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Abstract

This monograph is based on lecture notes of a graduate course, which
focuses on the relations between information theory and statistical
physics. The course was delivered at the Technion during the Spring of
2010 for the first time, and its target audience consists of EE graduate
students in the area of communications and information theory, as well
as graduate students in Physics who have basic background in infor-
mation theory. Strong emphasis is given to the analogy and parallelism
between information theory and statistical physics, as well as to the
insights, the analysis tools and techniques that can be borrowed from
statistical physics and ‘imported’ to certain problem areas in informa-
tion theory. This is a research trend that has been very active in the
last few decades, and the hope is that by exposing the students to the
meeting points between these two disciplines, their background and
perspective may be expanded and enhanced. This monograph is sub-
stantially revised and expanded relative to an earlier version posted in
arXiv (1006.1565v1 [cs.iT]).

Full text available at: http://dx.doi.org/10.1561/0100000052



Contents

1 Introduction 1

2 Basic Background in Statistical Physics 7

2.1 What is Statistical Physics? 7
2.2 Basic Postulates and the Microcanonical Ensemble 8
2.3 The Canonical Ensemble 17
2.4 Properties of the Partition Function and the Free Energy 21
2.5 The Energy Equipartition Theorem 32
2.6 The Grand-Canonical Ensemble 34

3 Physical Interpretations of Information Measures 39

3.1 Statistical Physics of Optimum Message Distributions 40
3.2 Large Deviations and Physics of Coding Theorems 42
3.3 Gibbs’ Inequality and the Second Law 57
3.4 Boltzmann’s H-Theorem and the DPT 73
3.5 Generalized Temperature and Fisher Information 88

4 Analysis Tools and Asymptotic Methods 95

4.1 Introduction 95
4.2 The Laplace Method 97
4.3 The Saddle-Point Method 101

ix

Full text available at: http://dx.doi.org/10.1561/0100000052



4.4 Extended Example: Capacity of a Disordered System 111
4.5 The Replica Method 116

5 Interacting Particles and Phase Transitions 123

5.1 Introduction — Sources of Interaction 124
5.2 Models of Interacting Particles 125
5.3 A Qualitative Discussion on Phase Transitions 131
5.4 Phase Transitions of the Rate–Distortion Function 135
5.5 The One-Dimensional Ising Model 139
5.6 The Curie–Weiss Model 142
5.7 Spin Glasses and Random Code Ensembles 147

6 The Random Energy Model and Random Coding 153

6.1 REM without a Magnetic Field 153
6.2 Random Code Ensembles and the REM 159
6.3 Random Coding Exponents 166

7 Extensions of the REM 177

7.1 REM Under Magnetic Field and Source–Channel Coding 178
7.2 Generalized REM (GREM) and Hierarchical Coding 187
7.3 Directed Polymers in a Random Medium and Tree Codes 198

8 Summary and Outlook 203

Acknowledgments 205

References 207

Full text available at: http://dx.doi.org/10.1561/0100000052



1

Introduction

This work focuses on some of the relationships and the interplay
between information theory and statistical physics — a branch of
physics that deals with many-particle systems using probabilistic and
statistical methods in the microscopic level.

The relationships between information theory and statistical ther-
modynamics are by no means new, and many researchers have been
exploiting them for many years. Perhaps the first relation, or analogy,
that crosses one’s mind is that in both fields there is a fundamental
notion of entropy. Actually, in information theory, the term entropy
was coined in the footsteps of the thermodynamic entropy. The ther-
modynamic entropy was first introduced by Clausius in 1850, and its
probabilistic-statistical interpretation was established by Boltzmann
in 1872. It is virtually impossible to miss the functional resemblance
between the two notions of entropy, and indeed it was recognized by
Shannon and von Neumann. The well-known anecdote on this tells
that von Neumann advised Shannon to adopt this term because it
would provide him with “. . . a great edge in debates because nobody
really knows what entropy is anyway.”

But the relationships between the two fields go far beyond the fact
that both share the notion of entropy. In fact, these relationships have

1
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2 Introduction

many aspects. We will not cover all of them in this work, but just to
taste the flavor of their scope, we will mention just a few.

The maximum entropy (ME) principle. This is perhaps the oldest
concept that ties the two fields and it has attracted a great deal of
attention, not only of information theorists, but also that of researchers
in related fields like signal processing and image processing. The ME
principle evolves around a philosophy, or a belief, which, in a nutshell,
is the following: if in a certain problem, the observed data comes from
an unknown probability distribution, but we do have some knowledge
(that stems, e.g., from measurements) of certain moments of the under-
lying quantity/signal/random-variable, then assume that the unknown
underlying probability distribution is the one with maximum entropy
subject to (s.t.) moment constraints corresponding to this knowledge.
For example, if we know the first and the second moments, then the ME
distribution is Gaussian with matching first and second order moments.
Indeed, the Gaussian model is perhaps the most common model for
physical processes in information theory as well as in signal- and image
processing. But why maximum entropy? The answer to this philosoph-
ical question is rooted in the second law of thermodynamics, which
asserts that in an isolated system, the entropy cannot decrease, and
hence, when the system reaches thermal equilibrium, its entropy reaches
its maximum. Of course, when it comes to problems in information the-
ory and other related fields, this principle becomes quite heuristic, and
so, one may question its justification, but nevertheless, this approach
has had an enormous impact on research trends throughout the last
50 years, after being proposed by Jaynes in the late fifties of the pre-
vious century [45, 46], and further advocated by Shore and Johnson
afterward [106]. In the book by Cover and Thomas [13, Section 12],
there is a good exposition on this topic. We will not put much emphasis
on the ME principle in this work.

Landauer’s erasure principle. Another aspect of these relations
has to do with a theory whose underlying guiding principle is that
information is a physical entity. Specifically, Landauer’s erasure
principle [63] (see also [6]), which is based on this physical theory
of information, asserts that every bit that one erases, increases the
entropy of the universe by k ln2, where k is Boltzmann’s constant.
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3

The more comprehensive picture behind Landauer’s principle is that
“any logically irreversible manipulation of information, such as the
erasure of a bit or the merging of two computation paths, must be
accompanied by a corresponding entropy increase in non-information
bearing degrees of freedom of the information processing apparatus
or its environment.” (see [6]). This means that each lost information
bit leads to the release of an amount kT ln2 of heat. By contrast, if
no information is erased, computation may, in principle, be achieved
in a way which is thermodynamically a reversible process, and hence
requires no release of heat. This has had a considerable impact on
the study of reversible computing. Landauer’s principle is commonly
accepted as a law of physics. However, there has also been some
considerable dispute among physicists on this. This topic is not going
to be included either in this work.

Large deviations theory as a bridge between information theory and
statistical physics. Both information theory and statistical physics have
an intimate relation to large deviations theory, a branch of probability
theory which focuses on the assessment of the exponential rates of
decay of probabilities of rare events, where one of the most elementary
mathematical tools is the Legendre transform, which stands at the basis
of the Chernoff bound. This topic will be covered quite thoroughly,
mostly in Section 3.2.

Random matrix theory. How do the eigenvalues (or, more generally,
the singular values) of random matrices behave when these matrices
have very large dimensions or if they result from products of many
randomly selected matrices? This is a very active area in probability
theory with many applications, both in statistical physics and informa-
tion theory, especially in modern theories of wireless communication
(e.g., MIMO systems). This is again outside the scope of this work, but
the interested reader is referred to [115] for a comprehensive introduc-
tion on the subject.

Spin glasses and coding theory. As was first observed by
Sourlas [109] (see also [110]) and further advocated by many others,
it turns out that many problems in channel coding theory (and also
to some extent, source coding theory) can be mapped almost verbatim
to parallel problems in the field of physics of spin glasses — amorphic
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4 Introduction

magnetic materials with a high degree of disorder and very compli-
cated physical behavior, which is customarily treated using statistical-
mechanical approaches. It has been many years that researchers have
made attempts to “import” analysis techniques rooted in statistical
physics of spin glasses and to apply them to analogous coding prob-
lems, with various degrees of success. This is one of main subjects of
this work and we will study it extensively, at least from some aspects.

The above list of examples is by no means exhaustive. We could
have gone much further and add many more examples of these very
fascinating meeting points between information theory and statistical
physics, but most of them will not be touched upon in this work. Many
modern analyses concerning multiuser situations, such as MIMO chan-
nels, CDMA, etc., and more recently, also in compressed sensing, are
based on statistical-mechanical techniques. But even if we limit our-
selves to single-user communication systems, yet another very active
problem area under this category is that of codes on graphs, iterative
decoding, belief propagation, and density evolution. The main reason
for not including it in this work is that it is already very well covered in
recent textbooks, such as the one Mézard and Montanari [80] as well as
the one by Richardson and Urbanke [98]. Another comprehensive expo-
sition of graphical models, with a fairly strong statistical-mechanical
flavor, was written by Wainwright and Jordan [118].

As will be seen, the physics and the information-theoretic subjects
are interlaced with each other, rather than being given in two contin-
uous, separate parts. This way, it is hoped that the relations between
information theory and statistical physics will be made more apparent.
We shall see that, not only these relations between information theory
and statistical physics are interesting academically on their own right,
but, moreover, they also prove useful and beneficial in that they provide
us with new insights and mathematical tools to deal with information-
theoretic problems. These mathematical tools sometimes prove a lot
more efficient than traditional tools used in information theory, and
they may give either simpler expressions for performance analysis, or
improved bounds, or both.

Having said that, a certain digression is in order. The reader should
not expect to see too many real breakthroughs, which are allowed
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exclusively by statistical-mechanical methods, but could not have been
achieved otherwise. Perhaps one exception to this rule is the replica
method of statistical mechanics, which will be reviewed in this work,
but not in great depth, because of two reasons: first, it is not rigor-
ous (and so, any comparison to rigorous information-theoretic methods
would not be fair), and secondly, because it is already very well covered
in existing textbooks, such as [80] and [87]. If one cares about rigor,
however, then there are no miracles. Everything, at the end of the day,
boils down to mathematics. The point then is which culture, or scien-
tific community, has developed the suitable mathematical techniques
and what are the new insights that they provide; in many cases, it is
the community of statistical physicists.

There are several examples of such techniques and insights, which
are emphasized rather strongly in this work. One example is the use
of integrals in the complex plane and the saddle-point method. Among
other things, this should be considered as a good substitute to the
method of types, with the bonus of lending itself to extensions that
include the countable and the continuous alphabet case (rather than
just the finite alphabet case). Another example is the analysis tech-
nique of error exponents, which stems from the random energy model
(see Section 6 and onward), along with its insights about phase tran-
sitions. Again, in retrospect, these analyses are just mathematics and
therefore could have been carried out without relying on any knowl-
edge in physics. But it is nevertheless the physical point of view that
provides the trigger for its use. Moreover, there are situations (see,
e.g., Section 7.3), where results from statistical mechanics can be used
almost verbatim in order to obtain stronger coding theorems. The point
is then that it is not the physics itself that may be useful, it is the way
in which physicists use mathematical tools.

One of the main take-home messages, that will hopefully remain
with the reader after reading this work, is that whatever the field of
statistical mechanics has to offer to us, as information theorists, goes
much beyond the replica method. It is believed that this message is
timely, because the vast majority of papers at the interface between
the two disciplines are about applying the replica method to some
information-theoretic problem.
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6 Introduction

The outline of the remaining part of this work is as follows: in
Section 2, we give some elementary background in statistical physics
and we relate fundamental thermodynamic potentials, like thermo-
dynamical entropy and free energy with fundamental information
measures, like the Shannon entropy and the Kullback–Leibler diver-
gence. In Section 3, we explore a few aspects of physical interpretations
of some fundamental results in information theory, like non–negativity
of the Kullback–Leibler divergence, the data processing inequality, and
the elementary coding theorems of information theory. In Section 4, we
review some analysis tools commonly used in statistical physics, like the
Laplace integration method, the saddle-point method, and the replica
method, all accompanied by examples. Section 5 is devoted to a (mostly
descriptive) exposition of systems with interacting particles and phase
transitions, both in physics and information theory. Section 6 focuses
on one particular model of a disordered physical system with interact-
ing particles — the random energy model, which is highly relevant to
the analysis of random code ensembles. Section 7 extends the random
energy model in several directions, all relevant to problems in informa-
tion theory. Finally, Section 8 contains a summary and an outlook on
the interplay between information theory and statistical mechanics.

As with every paper published in Foundations and Trends in Com-
munications and Information Theory, the reader is, of course, assumed
to have some solid background in information theory. Concerning the
physics part, prior background in statistical mechanics does not harm,
but is not necessary. This work is intended to be self-contained as far
as the physics background goes.

In a closing note, it is emphasized again that the coverage of topics,
in this work, is by no means intended to be fully comprehensive, nor is
it aimed at providing the complete plethora of problem areas, methods
and results. The choice of topics, the approach, the flavor, and the
style are nothing but the mirror image of the author’s personal bias,
perspective, and research interests in the field. Therefore, this work
should actually be viewed mostly as a monograph, and not quite as a
review or a tutorial paper. This is also the reason that a considerable
part of the topics, covered in this work, is taken from articles in which
the author has been involved.
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[65] H. Löwen, “Fun with hard spheres,” in Spatial Statistics and Statistical
Physics, vol. 554, (K. Mecke and D. Stoyan, eds.), pp. 295–331, Berlin:
Springer Lecture Notes in Physics, 2000.

[66] N. Merhav, “Another look at the physics of large deviations with
application to rate–distortion theory,” http://arxiv.org/PS cache/arxiv/pdf/
0908/0908.3562v1.pdf.

Full text available at: http://dx.doi.org/10.1561/0100000052



References 211

[67] N. Merhav, “Universal coding with minimum probability of code word
length overflow,” IEEE Transactions on Information Theory, vol. 37, no. 3,
pp. 556–563, May 1991.

[68] N. Merhav, “Error exponents of erasure/list decoding revisited via moments
of distance enumerators,” IEEE Transactions on Information Theory, vol. 54,
no. 10, pp. 4439–4447, October 2008.

[69] N. Merhav, “An identity of Chernoff bounds with an interpretation in statis-
tical physics and applications in information theory,” IEEE Transactions on
Information Theory, vol. 54, no. 8, pp. 3710–3721, August 2008.

[70] N. Merhav, “The random energy model in a magnetic field and joint source–
channel coding,” Physica A: Statistical Mechanics and Its Applications,
vol. 387, no. 22, pp. 5662–5674, September 15 2008.

[71] N. Merhav, “The generalized random energy model and its application to the
statistical physics of ensembles of hierarchical codes,” IEEE Transactions on
Information Theory, vol. 55, no. 3, pp. 1250–1268, March 2009.

[72] N. Merhav, “Relations between random coding exponents and the statistical
physics of random codes,” IEEE Transactions on Information Theory, vol. 55,
no. 1, pp. 83–92, January 2009.

[73] N. Merhav, “Data processing theorems and the second law of thermodynam-
ics,” submitted to IEEE Transactions on Information Theory, 2010.

[74] N. Merhav, “On the physics of rate–distortion theory,” in Proceedings of ISIT
2010, pp. 71–75, Austin, Texas, U.S.A., June 2010.

[75] N. Merhav, “On the statistical physics of directed polymers in a random
medium and their relation to tree codes,” IEEE Transactions on Informa-
tion Theory, vol. 56, no. 3, pp. 1345–1350, March 2010.

[76] N. Merhav, “Physics of the Shannon limits,” IEEE Transactions on Informa-
tion Theory, vol. 56, no. 9, pp. 4274–4285, September 2010.

[77] N. Merhav, “Rate–distortion function via minimum mean square error estima-
tion,” accepted IEEE Transactions on Information Theory, November 2010.

[78] N. Merhav, “Threshold effects in parameter estimation as phase transitions
in statistical mechanics,” submitted to IEEE Transactions on Information
Theory, 2010.

[79] N. Merhav, D. Guo, and S. S. (Shitz), “Statistical physics of signal estimation
in Gaussian noise: Theory and examples of phase transitions,” IEEE Trans-
actions on Information Theory, vol. 56, no. 3, pp. 1400–1416, March 2010.
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