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Abstract

Multiple-input multiple-output (MIMO) channels provide an abstract
and unified representation of different physical communication systems,
ranging from multi-antenna wireless channels to wireless digital sub-
scriber line systems. They have the key property that several data
streams can be simultaneously established.

In general, the design of communication systems for MIMO chan-
nels is quite involved (if one can assume the use of sufficiently long and
good codes, then the problem formulation simplifies drastically). The
first difficulty lies on how to measure the global performance of such
systems given the tradeoff on the performance among the different data
streams. Once the problem formulation is defined, the resulting math-
ematical problem is typically too complicated to be optimally solved
as it is a matrix-valued nonconvex optimization problem. This design
problem has been studied for the past three decades (the first papers
dating back to the 1970s) motivated initially by cable systems and
more recently by wireless multi-antenna systems. The approach was to
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choose a specific global measure of performance and then to design the
system accordingly, either optimally or suboptimally, depending on the
difficulty of the problem.

This text presents an up-to-date unified mathematical framework
for the design of point-to-point MIMO transceivers with channel state
information at both sides of the link according to an arbitrary cost func-
tion as a measure of the system performance. In addition, the frame-
work embraces the design of systems with given individual performance
on the data streams.

Majorization theory is the underlying mathematical theory on which
the framework hinges. It allows the transformation of the originally
complicated matrix-valued nonconvex problem into a simple scalar
problem. In particular, the additive majorization relation plays a key
role in the design of linear MIMO transceivers (i.e., a linear precoder
at the transmitter and a linear equalizer at the receiver), whereas the
multiplicative majorization relation is the basis for nonlinear decision-
feedback MIMO transceivers (i.e., a linear precoder at the transmitter
and a decision-feedback equalizer at the receiver).
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1

Introduction

This chapter starts by introducing in a concise way the concept and
relevance of multiple-input multiple-output (MIMO) channels and by
highlighting some of the successful schemes for MIMO communication
systems that have been proposed such as space–time coding and lin-
ear precoding. Then, a first glimpse at linear transceivers is presented,
starting from the classical receive beamforming schemes in smart anten-
nas and gradually building on top in a natural way. Finally, a historical
account on MIMO transceivers is outlined.

1.1 MIMO Channels

MIMO channels arise in many different scenarios such as wireline
systems or multi-antenna wireless systems, where there are multiple
transmit and receive dimensions. A MIMO channel is mathematically
denoted by a channel matrix which provides an elegant, compact,
and unified way to represent physical channels of completely different
nature.

The use of multiple dimensions at both ends of a communication
link offers significant improvements in terms of spectral efficiency and

1
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2 Introduction

link reliability. The most important characteristic of MIMO channels is
the multiplexing gain, obtained by exploiting the multiple dimensions
to open up several parallel subchannels within the MIMO channel, also
termed channel eigenmodes, which leads to an increase of rate. The
multiplexing property allows the transmission of several symbols simul-
taneously or, in other words, the establishment of several substreams
for communication.

1.1.1 Basic Signal Model

The transmission over a general MIMO communication channel with nT
transmit and nR receive dimensions can be described with the baseband
signal model

y = Hs + n, (1.1)

as depicted in Figure 1.1, where s ∈ CnT×1 is the transmitted vector,
H ∈ CnR×nT is the channel matrix, y ∈ CnR×1 is the received vector,
and n ∈ CnR×1 denotes the noise.

A multicarrier MIMO channel can be similarly described, either
explicitly for the N carriers as

yk = Hksk + nk 1 ≤ k ≤ N, (1.2)

or implicitly as in (1.1) by defining the block-diagonal equivalent matrix
H = diag({Hk}).

When nT = 1, the MIMO channel reduces to a single-input multiple-
output (SIMO) channel (e.g., with multiple antennas only at the
receiver). Similarly, when nR = 1, the MIMO channel reduces to a

Fig. 1.1 Scheme of a MIMO channel.
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1.1 MIMO Channels 3

multiple-input single-output (MISO) (e.g., with multiple antennas only
at the transmitter). When both nT = 1 and nR = 1, the MIMO chan-
nel simplifies to a simple scalar or single-input single-output (SISO)
channel.

1.1.2 Examples of MIMO Channels

We now briefly illustrate how different physical communication chan-
nels can be conveniently modeled as a MIMO channel.

1.1.2.1 Inter-Symbol Interference (ISI) Channel

Consider the discrete-time signal model after symbol-rate sampling

y(n) =
L∑
k=0

h(k)s(n − k) + n(n) , (1.3)

where h(k) are the coefficients of the finite-impulse response (FIR) filter
of order L representing the channel.

If the transmitter inserts at least L zeros between blocks of N
symbols (termed zero-padding), the MIMO channel model in (1.1)
is obtained where the channel matrix H is a convolutional matrix
[122, 131]:

H =



h(0) 0 · · · 0
...

. . . . . .
...

h(L)
. . . 0

0
. . . h(0)

...
. . . . . .

...
0 · · · 0 h(L)


. (1.4)

Alternatively, if the transmitter uses a cyclic prefix of at least L symbols
between blocks of N symbols, then the linear convolution becomes a
circular convolution and the MIMO channel model in (1.1) is obtained
where the channel matrix H is a circulant matrix1 [122, 131].

1 In a circulant matrix, the rows are composed of cyclically shifted versions of a sequence
[66].
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4 Introduction

1.1.2.2 Multicarrier Channel

In a multicarrier communication system, the available bandwidth is
partitioned into N subbands and then each subband is independently
used for transmission [17, 80]. Such an approach not only simplifies the
communication process but it is also a capacity-achieving structure for
a sufficiently large N [46, 62, 122].

The signal model follows from a block transmission with a cyclic pre-
fix, obtaining a circulant matrix, combined with an inverse/direct dis-
crete Fourier transform (DFT) at the transmitter/receiver. The MIMO
channel model in (1.1) is obtained where the channel matrix H is a diag-
onal matrix with diagonal elements given by DFT coefficients [54, 86].

1.1.2.3 Multi-Antenna Wireless Channel

The multi-antenna wireless channel with multiple antennas at both
sides of the link (see Figure 1.2) is the paradigmatic example of a
MIMO channel. In fact, the publication of [43, 146, 148] in the late
1990s about multi-antenna wireless channels boosted the research on
MIMO systems. The popularity of this particular scenario is mainly due
to the linear increase of capacity with the number of antennas [43, 148]
for the same bandwidth.

Fig. 1.2 Example of a MIMO channel arising in wireless communications when multiple
antennas are used at both the transmitter and the receiver.
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1.1 MIMO Channels 5

If the channel is flat in frequency, then the MIMO channel model in
(1.1) follows naturally by defining the (i, j)th element of matrix H as
the channel gain/fading between the jth transmit antenna and the ith
receive one. In general, however, the channel will be frequency-selective
according to the following matrix convolution:

y(n) =
L∑
k=0

H(k)s(n − k) + n(n) (1.5)

where H(n) are the matrix-coefficients of the FIR matrix filter repre-
senting the channel ([H(n)]ij is the discrete-time channel from the jth
transmit antenna to the ith receive one). At this point, the frequency-
selective channel in (1.5) can be manipulated as in (1.3) to obtain
a block-matrix with each block corresponding to the channel between
each transmit–receive pair of antennas; in particular, with zero padding
each block will be a convolutional matrix, whereas with cyclic pre-
fix each block will be a circulant matrix [122]. In the case of cyclic pre-
fix, after applying the inverse/direct DFT to each block and a posterior
rearrangement of the elements, the multicarrier MIMO signal model in
(1.2) is obtained [122], i.e., one basic MIMO channel per carrier.

1.1.2.4 Wireline DSL Channel

Digital Subscriber Line technology has gained popularity as a broad-
band access technology capable of reliably delivering high data rates
over telephone subscriber lines [144]. Modeling a DSL system as a
MIMO channel presents many advantages with respect to treating each
twisted pair independently [47, 63]. If fact, modeling a wireline channel
as a MIMO channel was done three decades ago [90, 129].

The dominant impairment in DSL systems is crosstalk arising from
electromagnetic coupling between neighboring twisted-pairs. Near-end
crosstalk (NEXT) comprises the signals originated in the same side of
the received signal (due to the existence of downstream and upstream
transmission) and far-end crosstalk (FEXT) includes the signal origi-
nated in the opposite side of the received signal. The impact of NEXT
is generally suppressed by employing frequency division duplex (FDD)
to separate downstream and upstream transmission.

Full text available at: http://dx.doi.org/10.1561/0100000018



6 Introduction

Fig. 1.3 Scheme of a bundle of twisted pairs of a DSL system.

The general case under analysis consists of a binder group composed
of L users in the same physical location plus some other users that
possibly belong to a different service provider and use different types
of DSL systems (see Figure 1.3). The MIMO channel represents the
communication of the L intended users while the others are treated as
interference.

DSL channels are highly frequency-selective with a signal model as
in (1.5); as a consequence, practical communication systems are based
on the multicarrier MIMO signal model in (1.2).

1.1.2.5 CDMA Channel

Excess-bandwidth systems (the majority of practical systems) utilize
a transmit bandwidth larger than the minimum (Nyquist) bandwidth.
Examples are systems using spreading codes and systems using a root-
raised cosine transmit shaping pulse (with a nonzero rolloff factor)
[120]. For these systems, fractional-rate sampling (sampling at a rate
higher than the symbol rate) has significant practical advantages com-
pared to symbol-rate sampling such as the insensitivity with respect
to the sampling phase and the possibility to implement in discrete
time many of the operations performed at the receiver such as the
matched-filtering operation (cf. [121]). Fractionally sampled systems

Full text available at: http://dx.doi.org/10.1561/0100000018



1.2 MIMO Communication Systems 7

can be modeled as a multirate convolution which can be easily con-
verted into a more convenient vector convolution as in (1.5).

One relevant example of excess-bandwidth system is code division
multiple access (CDMA) systems, where multiple users transmit over-
lapping in time and frequency but using different signature waveforms
or spreading codes (which are excess-bandwidth shaping pulses). The
discrete-time model for such systems is commonly obtained following a
matched filtering approach by sampling at the symbol rate the output
of a bank of filters where each filter is matched to one of the signa-
ture waveforms [157]. An alternative derivation of the discrete-time
model for CDMA systems is based on a fractionally sampled scheme
by sampling at the chip rate. Adding up the effect of U users, the final
discrete-time (noiseless) signal model is

y (n) =
U∑
u=1

L∑
l=0

hu (l)su (n − l) , (1.6)

where hu (n) is the equivalent chip-rate sampled channel of the uth
user defined as hu(n) , [hu (nP ) , . . . ,hu (nP + (P − 1))]T , hu (n) cor-
responds to the continuous impulse response hu (t) sampled at time
t = nT/P , P denotes the oversampling factor or spreading factor, and
L is the support of the channel hu (n).

1.2 MIMO Communication Systems

A plethora of communication techniques exists for transmission over
MIMO channels which essentially depend on the degree of channel
state information (CSI) available at the transmitter and at the receiver.
Clearly, the more channel information, the better the performance of
the system. The reader interested in space–time wireless communica-
tion systems is referred to the two 2003 textbooks [87, 115] and to the
more extensive 2005 textbooks [16, 50, 151].

CSI at the receiver (CSIR) is traditionally acquired via the transmis-
sion of a training sequence (pilot symbols) that allows the estimation of
the channel. It is also possible to use blind methods that do not require
any training symbols but exploit knowledge of the structure of the
transmitted signal or of the channel. CSI at the transmitter (CSIT)
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8 Introduction

is typically obtained either via a feedback channel from the receiver
(this technique requires the channel to be sufficiently slowly varying
and has a loss in spectral efficiency due to the utilization of part of the
bandwidth to transmit the channel state) or by exploiting (whenever
possible) the channel reciprocity that allows to infer the channel from
previous receive measurements (cf. [10]).

It is generally assumed that perfect CSIR is available. Regarding
CSIT, there are two main families of transmission methods that con-
sider either no CSIT or perfect CSIT. In practice, however, it is more
realistic to consider imperfect or partial CSIT.

1.2.1 Schemes with No CSIT

Space–time coding generalizes the classical concept of coding on the
temporal domain [22] to coding on both spatial and temporal dimen-
sions [1, 146]. The idea is to introduce redundancy in the transmit-
ted signal, both over space and time, to allow the receiver to recover
the signal even in difficult propagation situations. The conventional
space–time coding trades off spectral efficiency for improved communi-
cation reliability. Since the initial papers in 1998 [1, 146], an extraor-
dinary number of publications has flourished in the literature (cf.
[37, 38, 87, 105]). The recent space–time block codes proposed in [38]
and [105] can achieve the optimum tradeoff between spectral efficiency
and transmission reliability, or the diversity–multiplexing gain tradeoff
as charted in [178]. The better performance of the advanced space–time
codes come with high decoding complexity.

Layered architectures (also termed BLAST2) refer to a particular
case of a space–time coding when a separate coding scheme is used
for each spatial branch, i.e., they are constructed by assembling one-
dimensional constituent codes. The diagonal BLAST originally pro-
posed by Foschini in 1996 [45] can in principle achieve the optimal
diversity–multiplexing gain tradeoff [178]. However it requires short
and powerful coding to eliminate error propagation, which makes it
difficult to implement. The simpler vertical BLAST proposed in [44]
admits independent coding and decoding for each spatially multiplexed

2 BLAST stands for Bell-labs LAyered Space–Time architecture [44, 45].
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1.3 A First Glimpse at Linear Transceivers: Beamforming 9

substream, but the simplicity in the equalization and decoding aspects
comes with low reliability since vertical BLAST does not collect the
diversity across different layers. Hybrid schemes combining layered
architectures with constituent space–time codes have been proposed
as a reasonable tradeoff between performance and complexity, e.g., [5].

1.2.2 Schemes with Perfect CSIT

When perfect CSIT is available, the transmission can be adapted to
each channel realization using signal processing techniques. Historically
speaking, there are two main scenarios that have motivated the devel-
opment of communication methods for MIMO channels with CSIT:
wireline channels, and wireless channels.

The initial motivation to design techniques for communication over
MIMO channels can be found in wireline systems by treating all the
links within a bundle of cables as a whole, e.g., [63, 90, 129, 170, 171].
Another more recent source of motivation to design methods for com-
munication over MIMO channels follows from multi-antenna wireless
systems e.g., [3, 122, 131]. A historical perspective on signal processing
methods for MIMO systems is given in Section 1.4.

1.2.3 Schemes with Imperfect/Partial CSIT

In real scenarios, it is seldom the case that the CSIT is either inexistent
or perfect; in general, its knowledge is partial or imperfect for which
hybrid communication schemes are more appropriate.

One basic approach is to start with a space–time code, for which no
CSIT is required, and combine it with some type of signal processing
technique to take advantage of the partial CSIT, e.g., [76].

Another different philosophy is to start with a signal processing
approach, for which typically perfect CSIT is assumed, and make it
robust to imperfections in the CSIT, e.g., [10, 101, 123, 159, 165].

1.3 A First Glimpse at Linear Transceivers: Beamforming

Beamforming is a term traditionally associated with array processing or
smart antennas in wireless communications where an array of antennas
exists either at the transmitter or at the receiver [75, 85, 99, 150, 154].
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10 Introduction

The concept of linear MIMO transceiver is closely related to that of
classical beamforming as shown next.

1.3.1 Classical Beamforming for SIMO and MISO Channels

We consider the concept of beamforming over any arbitrary dimen-
sion, generalizing the traditional meaning that refers only to the space
(antenna) dimension.

Consider a SIMO channel:

y = hx + n, (1.7)

where one symbol x is transmitted (normalized such that E
[
|x|2
]

= 1)
and a vector y is received (the noise is assumed zero mean and white
E
[
nn†

]
= I). The classical receive beamforming approach estimates the

transmitted symbol by linearly combining the received vector via the
beamvector w:

x̂ = w†y = w† (hx + n) . (1.8)

We can now design the receive beamvector w to maximize the SNR
given by

SNR =
|w†h|2

w†w
. (1.9)

The solution follows easily from the Cauchy–Schwarz’s inequality:

|w†h| ≤ ‖w‖‖h‖ , (1.10)

where equality is achieved when w ∝ h, i.e., when the beamvector is
aligned with the channel. This is commonly termed matched filter or
maximum ratio combining. The resulting SNR is then given by the
squared-norm of the channel ‖h‖2, i.e., fully utilizing the energy of the
channel.

Consider now a MISO channel:

y = h†s + n, (1.11)

where the vector signal s is transmitted and the scalar y is received (the
noise is assumed zero mean and normalized E

[
|n|2

]
= 1). The classical
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1.3 A First Glimpse at Linear Transceivers: Beamforming 11

transmit beamforming approach transmits on each antenna a weighted
version of the symbol to be conveyed x via the beamvector p:

s = px, (1.12)

where the transmitted power is given by the squared-norm of the
beamvector ‖p‖2 (assuming E

[
|x|2
]

= 1). The overall signal model is
then

y = (h†p)x + n. (1.13)

We can now design the transmit beamvector p to maximize the SNR

SNR = |h†p|2, (1.14)

subject to a power constraint ‖p‖2 ≤ P0. The solution again follows
easily from the Cauchy–Schwarz’s inequality:

|h†p| ≤ ‖h‖‖p‖ ≤ ‖h‖
√
P0, (1.15)

where both equalities are achieved when p =
√
P0h/‖h‖, i.e., when

the beamvector is aligned with the channel and satisfies the power
constraint with equality. An alternative way to derive this result is by
rewriting the SNR as

SNR = p†(hh†)p, (1.16)

from which the maximum value follows straightforwardly as the eigen-
vector of matrix hh† corresponding to the maximum eigenvalue, which
is precisely h/‖h‖, properly normalized to satisfy the power constraint.
The resulting SNR is then given by P0 ‖h‖2, i.e., fully utilizing the
energy of the channel and the maximum power at the transmitter.

1.3.2 Single Beamforming for MIMO Channels

We are now ready to extend the previous treatment of classical beam-
forming only at the receiver or only at the transmitter to both sides
of the link as illustrated in Figure 1.4 (e.g., [3, 113]). Consider now a
MIMO channel:

y = Hs + n, (1.17)
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12 Introduction

Fig. 1.4 Single beamforming scheme of a MIMO communication system.

where the vector signal s is transmitted and a vector y is received
(the noise is assumed zero mean and white E

[
nn†

]
= I). The transmit

beamforming generates the vector signal with beamvector p as

s = px, (1.18)

where one symbol x is transmitted (normalized such that E
[
|x|2
]

=
1), and the receive beamforming estimates the transmitted symbol by
linearly combining the received vector with the beamvector w:

x̂ = w†y = w† (Hpx + n) . (1.19)

The SNR is given by

SNR =
|w†Hp|2

w†w
. (1.20)

We can now maximize it with respect to the receive beamvector w, for
a given fixed p, exactly as in the case of a classical receive beamform-
ing. From the Cauchy–Schwarz’s inequality we have that the optimum
receiver is w ∝Hp, i.e., when the beamvector is aligned with the effec-
tive channel h = Hp. The resulting SNR is then given by

SNR = p†H
†
Hp. (1.21)

The transmit beamvector p that maximizes this expression is, as in the
classical transmit beamforming, the eigenvector of matrix H†H cor-
responding to the maximum eigenvalue (or, equivalently, to the right
singular vector of the channel matrix H corresponding to the maxi-
mum singular value, denoted by vH,max), properly normalized to satisfy
the power constraint with equality: p =

√
P0vH,max. The final achieved

SNR is P0σ
2
H,max, where σH,max denotes the maximum singular value.
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1.3 A First Glimpse at Linear Transceivers: Beamforming 13

Now that we know that the optimal transmitter is the best right sin-
gular vector, we can step back and elaborate on the optimal receiver
w ∝Hp =

√
P0HvH,max =

√
P0σH,maxuH,max to realize that it is actu-

ally equal (up to an arbitrary scaling factor) to the best left singular
vector of the channel matrix H.

Summarizing, the best transmit–receive beamvectors correspond
nicely to the right–left singular vectors of the channel matrix H associ-
ated to the largest singular value and the global communication process
becomes

x̂ = w† (Hpx + n) = (
√
P0σH,max)x + n, (1.22)

where n is an equivalent scalar noise with zero mean and unit variance.

1.3.3 Multiple Beamforming (Matrix Beamforming)
for MIMO Channels: Problem Statement

As we have seen, obtaining the best transmit–receive beamvectors when
transmitting one symbol over a MIMO channel is rather simple. How-
ever, precisely one of the interesting properties of MIMO channels is
the multiplexing capability they exhibit. To properly take advantage
of the potential increase in rate, we need to transmit more than one
symbol simultaneously. We can easily extend the previous signal model
to account for the simultaneous transmission of L symbols:

s =
L∑
i=1

pixi = Px, (1.23)

where P is a matrix with columns equal to the transmit beamvectors pi
corresponding to the L transmitted symbols xi stacked for convenience
in vector x (normalized such that E

[
xx†

]
= I). The power constraint

in this case is
L∑
i=1

‖pi‖2 = Tr
(
PP†) ≤ P0. (1.24)

Similarly, each estimated symbol at the receiver is x̂i = w†
iy or, more

compactly,

x̂ = W†y, (1.25)
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14 Introduction

Fig. 1.5 Multiple beamforming interpretation of a MIMO communication system.

where W is a matrix with columns equal to the receive beamvectors
wi corresponding to the L transmitted symbols. We can either inter-
pret this communication scheme as a multiple beamforming scheme as
illustrated in Figure 1.5 or as a matrix beamforming scheme as shown
in Figure 1.6. Both interpretations are actually natural extensions of
the single beamforming scheme in Figure 1.4.

The design of the transmitter and receiver in the multiple beam-
forming case is fundamentally different from the single beamforming
case. This happens because the L data streams are coupled and exhibit
a tradeoff for two different reasons:

(i) The total power budget P0 needs to be distributed among
the different substreams.

(ii) Even for a given power allocation among the substreams,
the design of the transmit “directions” is still coupled as the
transmission of one symbol interferes the others, as can be
seen from

x̂i = w†
i (Hpixi + ni) , (1.26)

where ni =
∑

j 6=iHpjxj + n is the equivalent interference-
plus-noise seen by the ith substream.

Fig. 1.6 Matrix beamforming interpretation of a MIMO communication system.
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1.3 A First Glimpse at Linear Transceivers: Beamforming 15

This inherent tradeoff among the substreams complicates the prob-
lem to the point that not even the problem formulation is clear: What
objective should we consider to measure the system performance?

As a consequence, different authors have considered a variety of
objective functions to design such systems (see the historical overview
in Section 1.4). In some cases, deriving optimal solutions according
to the selected objective and, in other cases, only giving suboptimal
solutions due to the difficulty of the problem. It is important to mention
that if we can assume the use of sufficiently long and good codes, then
the problem formulation becomes rather simple as elaborated later in
Section 1.4.

This text considers a general problem formulation based on an arbi-
trary objective function (alternatively, on individual constraints on the
quality of each data stream) and develops a unified framework based
on majorization theory that allows the simplification of the problem so
that optimal solutions can be easily obtained.

1.3.4 Diagonal Transmission for MIMO Channels:
A Heuristic Solution

Inspired by the solution in the single beamforming case, we can come
up with a suboptimal strategy that simplifies the problem design a
great deal. Recall that in the single beamforming scheme, the best
transmit and receive beamvectors correspond to the right and left sin-
gular vectors of the channel matrix H, respectively, associated to the
largest singular value. In the multiple beamforming scheme, we can
consider the natural extension and choose, for the ith substream, the
right and left singular vectors of the channel matrix H associated to
the ith largest singular value, vH,i and uH,i, respectively:

pi =
√
pivH,i and wi = uH,i, (1.27)

where pi denotes the power allocated to the ith substream that must
satisfy the power constraint

∑L
i=1 pi ≤ P0.

With this choice of transmit–receive processing, the global commu-
nication process becomes diagonal or orthogonal (in the sense that the
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different substreams do not interfere with each other):

x̂i = w†
i (Hpixi + ni) (1.28)

=
√
piσH,ixi + ni 1 ≤ i ≤ L, (1.29)

or, more compactly,

x̂ = W† (HPx + n) (1.30)

= diag(p1, . . . ,pL)ΣHx + n, (1.31)

where ΣH is a diagonal matrix that contains the L largest singular
values of H in decreasing order and n is an equivalent vector noise
with zero mean and covariance matrix E

[
nn†

]
= I.

Since the substreams do not interfere with each other, we can nicely
write the signal to interference-plus-noise ratios (SINRs) as

SINRi = piσ
2
H,i 1 ≤ i ≤ L (1.32)

and the only remaining problem is to find the appropriate power alloca-
tion {pi} which will depend on the particular objective function chosen
to measure the performance of the system.

Fortunately, as will be shown in this text, we do not need to con-
tent ourselves with suboptimal solutions and we can aim for the global
solution.

1.4 Historical Perspective on MIMO Transceivers

The problem of jointly designing the transmit and receive signal pro-
cessing is an old one. Already in the 1960s, we can easily find papers
that jointly design transmit–receive filters for frequency-selective SISO
channels to minimize the MSE (e.g., [11, 128] and references therein).
The design of MIMO transceivers for communication systems dates
back to the 1970s, where cable systems were the main application
[90, 129].

The design of MIMO systems is generally quite involved since sev-
eral substreams are typically established over MIMO channels (mul-
tiplexing property). Precisely, the existence of several substreams,
each with its own performance, makes the definition of a global mea-
sure of the system performance not clear; as a consequence, a wide
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1.4 Historical Perspective on MIMO Transceivers 17

span of different design criteria has been explored in the literature as
overviewed next.

At this point, it is important to emphasize that if one can assume
the use of sufficiently long and good codes, i.e., if instead of a signal pro-
cessing approach we adopt an information theoretic perspective, then
the problem formulation simplifies drastically and the state of the art of
the problem is very different. As first devised by Shannon in 1949 [140]
for frequency-selective channels and rigorously formalized for a matrix
channel in [21, 152, 153], the best transmission scheme that achieves
the channel capacity consist of: (i) diagonalizing the channel matrix,
(ii) using a waterfilling power allocation over the channel eigenmodes,
and (iii) employing a Gaussian signaling (see also [33, 122, 148]). In
many real systems, however, rather than with Gaussian codes, the
transmission is done with practical discrete constellations and coding
schemes.

In a more general setup, we can formulate the design of the MIMO
system as the optimization of a global objective function based on the
individual performance of each of the established substreams. Alterna-
tively, we can consider the achievable set of individual performance
of the substreams (e.g., in a CDMA system where each user has
some minimum performance constraint). The classical aforementioned
information-theoretic solution will be then a particular case of this more
general setup.

The first linear designs (for cable systems) considered a mathemat-
ically tractable cost function as a measure of the system performance:
the sum of the MSEs of all channel substreams or, equivalently,
the trace of the MSE matrix [2, 90, 129, 171] (different papers
explored variations of the problem formulation concerning the dimen-
sions of the channel matrix, the channel frequency-selectivity, the
excess-bandwidth, etc.). Decision-feedback schemes were also consid-
ered [128, 82, 170].

Due to the popularization of wireless multi-antenna MIMO sys-
tems in the late 1990s [43, 45, 122, 148], a new surge of interest on
the design of MIMO transceivers appeared with a wireless rather than
wired motivation. Different design criteria have been used by different
authors as shown in the following. In [131] a unified signal model for
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block transmissions was presented as a MIMO system and different
design criteria were considered such as the minimization of the trace
of the MSE matrix and the maximization of the SINR with a zero-
forcing (ZF) constraint. In [170], the minimization of the determinant
of the MSE matrix was considered for decision-feedback (DF) schemes.
In [130], a reverse-engineering approach was taken to obtain different
known solutions as the minimization of the weighted trace of the MSE
matrix with appropriate weights. In [3], the flat multi-antenna MIMO
case was considered providing insights from the point of view of beam-
forming. Various criteria were considered in [132] under average power
constraint as well as peak power constraint.

For the aforementioned design criteria, the problem is very compli-
cated but fortunately it simplifies because the channel matrix turns out
to be diagonalized by the optimal transmit–receive processing and the
transmission is effectively performed on a diagonal or parallel fashion.
Indeed, the diagonal transmission implies a scalarization of the problem
(meaning that all matrix equations are substituted with scalar ones)
with the consequent simplification (cf. Section 1.3.4). In light of the
optimality of the diagonal structure for transmission in all the previous
examples (including the capacity-achieving solution [33, 122, 148]), one
might expect that the same would hold for any other criteria as well.
However, as shown in [111], this is not the case.

More recently, the design of MIMO transceivers has been
approached using the bit error rate (BER), rather than the MSE or
the SINR, as basic performance measure. This approach is arguably
more relevant as the ultimate performance of a system is measured by
the (BER), but it is also more difficult to handle. In [106], the minimiza-
tion of the BER (and also of the Chernoff upper bound) averaged over
the channel substreams was treated in detail when a diagonal structure
is imposed. The minimum BER design of a linear MIMO transceiver
without the diagonal structure constraint was independently obtained
in [36] and [111], resulting in an optimal nondiagonal structure. This
result, however, only holds when the constellations used in all the sub-
streams are equal.

In [111], a general unifying framework was developed that embraces
a wide range of different design criteria for linear MIMO transceivers;
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in particular, the optimal design was obtained for the family of Schur-
concave and Schur-convex cost functions which arise in majorization
theory [97]. Interestingly, this framework gives a clear answer to the
question of whether the diagonal transmission is optimal: when the
cost function is Schur-concave then the diagonal structure is optimal,
but when the cost function is Schur-convex then the optimal structure
is not diagonal anymore.

From the previous unifying framework based on majorization the-
ory, it follows that the minimization of the BER averaged over the
substreams, considered in [36, 111], is a Schur-convex function, pro-
vided that the constellations used on the substreams are equal, and
therefore it can be optimally solved. The general case of different con-
stellations, however, is much more involved (in such a case, the cost
function is neither Schur-convex nor Schur-concave) and was solved in
[110] via a primal decomposition approach, a technique borrowed from
optimization theory [12, 88, 142].

An alternative way to formulate the design of MIMO transceivers
is to consider an independent requirement of quality for each of the
substreams rather than a global measure of quality. This was considered
and optimally solved in [114], again based on majorization theory.

Interestingly, the unifying framework based on the majorization the-
ory was later extended to nonlinear DF MIMO transceivers in [74] (see
also [141]). The extension in [74] is based on a new matrix decom-
position, namely, the generalized triangular decomposition [70]. While
the linear transceiver design relies on the concept of additive majoriza-
tion, the nonlinear decision-feedback transceiver invokes the multiplica-
tive majorization. One can see an intriguing mathematical symmetry
between the linear and nonlinear designs.

As evidenced by the previous results, majorization theory is a
mathematical tool that plays a key role in transforming the originally
complicated matrix-valued nonconvex problem into a simple scalar
problem. Other recent successful applications of majorization theory
in communication systems, from either an information-theoretic or a
signal processing perspective, include the design of signature sequences
in CDMA systems to maximize the sum-rate or to satisfy Quality-
of-Service (QoS) requirements with minimum power by Viswanath
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et al. [161, 162, 163] and the study of the impact of correlation of
the transmit antennas in MISO systems by Boche et al. [18, 79].

1.5 Outline

This text considers the design of point-to-point MIMO transceivers
(this also includes multiuser CDMA systems) with CSI at both sides
of the link according to an arbitrary cost function as a measure of the
system performance. A unified framework is developed that hinges on
majorization theory as a key tool to transform the originally compli-
cated matrix-valued nonconvex problem into a simple scalar problem
in most cases convex which can be addressed under the powerful frame-
work of convex optimization theory [12, 13, 20]. The framework allows
the choice of any cost function as a measure of the overall system per-
formance and the design is based then on the minimization of the cost
function subject to a power constraint or vice versa. In addition, the
framework embraces the possibility of imposing a set of QoS constraints
for the data streams with minimum required power.

This chapter has already given the basic background on MIMO
channels and MIMO communication systems, including a natural evo-
lution from classical beamforming to MIMO transceivers and a histor-
ical perspective on MIMO transceivers.

Chapter 2 introduces majorization theory on which the rest of the
text is based.

Chapter 3 is fully devoted to linear MIMO transceivers composed
of a linear precoder at the transmitter and a linear equalizer at the
receiver. In particular, the key simplification relies on the additive
majorization relation. Different types of design are considered in order
of increasing conceptual and mathematical complexity: (i) based on
a Schur-concave/convex cost function as a global measure of perfor-
mance, (ii) based on individual QoS constraints, and (iii) based on an
arbitrary cost function as a global measure of performance.

Then, Chapter 4 considers nonlinear DF MIMO transceivers, com-
posed of a linear precoder at the transmitter and a decision-feedback
equalizer (DFE) at the receiver (consisting of a feedforward stage and a
feedback stage) or the dual form based on dirty paper coding by uplink–
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downlink duality. Interestingly, the key simplification relies in this case
on a multiplicative majorization relation. As in the linear case, different
types of design are considered: (i) based on an arbitrary cost function
as a global measure of performance (including Schur-concave/convex
cost functions) and (ii) based on individual QoS constraints.

Hence, from Chapters 3 and 4, both the linear and nonlinear cases
are nicely unified under an additive and multiplicative majorization
relation. The basic design of point-to-point linear and nonlinear DF
MIMO transceivers with CSI is thus well understood. This is not to
say that the general problem of MIMO transceivers with CSI is fully
solved. On the contrary, there are still many unanswered questions and
future lines of research.

Chapter 5 precisely describes unanswered questions and future
lines of research, namely, (i) the design of multiuser MIMO
transceivers for networks with interfering users, (ii) the design of robust
MIMO transceivers to imperfect CSI, (iii) the design of nonlinear
MIMO transceivers with ML decoding, and (iv) the design of MIMO
transceivers from an information-theoretic perspective with arbitrary
constellations.

Notation. The following notation is used. Boldface upper-case let-
ters denote matrices, boldface lower-case letters denote column vectors,
and italics denote scalars. Rm×n and Cm×n represent the set of m × n

matrices with real- and complex-valued entries, respectively. R+ and
R++ stand for the set of nonnegative and positive real numbers, respec-
tively. The super-scripts (·)T , (·)∗, and (·)† denote matrix transpose,
complex conjugate, and Hermitian operations, respectively. Re{·} and
Im{·} denote the real and imaginary part, respectively. Tr(·) and det(·)
(also |·|) denote the trace and determinant of a matrix, respectively.
‖x‖ is the Euclidean norm of a vector x and ‖X‖F is the Frobenius
norm of a matrix X (defined as ‖X‖F ,

√
Tr(X†X)). [X]i,j (also [X]ij)

denotes the (ith, jth) element of matrix X. d(X) and λ(X) denote the
diagonal elements and eigenvalues, respectively, of matrix X. A block-
diagonal matrix with diagonal blocks given by the set {Xk} is denoted
by diag({Xk}). The operator (x)+ , max(0,x) is the projection onto
the nonnegative orthant.
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