the
code symbols to reproduce the transmitted code symbols. Thus, it com-
bines the information about individual code symbols to obtain an over-
all information about each code symbol, which may be the reproduced
code symbol or its a-posteriori probability. This tutorial addresses the
problem of “information combining” from an information-theory point
of view: the decoder combines the mutual information between channel
input symbols and channel output symbols (observations) to the mutual
information between one transmitted symbol and all channel output
symbols. The actual value of the combined information depends on the
statistical structure of the channels. However, it can be upper and lower
bounded for the assumed class of channels. This book first introduces
the concept of mutual information profiles and revisits the well-known
Jensen’s inequality. Using these tools, the bounds on information com-
bining are derived for single parity-check codes and for repetition codes.
The application of the bounds is illustrated in four examples: informa-
tion processing characteristics of coding schemes, including extrinsic
information transfer (EXIT) functions; design of multiple turbo codes;
bounds for the decoding threshold of low-density parity-check codes;
EXIT function of the accumulator.
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1

Introduction

In digital communications, the transmitter adds redundancy to the
data to be transmitted, and the receiver exploits this redundancy to
perform error correction. In this book, we restrict ourselves to binary
linear channel codes and transmission over memoryless communica-
tion channels. The transmitter can thus be identified with the chan-
nel encoder and the receiver with the channel decoder. Because of the
assumed channel model, the receiver obtains one noisy observation for
each code symbol.

Each of these observations carries information about the corre-
sponding code symbol at the channel input, of course. In addition
to that, due to the code constraints that couple the code symbols,
each observation also carries information about other code symbols. To
exploit the redundancy in the code, the decoder combines all available
information to estimate the value of each code symbol. In this chapter,
the focus will be on optimal combining, i.e. combining such that all
information about individual code symbols is retained.

This process of information combining can also be seen from an
information theory point of view when the asymptotic case of codes of

1
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2 Introduction

infinite length1 is considered. For each code symbol, there is a mutual
information between the code symbol and the noisy observation. These
values of mutual information are “combined” to obtain a value of the
mutual information between a code symbol (or an information symbol)
and all observations. The decoder is thus interpreted as a processor for
mutual information. This is done in the information processing charac-
teristic (IPC) method [1, 2, 3].

Some classes of channel codes, e.g., low-density parity-check
(LDPC) codes [4, 5], are iteratively decoded: two constituent decoders
exchange extrinsic values, called messages, until they agree on a certain
estimated codeword, the maximum number of iterations is reached, or
another stopping criterion is fulfilled. (The term “extrinsic” will be
introduced later.) These constituent decoders can also be interpreted
as processors for mutual information, in this case of extrinsic mutual
information. This is done in the extrinsic information transfer (EXIT)
chart method [6, 7]

The mutual information resulting from the combining operation can
be computed exactly if exact models of the channels between the code
symbols and the observations (or messages) are assumed to be known,
as in the IPC method and the EXIT chart method. Thus, the combined
mutual information depends on the “input” mutual information and
the channel models. These models (e.g. the Gaussian noise model),
however, do not apply exactly.

This chapter addresses a generalization of these ideas. The channels
are only assumed to be symmetric and memoryless. Thus, the exact
value of the combined mutual information cannot be determined, but
an upper and a lower bound can be given. This is referred to as bounds
on information combining [8,9]. These bounds depend then only on the
values of the “input” mutual information but not on the specific channel
model. This basic problem is interesting from a pure information-theory
point of view. The results can, however, also be used to analyze coding
schemes and iterative decoders; they can even be used to design codes
for the whole class of memoryless symmetric channels [10,11,12,13,14,

1 To be precise, ensembles of codes are considered and the code length tends to infinity.
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1.1. Combining of Probabilities 3

15]. A closer look at these references as well as at references to similar
or extended combining concepts are provided at the end of this chapter.

This book gives an introduction to the principles of information
combining. The concept is described, the bounds for repetition codes
and for single parity-check codes are proved, and some applications are
provided. As we focus on the basic principles, we consider a binary sym-
metric source, binary linear channel codes, and binary-input symmetric
memoryless channels.

Throughout this book, we use the following notation. Upper-case
letters denote random variables, and lower-case letters denote realiza-
tions. Vectors and matrices are both written in boldface. The meaning
of boldface upper-case letters becomes clear from the context.

1.1 Combining of Probabilities

To achieve very closely the information-theoretic performance bounds
of digital communication systems, joint processing of information over
long blocks of symbols is necessary. Within such blocks, information
has to be combined in some sense, e.g., parity symbols are generated in
a channel encoder by forming check sums over distinct subsets of the
information symbols, which are fed into the encoder. For a linear block
code C with lengthN of symbols taken from the binary field F2 = {0,1},
these check sums are specified by the rows of a (N − K) × N parity
check matrix H, where K denotes the number of dimensions of the
linear subspace in FN

2 forming the code.
Consider a binary codeword X = (X0,X1, . . . ,XN−1) of length N

that is generated from K binary information symbols; the information
symbols are assumed to be independent and uniformly distributed.
Each code symbol Xi ∈ {0,1} is transmitted over a binary-input
communication channel, which we assume to be symmetric, time-
invariant, memoryless, and without feedback throughout this book.
This binary input symmetric memoryless channel (BISMC) maps the
input symbols Xi into output symbols Yi taken from an M -ary set
Y = {0,1, . . . ,M − 1} in a random way according to the transition
probabilities Pr(Y = j|X = x), see Fig. 1.1. A channel is said to be
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4 Introduction

Fig. 1.1 Characterization of a BISMC by means of transition probabilities.

symmetric if it can be decomposed into strongly symmetric subchan-
nels [16]; this is addressed in detail in Section 2.2.

If the a-priori probability Pr(Xi = 0) and the channel transition
probabilities Pr(Yi = yi|Xi = xi) are known, a-posteriori probabilities

pi := Pr(Xi = 0|Yi = yi)

=
Pr(Xi = 0)Pr(Yi = yi|Xi = 0)

Pr(Xi = 0)Pr(Yi = yi|Xi = 0) + (1 − Pr(Xi = 0))Pr(Yi = yi|Xi = 1)
(1.1)

are available after observing Yi = yi for each individual code symbol.
Usually, the vector p = (p0, . . . ,pN−1) of these probabilities after trans-
mission, but before decoding, is referred to as the intrinsic probabilities
for the code symbols obtained from the communication channel [17].

Without any restriction of generality, we specify a probability on a
binary variable X ∈ {0,1} with respect to the value 0, i.e., Pr(X = 0|.)
throughout the book. Of course, probability ratios Pr(X = 0|.)/(1 −
Pr(X = 0|.)) or their logarithms, the so-called L-value ln

(
Pr(X =

0|.)/(1 − Pr(X = 0|.))
)

are synonymous to this notation, but in con-
trast to the mainstream in technical literature in the field of communi-
cations, we think that for theoretical derivations pure probabilities are
more convenient than other types of probability specifications: A lot
of nonlinear functions can be avoided, some equations are much more
evident and easier to handle, and many readers may be more famil-
iar with the language of basic probability theory than with specialized
notation popular only in the coding and communications communities.
Of course, for implementation of a decoder in hard- or software, prob-
ability ratios or, more pronounced, L-value notation may offer a lot of
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1.1. Combining of Probabilities 5

advantages. But the intentions of this tutorial book are quite different;
here, the development and understanding of the basic theory is the
main focus.

Seen from a general point of view, values of information for indi-
vidual symbols have to be combined in some way for exploiting the
constraints within a sequence of symbols. Information combining hap-
pens in source encoding for extraction of redundancy from a source
sequence or in channel decoding for improvement of data reliability.
But there are many further fields where data processing essentially is
some sort of information combining. To illustrate what we mean by
information combining, we use the example of decoding a linear block
code. Without loss of generality, the processing for code symbol X0 will
be further addressed in this example.

In a linear code, each parity check equation (e.g., Qth row of the
parity check matrix H) that includes X0 provides further information
on the code symbol X0 by means of the other symbols Xil due to the
check constraint

X0 = Xi1 ⊕ Xi2 ⊕ Xi3 ⊕ ·· · ⊕ XiL . (1.2)

Based on the intrinsic probabilities pi = Pr(Xi = 0|yi) of the residual
symbols in a check sum, the extrinsic probability of code symbol X0,

Pext,0 = Pr(X0 = 0|yi1 ,yi2 , . . . ,yiL), (1.3)

is computed. This probability on a code symbol is called extrinsic
because it is calculated using only the channel outputs corresponding
to the other code symbols but not the channel output corresponding
to the symbol itself (see e.g. [18]).

In the case of a memoryless channel, the extrinsic probability Pext,0

results in

Pext,0 =
1
2

L∏
l=1

(2pil − 1) +
1
2
. (1.4)

(Remember that the codewords are assumed to be equiprobable.) This
famous equation [4] can easily be derived from the case where only three
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6 Introduction

symbols are involved (X0 = 0 if both symbols X1 and X2 are 0 or 1)

Pext = Pr(X1 ⊕ X2 = 0|y1,y2)

= p1p2 + (1 − p1)(1 − p2)

=
1
2
(2p1 − 1)(2p2 − 1) +

1
2

(1.5)

and by induction from L − 1 to L. Notice that (1.4) also corresponds
to the probability of observation of symbol 0 at the output of a chain
(series) of L binary symmetric channels (BSCs) with crossover prob-
abilities εi = 1 − pi when symbol 0 is fed to its input, see Fig. 1.2.
Therefore, we refer to (1.4) as the basic formula for serial combining of
information.

Intrinsic and several extrinsic probabilities on a certain code sym-
bol X are independent as long as the exploited check equations do not
contain further code symbols in common and the channel is memory-
less, as a memoryless channel acts independently on each of the code
symbols. The task, to merge intrinsic and extrinsic probabilities on
one symbol into a combined information is equivalent to the situation
when a binary code symbol is transmitted over L parallel and inde-
pendent channels or to the application of a repetition code of rate 1/L
and transmission of the code symbols over a memoryless channel, see
Fig. 1.3.

Thus, the second basic operation of information combining in chan-
nel decoding is to merge different, independent messages on individual
code symbols and referring to Fig. 1.3, we denominate this operation as
parallel information combining. Without loss of generality, a uniform
a-priori distribution of X can be assumed because one of those “chan-
nels” may also be used to specify an a-priori probability on the variable
X: a-priori knowledge is nothing else but a further independent source
of extrinsic information. Basic probability calculation yields for two

Fig. 1.2 Interpretation of Eq. (1.4) by a chain of BSCs with crossover probabilities εi =
1 − pi: serial information combining.
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1.2. Combining of Mutual Information 7

Fig. 1.3 Parallel information combining.

parallel channels (uniform a-priori distribution, cf. Fig. 1.3, too)

Pr(X = 0|y1,y2) =
p1p2

p1p2 + (1 − p1)(1 − p2)
=: p1 ⊗ p2 . (1.6)

In the same way, the corresponding result for L parallel channels is
obtained:

Pr(X = 0|y1,y2, . . . ,yL) = p1 ⊗ p2 ⊗ ·· · ⊗ pL ,

=
∏L

l=1 pl∏L
l=1 pl +

∏L
l=1(1 − pl)

. (1.7)

Equation (1.6) is one of the reasons why probability ratios or L-
values are very popular in this context: Combining independent a-
posteriori probabilities on a binary symbol corresponds to the product
of probability ratios or the sum of L-values, respectively. The binary
operation “⊗” induces an Abelian group G = {⊗, [0,1]} onto the set
[0,1] of probabilities and by calculating the L-values, i.e., by the func-
tion L : [0,1]→ IR : ln(x/(1 − x)), an isomorphic mapping of the group
G to {+, IR} is established [19]. (Notice that for the basic combin-
ing equation (1.4) for check equations (serial information combining),
such a nice accordance to L-values does not exist. Unfortunately, the
corresponding formulas are rather involved when L-values are used,
see (4.3).)

1.2 Combining of Mutual Information

The parallel and serial combination of probabilities on binary variables,
i.e., Equations (1.4) and (1.6), are the basic operations for (iterative)
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8 Introduction

soft-decision decoding of linear binary codes. They also form the two
key operations for iterative decoding of LDPC codes (details for LDPC
codes are provided in Section 6.3). Therefore, we intend to analyze
these basic information combining operations in a more general con-
text, looking rather on averages than on individual channel actions and
observations as it is usually done in information theory.

One of the key concepts in iterative decoding is the use of extrinsic
probabilities (or extrinsic L-values). Correspondingly, the basic prob-
lem that we will address in the following sections is to find tight bounds
on the mutual information I(X0;Y1, . . . ,YL−1) for the serial and paral-
lel combination of information solely based on the mutual information
I(Xi;Yi) provided by the channels for transmission of the individual
symbols. Notice that this is an extrinsic mutual information (e.g., [6])
with respect to X0 as it is the mutual information between the code
symbol X0 and the observations of only other code symbols; the direct
observation of X0 is omitted.

An introductory example is serial or parallel information combining
for binary erasure channels (BECs) with erasure probabilities γi and
capacities Ii = 1 − γi, cf. Fig. 1.4, which really is the simplest one.

The combination of L received symbols in a check equation leads to
an erasure if at least one of the transmitted symbols is erased; other-
wise, we get a surely correct extrinsic information. Therefore, the era-
sure probability of the combined channel reads γ = 1 −

∏L
i=1(1 − γi),

which is equivalent to the formula

I =
L∏

i=1

Ii (1.8)

for serial information combining.

Fig. 1.4 Binary erasure channel (BEC) with erasure probability γ. The erasure is denoted
by “?”.
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1.3. Outline and Related Work 9

Transmission of binary symbol over L parallel BECs yields perfect
knowledge at the receiver side if at least one of these channels does not
deliver an erasure. Thus, the erasure probability of L parallel BECs is
γ =

∏L
i=1 γi, and the overall mutual information (or capacity) reads

I = 1 −
L∏

i=1

(1 − Ii) . (1.9)

Unfortunately, such explicit solutions do not exist in general, but we
are able to derive rather tight bounds on information combining, if the
individual binary input symmetric channels are only specified by their
mutual information (or capacity).

1.3 Outline and Related Work

The bounds on information combining will enable us to analyze vari-
ous properties of coding schemes and iterative decoding procedures in
a very general way. “Mutual information” has proven to be a very use-
ful and relevant measure to characterize a channel by a single param-
eter only. Correspondingly, applying it leads to easy tools to derive
fairly tight performance bounds or to optimize coding schemes (e.g.,
the design of multiple turbo codes, see Section 6.2).

For that purpose, we will recapitulate the basic properties of
BISMCs in Chapter 2 and define a new tool to fully specify channels
of that type, called the mutual information profile (MIP) of a BISMC.
In Chapter 3, Jensen’s well-known formula is revisited and extended
to a pair of inequalities, i.e., to a lower and an upper bound on the
expectation of a real random variable after processing by a convex
function; we will identify the probability density functions (pdfs) for
real random variables for which those bounds are tight, irrespective of
the actual convex function.

Equipped with these prearrangements, the central theorems of this
book, i.e., bounds on mutual information for serial and parallel combi-
nation of information on binary variables, are derived in a straightfor-
ward way in Chapters 4 and 5. Chapter 6 is dedicated to examples and
applications of information combining: information processing charac-
teristic of coding schemes, design of multiple turbo codes, and bounds
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10 Introduction

on EXIT functions and bounds on thresholds for convergence of itera-
tive decoding of LDPC codes, and EXIT functions for RA codes.

The problem of information combining for parallel channels has
been addressed in [2, 20] for the first time. Here, the so-called infor-
mation processing characteristic (IPC) for a coding scheme has been
introduced, too, cf. Section 6.1. In [21] an example has been given on
how to use an IPC and information combining for a coarse estima-
tion of bit error probability (BEP) and BEP-curves for concatenated
coding schemes. In [22, 23] the analysis and optimization of multiple
turbo codes by means of information combining was proposed. Sur-
prisingly, tight bounds on the combined extrinsic information from
several constituent codes in a so-called extended serial setup decoder
leads to an analysis of the iterative decoding process, which is as
simple as EXIT charts for the concatenation of only two constituent
codes.

A more rigorous mathematical background to information combin-
ing has been introduced in [8] by finding the proof that there are simple
tight bounds on parallel information combining for the case of two chan-
nels. Initiated by that, the results were generalized and applied to code
design by two groups. In [12,10,9,13], the proofs are explicitly based on
the decomposition of symmetric channels into binary symmetric sub-
channels and the concept of mutual information profiles, which may
give a more intuitive access to this subject. Furthermore, these authors
address only the basic case of binary symmetric sources and channels
without memory, and the optimization with respect to all channels
involved. In [14, 15], the proofs are based on [24], which is a gener-
alization of Mrs Gerber’s lemma [25], and thus have a more abstract
character. These authors also address the question of a uniform source
with memory and the role of the symmetry of the source. Furthermore,
they show that the optimization can also be done with respect to the
individual channels involved.

The present book is mainly based on [13] and the slides to [26]
where the material was presented in a way that emphasizes the tuto-
rial aspect. This is the main focus of this book as well. Therefore,
we will follow the approaches of the first research group mentioned
above.
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1.3. Outline and Related Work 11

Even though the present book focuses on pure combining of mutual
information, references to similar or extended concepts should be given
in the following. Mutual information is probably one the most success-
fully applied parameter of a memoryless channel. However, such a chan-
nel can also be characterized by other parameters, of course, like the
expectation of the conditional bit probabilities (expected “soft-bit”),
the Bhattacharyya noise parameter, the mean-square error (MSE),
see [27, 28, 29, 30, 31]. Instead of using only one parameter to describe
a channel, two such parameters may be used, as considered in [28,32].
Since more parameters may characterize a channel more precisely than
a single parameter, the resulting bounds may be tighter.
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