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Abstract

This monograph illustrates a novel approach, which is based on changing
the focus to seek approximate solutions accompanied by universal guaran-
tees on the gap to optimality, in order to enable progress on several key open
problems in network information theory. We seek universal guarantees that
are independent of problem parameters, but perhaps dependent on the prob-
lem structure. At the heart of this approach is the development of simple,
deterministic models that capture the main features of information sources
and communication channels, and are utilized to approximate more complex
models. The program advocated in this monograph is to use first seek solu-
tions for the simplified deterministic model and use the insights and the so-
lution of the simplified model to connect it to the original problem. The goal
of this deterministic-approximation approach is to obtain universal approx-
imate characterizations of the original channel capacity region and source
coding rate regions. The translation of the insights from the deterministic
framework to the original problem might need non-trivial steps either in the
coding scheme or in the outer bounds. The applications of this deterministic-
approximation approach are demonstrated in four central problems, namely
unicast/multicast relay networks, interference channels, multiple descriptions
source coding, and joint source-channel coding over networks. For each of
these problems, it is illustrated how the proposed approach can be utilized
to approximate the solution and draw engineering insights. Throughout the
monograph, many extensions and future directions are addressed, and several
open problems are presented in each chapter. The monograph is concluded
by illustrating other deterministic models that can be utilized to obtain tighter
approximation results, and discussing some recent developments on utiliza-
tion of deterministic models in multi-flow multi-hop wireless networks.

A. S. Avestimehr, S. N. Diggavi, C. Tian and D. N. C. Tse. An Approximation Approach to
Network Information Theory. Foundations and Trends® in Communications and Information
Theory, vol. 12, no. 1-2, pp. 1-183, 2015.
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1

Introduction

In his seminal paper [96], Shannon provided a complete solution to the fun-
damental limits of point-to-point communication, usually referred to as Shan-
non’s channel coding theorem and Shannon’s source coding theorem. Since
the coding schemes allowed are of arbitrary block lengths, the original design
problem is an infinite-dimensional optimization problem. Yet, the optimal
solution, characterizing the fundamental limits of point-to-point communica-
tion, can be expressed as that of a finite-dimensional optimization problem
(“single-letter” characterization). Moreover, for many specific channels and
sources, this finite-dimensional optimization problem can be solved explic-
itly in closed form. This desirable feature is remarkable and almost unique
among engineering fields, but it also sets a high standard for the information
theory field.

A holy grail of information theory is to extend Shannon’s point-to-point
result to the network setting. The general network information theory prob-
lem is to analyze the fundamental limits of communication when multiple
senders want to communicate with multiple receivers with the help of inter-
mediate nodes. The first success came in the early 1970’s, when Ahlswede [[1]
and Liao [57] independently provided a single-letter characterization of the
capacity region of the multiple access channel. In this network, K users want
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to send information to a common receiver across a noisy channel. This result
is rather general in the sense that it holds for an arbitrary number of users as
well as arbitrary (memoryless) channel statistics. It led to much excitement
in the field at that time. However, as it turned out, there have been essentially
no other network information theory results of such generality since then.
Most of the other results, for example, hold for only two users (such as the
degraded message set problem for broadcast channels) or for a specific class
of channel or source statistics (such as degraded broadcast channels). Even
these results are few in number. Thus it is fair to say that we are still very far
from solving the general network information theory problem, almost forty
years after Ahlswede and Liao’s discovery.

One of the critical ingredients to Shannon’s seminal work was that of ap-
propriately modeling the problem. The channel and source models in Shan-
non’s work [96] are probabilistic, specified by the channel transition prob-
ability distribution, and the source probability distribution. This is a natu-
ral choice since the channels and sources we face in practice usually cannot
be predicted in a sufficiently accurate manner, and probabilistic models best
capture such uncertainties. The further simplification he introduced was to
represent them as (discrete) memoryless channels and (discrete) memoryless
sources. Though this is a simplification of reality, the success/impact of these
ideas to practical systems demonstrated that it captured the essence of prob-
lem. However, Shannon’s focus was on point-to-point channels and the natu-
ral question to ask is how to extend the models to networks, in a manner that
still captures the essence of these problems. In addition to describing the na-
ture of the sources and communication links, the network setting also requires
a specification of the demand structure of the generated/required information.
More specifically, the network model needs to identify the following:

e Network connectivity structure: this component abstracts the con-
nections between various nodes, such as whether there exist communi-
cation channels between a set of nodes;

e Source demand structure: the component captures the source place-
ment before and after the communication, i.e., whether a particular
source is present at a given node, whether it is to be reconstructed at a
given node, whether in a lossless or lossy manner;
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o Communication channels: this component captures the dependence
among various channel inputs and outputs for any given channel in the
network, specifying the broadcast and interference signal interaction;
the noisy communication model leads to a probabilistic model that is
specified by a channel transition probability distribution;

e Source generation structure: this component captures the probabilis-
tic structure of a given source and the dependency among different
sources, which is usually specified by the joint probability distribution
of the sources.

Taking the above general view, the point-to-point communication prob-
lem considered by Shannon has the latter two components to be non-trivial
and probabilistic, yet the first two components to be extremely simple. One
way of modeling the network problem is to consider in generality all the
four components. Given the complexity of tackling such a general problem,
most of the works in multiuser information theory traditionally considered
special structures for the network connectivity and source demand structures
while still maintaining the probabilistic modeling. A notable exception is the
problem studied by Ahlswede et. al. in [4], which abandons the probabilistic
model for the communication channels/source generation and focuses on the
first two components of demand structure; in fact, the channels in the network
are completely clean, operating just as bit pipes, and the sources are indepen-
dent messages. Yet, even in this network consisting of clean channels, one
remarkable aspect revealed in [4} 56] is that non-trivial coding (coined net-
work coding) has to be performed in order to achieve the capacity for a non-
trivial (multicast) demand structure. However, even with this simplification,
the capacity region for arbitrary demand structure is still unknown. Going
further, since most of practical channels and sources are unpredictable, the
important question following the original work in [4} [56] is whether those
ideas can be extended to noisy (probabilistic) channels and to include more
general sources, and thus the field of network coding starts to converge with
conventional multiuser information theory in the past ten years.

Given the above discussion, it is clear that communication problems in
the network setting pose two kinds of difficulties: the first kind of difficulty
is largely caused by the noisy (probabilistic) nature of the channels and the
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sources, which was the sole difficulty faced by Shannon in solving the point-
to-point communication problem; the second kind of difficulty is largely
caused by the interaction between communication entities, which is unique in
the network setting. One of the motivations of our work is to think about net-
work problems with these components in mind, and develop meaningful (yet
tractable) models for which we can characterize network information flow
rates. Moreover, these models should allow one to give fundamental insights
to network communication problems that arise in practice. In order to do this,
we need to understand the special classes of sources, channels and demand
structures that can arise in practice.

A class of channels and a class of sources that have received much atten-
tion are linear Gaussian channels with quadratic cost constraint and Gaussian
sources with quadratic distortion measure respectively. Not only are these
models practically relevant for applications such as wireless and sensor net-
works, the physically meaningfulness of their structures gives some hope that
Gaussian problems are easier to solve than the general case. Indeed, as is
well-known, the capacity of the point-to-point Gaussian channel and the rate-
distortion function of the Gaussian source are known in closed form. Can this
luck help us make more progress in Gaussian network problems than in the
general case? The answer is yes for broadcast channels. While the capacity
region of the general broadcast channel is open even in the case of two users,
the capacity region of Gaussian broadcast channels with arbitrary number of
users is known. However, it seems that the luck ran out rather quickly as most
Gaussian network problems are still open. Examples are interference chan-
nels (even the two-user case is open), relay networks (even the single-relay
channel is open), multiple description and distributed lossy source coding
(both open for more than 2 users). So it seems that Gaussian network prob-
lems are not too much easier than the general ones. However, they do give
structure that we aim to capture in simplified models for the channel/source
specification.

In this monograph we advocate a sequential approach to make progress
on the network communication problem. In order to do this, we simplify the
channel (and source) model to capture the essence of the network commu-
nication problem. In point-to-point channels, the only source of uncertainty
for communication was the noise, modeled through a probabilistic channel.



Full text available at: http://dx.doi.org/10.1561/0100000042

6 Introduction

However, in a network, uncertainty can arise due to signal interaction (broad-
cast, multiple access interference) and therefore as a first step we consider
deterministic signal interaction for communication that attempts to approxi-
mately capture the noisy scenari(ﬂ The model approximation step however
has to be done strategically, such that the essential characteristics of the orig-
inal problem can be largely retained. For channel coding problems, we wish
to retain the source demand structure, and to approximate the original noisy
(probabilistic) channels and the network connectivity structure with deter-
ministic channels and the corresponding (possibly slightly different) network
connectivity structure. For source coding problems, we wish to retain the
network connectivity structure, and to approximate the original probabilistic
sources and the source demand structure with a new set of simplified sources
and the corresponding (possibly different) source demand structure. Finally,
for a joint source-channel coding problem, we may need to approximate most
of the components in the network to reach a new model.

Approximating the noisy (lossy) problem by a noiseless (lossless) one not
only allows us to first focus on the signal interaction, but more importantly,
noiseless problems are often much easier than noisy problems. For example,
while the general noisy broadcast channel problem is open, the deterministic
broadcast channel is solved (independently by Pinsker [[79] and Marton [61]);
while the general lossy distributed source coding problem is open (even for
two users), the lossless distributed source coding problem is solved (the cel-
ebrated Slepian-Wolf Theorem [[104]). Perhaps with the intuition that study-
ing deterministic networks can provide important insights, there were some
efforts devoted to this approach in the early 1980s (see deterministic relay
channel [6}31], deterministic interference channel [32] among others). How-
ever, these vanguard approaches did not explicitly translate the implications
of these results on deterministic networks to the noisy problems of interest.

In particular, one of the critical steps advocated in this monograph is to
use the insights and the solution of the simplified model and connecting it
to the original problem. This leads us to the concept of approximate charac-
terizations of the channel capacity region and source coding rate regions. By

'In [103], it is mentioned that Shannon had an unpublished work “Systems which ap-
proach the ideal as P/N — o00,” March 1948, which pre-dated [96], where he studied the
high-SNR behavior of Gaussian channels. This could be an early insight of Shannon into the
deterministic approach.
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finding the optimal solution for the communication problem in the approxi-
mate (deterministic) model, we look for insights and techniques that can be
used on the original probabilistic channels or sources (through some possibly
non-trivial translations).

The kind of approximation we seek is to be universal in that its gap to
optimality can depend on the problem structure, but not the particular param-
eters of the scenario. For example, in the noisy network communication prob-
lem, we do not want the approximation gap to depend on the noise level (or
“signal-to-noise” ratio) or channel strengths; though it could depend on the
overall network structure. Similarly, in the lossy data compression problem,
we do not want the approximation gap to depend on the particular distortion
level desired. The form of the approximation could be either additive (capac-
ity within “constant number of bits”’) or multiplicative (capacity or distortion
approximated to within a “constant factor”).

To summarize, the approach we advocate has two levels of approxima-
tion, and it consists of four main steps:

e Model approximation: noisy channel coding problems are approxi-
mated by noiseless problems; lossy source coding problems are ap-
proximated by lossless problems.

e Analysis: analyze the simplified problem, and possibly find complete
solutions for them.

e Translation: translate new insights and techniques, and use them to find
new schemes and/or outer bounds to the original probabilistic problem.

e Approximate characterization: derive a worst-case gap of the perfor-
mance of the proposed scheme to optimality, universal for all values of
the channel parameters, yielding a universal approximate characteriza-
tion of the capacity region or the rate region.

Approximate solutions to information theory problems are not new. How-
ever, they are by and far isolated results, each with its own proof technique.
What distinguishes the approach we advocate here from these results is that it
is a systematic approach with two levels of approximation that can be applied
to many problems, as we shall discuss in this monograph.
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Though the approach above is general, we focus largely on one class
of channels and one class of sources, namely linear Gaussian channels
with quadratic cost constraint and Gaussian sources with quadratic distor-
tion measure respectively. Not only are these models practically relevant for
applications such as wireless and sensor networks, the models themselves
have canonical properties that we hope to exploit (like linearity, quadratic
cost/distortion etc.). Therefore, further simplification of the Gaussian model
to deterministic (lossless) should retain some of the essence of the original
noisy (lossy) model. This suggests that a natural approximate model should
be almost linear, and as we shall see, indeed this kind of approximation is
very insightful for the Gaussian problems. In fact the approximation of real
numbers with binary expansions turns out to be a very useful interpreta-
tion/approximation tool for Gaussian problems.

Before we illustrate the approach in more detail, we address a few natural
questions that can arise about this program. One fundamental question is what
the approximate characterizations seek to achieve. The utility of the deter-
ministic/approximation approach is to evaluate which information transmis-
sion/compression techniques are universally (approximately) efficient, and
therefore give guidelines to engineering design. These might yield new cod-
ing techniques that arise from the deterministic approach or be more salu-
tary in showing that existing techniques are (provably) quite good. Though
ideally one would like an exact characterization in terms of a finite dimen-
sional optimization problem, this approximation approach gives guidelines
of what we are “fighting for” (for the last bit of efficiency or much more?).
This kind of philosophy has been successfully applied in computer science
(approximation algorithms) and queueing theory (fluid limit of traffic). More-
over, interpreting the approximations should be done carefully with respect
to the regimes of interest. For example, the kind of universal approximation
we seek becomes relatively more accurate when the noise is small compared
to the signals (interference-limited or low-noise regime). So while the worst-
case gap (universal approximation) holds for all parameter ranges, the perfor-
mance gap is more meaningful in the low-noise regime where the achievable
rates are high. The dual statement for source coding is that the approxima-
tion using this approach becomes relatively more accurate when the target
distortion levels are small and the required rates are high.
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In this monograph, we will illustrate this approach and demonstrate its
application to four central problems in network information theory: (1) Relay
networks, (2) Interference channels, (3) Multiple descriptions problem , and
(4) Joint source-channel coding over networks. We will conclude the mono-
graph by discussing other deterministic models that can be utilized to obtain
tighter approximation results, and some recent developments on utilization of
deterministic models in multi-unicast multi-hop wireless networks.
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