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Abstract

This monograph is devoted to random-set theory, which allows

unordered collections of random elements, drawn from an arbitrary

space, to be handled. After illustrating its foundations, we focus on

Random Finite Sets, i.e., unordered collections of random cardinal-

ity of points from an arbitrary space, and show how this theory can

be applied to a number of problems arising in wireless communication

systems. Three of these problems are: (1) neighbor discovery in wireless

networks, (2) multiuser detection in which the number of active users

is unknown and time-varying, and (3) estimation of multipath chan-

nels where the number of paths is not known a priori and which are

possibly time-varying. Standard solutions to these problems are intrin-

sically suboptimum as they proceed either by assuming a fixed number
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of vector components, or by first estimating this number and then the

values taken on by the components. It is shown how random-set the-

ory provides optimum solutions to all these problems. The complexity

issue is also examined, and suboptimum solutions are presented and

discussed.
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1

Solving Estimation Problems Where You
Do Not Know the Number of Things

You Do Not Know

In this section we briefly glance at random-set theory (RST) and the

motivations for its application to problems in digital communication,

which will be described in detail in subsequent sections.

Roughly speaking, random sets are random entities whose realiza-

tions are subsets of a given space. In RST, the outcome of a random

experiment is a set, or a vector whose number of components is

unknown. RST can be applied to modeling observed phenomena which

are sets rather than vectors, hence it generalizes the concept of ran-

dom vectors. For a simple example, consider the description of random

polygons on a plane. Each polygon can be described by a vector whose

components are the coordinates of its vertices. Hence, if the number

of vertices can vary from 3 to a finite number N , a random polygon

is described by a vector whose randomness is in its components as

well as in the number of its components. The first systematic expo-

sition of random-set theory was developed in 1975 by Matheron [68].

More recent books investigating RST from a mathematical viewpoint

are [72, 73].

1
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2 Solving Estimation Problems

The first engineering application of RST was found in the

multisensor–multitarget data-fusion area. Multisensor–multitarget

systems include “randomly varying numbers of randomly varying

objects of various kinds: randomly varying collections of targets, ran-

domly varying collections of sensors and sensor-carrying platforms, and

randomly varying observation sets collected by those sensors.” [60, 66,

p. 8] while data fusion is “the process of directing the right data sources

on the right platform to the right targets at the right times, with the

goal of detecting, localizing, identifying, and determining the threat

potential of as many targets of interest as possible.” [60]. While a

rigorous mathematical tool for solving stochastic multiobject prob-

lems is point process theory (see, e.g., [51] and Appendix B, infra), a

more “engineering-friendly” framework has been advocated by Ronald

Mahler in the form of a statistical theory directly based on RST and

called finite-set statistics (FISST) [66]. The basic idea of FISST is

“to transform [a] multisource–multitarget problem into a mathemati-

cally equivalent single-sensor, single-target problem. All the sensors are

mathematically bundled into a single ‘meta-sensor’ that retains all of

the characteristics of the original sensors. (. . . ) The targets are likewise

bundled into a single ‘meta-target’ that retains all of the characteristics

of the individual targets.”[60] Quoting again from [60], FISST

is engineering-friendly in that it is geometric (i.e.,

treats multitarget systems as visualizable images); and

directly generalizes the Bayes “Statistics 101” for-

malism that most signal processing engineers already

understand — including formal Bayes-statistical mod-

eling methods.

Since its introduction in 1994, FISST has attracted much interest

from a number of research areas. Its first applications to digital com-

munication problems were examined in [5, 6, 22].

The main focus of this monograph is on estimation problems where

the quantities to be estimated are in a random number. In addition, a

model of their evolution may be available with time. A typical problem

is that one observes a superposition of a random number n of random

signals in additive noise and one wants to estimate this number as
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3

well as certain parameters of the individual signals. In the “classical”

framework (see, e.g., [90]), the problem is solved in two steps: (1),

determine whether or not signals exist and, if so, to what number, and

(2) estimate the parameters of the signals under the assumption that

their true number is its estimate n̂. As we shall see in Section 2.2, this

approach may not provide the best solution, which depends on the cost

function selected for the estimation problem.

The monograph has been organized in six sections and three

appendixes. More precisely, Section 2 focuses on the statistical

characterization of Random Sets, and in particular of Random Finite

Sets (RFS): first the concept of integrating “finite-set functions”,

i.e., functions whose arguments are finite sets, as well as the inverse

operation, the so-called ”set derivative” amounting to differentiating a

set function with respect to a finite set, are introduced and interpreted

in an engineering-friendly way. The remainder of Section 2 is concerned

with the definition of RFS probability density functions (pdfs), and

with the extensions of such concepts as Bayesian recursions and

statistical inference to the point where the object of interest is an RFS.

Section 3 is devoted to the problem of reduced-complexity imple-

mentation of RFS estimators, and summarizes the major techniques

proposed so far in order to scale down the computational burden

from combinatorial to algebraic: special attention is paid to Probabil-

ity Hypothesis Density (PHD) filtering and to its “Cardinalized” form

(CPHD), which have been the object of great interest in multiobject

tracking for more than a decade now.

Sections 4 and 5 illustrate the application of RFS theory to two

relevant problems of Communication Theory, i.e., multiuser detec-

tion and channel estimation in dynamic environments. In particular,

Section 4 considers the situation where the set of active users varies

over time according to a known transition pdf, while the object of

interest in Section 5 is the set of active paths in a frequency-selective

wireless channel. Finally, Section 6 contains some concluding remarks

and a brief list of the topics concerning RST that were not included in

this monograph.

Appendix A complements Section 2 by illustrating the mathemat-

ical foundations of Random-Set Theory in a more formal way: it is
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4 Solving Estimation Problems

however important to underline that Section 2 is self-contained, and

therefore a thorough understanding of Appendix A is not strictly neces-

sary in order to “operate” with RFSs. Likewise, Appendices B and C are

reserved to readers who want to have a deeper understanding of the con-

nections of RFS to well-established “classical” theories, such as Point

Processes (Appendix B) and Dempster–Shafer Theory (Appendix C).
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[82] S. Verdú, Multiuser Detection. Cambridge, UK: Cambridge University Press,
1998.

[83] M. Vihola, “Random sets for multitarget tracking and data fusion,” Licentiate
Thesis, Tampere University of Technology, 2004.

[84] H. Vikalo, B. Hassibi, and T. Kailath, “Iterative decoding for MIMO channels
via modified sphere decoding,” IEEE Transactions on Wireless Communica-
tions, vol. 3, no. 6, pp. 2299–2311, November 2004.

[85] E. Viterbo and E. Biglieri, “A universal lattice decoder,” in Proceedings of the
14-eme Colloque GRETSI, Juan Les Pins (France), September 1993.

[86] B.-N. Vo and W.-W. Ma, “The Gaussian mixture probability hypothesis density
filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104,
November 2006.

[87] B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods for multi-
target filtering with random finite sets,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 41, no. 4, pp. 1224–1245, October 2005.

[88] B.-T. Vo, “Random finite sets in multi object filtering,” PhD thesis, The Uni-
versity of Western Australia, 2008.

[89] B.-T. Vo, B.-N. Vo, and A. Cantoni, “Analytic implementations of the car-
dinalized probability hypothesis density filter,” IEEE Transactions on Signal
Processing, vol. 55, no. 7, pp. 3553–3567, July 2007.

[90] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-33,
no. 2, pp. 387–392, April 1985.

[91] W.-C. Wu and K.-C. Chen, “Identification of active users in synchronous
CDMA multiuser detection,” IEEE Journal on Selected Areas in Communi-
cations, vol. 16, no. 9, pp. 1723–1735, December 1998.

[92] Y. Xie, Y. C. Eldar, and A. Goldsmith, “Reduced-Dimension multiuser detec-
tion,” in Proceedings of the Annual Allerton Conference, pp. 584–590, Allerton
House, UIUC, Illinois (U.S.A.), 29 September–1 October 2010.

Full text available at: http://dx.doi.org/10.1561/0100000054



References 151

[93] Z. Xu, “Blind identification of co-existing synchronous and asynchronous users
for CDMA systems,” IEEE Signal Processing Letters, vol. 8, no. 7, pp. 212–214,
July 2001.

[94] W. Yu and W. Rhee, “Degrees of freedom in multi-user spatial multiplex sys-
tems with multiple antennas,” IEEE Transactions on Communications, vol. 54,
no. 10, 2004.

[95] T. Zajic and R. P. S. Mahler, “Particle-systems implementation of the phd
multitarget-tracking filter,” in SPIE Signal Processing, Sensor Fusion, and
Target Recognition, vol. 5096, Orlando, FL, USA, 2003.

Full text available at: http://dx.doi.org/10.1561/0100000054


	Solving Estimation Problems Where You Do Not Know the Number of Things You Do Not Know
	An Engineering Introduction
	Random Sets, Set Integral, and Set Derivative
	Bayesian and Maximum-likelihood Estimates
	Dynamic Models and Bayesian Recursions

	The Complexity Problem and Some Solutions
	Solving the Bayesian Recursion
	Particle Filtering/Sequential Monte-Carlo
	The Probability Hypothesis Density
	Zero-Order Approximations

	Multiuser Detection
	Introduction and Motivation
	Detection of Identities and Data
	Data Detection and Parameter Estimation

	Channel Estimation
	Introduction and Motivation
	A Case Study: SISO Wide-Band Transmission
	Channel Dynamics
	Extension to MIMO Channels

	Concluding Remarks
	Topics Not Covered Here

	Acknowledgments
	Mathematical Aspects of Random-Set Theory
	Topologies and all that
	Random Closed Sets
	Random Finite Sets

	Relation to Point Processes
	Basic Definitions
	Simple, Finite Point Processes
	Point Processes and Random Sets

	Relation to Dempster--Shafer Theory
	Theory of Evidence vs. Probability Theory
	D--S Theory
	Connection with Random-Set Theory

	Acronyms and notations
	References



