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Abstract

Lossless data compression is a facet of source coding and a well stud-

ied problem of information theory. Its goal is to find a shortest pos-

sible code that can be unambiguously recovered. Here, we focus on

rigorous analysis of code redundancy for known sources. The redun-

dancy rate problem determines by how much the actual code length

exceeds the optimal code length. We present precise analyses of three

types of lossless data compression schemes, namely fixed-to-variable

(FV) length codes, variable-to-fixed (VF) length codes, and variable-

to-variable (VV) length codes. In particular, we investigate the aver-

age redundancy of Shannon, Huffman, Tunstall, Khodak and Boncelet

codes. These codes have succinct representations as trees, either as

coding or parsing trees, and we analyze here some of their parame-

ters (e.g., the average path from the root to a leaf). Such trees are

precisely analyzed by analytic methods, known also as analytic com-

binatorics, in which complex analysis plays decisive role. These tools

include generating functions, Mellin transform, Fourier series, saddle

point method, analytic poissonization and depoissonization, Tauberian

theorems, and singularity analysis. The term analytic information the-

ory has been coined to describe problems of information theory studied

by analytic tools. This approach lies on the crossroad of information

theory, analysis of algorithms, and combinatorics.

M. Drmota and W. Szpankowski. Redundancy of Lossless Data Compression for

Known Sources by Analytic Methods. Foundations and Trends R© in
Communications and Information Theory, vol. 13, no. 4, pp. 277–417, 2016.
DOI: 10.1561/0100000090.
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1

Introduction

The basic problem of source coding better known as (lossless) data com-

pression is to find a binary code that can be unambiguously recovered

with shortest possible description either on average or for individual

sequences. Thanks to Shannon’s work we know that on average the

number of bits per source symbol cannot be smaller than the source

entropy rate. There are many codes asymptotically achieving the en-

tropy rate, therefore one turns attention to redundancy. The average

redundancy of a source code is the amount by which the expected num-

ber of binary digits per source symbol for that code exceeds entropy.

One of the goals in designing source coding algorithms is to minimize

the redundancy. In this survey, we discuss various classes of source cod-

ing and their corresponding redundancy. It turns out that such analyses

often resort to studying certain intriguing trees such as Huffman, Tun-

stall, Khodak and Boncelet trees, as well as various algorithms such

as divide-and-conquer approach. We study them using tools from the

analysis of algorithms and analytic combinatorics1 to discover precise

and minute behavior of lossless compression codes.

1Andrew Odlyzko has argued that: “analytic methods are extremely powerful
and when they apply, they often yield estimates of unparalleled precision.”

2
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3

Lossless data compression comes in three flavors: fixed-to-variable

(FV) length codes, variable-to-fixed (VF) length codes, and finally

variable-to-variable (VV) length codes. The latter includes the pre-

vious two families of codes and is the least studied among all data

compression schemes. Over years we have seen a resurgence of interest

in redundancy rate for fixed-to-variable coding (cf. [25, 28, 29, 30, 66,

90, 91, 92, 101, 103, 124, 126, 130, 132, 131, 139, 140, 151, 152, 164,

173, 180, 176, 177]). Surprisingly there are only a handful of results for

variable-to-fixed codes (cf. [77, 97, 112, 133, 131, 134, 156, 161, 185]

) and an almost non-existing literature on variable-to-variable codes

(cf. [42, 50, 80, 97]). While there is some work on universal VF codes

[156, 161, 185], to the best of our knowledge redundancy for universal

VF and VV codes were not studied with the exception of some work

of the Russian school [97, 96] (cf. also [99]).

In the fixed-to-variable code, discussed in Chapter 3, the encoder

maps fixed length blocks of source symbols into variable-length binary

code strings. Two important fixed-to-variable length coding schemes

are the Shannon code and the Huffman code. In this survey we follow

[152, 114]. We first discuss precise analyses of Shannon code redun-

dancy for memoryless and Markov sources. We show that the average

redundancy either converges to an explicitly computable constant, as

the block length increases, or it exhibits a very erratic behavior fluc-

tuating between 0 and 1. We also observe a similar behavior for the

worst case or maximal redundancy. Then we move to the Huffman code.

Despite the fact that Huffman codes have been so well known for so

long, it was only relatively recently that their redundancy was fully

understood. In [1] Abrahams summarizes much of the vast literature

on fixed-to-variable length codes. Here, we present a precise analysis

from our work [152] of the Huffman average redundancy for memory-

less sources. We show that the average redundancy either converges to

an explicitly computable constant, as the block length increases, or it

exhibits a very erratic behavior fluctuating between 0 and 1. Following

[114] we also present similar results for Markov sources.

Next, in Chapter 4 we study variable-to-fixed codes. A VF encoder

partitions the source string into variable-length phrases that belong to

Full text available at: http://dx.doi.org/10.1561/0100000090



4 Introduction

a given dictionary D. Often a dictionary is represented by a complete

tree (i.e., a tree in which every node has maximum degree), also known

as the parsing tree. The code assigns a fixed-length word to each dic-

tionary entry. An important example of a variable-to-fixed code is the

Tunstall code [157]. Savari and Gallager [131] present an analysis of

the dominant term in the asymptotic expansion of the Tunstall code

redundancy. In this survey, following [34], we describe a precise analysis

of the phrase length (i.e., path from the root to a terminal node in the

corresponding parsing tree) for such a code and its average redundancy.

We also discuss a variant of Tunstall code known as VF Khodak code.

In the next Chapter 5 we continue analyzing VF codes due to Bon-

celet [15] who used the divide-and-conquer principle to design a prac-

tical encoding. Boncelet’s algorithm is computationally fast and its

practicality stems from the divide and conquer strategy: It splits the

input (e.g., parsing tree) into several smaller subproblems, solving each

subproblem separately, and then knitting together to solve the origi-

nal problem. We use this occasion to present a careful analysis of a

divide-and conquer recurrence which is at foundation of several divide-

and-conquer algorithms such as heapsort, mergesort, discrete Fourier

transform, queues, sorting networks, compression algorithms, and so

forth [47, 86, 153].

In Chapter 6 we consider variable-to-variable codes. A variable-to-

variable (VV) code is a concatenation of variable-to-fixed and fixed-

to-variable codes. A variable-to-variable length encoder consists of a

parser and a string encoder. The parser, as in VF codes, segments the

source sequence into a concatenation of phrases from a predetermined

dictionary D. Next, the string encoder in a variable-to-variable scheme

takes the sequence of dictionary strings and maps each one into its

corresponding binary codeword of variable length. Aside from the spe-

cial cases where either the dictionary strings or the codewords have

a fixed length, very little is known about variable-to-variable length

codes, even in the case of memoryless sources. In 1972 Khodak [80]

described a VV scheme with small average redundancy that decreases

with the growth of phrase length. He did not offer, however, an explicit

VV code construction. We will remedy this situation and follow [16].

Full text available at: http://dx.doi.org/10.1561/0100000090



5

Finally, in Chapter 7 we discuss redundancy of one-to-one codes

that are not necessarily prefix or even uniquely decodable. Recall that

non-prefix codes are such codes which are not prefix free and do not

satisfy Kraft’s inequality. In particular, we analyze binary and non-

binary one-to-one codes whose average lengths are smaller than the

source entropy in defiance of the Shannon lower bound.

Throughout this survey, we study various intriguing trees describing

Huffman, Tunstall, Khodak and Boncelet codes. These trees are studied

by analytic techniques of analysis of algorithms [47, 85, 86, 87, 153].

The program of applying tools from analysis of algorithms to prob-

lems of source coding and in general to information theory lies at the

crossroad of computer science and information theory. It is also known

as analytic information theory. In fact, the interplay between informa-

tion theory and computer science dates back to the founding father

of information theory, Claude E. Shannon. His landmark paper “A

Mathematical Theory of Communication” is hailed as the foundation

for information theory. Shannon also worked on problems in computer

science such as chess-playing machines and computability of different

Turing machines. Ever since Shannon’s work on both information the-

ory and computer science, the research at the interplay between these

two fields has continued and expanded in many exciting ways. In the

late 1960s and early 1970s, there were tremendous interdisciplinary re-

search activities, exemplified by the work of Kolmogorov, Chaitin, and

Solomonoff, with the aim of establishing algorithmic information the-

ory. Motivated by approaching Kolmogorov complexity algorithmically,

A. Lempel (a computer scientist), and J. Ziv (an information theorist)

worked together in the late 1970s to develop compression algorithms

that are now widely referred to as Lempel-Ziv algorithms. Analytic

information theory is a continuation of these efforts.

Finally, we point out that this survey deals only with source coding

for known sources. The more practical universal source coding (in which

the source distribution is unknown) is left for our future book Analytic

Information Theory. However, at the end of this survey we provide

an extensive bibliography on the redundancy rate problem, including

universal source coding.
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6 Introduction

This survey is organized as follows. In the next chapter, we present

some preliminary results such as Kraft’s inequality, Shannon’s lower

bound, and Barron’s lemma. In Section 3 we analyze Shannon and

Huffman codes. Then we turn our attention in Section 4 to the Tunstall

and VF Khodak codes. Finally, in Section 6 we discuss the VV code

of Khodak and its interesting analysis. We conclude this survey with a

chapter concerning the average redundancy for non-prefix codes such

as one-to-one codes.
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