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Abstract

Combinatorial design theory is a very active area of mathematical
research, with many applications in communications and information
theory, computer science, statistics, engineering, and life sciences. As
one of the fundamental discrete structures, combinatorial designs are
used in fields as diverse as error-correcting codes, statistical design
of experiments, cryptography and information security, mobile and
wireless communications, group testing algorithms in DNA screen-
ing, software and hardware testing, and interconnection networks. This
monograph provides a tutorial on combinatorial designs, which gives an
overview of the theory. Furthermore, the application of combinatorial
designs to authentication and secrecy codes is described in depth. This
close relationship of designs with cryptography and information secu-
rity was first revealed in Shannon’s seminal paper on secrecy systems.
We bring together in one source foundational and current contribu-
tions concerning design-theoretic constructions and characterizations
of authentication and secrecy codes.
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1

Introduction

Authenticity and secrecy are two crucial concepts in cryptography
and information security. Concerning authenticity, typically commu-
nicating parties would like to be assured of the integrity of informa-
tion they obtain via potentially insecure channels. Regarding secrecy,
protection of the confidentiality of sensitive information shall be
ensured in the presence of eavesdropping. Although independent in
their nature, various scenarios require that both aspects hold simultane-
ously. For information-theoretic, or unconditional, security (i.e. robust-
ness against an attacker that has unlimited computational resources),
authentication and secrecy codes can be used to minimize the pos-
sibility of an undetected deception. The construction of such codes
is of great importance and has been considered by many researchers
over the last few decades. Often deep mathematical tools are involved
in the constructions, mainly from combinatorics. This close relation-
ship of cryptography and information security with combinatorics has
been first revealed in Shannon’s landmark paper “Communication the-
ory of secrecy systems” [182]: a key-minimal secrecy system provides
perfect secrecy if and only if the encryption matrix is a Latin square
and the keys are used with equal probability. The initial construction

1

Full text available at: http://dx.doi.org/10.1561/0100000044



2 Introduction

of authentication codes goes back to Gilbert et al. [74], and uses
finite projective planes. A more general and systematic theory of
authenticity was developed by Simmons (see [183, 184, 185, 186, 187],
and [188] for a survey). Further foundational works on authentication
and secrecy codes have been carried out by Massey [152] and Stinson
et al. [194, 195, 196, 201, 202]. A generalized information-theoretic
framework for authentication was introduced by Maurer [157].

The purpose of this monograph is to describe in depth classi-
cal and current interconnections between combinatorial designs and
authentication and secrecy codes. The latter also include the author’s
recent [102, 106, 107] and new contributions (cf. Section 3.4) on
multi-fold secure authentication and secrecy codes in various mod-
els. Moreover, this issue provides a tutorial overview on the theory
of combinatorial designs. These fundamental discrete structures find
applications in fields as diverse as error-correcting codes, statistical
design of experiments, cryptography and information security, mobile
and wireless communications, group testing algorithms in DNA screen-
ing, software and hardware testing, and interconnection networks. In
particular, the last few years have witnessed an increasing body of work
in the communications and information theory literature that makes
substantial use of results in combinatorial design theory.

The organization of the monograph is as follows. Section 1.1 intro-
duces the Shannon–Simmons model of information-theoretical authen-
tication and secrecy. We define the important concepts of spoofing
attacks and perfect secrecy. A short historical account on combinato-
rial designs is given in Section 1.2. Since permutation groups often play
a crucial role in the construction of combinatorial designs, we intro-
duce basic notions on permutation groups and group actions in Sec-
tion 1.3. Section 2 provides a tutorial account on combinatorial design
theory. We emphasize on the construction of various combinatorial
structures including t-designs, finite geometries, Latin squares, orthog-
onal arrays, perpendicular and authentication perpendicular arrays,
splitting t-designs, and others. These combinatorial structures provide
essential tools for the construction and characterization of authentica-
tion and secrecy codes in the following section. A special notice is placed
on examples for each type of combinatorial designs. We also briefly

Full text available at: http://dx.doi.org/10.1561/0100000044



1.1 Authentication and Secrecy Model 3

point to the interplay between t-designs and error-correcting codes. Sec-
tion 3 is devoted to various key applications of combinatorial designs
to authentication and secrecy codes. Foundational and recent results
concerning the construction and characterization of authentication and
secrecy codes are exposed. Starting with Shannon’s classical result, we
first deal with secrecy codes in Section 3.1. Authentication codes with-
out any secrecy requirements are considered in Section 3.2. In Sec-
tion 3.3, codes that offer both authenticity and secrecy are discussed in
detail. We distinguish between arbitrary and equiprobable source prob-
ability distributions. The advantage of the source states being equiprob-
able distributed is that the number of encoding rules can be reduced.
Section 3.4 is devoted to an extended authentication model, where the
opponent can act pro-actively by having access to a verification oracle.
Authentication codes with splitting are considered in Section 3.5. In
such a code, several messages can be used to communicate a particular
plaintext (non-deterministic encoding). We briefly mention authenti-
cation codes that permit arbitration in Section 3.6. In Section 3.7,
further recent applications are highlighted which makes substantial use
of combinatorial design theory. Finally, we conclude in Section 3.8 with
a synthesis of the work and some directions for future research.

1.1 Authentication and Secrecy Model

We rely on the information-theoretical (or unconditional) secrecy model
developed by Shannon [182], and by Simmons [183, 184, 185, 188]
including authentication. Information-theoretical security means that
the security of the model is not dependent on any complexity assump-
tions and hence cannot be broken given unlimited computational
resources. A well-known practical application of such a perfectly-secure
system is the Washington–Moscow Hotline (“red telephone”) during
the time of the cold war. Modern applications may include protection
of digital data where cryptographic long-term security and/or confi-
dentiality is strongly required, e.g., in archiving official documents,
notarial contracts, court records, medical data, state secrets, copyright
protection as well as further areas concerning e-government, e-health,
e-publication, etc.
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4 Introduction

The reader may be interested in the area of information-theoretical
cryptography [156], long-term secure cryptography [33], post-quantum
cryptography [15], and in the broad area of cryptography in general [77,
78, 159, 200].

1.1.1 Basic Preliminaries

We introduce the basic model of information-theoretical authentication
and secrecy. Our notation follows, for the most part, that of [152, 195].
Figure 1.1 gives an illustration of the model (cf. [152, 195]).

In this basic model of authentication and secrecy three participants
are involved: a transmitter, a receiver, and an opponent. The trans-
mitter wants to communicate information to the receiver via a public
communications channel. The receiver in return would like to be confi-
dent that any received information actually came from the transmitter
and not from some opponent (integrity of information). The transmit-
ter and the receiver are assumed to trust each other. Sometimes this
is also called an A-code. Variants of this model will be discussed in
Sections 3.4, 3.5, and 3.6.

In what follows, let S denote a set of k source states (or plaintexts),
M a set of v messages (or ciphertexts), and E a set of b encoding rules
(or keys). Using an encoding rule e ∈ E , the transmitter encrypts a
source state s ∈ S to obtain the message m = e(s) to be sent over the

Fig. 1.1 Shannon–Simmons authentication and secrecy model.
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1.1 Authentication and Secrecy Model 5

channel. The encoding rule is an injective function from S toM, and is
communicated to the receiver via a secure channel prior to any messages
being sent. For a given encoding rule e ∈ E , let M(e) := {e(s) | s ∈ S}
denote the set of valid messages. For an encoding rule e and a set
M∗ ⊆M(e) of distinct messages, we define fe(M∗) := {s ∈ S | e(s) ∈
M∗}, i.e., the set of source states that will be encoded under encoding
rule e by a message in M∗. Furthermore, we define E(M∗) := {e ∈ E |
M∗ ⊆M(e)}, i.e., the set of encoding rules under which all the messages
in M∗ are valid. A received message m will be accepted by the receiver
as being authentic if and only if m ∈M(e). When this is fulfilled, the
receiver decrypts the message m by applying the decoding rule e−1,
where

e−1(m) = s⇔ e(s) = m.

An authentication code can be represented algebraically by a
(b × k)-encoding matrix with the rows indexed by the encoding rules,
the columns indexed by the source states, and the entries defined by
aes := e(s) (1 ≤ e ≤ b, 1 ≤ s ≤ k).

1.1.2 Protection Against Spoofing Attacks

We introduce the scenario of a spoofing attack of order i (cf. [152]):
Suppose that an opponent observes i ≥ 0 distinct messages, which are
sent through the public channel using the same encoding rule. The
opponent then inserts a new message m′ (being distinct from the i

messages already sent), hoping to have it accepted by the receiver as
authentic. The cases i = 0 and i = 1 are called impersonation game and
substitution game, respectively. These cases have been studied in detail
in recent years (see, for instance, [196, 201, 27, 53, 165]), however less
is known for the cases i ≥ 2. In this monograph, we especially focus on
those cases where i ≥ 2.

For any i, we assume that there is some probability distribution on
the set of i-subsets of source states, so that any set of i source states
has a non-zero probability of occurring. For simplification, we ignore
the order in which the i source states occur, and assume that no source
state occurs more than once. Given this probability distribution pS on
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6 Introduction

S, the receiver and transmitter choose a probability distribution pE
on E , called an encoding strategy, with associated independent random
variables S and E, respectively. These distributions are known to all
participants and induce a third distribution, pM , onM with associated
random variable M . The deception probability Pdi is the probability
that the opponent can deceive the receiver with a spoofing attack of
order i. The following theorem by Massey provides combinatorial lower
bounds (for the proof, we follow [194, 195]).

Theorem 1.1 (Massey [152]). In an authentication code with k

source states and v messages, for every 0 ≤ i ≤ t, the deception proba-
bilities are bounded below by

Pdi ≥
k − i
v − i

.

Proof. Let M∗ ⊂M denote a set of i ≤ t distinct messages. We suppose
that an opponent observes the imessages in the channel, and then sends
a message m ∈M not in M∗. Let payoff(m,M∗) denote the probability
that the message m would be accepted by the receiver as authentic.
Then

payoff(m,M∗) =

∑
e∈E(M∗∪{m}) p(e) · p(S = fe(M∗))∑
e∈E(M∗) p(e) · p(S = fe(M∗))

.

It follows that ∑
m∈M\M∗

payoff(m,M∗) = k − i.

Hence, there exists some m ∈M not in M∗ such that payoff(m,M∗) ≥
(k − i)/(v − i). For every set M∗ of i messages, the opponent can
choose such an m. This defines a deception strategy in which the
transmitter/receiver can be deceived with probability at least (k − i)/
(v − i).

An authentication code is called tA-fold secure against spoofing if
Pdi = (k − i)/(v − i) for all 0 ≤ i ≤ tA.

Full text available at: http://dx.doi.org/10.1561/0100000044



1.1 Authentication and Secrecy Model 7

1.1.3 Perfect Secrecy

We address Shannon’s fundamental idea of perfect secrecy (cf. [182]):
An authentication code is said to have perfect secrecy if

pS(s|m) = pS(s)

for every source state s ∈ S and every message m ∈M.
That is, the a posteriori probability that the source state is s, given

that the message m is observed, is identical to the a priori probability
that the source state is s.

It can easily be shown via Bayes’ Theorem that

pS(s|m) =
pM (m|s) · pS(s)

pM (m)
(1.1)

=

∑
{e∈E|e(s)=m} pE(e) · pS(s)∑

{e∈E|m∈M(e)} pE(e) · pS(e−1(m))
. (1.2)

Moreover, we introduce the concept of perfect multi-fold secrecy
established by Stinson [195], which generalizes Shannon’s perfect (one-
fold) secrecy. An alternative definition has been given by Godlewski
and Mitchell [75]. Instead of assuming that each encoding rule is used
to encode only one message, the situation is extended in a natural
way: each encoding rule is used to encode up to tS messages for some
positive integer tS . More formally, we say that an authentication code
has perfect tS-fold secrecy if, for every positive integer t∗ ≤ tS , for every
set M∗ of t∗ messages observed in the channel, and for every set S∗

of t∗ source states, we have

pS(S∗|M∗) = pS(S∗).

That is, the a posteriori probability distribution on the t∗ source states,
given that a set of t∗ messages is observed, is identical to the a priori
probability distribution on the t∗ source states. Obviously, for the case
tS = 1 this coincides with the definition of perfect secrecy.

When clear from the context, we often only write t instead of tA
respectively tS .

As the encoding rules have to be communicated to the receiver
via a secure channel, i.e. log2 b bits for b encoding rules, we want to
minimize the number of encoding rules. With respect to the minimal
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8 Introduction

number, we will deal with the construction and characterization of
optimal authentication and secrecy codes in Section 3.

Remark 1.1. We note that the term secrecy code (sometimes also
secrecy system) is customarily used in the above model to describe a
cipher that achieves Shannon’s perfect secrecy over noiseless channels.
This should not be confused with the same expression often used today
for describing codes that can achieve both reliable and secure communi-
cation over noisy channels (also known as wiretap channels). For recent
developments on information-theoretic security for noisy channels, we
refer to the monograph [142] and the references therein.

1.2 Combinatorial Designs: A Brief Historical Account

Combinatorial designs have a long and rich history of work. We briefly
highlight three historical examples:

Leonhard Euler considered in 1782 the following problem [64], posed
by Catherine the Great according to folklore. This problem came to
known as Euler’s 36 Officers Problem:

“A very curious question, which has exercised for some
time the ingenuity of many people, has involved me in
the following studies, which seem to open a new field
of analysis, in particular the study of combinations.
The question resolves around arranging 36 officers to
be drawn from 6 different ranks and also from 6 dif-
ferent regiments so that they are ranged in a square so
that in each line (both horizontal and vertical) there are
6 officers of different ranks and different regiments.”

Full text available at: http://dx.doi.org/10.1561/0100000044



1.2 Combinatorial Designs: A Brief Historical Account 9

This question asks for finding two orthogonal Latin squares of
order 6. Euler correctly conjectured that this was impossible, and a
complete proof with an exhaustive search of all Latin squares of order
6 were given in 1900 by Tarry [207, 208]. A short proof is due to Stin-
son [193].

The Swiss geometer Jakob Steiner posed in 1853 in his classical
“Combinatorische Aufgabe” [192] the following question:

“Welche Zahl, N , von Elementen hat die Eigenschaft,
dass sich die Elemente so zu dreien ordnen lassen, dass
je zwei in einer, aber nur in einer Verbindung vorkom-
men?”
[Transl.: “For what number, N , of elements is it possible
to arrange the elements in triplets, so that every pair of
elements is contained in one and only one triplet?”]

Writing v, k, and t instead of N , 3, and 2, respectively, leads us to
the definition of what is now called a Steiner t-design (or a Steiner sys-
tem, cf. Definition 2.1). However, there had been earlier work on these
combinatorial designs going back to, in particular, Plücker, Woolhouse,
and most notably Kirkman.

Thomas Kirkman’s famous 15 Schoolgirl Problem, which he pro-
posed in 1850 in the popular magazine The Lady’s and Gentleman’s
Diary [132], states as follows:

“Fifteen young ladies in a school walk out three abreast
for seven days in succession: it is required to arrange
them daily so that no two shall walk twice abreast.”

Full text available at: http://dx.doi.org/10.1561/0100000044



10 Introduction

This is equivalent to the problem of constructing a Steiner 2-design
with parameters k = 3 and v = 15, having the extra requirement that
the set of triples can be partitioned into seven ‘parallel classes’.
Kirkman’s problem as well as the more general case for other possi-
ble values of v attracted great interest among late 19th and early 20th
century mathematicians, including contributions by Burnside, Cayley
and Sylvester. However, it was not until 1971 that the general problem
was completely resolved by Ray-Chaudhuri and Wilson [173], showing
that there exists at least one such design for every v ≡ 3 (mod 6). For
v = 15, there are seven different solutions to the problem (up to isomor-
phism). For all other admissible values v ≥ 21, the number of solutions
remains unknown up to the present.

For an detailed account on the history of combinatorial designs, we
refer the interested reader, e.g., to [43, Chap. I.2] and [225].

1.3 Some Group Theory

Often permutation groups play a crucial role in the construction of com-
binatorial designs. We introduce basic notions on permutation groups
and group actions in this section. We will restrict ourselves to finite
groups, although most of the concepts also make sense for infinite
groups.

LetX be a non-empty finite set. The set Sym(X) of all permutations
of X with respect to the composition

xgh := (xg)h for x ∈ X and g,h ∈ Sym(X)

forms a group, called the symmetric group on X. If X = {1, . . . ,v}, then
we write Sv for the symmetric group of degree v. Clearly, Sym(X) ∼= Sv
if and only if |X| = v.

Full text available at: http://dx.doi.org/10.1561/0100000044



1.3 Some Group Theory 11

A group G acts (or operates) on X, if to each element g ∈ G a
permutation x 7→ xg of X is assigned such that

(i) x1 = x for all x ∈ X (where 1 = 1G denotes the identity ele-
ment of G),

(ii) (xg)h = xgh for all x ∈ X and all g,h ∈ G.

Evidently, these properties are fulfilled if and only if the map

ϕ : g 7→ (x 7→ xg)

of G into Sym(X) is a group homomorphism. In general, any homo-
morphism ϕ of G into Sym(X) is said to be an action (or a permutation
representation) of G on X. If ker(ϕ) = 1 for the kernel of ϕ, then G

acts faithfully on X; in this case, G is a called a permutation group
on X. If ker(ϕ) = G, then G operates trivially on X. The degree of a
permutation group is the size of X.

Example 1.1. The group of symmetries of a three-dimensional cube
(cf. Figure 2.3) acts on various sets including the set of 8 vertices, the
set of 6 faces, the set of 12 edges, and the set of 4 principal diagonals.
Properties (i) and (ii) are clearly satisfied in each case.

Let G1 and G2 be permutation groups acting on the sets X1 and
X2, respectively. Then, G1 and G2 are called permutation isomorphic,
if there exists a group isomorphism σ : G1→ G2 and a bijective map
τ : X1→ X2 with

(xg)τ = (xτ )(gσ)

for all x ∈ X1 and all g ∈ G1. Essentially, this means that the groups
G1 and G2 are “the same” except for the labeling of the points.

Let G be a group acting on X. For x ∈ X, the subgroup

Gx := {g ∈ G | xg = x}

denotes the (point-)stabilizer of x in G and the set

xG := {xg | g ∈ G}
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12 Introduction

is the orbit of x under G (or the G-orbit of x). For B ⊆ X, let

GB := {g ∈ G | Bg = B}

be its setwise stabilizer. The order of G is denoted by |G|.
A group G acting on X is called transitive on X, if G has only one

orbit, i.e. xG = X for all x ∈ X. Equivalently, G is transitive if for any
two points x,y ∈ X there exists an element g ∈ G with xg = y. For a
positive integer t ≤ |X|, we call G to be t-transitive, if for any two injec-
tive t-tuples (x1,x2, . . . ,xt) and (y1,y2, . . . ,yt) there exists an element
g ∈ G with xi

g = yi for all 1 ≤ i ≤ t. We say that G is t-homogeneous,
if it is transitive on the set of all t-subsets of X. Obviously, t-transitive
implies t-homogeneous.

Example 1.2. The symmetric group Sv is v-transitive, and the alter-
nating group Av (i.e., the subgroup of Sv consisting of all even per-
mutations) is (v − 2)-transitive in their actions on the set {1, . . . ,v}
(v ≥ 3).

We will list all finite multiply homogeneous permutation groups in
Appendix 4.1. We note that this classification relies on the Classifica-
tion of the Finite Simple Groups (CFSG), one of the most powerful
tools of modern algebra.

For a detailed treatment of finite group theory and permutation
groups, we refer the reader to [5, 38, 41, 61, 117, 118, 139, 223].
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