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Alfonso Martinez2 and Giuseppe Caire3

1 Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge, CB2 1PZ, UK, guillen@ieee.org

2 Centrum Wiskunde & Informatica (CWI), Kruislaan 413, Amsterdam,
1098 SJ, The Netherlands, alfonso.martinez@ieee.org

3 Electrical Engineering Department, University of Southern California,
Los Angeles, 90080 CA, USA, caire@usc.edu

Abstract

The principle of coding in the signal space follows directly from Shan-
non’s analysis of waveform Gaussian channels subject to an input
constraint. The early design of communication systems focused sep-
arately on modulation, namely signal design and detection, and error
correcting codes, which deal with errors introduced at the demodu-
lator of the underlying waveform channel. The correct perspective of
signal-space coding, although never out of sight of information theo-
rists, was brought back into the focus of coding theorists and system
designers by Imai’s and Ungerböck’s pioneering works on coded modu-
lation. More recently, powerful families of binary codes with a good
tradeoff between performance and decoding complexity have been
(re-)discovered. Bit-Interleaved Coded Modulation (BICM) is a prag-
matic approach combining the best out of both worlds: it takes advan-
tage of the signal-space coding perspective, whilst allowing for the use
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of powerful families of binary codes with virtually any modulation for-
mat. BICM avoids the need for the complicated and somewhat less
flexible design typical of coded modulation. As a matter of fact, most
of today’s systems that achieve high spectral efficiency such as DSL,
Wireless LANs, WiMax and evolutions thereof, as well as systems based
on low spectral efficiency orthogonal modulation, feature BICM, mak-
ing BICM the de-facto general coding technique for waveform channels.

The theoretical characterization of BICM is at the basis of efficient
coding design techniques and also of improved BICM decoders, e.g.,
those based on the belief propagation iterative algorithm and approxi-
mations thereof. In this text, we review the theoretical foundations of
BICM under the unified framework of error exponents for mismatched
decoding. This framework allows an accurate analysis without any par-
ticular assumptions on the length of the interleaver or independence
between the multiple bits in a symbol. We further consider the sensi-
tivity of the BICM capacity with respect to the signal-to-noise ratio
(SNR), and obtain a wideband regime (or low-SNR regime) charac-
terization. We review efficient tools for the error probability analysis
of BICM that go beyond the standard approach of considering infi-
nite interleaving and take into consideration the dependency of the
coded bit observations introduced by the modulation. We also present
bounds that improve upon the union bound in the region beyond the
cutoff rate, and are essential to characterize the performance of mod-
ern randomlike codes used in concatenation with BICM. Finally, we
turn our attention to BICM with iterative decoding, we review extrin-
sic information transfer charts, the area theorem and code design via
curve fitting. We conclude with an overview of some applications of
BICM beyond the classical coherent Gaussian channel.
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ŝ Saddlepoint value
σ2
X Variance

σ̂2
X Pseudo-variance, σ2

X
∆= E

[
|X|2

]
− |E[X]|2

ζ0 Wideband slope
snr Signal-to-noise ratio
W Signal bandwidth
X Input signal set (constellation)
X jb Set of symbols with bit b at jth label
X ji1,...,jivbi1,...,biv

Set of symbols with bits bi1 , . . . , biv at positions
ji1 , . . . , jiv

Full text available at: http://dx.doi.org/10.1561/0100000019



5

xk Channel input at time k
x Vector of all channel inputs; input codeword
xm Codeword corresponding to message m

Ξm(k−1)+j Bit log-likelihood of jth bit in kth symbol
yk Channel output at time k
y Vector of all channel outputs
Y Output signal set
zk Noise realization at time k
Ξpw Pairwise score
Ξs
k Symbol score for kth symbol

Ξb
k,j Bit score at jth label of kth symbol

Ξb
1 Symbols score with weight 1 (bit score)

Ξdec→dem
m(k−1)+j Decoder LLR for jth bit of kth symbol

Ξdec→dem Decoder LLR vector
Ξdec→dem
∼i Decoder LLR vector, excluding the ith component

Ξdem→dec
m(k−1)+j Demodulator LLR for jth bit of kth symbol

Ξdem→dec Demodulator LLR vector
Ξdem→dec
∼i Demodulator LLR vector, excluding the ith

component

Full text available at: http://dx.doi.org/10.1561/0100000019



1

Introduction

Since Shannon’s landmark 1948 paper [105], approaching the capacity
of the Additive White Gaussian Noise (AWGN) channel has been one
of the more relevant topics in information theory and coding theory.
Shannon’s promise that rates up to the channel capacity can be reliably
transmitted over the channel comes together with the design challenge
of effectively constructing coding schemes achieving these rates with
limited encoding and decoding complexity.

The complex baseband equivalent model of a bandlimited AWGN
channel is given by

yk =
√

snrxk + zk, (1.1)

where yk,xk,zk are complex random variables and snr denotes the
Signal-to-Noise Ratio (SNR), defined as the signal power over the noise
power. The capacity C (in nats per channel use) of the AWGN channel
with signal-to-noise ratio snr is given by the well-known

C = log(1 + snr). (1.2)

The coding theorem shows the existence of sufficiently long codes
achieving error probability not larger than any ε > 0, as long as the

7
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8 Introduction

coding rate is not larger than C. The standard achievability proof of
(1.2) considers a random coding ensemble generated with i.i.d. compo-
nents according to a Gaussian probability distribution.

Using a Gaussian code is impractical, as decoding would require an
exhaustive search over the whole codebook for the most likely candi-
date. Instead, typical signaling constellations like Phase-Shift Keying
(PSK) or Quadrature-Amplitude Modulation (QAM) are formed by a
finite number of points in the complex plane. In order to keep the mod-
ulator simple, the set of elementary waveforms that the modulator can
generate is a finite set, preferably with small cardinality. A practical
way of constructing codes for the Gaussian channel consists of fixing
the modulator signal set, and then considering codewords obtained as
sequences over the fixed modulator signal set, or alphabet. These coded
modulation schemes are designed for the equivalent channel resulting
from the concatenation of the modulator with the underlying wave-
form channel. The design aims at endowing the coding scheme with
just enough structure such that efficient encoding and decoding is pos-
sible while, at the same time, having a sufficiently large space of possible
codes so that good codes can be found.

Driven by Massey’s consideration on coding and modulation as
a single entity [79], Ungerböck in 1982 proposed Trellis-Coded Mod-
ulation (TCM), based on the combination of trellis codes and dis-
crete signal constellations through set partitioning [130] (see also [17]).
TCM enables the use of the efficient Viterbi algorithm for optimal
decoding [138] (see also [35]). An alternative scheme is multilevel
coded modulation (MLC), proposed by Imai and Hirakawa in 1977
[56] (see also [140]). MLC uses several binary codes, each protect-
ing a single bit of the binary label of modulation symbols. At the
receiver, instead of optimal joint decoding of all the component binary
codes, a suboptimal multi-stage decoding, alternatively termed succes-
sive interference cancellation, achieves good performance with limited
complexity. Although not necessarily optimal in terms of minimiz-
ing the error probability, the multi-stage decoder achieves the channel
capacity [140].

The discovery of turbo codes [11] and the re-discovery of low-density
parity-check (LDPC) codes [38, 69] with their corresponding iterative

Full text available at: http://dx.doi.org/10.1561/0100000019



9

decoding algorithms marked a new era in coding theory. These modern
codes [97] approach the capacity of binary-input channels with low com-
plexity. The analysis of iterative decoding also led to new methods for
their efficient design [97]. At this point, a natural development of coded
modulation would have been the extension of these powerful codes to
nonbinary alphabets. However, iterative decoding of binary codes is by
far simpler.

In contrast to Ungerböck’s findings, Zehavi proposed bit-interleaved
coded modulation (BICM) as a pragmatic approach to coded modula-
tion. BICM separates the actual coding from the modulation through
an interleaving permutation [142]. In order to limit the loss of infor-
mation arising in this separated approach, soft information about the
coded bits is propagated from the demodulator to the decoder in the
form of bit-wise a posteriori probabilities or log-likelihood ratios. Zehavi
illustrated the performance advantages of separating coding and mod-
ulation. Later, Caire et al. provided in [29] a comprehensive analysis
of BICM in terms of information rates and error probability, show-
ing that in fact the loss incurred by the BICM interface may be very
small. Furthermore, this loss can essentially be recovered by using iter-
ative decoding. Building upon this principle, Li and Ritcey [65] and
ten Brink [122] proposed iterative demodulation for BICM, and illus-
trated significant performance gains with respect to classical nonit-
erative BICM decoding [29, 142] when certain binary mappings and
convolutional codes are employed. However, BICM designs based on
convolutional codes and iterative decoding cannot approach the coded
modulation capacity, unless the number of states grows large [139].
Improved constructions based on iterative decoding and on the use of
powerful families of modern codes can, however, approach the channel
capacity for a particular signal constellation [120, 121, 127].

Since its introduction, BICM has been regarded as a pragmatic yet
powerful scheme to achieve high data rates with general signal constel-
lations. Nowadays, BICM is employed in a wide range of practical com-
munication systems, such as DVB-S2, Wireless LANs, DSL, WiMax,
the future generation of high data rate cellular systems (the so-called
4th generation). BICM has become the de-facto standard for coding
over the Gaussian channel in modern systems.
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10 Introduction

In this text, we provide a comprehensive study of BICM. In
particular, we review its information-theoretic foundations, and review
its capacity, cutoff rate and error exponents. Our treatment also cov-
ers the wideband regime. We further examine the error probability of
BICM, and we focus on the union bound and improved bounds to the
error probability. We then turn our attention to iterative decoding of
BICM; we also review the underlying design techniques and introduce
improved BICM schemes in a unified framework. Finally, we describe
a number of applications of BICM not explicitly covered in our treat-
ment. In particular, we consider the application of BICM to orthogonal
modulation with noncoherent detection, to the block-fading channel, to
the multiple-antenna channel as well as to less common channels such
as the exponential-noise or discrete-time Poisson channels.
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