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Abstract

This monograph presents an overview of universal estimation of infor-
mation measures for continuous-alphabet sources. Special attention is
given to the estimation of mutual information and divergence based on
independent and identically distributed (i.i.d.) data. Plug-in methods,
partitioning-based algorithms, nearest-neighbor algorithms as well as
other approaches are reviewed, with particular focus on consistency,
speed of convergence and experimental performance.
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1.5 Rényi Entropy and Rényi Differential Entropy 20
1.6 f -Divergence 22

2 Plug-in Algorithms 25

2.1 Numerical Integration 26
2.2 Empirical Average 28

3 Algorithms Based on Partitioning 33

3.1 Fixed Partitions 34
3.2 Adaptive Partitions 37

4 Algorithms Based on k-Nearest-Neighbor Distances 45

4.1 The k(n)-Nearest-Neighbor Method and the Plug-in
Algorithm 45

4.2 Consistent Estimates with a Constant k 47

5 Other Algorithms 55

5.1 Density Approximation 55
5.2 Minimal Spanning Tree 58

ix

Full text available at: http://dx.doi.org/10.1561/0100000021



6 Algorithm Summary and Experiments 63

6.1 Summary 63
6.2 Experimental Comparisons 64

7 Sources with Memory 71

7.1 Estimation of Information Measures for Marginal
Distributions 71

7.2 Estimation of Information Rate 72

References 77

Full text available at: http://dx.doi.org/10.1561/0100000021



1

Introduction

Entropy, differential entropy and mutual information, introduced by
Shannon [216] in 1948, arise in the study of the fundamental lim-
its of data compression and data transmission. Divergence, used by
Wald [258] in 1945, and often attributed to Kullback and Leibler [144],
also plays a major role in information theory as well as in large devi-
ations theory. Entropy, mutual information and divergence measure
the randomness, dependence and dissimilarity, respectively of random
objects. In addition to their prominent role in information theory, they
have found numerous applications, among others, in probability the-
ory [13, 19], ergodic theory [218], statistics [64, 142], convex anal-
ysis and inequalities [69], physics [25, 27, 147, 150], chemistry [79],
molecular biology [270], ecology [138], bioinformatics [81, 83, 214], neu-
roscience [201, 232], machine learning [73], linguistics [26, 44], and
finance [52, 53, 56]. Many of these applications require a universal
estimate of information measures which does not assume knowledge
of the statistical properties of the observed data. Over the past few
decades, several non-parametric algorithms have been proposed to esti-
mate information measures. This monograph aims to present a com-
prehensive survey of universal estimation of information measures for

1
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2 Introduction

memoryless analog (real-valued or real vector-valued) sources with an
emphasis on the estimation of mutual information and divergence and
their applications. We review the consistency of the universal algo-
rithms and the corresponding sufficient conditions as well as their speed
of convergence.

The monograph is organized as follows. In the remainder of this
section, we review the concepts of information measures, their appli-
cations in theory and practice, and we formulate the universal esti-
mation problem. Section 2 introduces plug-in algorithms and discusses
their performance. Section 3 presents partitioning-based methods, gives
a consistency analysis and describes the most advanced version in
this class of algorithms. Section 4 investigates the nearest-neighbor
approach for information estimation and studies its convergence. Other
methods based on density estimation and minimal spanning trees are
reviewed in Section 5. Section 6 summarizes and provides experimental
results that serve as an illustration of the relative merits of the various
methods. Section 7 gives a brief discussion of the estimation of mutual
information rate for processes with memory.

1.1 Entropy

The concept of entropy as an information measure was introduced by
Shannon [216]. The entropy H(X) of a discrete random variable X is
defined in terms of its probability mass function PX(·):

H(X) =
∑
x∈X

PX(x) log
1

PX(x)
. (1.1)

Throughout this monograph, the convention 0log1/0 = 0 is used.
Entropy H(X) quantifies the information or uncertainty associated
with X. Entropy plays a key role in fundamental limits of lossless data
compression. The entropy definition (1.1) as an information measure,
however, is only applicable to discrete random sources.

Generally speaking, the information estimation for discrete data is
at a more advanced stage than that for analog data. In the case of
entropy estimation for discrete sources, most of the work is devoted
to data with memory. Back in 1951, Shannon [217] considered the
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1.2 Differential Entropy 3

estimation of entropy of English via the number of trials to guess sub-
sequent symbols in a given text. Cover and King [51] later proposed
a gambling estimate of English entropy and proved its consistency for
stationary ergodic data. The Lempel–Ziv string matching method was
used in [267] and [134] for entropy estimation for stationary ergodic
processes. Cai et al. [43] proposed algorithms based on the Burrows–
Wheeler block sorting transform to estimate entropy for finite alphabet,
finite memory sources. In addition, for memoryless sources, different
approaches [139, 177, 184, 265] have been designed to overcome dif-
ficulties in the under-sampled regime. We next turn our attention to
information measures that can be applied to analog sources, which is
the focus of this monograph.

1.2 Differential Entropy

1.2.1 Definition

Differential entropy was proposed in 1948 simultaneously by
Shannon [216] and Wiener [263]. It is only defined for continuous ran-
dom variables (see [55] for its basic properties). Let X is a continuous
random variable with a probability density function (pdf) pX defined
on Rd. Its differential entropy h(X) is given by

h(X) =
∫

Rd

pX(x) log
1

pX(x)
dx. (1.2)

The Gaussian distribution maximizes the differential entropy over all
distributions with a given covariance matrix. The exponential distri-
bution maximizes the differential entropy over all distributions with
a given mean and supported on the positive half line. Among distri-
butions supported on a given finite interval, the differential entropy
is maximized by the uniform distribution. Various explicit expres-
sions for differential entropies of univariate and multivariate probability
densities can be found in [6, 66, 148].

1.2.2 Universal Estimation

Let X is a continuous random variable in Rd with density pX . Suppose
{X1, . . . ,Xn} are i.i.d. realizations of X. A universal estimator of the

Full text available at: http://dx.doi.org/10.1561/0100000021



4 Introduction

Fig. 1.1 Universal estimation of differential entropy.

differential entropy of X (see Figure 1.1) is an algorithm which out-
puts a consistent estimate, ĥ(X), of h(X) given only the observations
{Xi} and no knowledge of pX . Beirlant et al. [23] provides a survey
on non-parametric estimation of differential entropy for i.i.d. samples.
In Sections 2, 3, 4, and 5, we review several algorithms for differential
entropy estimation.

1.2.3 Applications

1.2.3.1 Quantization

Like entropy, differential entropy is closely related to data compression.
For analog sources, as the quantizer becomes finer and finer, the entropy
of the output behaves as the differential entropy plus the logarithm of
the reciprocal of the quantization bin size. In particular, suppose qn(·)
is a uniform quantizer with infinitely many levels and step size 1/n.
In 1959, Rényi [199] showed that the entropy of the quantizer output
qn(X) behaves as

H(qn(X)) = h(X) + logn + o(1) (1.3)

See [29, 30, 60, 61, 91, 92, 102] for generalized results in the approxi-
mation of the quantizer output entropy via differential entropy. Those
and other results on quantization are surveyed in the review by Gray
and Neuhoff [98].

1.2.3.2 Asymptotic Equipartition Property

One of the most important roles of entropy arises in the asymptotic
equipartition property (AEP) [56, Chapter 3], which characterizes the
probability of typical sequences, namely those whose sample entropy is
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1.2 Differential Entropy 5

close to the entropy. Although not nearly as useful, a similar property
holds for analog sources using differential entropy.

Definition 1.1. Let x1,x2, . . . ,xn is a sequence of random variables
drawn i.i.d. according to the density pX . For ε > 0, x1,x2, . . . ,xn is an
ε-typical sequence if∣∣∣∣ 1n log

1
pX(x1, . . . ,xn)

− h(X)
∣∣∣∣ ≤ ε, (1.4)

where pX(x1,x2, . . . ,xn) = Πn
i=1pX(xi). For ε > 0 and any n, the typ-

ical set A(n)
ε is the collection of all sequences x1,x2, . . . ,xn which are

ε-typical.

Let the volume Vol(A) of a set A ⊂ Rn be defined as

Vol(A) =
∫
A

dx1dx2 · · ·dxn. (1.5)

The following theorem from [56, Chapter 8] characterizes the volume
and probability of the typical set A(n)

ε in terms of differential entropy.

Theorem 1.1. The typical set A(n)
ε has the following properties:

(1) Pr
(
A

(n)
ε

)
> 1 − ε for n sufficiently large;

(2) Vol
(
A

(n)
ε

)
≤ exp(n(h(X) + ε)) for all n;

(3) Vol
(
A

(n)
ε

)
≥ (1 − ε)exp(n(h(X) − ε)) for n sufficiently

large.

Note that if h(X) > 0, then the volume of the typical set grows
exponentially in the dimension. Conversely, if h(X) < 0, it shrinks
exponentially.

1.2.3.3 Maximum Differential Entropy Principle

The principle of maximum entropy was proposed by Jaynes [120, 121,
122] in the context of thermodynamics (see also [219]). This principle
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6 Introduction

is a general method to select probability distributions given partial
information on their moments.

Theorem 1.2. (Maximum Differential Entropy Distribution).
Let f is a probability density function supported on the set S. The
unique solution to the following optimization problem:

Maximize h(f) ,
∫
S
f(x) log

1
f(x)

dx,

subject to ∫
S
f(x)ri(x)dx = αi, for 1 ≤ i ≤m. (1.6)

is

f∗(x) = exp

(
λ0 +

m∑
i=1

λiri(x)

)
, x ∈ S, (1.7)

where λ0, . . . ,λm are chosen such that the constraints (1.6) are satisfied.

The principle of maximum differential entropy has been applied to
density estimation [39, 203, 235, 236] and spectral estimation [40, 48].

1.2.3.4 Entropy Power Inequalities and the Convolution

of Densities

For a continuous random variable X in Rd with differential entropy
h(X), the entropy power of X is defined to be

N(X) =
1

2πe
exp

(
2
d
h(X)

)
. (1.8)

Entropy power inequalities relate the entropy power of the sum of inde-
pendent random variables to the sums of entropy powers contained in
subsets of the random variables, for an arbitrary collection of subsets.
In particular, let X1, . . . ,Xn is independent random variables in Rd,
then

N(X1 + · · · + Xn) ≥
n∑
i=1

N(Xi), (1.9)
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1.3 Divergence 7

where equality holds if and only if X1, . . . ,Xn are Gaussian random
vectors with proportional covariance matrices. Since the density of the
sum of independent random variables is given by the convolution of
the individual densities, an alternative interpretation of (1.9) is that
convolution increase entropy power.

The inequality (1.9) is put forth by Shannon [216] and proved by
Stam [229] and has been strengthened in various ways in [13, 99, 159,
244]. These types of inequalities are useful for the examination of mono-
tonicity in central limit theorems [13, 19, 159, 244] for independent
random variables.

1.3 Divergence

1.3.1 Definition

While certain analogies exist between entropy and differential entropy,
the differential entropy can be negative and is not invariant under
invertible transformations. More useful and fundamental for the contin-
uous case is the divergence, also known as Kullback–Leibler divergence
or relative entropy, first used by Wald [258] and formally intro-
duced by Kullback and Leibler [144] in 1951 as a measure of dis-
tance between distributions. The definition of divergence carries over
directly from discrete to continuous distributions, and possesses the
convenient property of being invariant under one-to-one transforma-
tions. Suppose P and Q are probability distributions defined on the
same measurable space (Ω,F). The divergence between P and Q is
defined as

D(P‖Q) =
∫

Ω
dP log

dP
dQ

. (1.10)

when P is absolutely continuous with respect to Q (denoted as P � Q,
i.e. P (A) = 0 for any A ∈ F such that Q(A) = 0), and +∞ other-
wise. Since P � Q implies that the Radon–Nikodym derivative dP/dQ
exists, an alternative definition of divergence is given by

D(P‖Q) =
∫

Ω
dQ

dP
dQ

log
dP
dQ

. (1.11)

Full text available at: http://dx.doi.org/10.1561/0100000021



8 Introduction

Specifically, for distributions on a discrete alphabet A, divergence
becomes

D(P‖Q) =
∑
a∈A

P (a) log
P (a)
Q(a)

. (1.12)

where 0log0/0 = 0 by convention. For continuous distributions on Rd,
if the densities of P and Q with respect to Lebesgue measure exist,
denoted by p(x) and q(x), respectively, with p(x) = 0 for P -almost
every x such that q(x) = 0, then

D(P‖Q) = D(p‖q) =
∫

Rd

p(x) log
p(x)
q(x)

dx. (1.13)

A useful list of explicit expressions of divergence between common pdf’s
is given in [188].

As a distance measure, divergence is always non-negative with
D(P‖Q) = 0 if and only if P = Q. However, divergence is not sym-
metric and does not satisfy the triangle inequality and thus is not a
metric. Other distance measures can be related to divergence by, for
example, Pinsker’s inequality [143, 190]:

D(P‖Q) ≥ 1
2
V (P,Q) log e, (1.14)

where V (P,Q) is the variational distance defined as

V (P,Q) = V (Q,P ) = sup
{Ai}

∑
i

|P (Ai) − Q(Ai)|, (1.15)

where the supremum is taken over all F-measurable partitions {Ai}
of Ω. For more inequalities regarding divergence and related measures,
see [34, 59, 85, 158, 238].

1.3.2 Universal Estimation

Suppose P and Q are probability distributions defined on the same
Euclidean space (Rd,BRd) and P � Q. Let p and q are probability den-
sity functions corresponding to P and Q, respectively. The problem

Full text available at: http://dx.doi.org/10.1561/0100000021



1.3 Divergence 9

Fig. 1.2 Universal estimation of divergence D(p‖q).

is to design a consistent estimate of D(P‖Q) given i.i.d. samples
{X1, . . . ,Xn} and {Y1, . . . ,Ym} are drawn according to p and q, respec-
tively (see Figure 1.2).1 As before, in the construction of universal
estimators, no knowledge is available about p and q.

1.3.3 Applications of Divergence

1.3.3.1 Mismatch Penalty in Data Compression

Assume that X is a discrete random variable drawn according to a
distribution P . The average length of a prefix code is lower bounded
by the entropy H(P ). This bound is achieved if

`(a) = log
1

P (a)
. (1.16)

are integers for all a, where the base of the logarithm is equal to the
size of the code alphabet. On the other hand, the minimum average
length of a prefix code is upper bounded by the entropy plus one.

In the case of mismatch where the choice of the code assumes a
different distribution Q, the minimum average length is upper bounded
by H(P ) + D(P‖Q) + 1.

1.3.3.2 Chernoff–Stein Lemma

In binary hypothesis testing, if we fix one of the error probabilities
and minimize the other probability of error, the Chernoff–Stein lemma
shows that the latter will decay exponentially with exponent equal to
the divergence between the two underlying distributions.

1 Note that m and n are not required to be equal.

Full text available at: http://dx.doi.org/10.1561/0100000021



10 Introduction

Theorem 1.3. (Chernoff–Stein Lemma) [56, 254].
Let X1,X2, . . . ,Xn ∈ An is i.i.d. random variables distributed according
to a distribution F . Consider a hypothesis testing problem:

H0 : F = P

H1 : F = Q, (1.17)

where D(P‖Q) <∞. Let Dn ⊆ An be the decision region for hypothesis
H0. Let the probabilities of error be

αn = Pn(Dc
n), βn = Qn(Dn). (1.18)

For 0 < ε < 1/2, define

β∗n(ε) = min
Dn⊆An,αn≤ε

βn. (1.19)

Then

lim
n→∞

1
n

log
1

β∗n(ε)
= D(P‖Q). (1.20)

1.3.3.3 A Posteriori Likelihood Result

Divergence also characterizes the limit of the log-likelihood ratio [55]
and is useful in maximum likelihood detection [256, Problem 3.6].
Suppose the hypothesis testing problem is as shown in (1.17) and the
distributions P and Q satisfy that

D(P‖Q) <∞ and D(Q‖P ) <∞. (1.21)

By the weak law of large numbers, if P is the true distribution, we have

1
n

log
P (X1,X2, . . . ,Xn)
Q(X1,X2, . . . ,Xn)

→ D(P‖Q), in probability; (1.22)

and if Q is the true distribution,

1
n

log
P (X1,X2, . . . ,Xn)
Q(X1,X2, . . . ,Xn)

→−D(Q‖P ), in probability. (1.23)
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1.3 Divergence 11

1.3.3.4 Capacity of Non-Gaussian Additive Channels

Channel capacity is the tightest upper bound on the amount of infor-
mation that can be reliably transmitted over a communications chan-
nel. For channels with additive-noise of fixed power, Gaussian noise is
shown to be least favorable [216]. Specifically, assuming the same power
constraints, the capacity of non-Gaussian channels is always greater
than or equal to that of Gaussian channels. An upper bound on the
capacity of additive non-Gaussian noise channels depends on the “non-
Gaussianness” of the noise distribution, or equivalently, the divergence
between the actual noise distribution and a Gaussian distribution with
the same variance.

Theorem 1.4. [216, 119].
Consider a discrete-time additive-noise channel,

Yi = Xi + Ni, i = 1, . . . ,n, (1.24)

where Xi and Ni are i.i.d. and

• the noise {Ni} has distribution PN with variance σ2 and is
independent of the input {Xi};
• The input signals {Xi} satisfy the power constraint (individ-

ual or on average over codebook):

1
n

n∑
i=1

X2
i ≤ P. (1.25)

Then channel capacity is bounded by

1
2

log
(

1 +
P

σ2

)
≤ C ≤ 1

2
log
(

1 +
P

σ2

)
+ D

(
PN‖N (0,σ2)

)
. (1.26)

Pinsker et al. [189] studied a discrete channel where the addi-
tive noise is the sum of a dominant Gaussian noise and a rela-
tively weak non-Gaussian contaminating noise. The behavior of the
capacity of continuous-time power-constrained channels with additive
non-Gaussian noise is investigated in [32, 33, 194, 195, 196] and upper

Full text available at: http://dx.doi.org/10.1561/0100000021



12 Introduction

and lower bounds are given in terms of the divergence between the
noise process and the Gaussian process with the same covariance.

Analogously, Gaussian signals are the hardest to compress under a
mean-square fidelity criterion. The rate-distortion function of a non-
Gaussian source is upper bounded by the rate-distortion function of
the Gaussian source minus its divergence with respect to a Gaussian
source with identical variance.

1.3.3.5 Differential Entropy and Divergence

Note that differential entropy can be formulated as a special case of
divergence. Let X is a random vector in Rd with mean µ and covariance
matrix Σ and XG is a Gaussian random vector with the same mean
and the same covariance matrix. Then the differential entropy of X is

h(X) =
1
2

log
(

(2πe)ddet(Σ)
)
− D(pX‖pXG

), (1.27)

where pX and pXG
are the pdf’s of X and XG, respectively, and

D(pX‖pXG
) gauges the non-Gaussianness of X.

1.3.3.6 Statistical Inference

Divergence has proven to be useful in various aspects of statistical
inference [142], including density estimation, parameter estimation, and
hypothesis testing.

Hall [107] studied divergence in the context of kernel density esti-
mation. Let p is the true density and p̂ the kernel density estimate.
Then the divergence D(p‖p̂) can be used as a measure of loss for the
density estimate. It is shown in [107] that an appropriate choice of the
kernel will lead to the minimization of the average divergence loss:

D(p‖p̂) =
∫
p(x) log

p(x)
p̂(x)

dx. (1.28)

Divergence is also used in [167] to analyze the convergence speed of
convolutions to the Gaussian distribution.

Given i.i.d. samples {X1, . . . ,Xn} and {Y1, . . . ,Ym} are generated
from densities p(·) and q = p(· − θ), respectively, Bhattacharya [31]
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1.3 Divergence 13

considered the estimation of the shift parameter θ. An efficient estimate
is then given by

θ̂ , argmin
θ
Dn,m(Xn

1 ‖Y m
1 − θ), (1.29)

where Dn,m(Xn
1 ‖Y m

1 − θ) denotes the empirical divergence estimate
based on the samples {X1, . . . ,Xn} and {Y1 − θ, . . . ,Ym − θ}.

Menéndez et al. [166] studies parameter estimation of statistical
models for categorical data. By formulating the estimation problem
as a minimization of the divergence between theoretical and empiri-
cal vectors of means, they evaluate the asymptotic properties of the
corresponding estimators.

For hypothesis testing, divergence estimation was applied by
Ebrahimi et al. [78] to construct a test of fit for exponentiality by
comparing the non-parametric divergence estimate to the paramet-
ric estimate assuming exponential distribution. Dasu et al. [68] and
Krishnamurthy et al. [140] have used divergence estimates to detect
changes in internet traffic and to determine stationarity in the data
stream.

1.3.3.7 Pattern Recognition

Divergence is known to be an important measure of dissimilarity for
pattern recognition. In the area of image processing, divergence esti-
mates have been applied to texture classification [77, 163, 266], shape
and radiance estimation [84], and face recognition [12, 215].

Audio and speech classification is another field where divergence
proves to be useful. Speech signals are usually modelled as hidden
Markov processes [82]. Silva and Narayanan [221, 222] proposed an
upper bound on the divergence for hidden Markov models and discussed
its applications to speech recognition (see [21, 35, 128, 155, 175, 268]
for more literature on this subject).

Divergence can also be used to construct kernels in support vec-
tor machine (SVM) algorithms for machine learning. Moreno et al.
[174] (see also [252]) proposed an SVM [251] algorithm with the kernel
defined as

φ(p,q) = βe−α(D(p‖q)+D(q‖p)), (1.30)
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where D(p‖q) + D(q‖p) is the symmetrized version of divergence
between probability distributions p and q. This algorithm produces
good results for multimedia classification.

1.4 Mutual Information

1.4.1 Definition

Mutual information is another important concept in information the-
ory. It measures the statistical dependence between two random
objects. Mutual information is defined as

I(X;Y ) = D(PXY ‖PXPY ),

i.e., the divergence between the joint distribution and the product of
the marginal distributions. As a special case of divergence, mutual
information is non-negative and is zero if and only if the two ran-
dom variables are independent. For discrete random variables X and
Y with joint probability mass function PXY and marginal probabil-
ity mass functions PX and PY , the mutual information between X

and Y is

I(X;Y ) =
∑
x∈X

∑
y∈Y

PXY (x,y) log
PXY (x,y)
PX(x)PY (y)

(1.31)

=H(X) + H(Y ) − H(X,Y ), (1.32)

where X and Y are the alphabets of X and Y , respectively.
If X and Y are continuous random variables with joint pdf pXY and

marginal pdf’s pX and pY , respectively, I(X;Y ) is given by

I(X;Y ) =D(pXY ‖pXpY )

=
∫ ∫

pXY (x,y) log
pXY (x,y)
pX(x)pY (y)

dxdy (1.33)

= h(X) + h(Y ) − h(X,Y ). (1.34)

Similar to (1.27), mutual information between analog random vari-
ables with finite second moments can be expressed in terms of
non-Gaussianness. Let ΣX and ΣY are the covariance matrices of X
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and Y , respectively and Σ be the covariance matrix of (X,Y ). Suppose
(XG,YG) are jointly Gaussian with covariance matrix Σ. Then,

I(X;Y ) = I(XG;YG) + D(PXY ‖PXGYG
)

−D(PX‖PXG
) − D(PY ‖PYG

) (1.35)

where

I(XG;YG) =
1
2

log
detΣX detΣY

detΣ
. (1.36)

1.4.2 Universal Estimation

Estimators of mutual information for analog sources can be obtained
from divergence estimates using the definition in (1.33) or from
differential entropy estimates using the relationship (1.34).

Suppose X ∈ RdX is a dX -dimensional random vector with density
pX and Y ∈ RdY is a dY -dimensional random vector with density pY .
Let {(X1,Y1), . . . ,(Xn,Yn)} is i.i.d. samples generated from the joint
density pXY of (X,Y ). The estimation of mutual information can be
formulated as the estimation of divergence, i.e.,

Î(X;Y ) = D̂(pXY ‖pXpY ). (1.37)

The idea is to form independent pairs of X and Y by re-pairing the X
and Y samples. For example, we may shift the Y sequence by half the
sequence length. Then we could assume Xi and Yi+bn/2c to be approx-
imately independent (in the index, the sum is modn). Thus in lieu
of estimating mutual information given samples {Xi,Yi}, we estimate
divergence between pXY and pX × pY based on samples {(Xi,Yi)} and
{(Xi,Yi+bn/2c)}.

Alternatively, mutual information estimates can be derived from the
estimates of differential entropies via (1.34):

Ĩ(X;Y ) = ĥ(X) + ĥ(Y ) − ĥ(X,Y ). (1.38)

As long as the entropy estimator is applicable to multi-dimensional
data, we automatically obtain a mutual information estimate.
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1.4.3 Applications

1.4.3.1 Channel Capacity

Mutual information plays a major role in the fundamental limits of
channel coding and lossy compression. Shannon [216] introduced the
concept of channel capacity (maximal information rate compatible
with arbitrarily low error probability) and showed that for memoryless
channels it is given by

C = max
PX

I(X;Y ), (1.39)

where the maximum is taken over all possible input distributions
PX . Maximal mutual information also plays a role in the random-
ness required for system simulation, and in the fundamental limits of
identification via channels [255].

1.4.3.2 Lossy Compression

Shannon [216] introduced the concept of rate-distortion function (mini-
mal information rate compatible with reproduction of the source within
a given distortion) and showed that for memoryless source PX it is
given by

R(D) = min
PY |X

I(X;Y ), (1.40)

where the minimum is taken over all possible conditional distributions
that guarantee the required distortion level D.

1.4.3.3 Secrecy

Mutual information also plays a role in secure communications. Let
Xn = {X1, . . . ,Xn} and Y n = {Y1, . . . ,Yn} are n i.i.d. realizations of cor-
related random variablesX and Y . Alice and Bob observe the sequences
Xn and Y n, respectively. Assume that they can communicate with each
other over an error-free public channel. Let V n denote all the trans-
missions on the public channel. After the transmission, Alice generates
a k-bit string SnA, based on (Xn,V n), and Bob generates a k-bit string
SnB, based on (Y n,V n). A bit string Sn is called a secret key if there
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exist SnA and SnB, such that

(1) limn→∞Pr(Sn = SnA = SnB) = 1;
(2) limn→∞

1
nI(Sn;V n) = 0;

(3) H(Sn) = k.

The largest secret key rate is [165, 4]

Cs = I(X;Y ), (1.41)

namely the mutual information rate between the observations avail-
able to Alice and Bob, respectively. Consequently, estimates of mutual
information can be used to evaluate the efficiency of secrecy generation
algorithms [264, 269].

1.4.3.4 Independence Test

Minimization of mutual information is widely used in independence
tests. Robinson [202] examined mutual information in the context of
testing for memory in random processes. Let Xn,n = 1,2, . . . is a sta-
tionary process. Assume that X1 is a continuous random variable with
pdf h(x) and X1 and X2 have joint pdf f(x,y). Under such assump-
tions, the null hypothesis

H0 : f(x,y) = h(x)h(y) (1.42)

is equivalent to memorylessness of the process. In [202], a hypothesis
test is constructed using consistent estimates of mutual information as
test statistics. Applications to testing the random walk hypothesis for
exchange rate series and some other hypotheses of econometric interest
are described as well. See [37, 75, 86, 88, 97, 133, 197, 225, 226, 237]
for a sampling of the literature on this subject.

Mutual information is also used to identify independent compo-
nents. Comon [50] studied independent component analysis (ICA) of
a random vector. The concept of ICA may be seen as an extension
of principal component analysis, which only imposes uncorrelatedness.
The idea of ICA is to utilize mutual information as a measure of depen-
dence and search for a linear transformation that minimizes the mutual
information between the components of the vector. Further works on
this topic are presented in [118, 127, 231].
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1.4.3.5 Multimedia Processing

Mutual information has been used as a similarity measure for image
registration because of its generality and high accuracy. Given a ref-
erence image modelled as a random vector U (e.g., a brain scan), a
second image V needs to be put into the same coordinate system as
the reference image. The estimated alignment is given by the trans-
formation T ∗ on the image V that maximizes the mutual informa-
tion between the image U and the transformed version of image V ,
namely:

T ∗ = argmax
T

I(U ;T (V )). (1.43)

Image registration based on mutual information has been investi-
gated for medical imaging in [38, 160, 164, 241, 248] with focus on
different aspects of the registration process. A review of methodolo-
gies and specific applications is presented by Pluim et al. in [192].
More recent work [16, 131, 234, 240] employed mutual information
in fMRI data analysis. For example, Tsai et al. [240] computed the
brain activation map by quantifying the relationship between the
fMRI temporal response of a voxel and the experimental protocol
timeline using mutual information. Similar registration criteria are
explored in [46] for remote sensing images. The estimation of mutual
information between images is discussed in [18, 146, 153]. An upper
bound is derived in [227] for the mutual information between a fixed
image and a deformable template containing a fixed number of gray
levels.

1.4.3.6 Computational Biology and Neuroscience

Adami [1] considers applications of mutual information in the study of
the genetic code:

• Investigation of the information content of DNA binding site.
• Prediction of protein structure.
• Detection of protein–protein and DNA-protein interactions.
• Drug design by maximizing the mutual information between

the protease and inhibitor library.
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Aktulga et al. [7, 8] (see also Schneider [212]) demonstrated the use
of mutual information in identifying statistically correlated segments
of DNA or RNA.

Furthermore, since mutual information provides a general measure
of dependence, there has been an increasing popularity in compu-
tational biology of using mutual information to cluster co-expressed
genes [41, 168]. See [230] for a tutorial on this topic.

Information-theoretic methods have also been used in neuroscience
to study the dependence between stimuli and neural response [36, 100,
176, 184, 232] and to classify neurons according to their functions
[126, 213].

1.4.3.7 Machine Learning

Machine learning is concerned with the design and development of algo-
rithms and techniques that allow automatic extraction of rules and
patterns from massive data sets. The connection between information
theory and machine learning has received much attention. For exam-
ple, Kraskov et al. [136] designed a distance measure based on mutual
information and applied this measure to hierarchical clustering. The
hierarchical clustering consists of organizing data as a hierarchy of
nested partitions by linking the two closest clusters, where the distance
between the discrete random variables X and Y is defined as

D(X,Y ) = 1 − I(X;Y )
H(X,Y )

, (1.44)

where H(X,Y ) is the joint entropy of X and Y .
Mutual information is also incorporated in boosting algorithms [15,

152, 156] to improve classification performance. An information theo-
retic interpretation of boosting is proposed by Kivinen et al. [132].

Another important application of information measures is in feature
extraction [145, 152, 239], which is an important step in pattern recog-
nition tasks often dictated by practical feasibility. In [145], a method is
proposed for learning discriminative feature transforms using a criterion
based on the mutual information between class labels and transformed
features. Experiments show that this method is effective in reducing
the dimensionality and leads to better classification results.
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1.5 Rényi Entropy and Rényi Differential Entropy

Rényi entropy [200] is a generalization of Shannon entropy (1.1). Let X
is a discrete random object with probability mass function PX(·). The
Rényi entropy of X of order α, where α ≥ 0 and α 6= 1, is defined as

Hα(X) =
1

1 − α
log

(∑
x∈X

PαX(x)

)
. (1.45)

If we take the limit as α→ 1, we obtain the entropy:

H(X) = lim
α→1

Hα(X). (1.46)

In the limit as α approaches 0, Hα converges to the cardinality of the
alphabet of X:

H0(X) = log |X | , (1.47)

which is also known as the Hartley entropy. It is also interesting to note
that for α = 2,

H2(X) = − log

(∑
x∈X

P 2
X(x)

)
= − logP [X = Y ], (1.48)

where Y is a random variable independent of X but distributed identi-
cally to X. Relations between Shannon and Rényi entropies of integer
orders are discussed in [272].

If X is equiprobable, Hα(X) = log |X |. Otherwise the Rényi
entropies are monotonically decreasing as a function of α.

Rényi entropy also satisfies several important properties of Shannon
entropy including:

• Continuity: Hα(X) is a continuous function of the probabil-
ities PX(x),x ∈ X ;
• Symmetry: Hα(X) is a symmetric function of PX(x),x ∈ X .

Namely Hα(X) remains unchanged if the the probabilities
are reassigned to the outcomes x ∈ X ;
• Additivity: If Y is independent of X, we have

Hα(X,Y ) = Hα(X) + Hα(Y ). (1.49)
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For analog sources, Rényi differential entropy generalizes the notion
of differential entropy. For a continuous random variable X with prob-
ability density function pX , the Rényi differential entropy hα of order
α ≥ 0, α 6= 1, is defined as

hα(X) =
1

1 − α
log
∫

Rd

pαX(x)dx (1.50)

Note that the differential entropy can be expressed as the limit of Rényi
differential entropy

h(X) = lim
α→1

hα(X). (1.51)

As α→ 0, the zeroth-order Rényi entropy gives the logarithm of the
measure of the support set of the density pX :

h0(X) = log
(
λ
{
x ∈ RdX : pX(x) > 0

})
. (1.52)

For comparison, recall that differential entropy gives the logarithm of
the effective volume of the typical sequences (Theorem 1.1).

Rényi differential entropy plays a fundamental role in several infor-
mation theory problems. For example, in vector quantization, Rényi
differential entropy characterizes the behavior of the rate-distortion
function in the fine quantization regime [9, 91, 178, 185]. For simplic-
ity, consider a one-dimensional quantization problem where X is a con-
tinuous random variable with pdf pX and N is the number of levels.
Algazi [9] used the rth power distortion measure and showed that for
sufficiently large N the minimum distortion is given by

Dr(N) ≈ 1
r + 1

2−r exp
{
−r
(
logN − h1/(1+r)(X)

)}
, (1.53)

where h1/(1+r)(X) is the Rényi differential entropy of X of order
1/(1 + r).

Rényi differential entropy is also useful for clustering and data clas-
sification. In [3, 94, 123], an information theoretic criterion is developed
based on Rényi differential entropy to optimize the clustering results. In
image registration, Rényi differential entropy is employed as a similarity
metric [209, 210, 211].

Full text available at: http://dx.doi.org/10.1561/0100000021



22 Introduction

1.6 f -Divergence

The f -divergence is a family of distance measures introduced by
Csiszár [59, 62, 63] and independently by Ali and Silvey [10]. Its many
properties are discussed in [183, 246, 247, 245]. Suppose P and Q are
probability distributions defined on the same measurable space (Ω,F)
and Q is absolutely continuous with respect to P with dQ/dP being the
Radon-Nikodym derivative. Let f : [0,+∞)→ R is a convex function.
The f -divergence between P and Q is defined as

Df (P‖Q) =
∫

Ω
f

(
dQ
dP

)
dP. (1.54)

For discrete distributions on an alphabet A, f -divergence becomes

Df (P‖Q) =
∑
a∈A

P (a)f
(
Q(a)
P (a)

)
. (1.55)

For continuous distributions with probability density functions p

and q,

Df (p‖q) =
∫

Rd

p(x)f
(
q(x)
p(x)

)
dx. (1.56)

Various measures of distance between probability distributions are
special cases of f -divergence (see [20, 183] for a longer list)

• (Kullback–Leibler) divergence:

D(P‖Q) =
∫

dP log
dP
dQ

= Df (P‖Q), (1.57)

with f(u) = − logu;
• Variational distance:

V (p,q) =
∫
|p(x) − q(x)|dx = Df (p‖q), (1.58)

with f(u) = 1/2|1 − u|;
• Hellinger distance:

H(p,q) =
∫ ∣∣∣√p(x) −

√
q(x)

∣∣∣dx = Df (p‖q), (1.59)

with f(u) = (
√
x − 1)2;
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• Bhattacharyya distance:

B(p,q) =
∫ √

p(x)q(x)dx = −Df (p‖q), (1.60)

where f(u) = −
√
u.

• Rényi divergence of order α:

Dα(P‖Q) =
1

α − 1

∫
pα(x)q1−α(x)dx = logDf (p‖q),

(1.61)

where f(u) = 1
α−1u

1−α.

f -divergence is applicable in a number of problems. For instance,
f -divergence parameterizes the Chernoff exponent governing the min-
imum probability of error in binary hypothesis testing [55]. Consider
two hypotheses p and q for the underlying probability density function.
Let the prior probabilities are α and 1 − α. The error probability of
the optimal Bayes rule is:

Pe =
∫

min{αp(x),(1 − α)q(x)}dx

=Df (p‖q) + 1, (1.62)

with

f(u) = −min{u,1 − u}. (1.63)

f -divergence is useful in pattern recognition applications to identify
independent components [17]. A correspondence between surrogate loss
functions for classification and f -divergence has been shown in [179]
f -divergence is also employed as a dissimilarity measure for image reg-
istration in [191] and [109, 157], and in the design of quantizers [193].
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