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Abstract

This short tutorial presents two mathematical techniques namely
Majorization Theory and Matrix-Monotone Functions, reviews their
basic definitions and describes their concepts clearly with many illus-
trative examples. In addition to this tutorial, new results are presented
with respect to Schur-convex functions and regarding the properties of
matrix-monotone functions.

The techniques are applied to solve communication and informa-
tion theoretic problems in wireless communications. The impact of
spatial correlation in multiple antenna systems is characterized for
many important performance measures, e.g., average mutual informa-
tion, outage probability, error performance, minimum Eb

N0
and wide-

band slope, zero-outage capacity, and capacity region. The impact of
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user distribution in cellular systems is characterized for different scenar-
ios including perfectly informed transmitters and receivers, regarding,
e.g., the average sum rate, the outage sum rate, maximum throughput.
Finally, a unified framework for the performance analysis of multiple
antenna systems is developed based on matrix-monotone functions. The
optimization of transmit strategies for multiple antennas is carried out
by optimization of matrix-monotone functions. The results within this
framework resemble and complement the various results on optimal
transmit strategies in single-user and multiple-user multiple-antenna
systems.
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1

Introduction

This short tutorial presents two mathematical techniques namely
Majorization Theory and Matrix-Monotone Functions which are
applied to solve communication and information theoretic problems
in wireless communications.

1.1 Majorization Theory

Inequalities have been always a major mathematical research area
beginning with Gauß, Cauchy, and others. Pure and applied mathe-
matical analysis needs inequalities, e.g., absolute inequalities, triangle
inequalities, integral or differential inequalities, and so on. The build-
ing blocks of Majorization are contained in the book [48]. The complete
theory including many applications is presented in [92]. The theory is
about the question how to order vectors with nonnegative real compo-
nents and its order-preserving functions, i.e., functions f which satisfy
that for x � y it follows f(x) ≥ f(y). The characterization of this class
of functions is important to exploit the properties of this monotony.

In the wireless communication context, those functions arise nat-
urally in resource allocation for multiple user systems or multiple

1

Full text available at: http://dx.doi.org/10.1561/0100000026



2 Introduction

antenna systems, e.g., sum rate of the multiple access channel (MAC)
with K users and channels α1, . . . ,αK as a function of the power allo-
cation p1, . . . ,pK with inverse noise power ρ

C(p) = log

(
1 + ρ

K∑
k=1

pkαk

)
.

Assume that the sum power is constraint to K, i.e.,
∑K

k=1 pk =
K. Order the components α1 ≥ α2 ≥ ·· · ≥ αK ≥ 0 and p1 ≥ p2 ≥ ·· · ≥
pK ≥ 0. The function C turns out to be Schur-convex with respect to
p, i.e., monotonic decreasing with respect to the Majorization order.
If p � q then C(p) ≥ C(q). Therefore, the maximum value is attained
for a power allocation vector with elements, i.e., C([K,0, . . . ,0]) ≥
C(p) ≥ C(1).

This monotony behavior is illustrated for K = 2 with power allo-
cation p = [2 − p,p] in Figure 1.1. This result implies that TDMA is
optimal, because the complete transmit power is optimally allocated to
one user [80].

Fig. 1.1 Sum rate of MAC with channels α1 = 2, α2 = 1 as a function of the power allocation

p = [2 − p,p].
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1.2 Matrix-Monotone Functions 3

Most of the basic definitions and basic properties can be found in the
text books [8, 48, 50, 51, 92]. Majorization theory is a valuable tool and
it is successfully applied in many research areas, e.g., in optimization
[39, 168], signal processing and mobile communications [59, 105], and
quantum information theory [101].

1.2 Matrix-Monotone Functions

More than 70 years have passed since Löwner [88] proposed the notion
of matrix-monotone functions. A real, continuous function f : I → R
defined on a nontrivial interval I is said to be matrix monotone of
order n if

X ≥ Y ⇒ f(X) ≥ f(Y )

for any pair of self-adjoint n × n matrices X and Y with eigenvalues
in I. Löwner characterized the set of matrix-monotone functions of
order n in terms of the positivity of certain determinants (the so-called
Löwner determinants and the related Pick determinants), and proved
that a function is matrix monotone if and only if it allows an analytic
continuation to a Pick function; that is, an analytic function defined
in the complex upper half-plane, with nonnegative imaginary part.
A function is called matrix monotone if it is matrix monotone for all
orders n.

A representation theorem was proven for the class of matrix-
monotone functions [34, 83, 88, 156]. Every matrix-monotone function
f can be expressed as

f(t) = a + bt +
∫ ∞

0

st

s + t
dµ(s) (1.1)

with a positive measure µ ∈ [0,∞) and real constants a,b ≥ 0.
Representatives of the class of matrix-monotone functions arise nat-

urally in the context of multiple antenna systems in the single- as well
as in the multiuser context. The two most important examples are the
mutual information and the minimum mean square error (MMSE) in
multiple-input multiple-output (MIMO) systems. Consider the mutual
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4 Introduction

information1 for the vector model y =Hx + n between x and y for
independently complex zero-mean Gaussian distributed x and n with
covariances Q and I

f(HQHH) = I(x;y) = logdet
(
I +HQHH

)
.

The mutual information denoted as the function f(HQHH) =
tr log

(
I +HQHH

)
can be represented by the matrix-monotone func-

tion f(t) = log(1 + t) which has the integral representation

f(t) =
∫ ∞

1

t

s + t

1
s
ds.

Hence, all results that hold for matrix-monotone function also hold
for the mutual information and (as we will show later) for the MMSE.
This approach allows to unify many recent results and it is possible to
extract the main principles and concepts.

Finally, matrix-monotone functions are applied in many other areas,
e.g., in optimization [25] and signal processing for communications [71].

1.3 Classification and Organization

1.3.1 Classification and Differences to Related Literature

The well-established book [92] contains more results on Majoriza-
tion than this short tutorial. The main difference is that this tutorial
focusses on a subset of topics from [92], especially results regarding
averages and distributions of weighted random variables, as well as
averages of trace functions. These topics are treated in more detail, new
results are added (from subsection 2.2.3 until subsection 2.2.7), and the
connection to the application in communication theory is always kept
in mind. Furthermore, the first two tutorial chapters are rigorous in
the sense that they contain all necessary definitions and results but
additionally contain also many remarks and examples which help the
reader to understand the concepts.

There exist approaches in the literature that propose a unified
framework for analysis and optimization of MIMO systems. First, the

1 Without any operational meaning for the moment.
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1.3 Classification and Organization 5

PhD thesis [104] provides a framework for optimization of linear MIMO
systems also by using Majorization theory. The tutorial [107] extends
these results to nonlinear decision feedback MIMO systems. Interest-
ingly, the application of Majorization in the other tutorial [107] is not
for analysis of impact of fading parameters on system performance
but for the optimization of single-user transmit strategies under vari-
ous objective criteria. Another difference to the tutorial [107] is that
the article at hand offers two own full chapters with a tutorial of the
mathematical techniques used. Therefore, both tutorial complement
one another well.

Another related tutorial is [122] which studies the active field of
interference function calculus. An interesting overview presentation
is given in the plenary lecture at the workshop on signal processing
advances in wireless communications in June 2007 [12].

Furthermore, a unified analytical description of MIMO systems was
studied in the PhD thesis [79]. The main focus in [79] is to derive a
framework for analytically computing closed-form expressions of MIMO
transceiver performances which are then used for optimization. Finally,
the connection between the capacity and mean-square-error (MSE)
from an estimation and information theoretic point of view was ana-
lyzed in the PhD thesis [42]. The thesis contains one part that clearly
shows the connection between the capacity and MMSE for various chan-
nel models, e.g., discrete, continuous, scalar, and vector channels and
different input signals. In subsection 5.1.2 three different relationships
between the mutual information and the MMSE are described.

1.3.2 Organization

The first two chapters present the definitions, properties, and many
examples to explain the foundations and concepts of the two techniques.
The three main topics discussed are

(a) the partial order on vectors and matrices,
(b) the characterization of order preserving functions,
(c) the optimization of Schur-convex and matrix-monotone

functions.
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6 Introduction

The main goal of these two chapters is to make the reader famil-
iar with the basic concepts and to enable her to apply these tech-
niques to problems in his or her respective research area. The various
examples illustrate the theoretical concepts and reconnect to practi-
cal problem statements. In “Majorization Theory,” we present novel
results with respect to Schur-convexity and Schur-concavity for the
most general classes of functions and constraints. Later in “Application
of Majorization in Wireless Communications,” these functions obtain
their operational meaning in the context of communication theory.
In “Matrix-Monotone Functions,” we present novel results in terms
of bounds for matrix-monotone functions, optimization of matrix-
monotone functions, and discuss the connection to matrix norms as
well as to connections and means.

In “Application of Majorization in Wireless Communications” and
“Application of Matrix-Monotone Functions in Wireless Communica-
tions,” we apply the learned techniques to concrete problem statements
from wireless communications. The four main application areas are

(a) spatial correlation in multiple antenna systems,
(b) user distributions in cellular systems,
(c) development of a unified performance measure,
(d) optimization of MIMO system performance.

The main goal of these two chapters is to show under which condi-
tions and assumptions both techniques can be used. Furthermore, it is
shown how to interpret the results carefully to gain engineering insights
into the design of wireless communication systems. In “Application of
Majorization in Wireless Communications,” a measure for spatial corre-
lation in multiple antenna communications is developed. This measure
is exploited for various performance measures and in many scenarios
to analyze the impact of spatial correlation. A measure for the user
distribution in cellular systems is developed and the sum performance
of up- and downlink communication as a function of the user distri-
bution is analyzed. In “Application of Matrix-Monotone Functions in
Wireless Communications,” we develop a generalized performance mea-
sure which unifies mutual information and MMSE criteria. Finally, the

Full text available at: http://dx.doi.org/10.1561/0100000026



1.4 Notation 7

results from “Matrix-Monotone Functions” are used to optimize the
single-user and multi-user MIMO system performance.

The appendix contains two sections with basic results from Linear
Algebra and Convex Optimization. These results are used extensively
throughout the book.

1.4 Notation

Vectors are denoted by boldface small letters a,b, and matrices by
boldface capital letters A,B. AT , AH , and A−1 are the transpose, the
conjugate transpose, and the inverse matrix operation, respectively.
The identity matrix is I, and 1 is the vector with all ones. ◦ is the
Schur-product and ⊗ is the Kronecker product. diag(X) is a vector
with the entries of X on the diagonal. Diag(x) is a diagonal matrix
with the entries of the vector x on its diagonal. Diag(A,B) is a block-
diagonal matrix with matrices A and B on the diagonal. A1/2 is the
square root matrix of A and [A]j,k denotes the entry in the jth row
and the kth column of A.

The set of real numbers is denoted by R and the set of complex
numbers by C. The set of positive integers is N+. Denote the set of all
n × n positive semi-definite matrices by Hn. The multivariate complex
Gaussian distribution with meanm and covariance matrixQ is denoted
by CN (m,Q). The expectation is denoted by E. The partial order for
vectors x � y says x majorizes y, or equivalently x � y means x is
majorized by y. For matrices the order A ≥B means that A − B is
positive semi-definite. The strict versions of these orders for vectors and
matrices are denoted by �, ≺, >, and <. [a]+ denotes the maximum
of a and 0.
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[83] F. Kraus, “Über konvexe Matrixfunktionen,” Mathematische Zeitschrift,
vol. 41, pp. 18–42, 1936.

[84] F. Kubo and T. Ando, “Means of positive linear operators,” Mathematique
Annalen, vol. 246, pp. 205–224, 1980.

[85] T. A. Lamahewa, R. A. Kennedy, T. D. Abhayapala, and T. Betlehem,
“MIMO channel correlation in general scattering environments,” Proceedings
Australian Communication Theory Workshop, 2006.

[86] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Commu-
nications. Cambridge University Press, 2003.

[87] X. B. Liang, “Orthogonal designs with maximal rates,” IEEE Transactions
on Information Theory, vol. 49, no. 10, pp. 2468–2503, October 2003.
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[105] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint TX-RX beamforming
design for multicarrier MIMO channels: A unified framework for convex opti-
mization,” IEEE Transactions on Signal Processing, vol. 51, no. 9, pp. 2381–
2401, September 2003.

[106] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform power allocation in
MIMO channels: A game-theoretic approach,” IEEE Transactions on Infor-
mation Theory, vol. 49, no. 7, pp. 1707–1727, July 2003.

[107] D. P. Palomar and Y. Jiang, “MIMO transceiver design via majorization the-
ory,” Foundations and Trends in Communications and Information Theory,
vol. 3, no. 4–5, pp. 331–551, 2007.
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