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Abstract

Non-volatile memories (NVMs) have emerged as the primary replace-
ment of hard-disk drives for a variety of storage applications, includ-
ing personal electronics, mobile computing, intelligent vehicles, enter-
prise storage, data warehousing, and data-intensive computing systems.
Channel coding schemes are a necessary tool for ensuring target relia-
bility and performance of NVMs. However, due to operational asymme-
tries in NVMs, conventional coding approaches - commonly based on
designing for the Hamming metric - no longer apply. Given the immedi-
ate need for practical solutions and the shortfalls of existing methods,
the fast-growing discipline of coding for NVMs has resulted in several
key innovations that not only answer the needs of modern storage sys-
tems but also directly contribute to the analytical toolbox of coding
theory at large.

This monograph discusses recent advances in coding for NVMs, cov-
ering topics such as error correction coding based on novel algebraic and
graph-based methods, write-once memory (WOM) codes, rank modula-
tion, and constrained coding. Our goal in this monograph is multifold:
to illuminate the advantages - as well as challenges - associated with
modern NVMs, to present a succinct overview of several exciting recent
developments in coding for memories, and, by presenting numerous po-
tential research directions, to inspire other researchers to contribute to
this timely and thriving discipline.

L. Dolecek and F. Sala. Channel Coding Methods for Non-Volatile Memories.
Foundations and TrendsR© in Communications and Information Theory, vol. 13,
no. 1, pp. 1–128, 2016.
DOI: 10.1561/0100000084.

Full text available at: http://dx.doi.org/10.1561/0100000084



1
Data-Driven Need For More Reliable Memories

Welcome to the age of data! The amount of data generated in 2014
was estimated to be an unprecedented 4 Zettabytes (which is four
billion Terabytes!), and is expected to increase to a whopping 40
Zettabytes by 2020 [2]. This data deluge has provided opportunities
for scientific discoveries and technological innovations. To make full
use of new data, the ability to store large-scale data reliably and
efficiently has become the key challenge. Yet, available data storage
systems have been grossly outpaced by data generation – the capacity
of current storage systems is estimated at only 30% of generated
data, and this percentage will decrease even further [2]. It is thus
paramount to develop new approaches that make data storage systems
fast, ultra-reliable, dense, and affordable.

Non-volatile memories (NVMs) are a class of memories that main-
tain stored data even after being disconnected from a power supply.
NVMs offer faster data access, reduced power consumption, and im-
proved physical resiliency relative to conventional hard disks. As a re-
sult, NVMs have emerged as the primary replacement of hard-disk
drives for a variety of storage applications, including personal elec-
tronics, mobile computing, intelligent vehicles, enterprise storage, data
warehousing, and data-intensive computing systems.

2
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3

Flash memories are the most popular NVM technology today. Other
NVM types, such as phase-change memory (PCM), magnetoresistive
random access memory (MRAM), and spin-transfer-torque random ac-
cess memory (STT-RAM), are also being actively pursued and may
eventually offer viable alternatives to flash. Given the maturity and
the ubiquity of flash devices, we will primarily focus on coding meth-
ods for flash memories; as appropriate, we will comment on the usage
of related techniques for other technologies as well.

A flash device consists of floating gate transistors, organized in a
two- or three-dimensional array. Each memory cell stores information:
the amount of charge stored in the cell corresponds to a certain digital
value. Improvements in fabrication technology over the past decade
have resulted in decreased per-unit cost and increased areal densities
of NVMs, and have thus made flash memories the primary replacement
of hard disk drives in a range of modern applications. However, these
positive trends have come at the expense of reduced reliability and
limited device lifetime.

Unlike hard disks, NVMs can only be used for a certain number
of program and erase (P/E) cycles, after which a device is deemed
unusable. Currently, there is an unfavorable trade-off between storage
density and endurance: as the cell density doubles, the lifetime drops by
10x - 20x [67]. Additionally, with the increase in storage capacity, due
to a variety of physical impairments, memory reliability also rapidly
decreases.

A particularly promising approach to overcome these physical lim-
itations in NVMs is to apply error correction schemes. The field of
channel coding deals with the development of practical error correc-
tion methods that introduce controlled, carefully designed redundancy
into a data stream to make transmission or storage over a noisy medium
as reliable as possible. Channel coding methods have been used with
great success in data storage technologies and have helped make com-
puter storage ubiquitous. However, NVMs present unique operational
constraints that make existing channel coding methods inadequate. In
particular, due to operational asymmetries in NVMs, conventional cod-
ing approaches – commonly based on designing for the Hamming met-
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4 Data-Driven Need For More Reliable Memories

ric – no longer apply. Given the immediate need for practical solutions
and the shortfalls of the existing methods, the fast-growing discipline
of coding for NVMs has resulted in several key innovations that not
only answer the needs of modern storage systems but also directly con-
tribute to the analytical toolbox of coding theory at large.

This manuscript discusses recent advances in coding for NVMs, cov-
ering topics such as error correction coding based on novel algebraic and
graph-based methods, write-once memory (WOM) codes, rank modu-
lation, and constrained coding. Our goal for this work is multifold:
to illuminate the advantages – as well as challenges – associated with
modern NVMs, to present a succinct overview of several exciting re-
cent developments in coding for memories, and, by presenting several
possible research directions, to inspire other researchers to contribute
to this timely and thriving discipline.

In Chapter 2 we will discuss the key operational features associated
with flash memories. Motivated by these idiosyncrasies, subsequent
chapters will overview recent developments in channel coding meth-
ods (Chapter 3), WOM codes (Chapter 4), rank modulation schemes
(Chapter 5), and constrained codes (Chapter 6). The concluding Chap-
ter 7 will summarize key results and will also list several research topics
of interest to broad coding/information theory and signal processing
community.
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