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ABSTRACT
The stochastic block model (SBM) is a random graph model
with different group of vertices connecting differently. It is
widely employed as a canonical model to study clustering
and community detection, and provides a fertile ground to
study the information-theoretic and computational tradeoffs
that arise in combinatorial statistics and more generally
data science.
This monograph surveys the recent developments that es-
tablish the fundamental limits for community detection in
the SBM, both with respect to information-theoretic and
computational tradeoffs, and for various recovery require-
ments such as exact, partial and weak recovery. The main
results discussed are the phase transitions for exact recovery
at the Chernoff-Hellinger threshold, the phase transition for
weak recovery at the Kesten-Stigum threshold, the optimal
SNR-mutual information tradeoff for partial recovery, and
the gap between information-theoretic and computational
thresholds.

Emmanuel Abbe (2018), “Community Detection and Stochastic Block Models”,
Foundations and TrendsR© in Communications and Information Theory: Vol. 14, No.
1-2, pp 1–162. DOI: 10.1561/0100000067.
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The monograph gives a principled derivation of the main
algorithms developed in the quest of achieving the limits, in
particular two-round algorithms via graph-splitting, semi-
definite programming, (linearized) belief propagation, classi-
cal/nonbacktracking spectral methods and graph powering.
Extensions to other block models, such as geometric block
models, and a few open problems are also discussed.
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1
Introduction

1.1 Community detection, clustering and block models

The most basic task of community detection, or graph clustering, consists
in partitioning the vertices of a graph into clusters that are more densely
connected. From a more general point of view, community structures
may also refer to groups of vertices that connect similarly to the rest
of the graph without having necessarily a higher inner density, such
as disassortative communities that have higher external connectivity.
Note that the terminology of ‘community’ is sometimes used only for
assortative clusters in the literature, but we adopt here the more general
definition. Community detection may also be performed on graphs where
edges have labels or intensities, and if these labels represent similarities
among data points, the problem may be called data clustering. In this
monograph, we will use the terms communities and clusters exchange-
ably. Further, one may also have access to interactions that go beyond
pairs of vertices, such as in hypergraphs, and communities may not
always be well separated due to overlaps. In the most general context,
community detection refers to the problem of inferring similarity classes
of vertices in a network by having access to measurements of local
interactions.

3
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4 Introduction

Figure 1.1: The above two graphs are the same graph re-organized and drawn
from the SBM model with 1000 vertices, 5 balanced communities, within-cluster
probability of 1/50 and across-cluster probability of 1/1000. The goal of community
detection in this case is to obtain the right graph (with five communities) from the
left graph (scrambled) up to some level of accuracy. In such a context, community
detection may be called graph clustering. In general, communities may not only refer
to denser clusters but more generally to groups of vertices that behave similarly.

Community detection and clustering are central problems in machine
learning and data science. A large number of data sets can be represented
as a network of interacting items, and one of the first features of interest
in such networks is to understand which items are “alike,” as an end
or as a preliminary step towards other learning tasks. Community
detection is used in particular to understand sociological behavior [3,
146, 134], protein to protein interactions [52, 121], gene expressions
[57, 62], recommendation systems [115, 148, 158], medical prognosis
[151], DNA 3D folding [50], image segmentation [97], natural language
processing [29], product-customer segmentation [56], webpage sorting
[109], and more.

The field of community detection has been expanding greatly since
the 1980’s, with a remarkable diversity of models and algorithms de-
veloped in different communities such as machine learning, computer
science, network science, social science and statistical physics. These rely
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1.1. Community detection, clustering and block models 5

on various benchmarks for finding clusters, in particular, cost functions
based on cuts or modularities [82]. We refer to [118, 146, 3, 134] for an
overview of these developments.

Nonetheless, various fundamental questions remain unsettled, such
as:

• When are there really communities? Algorithms may output com-
munity structures, but are these meaningful or artefacts?

• Can we always extract the communities when they are present;
fully, partially?

• What is a good benchmark to measure the performance of algo-
rithms, and how good are the current algorithms?

The goal of this monograph is to describe recent developments aimed at
answering these questions in the context of block models. Block models
are a family of random graphs with planted clusters. The “mother model”
is the stochastic block model (SBM), which has been widely employed as
a canonical model for community detection. It is arguably the simplest
model of a graph with communities (see definitions in the next section).
Since the SBM is a generative model, it benefits from a ground truth
for the communities, which allows us to consider the previous questions
in a formal context. Like any model, it is not necessarily realistic, but
it is insightful - judging for example from the powerful algorithms that
have emerged from its study.

In a sense, the SBM plays a similar role to the discrete memoryless
channel (DMC) in information theory. While the task of modelling
external noise may be more amenable to simplifications than real data
sets, the SBM captures some of the key bottleneck phenomena for
community detection and admits many possible refinements that im-
prove its fit to real data. Our focus here will be on the fundamental
understanding of the “canonical SBM,” without diving too much into
the refined extensions.

The SBM is defined as follows. For positive integers k, n, a probability
vector p of dimension k, and a symmetric matrix W of dimension
k× k with entries in [0, 1], the model SBM(n, p,W ) defines an n-vertex

Full text available at: http://dx.doi.org/10.1561/0100000067



6 Introduction

random graph with vertices split in k communities, where each vertex
is assigned a community label in {1, . . . , k} independently under the
community prior p, and pairs of vertices with labels i and j connect
independently with probability Wi,j .

Further generalizations allow for labelled edges and continuous vertex
labels, connecting to low-rank approximation models and graphons
(using the latter terminology as adapted in the statistics literature). For
example, a spiked Wigner model with observation Y = XXT +Z, where
X is an unknown vector and Z is Wigner, can be viewed as a labeled
graph where edge (i, j)’s label is given by Yij = XiXj + Zij . If the Xi’s
take discrete values, e.g., {1,−1}, this is closely related to the stochastic
block model—see [162] for a precise connection. Continuous labels can
also model Euclidean connectivity kernels, an important setting for
data clustering. In general, models where a collection of variables {Xi}
have to be recovered from noisy observations {Yij} that are stochastic
functions of Xi, Xj , or more generally that depend on local interactions
of some of the Xi’s, can be viewed as inverse problems on graphs or
hypergraphs that bear similarities with the basic community detection
problems discussed here. This concerns in particular topic modelling,
ranking, synchronization problems and other unsupervised learning
problems. We refer to Section 9 for further discussion on these. The
specificity of the stochastic block model is that the input variables are
discrete.

A first hint at the centrality of the SBM comes from the fact that the
model appeared independently in numerous scientific communities. It
appeared under the SBM terminology in the context of social networks
in the machine learning and statistics literature [93], while the model
is typically called the planted partition model in theoretical computer
science [49, 119, 41], and the inhomogeneous random graph in the math-
ematics literature [40]. The model takes also different interpretations,
such as a planted spin-glass model [63], a sparse-graph code [13, 68] or
a low-rank (spiked) random matrix model [123, 154, 162] among others.

In addition, the SBM has recently turned into more than a model for
community detection. It provides a fertile ground for studying various
central questions in machine learning, computer science and statistics:
It is rich in phase transitions [63, 122, 128, 13, 68], allowing us to study
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1.2. Fundamental limits: information and computation 7

the interplay between statistical and computational barriers [161, 18,
32, 20], as well as the discrepancies between probabilstic and adversarial
models [125], and it serves as a test bed for algorithms, such as SDPs
[13, 159, 89, 85, 1, 22, 126, 141], spectral methods [154, 160, 122, 108,
42, 147], and belief propagation [63, 17].

1.2 Fundamental limits: information and computation

This monograph focuses on the fundamental limits of community detec-
tion. The term ‘fundamental limit’ is used to emphasize the fact that we
seek conditions for recovering the communities that are necessary and
sufficient. In the information-theoretic sense, this means finding condi-
tions under which a given task can or cannot be resolved irrespective of
complexity or algorithmic considerations, whereas in the computational
sense, this further constrains the algorithms to run in polynomial time
in the number of vertices. As we shall see in this monograph, such
fundamental limits are often expressed through phase transitions, which
provide sharp transitions in the relevant regimes between phases where
the given task can or cannot be resolved.

Fundamental limits have proved to be instrumental in the develop-
ments of algorithms. A prominent example is Shannon’s coding theorem
[149], which gives a sharp threshold for coding algorithms at the channel
capacity, and which has led the development of coding algorithms for
more than 60 years (e.g., LDPC, turbo or polar codes) at both the
theoretical and practical level [153]. Similarly, the SAT threshold [60]
has driven the developments of a variety of satisfiability algorithms such
as survey propagation [117].

In the area of clustering and community detection, where estab-
lishing rigorous benchmarks is a long standing challenge, the quest
of fundamental limits and phase transitions is also impacting the de-
velopment of algorithms. As discussed in this monograph, this has
already lead to developments of algorithms such as sphere-comparisons,
linearized belief propagation, nonbacktracking spectral methods. Fun-
damental limits also shed light on the limitations of the model versus
those of the algorithms used; see Section 1.3. However, unlike in the
data transmission context of Shannon, information-theoretic limits
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8 Introduction

may not always be efficiently achievable in community detection, with
information-computation gaps that may emerge as discussed in Section
8.

1.3 An example on real data

This monograph focuses on the fundamentals of community detection,
but we want to give an application example here. We use the blogosphere
data set from the 2004 US political elections [110] as an archetype
example.

Consider the problem where one is interested in extracting features
about a collection of items, in our case n = 1, 222 individuals writing
about US politics, observing only some of their interactions. In our
example, we have access to which blogs refers to which (via hyperlinks),
but nothing else about the content of the blogs. The hope is to extract
knowledge about the individual features from these simple interactions.

To proceed, build a graph of interaction among the n individuals,
connecting two individuals if one refers to the other, ignoring the
direction of the hyperlink for simplicity. Assume next that the data set
is generated from a stochastic block model; assuming two communities
is an educated guess here, but one can also estimate the number of
communities (e.g., as in [18]). The type of algorithms developed in
Sections 7.2 and 7.1 can then be run on this data set, and two assortative
communities are obtained. In the paper [110], Adamic and Glance
recorded which blogs are right or left leaning, so that we can check
how much agreement the algorithms give with the true partition of the
blogs. The results give about 95% agreement on the blogs’ political
inclinations (which is roughly the state-of-the-art [133, 101, 80]).

Despite the fact that the blog data set is particularly ‘well behaved’–
there are two dominant clusters that are well balanced and well separated–
the above approach can be applied to a broad collection of data sets
to extract knowledge about the data from graphs of similarities or
interactions. In some applications, the graph is obvious (such as in
social networks with friendships), while in others, it is engineered from
the data set based on metrics of similarity/interactions that need to be
chosen properly (e.g, similarity of pixels in image segmentation). The
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1.3. An example on real data 9

Figure 1.2: The above graphs represent the real data set of the political blogs from
[110]. Each vertex represents a blog and each edge represents the fact that one of the
blogs refers to the other. The left graph is plotted with a random arrangement of the
vertices, and the right graph is the output of the ABP algorithm described in Section
7.2, which gives 95% accuracy on the reconstruction of the political inclination of
the blogs (blue and red colors correspond to left and right leaning blogs).

goal is to apply such approaches to problems where the ground truth
is unknown, such as to understand biological functionality of protein
complexes; to find genetically related sub-populations; to make accurate
recommendations; medical diagnosis; image classification; segmentation;
page sorting; and more (see references in the introduction).

In such cases where the ground truth is not available, a key question
is to understand how reliable the algorithms’ outputs may be. We now
discuss how the results presented in this monograph add to this question.
Following the definitions from Sections 7.2 and 7.1, the parameters
estimated by fitting an SBM on this data set in the constant degree
regime are

p1 = 0.48, p2 = 0.52, Q =
(

52.06 5.16
5.16 47.43

)
. (1.1)

and in the logarithmic degree regime

p1 = 0.48, p2 = 0.52, Q =
(

7.31 0.73
0.73 6.66

)
. (1.2)

Following the definitions of Theorem 7.9 from Section 7.2, we can now
compute the SNR for these parameters in the constant-degree regime,
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10 Introduction

obtaining λ2
2/λ1 ≈ 18 which is much greater than 1. Thus, under an

SBM model, the data is largely in a regime where communities can
be detected, i.e., above the weak recovery threshold. Following the
definitions of Theorem 7.1 from Section 7.1, we can also compute the
CH-divergence for these parameters in the logarithmic-degree regime,
obtaining J(p,Q) ≈ 2 which is also greater than 1. Thus, under an SBM
and with an asymptotic approximation, the data is in a regime where
the graph communities can in fact be recovered entirely, i.e, above the
exact recovery threshold. This does not answer whether the SBM is
a good or a bad model, but it gives that under this model, the data
appears to be in a strong ‘clusterable regime.’

Note also that such a conclusion may not appear using a specific
algorithm, e.g., one that is sensitive to the degree variations and that
may split the vertices into high vs. low-degree vertices. This prompted
for example the development of degree-corrected SBMs in [27], as the
algorithm used in [27] for the blog data set with the fitting of an SBM
failed for such reasons. However, how do we know whether the failure
is due to the model or the algorithm? By establishing the fundamental
limits on the SBM, we will find algorithms that are ‘maximally’ robust by
succeeding in the most challenging regimes, i.e., down to the fundamental
limits, which achieve in particular the positive accuracy for the blog
data set described in Figure 1.2. We also refer to Section 5.3.2 for
discussions on the robustness of algorithms to degree variations.

1.4 Historical overview of the recent developments

This section provides a brief historical overview of the recent develop-
ments discussed in this monograph. The resurgent interest in the SBM
and its ‘modern study’ have been initiated in part due to the paper of
Decelle, Krzakala, Moore and Zdeborová [63], which conjectured1 phase

1The conjecture of the Kesten-Stigum threshold in [63] was formulated with what
we call in this note the max-detection criteria, asking for an algorithm to output a
reconstruction of the communities that strictly improves on the trivial performance
achieved by putting all the vertices in the largest community. This conjecture is
formally incorrect for general SBMs, see [20] for a counter-example, as the notion
of max-detection is too strong in some cases. The conjecture is believed to hold for
symmetric SBMs, as re-stated in [130], but it requires a different notion of detection
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1.4. Historical overview of the recent developments 11

transition phenomena for the weak recovery (a.k.a. detection) problem
at the Kesten-Stigum threshold and the information-computation gap at
4 symmetric communities in the symmetric case. These conjectures are
backed in [63] with insights from statistical physics, based on the cavity
method (belief propagation), and provide a detailed picture of the weak
recovery problem, both for the algorithmic and information-theoretic
behavior. With such insights, a new research program started driven by
the phase transition phenomena.

One of the first papers that obtained a non-trivial algorithmic result
for the weak recovery problem is [2] from 2010, which appeared before
the conjecture (and does not achieve the threshold by a logarithmic
degree factor). The first paper that made progress on the conjecture is
[130] from 2012, which proved the impossibility part of the conjecture
for two symmetric communities, introducing various key concepts in
the analysis of block models. In 2013, [72] also obtained a result on the
partial recovery of the communities, expressing the optimal fraction of
mislabelled vertices when the signal-to-noise ratio is large enough in
terms of the broadcasting problem on trees [105, 156].

The positive part of the conjecture for efficient algorithm and two
communities was first proved in 2014 with [122] and [128], using respec-
tively a spectral method from the matrix of self-avoiding walks and
weighted non-backtracking walks between vertices.

In 2014, [10, 13] and [73] found that the exact recovery problem for
two symmetric communities has also a phase transition, in the loga-
rithmic rather than constant degree regime, shown to be also efficiently
achievable. This relates to a large body of work from the first decades
of research on the SBM [49, 119, 41, 150, 59, 123, 38, 55, 154, 161],
driven by the exact or almost exact recovery problems without sharp
thresholds.

In 2015, the phase transition for exact recovery was obtained for the
general SBM [68, 18], and shown to be efficiently achievable irrespective
of the number of communities. For the weak recovery problem, [42]
showed that the Kesten-Stigum threshold can be achieved with a spectral
method based on the nonbacktracking (edge) operator in a fairly general

to hold for general SBMs; see definitions from [20] discussed in Section 7.2.
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12 Introduction

setting (covering SBMs that are not necessarily symmetric), but felt
short of settling the conjecture for more than two communities in the
symmetric case due to technical reasons. The approach of [42] is based
on the ‘spectral redemption’ conjecture made in 2013 in [108], which
introduced the use of the nonbacktracking operator as a linearization
of belief propagation. This is one of the most elegant approaches to the
weak recovery problem, except perhaps for the fact that the matrix is
not symmetric (note that the first proof of [122] does provide a solution
with a symmetric matrix via the count of self-avoiding walks, albeit
less direct to construct). The general conjecture for arbitrary many
symmetric or asymmetric communities is settled later in 2015 with [17,
20], relying on a higher-order nonbacktracking matrix and a message
passing implementation. It was further shown in [17, 20] that it is
possible to cross information-theoretically the Kesten-Stigum threshold
in the symmetric case at 4 communities, settling both positive parts
of the conjectures from [63]. Crossing at 5 rather than 4 communities
is also obtained in [30, 32], which further obtains the scaling of the
information-theoretic threshold for a growing number of communities.

In 2016, a tight expression was obtained for partial recovery with
two communities in the regime of finite SNR with diverging degrees in
[162] and [129] for a different distortion measure. This also gives the
threshold for weak recovery in the regime where the SNR is finite while
the degrees are diverging.

Other major lines of work on the SBM have been concerned with
the performance of SDPs, with a precise picture obtained in [85, 126,
99] for the weak recovery problem and in [13, 159, 1, 5, 22, 141] for the
(almost) exact recovery problem; as well as with spectral methods on
classical operators [123, 2, 138, 160, 154, 147, 165]. A detailed picture
has also been developed for the problem of a single planted community
in [4, 91, 90, 51]. Recently, attention has been paid to graphs that have a
larger number of short loops [16, 9, 79, 14]. There is a much broader list
of works on the SBMs that is not covered in this monograph, especially
before the ‘recent developments’ discussed above but also after. It is
particularly challenging to track the vast literature on this subject as it
is split between different communities of statistics, machine learning,
mathematics, computer science, information theory, social sciences
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and statistical physics. This monograph mainly covers developments
until 2016, with some references from 2017 There a few additional
surveys available; community detection and statistical network models
are discussed in [118, 146, 3], and C. Moore has a recent overview paper
[127] that focuses on the weak recovery problem with emphasis on the
cavity method.

In the table below, we summarize the main thresholds proved for
weak and exact recovery, covered in several chapters of this monograph:

Exact recovery Weak recovery (detection)
(logarithmic degrees) (constant degrees)

2-SSBM |
√
a−
√
b| >

√
2 [10, 73] (a− b)2 > 2(a+ b) [122, 128]

General SBM min
i<j

D+((PQ)i, (PQ)j) > 1 [68] λ2
2(PQ) > λ1(PQ) [42, 17]

1.5 Outline

In the next section, we formally define the SBM and various recovery
requirements for community detection, namely exact, weak, and partial
recovery. We then start with a quick overview of the key approaches
for these recovery requirements in Section 3, introducing the key new
concepts obtained in the recent developments. We then treat each of
these three recovery requirements separately for the two community
SBM in Sections 7.1, 7.2 and 6 respectively, discussing both fundamental
limits and efficient algorithms. We give complete (and revised) proofs
for exact recovery and partial proofs for weak and partial recovery. We
then move to the results for the general SBM in Section 7. In Section 9
we discuss other block models, such as geometric block models, and in
Section 10 we give concluding remarks and open problems.

1.6 Notations

We use the standard little-o and big-o notations. Recall that an = Ω(bn)
means that bn = O(an), and an = ω(bn) means that bn = o(an). In
particular, an = o(1) means that an is vanishing, an = Ω(1) means
that an is non-vanishing, and an = ω(1) means that an is diverging.
We use an . bn when an = Ω(bn); an � bn when an = o(bn) (and
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an � bn when bn = o(an)); an = Θ(bn), or equivalently an � bn, when
we simultaneously have an = Ω(bn) and an = O(bn); an ∼ bn when
an = bn(1 + o(1)).

We say that an event En takes place with high probability if its
probability tends to 1 as n diverges, i.e., P{En} = 1− o(1). We also use
a.a.e. and a.a.s. for asymptotically almost everywhere and asymptotically
almost surely (respectively).

We usually use superscripts to specify the dimensions of vectors; in
particular, 1n is the all-one vector of dimension n, 0n the all-zero vector
of dimension n, and xn = (x1, . . . , xn).
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