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ABSTRACT
Developing computationally-efficient codes that approach the
Shannon-theoretic limits for communication and compression has
long been one of the major goals of information and coding theory.
There have been significant advances towards this goal in the
last couple of decades, with the emergence of turbo codes, sparse-
graph codes, and polar codes. These codes are designed primarily
for discrete-alphabet channels and sources. For Gaussian channels
and sources, where the alphabet is inherently continuous, Sparse
Superposition Codes or Sparse Regression Codes (SPARCs) are a
promising class of codes for achieving the Shannon limits.
This monograph provides a unified and comprehensive over-view of
sparse regression codes, covering theory, algorithms, and practical
implementation aspects. The first part of the monograph focuses
on SPARCs for AWGN channel coding, and the second part on
SPARCs for lossy compression (with squared error distortion cri-
terion). In the third part, SPARCs are used to construct codes for
Gaussian multi-terminal channel and source coding models such
as broadcast channels, multiple-access channels, and source and
channel coding with side information. The monograph concludes
with a discussion of open problems and directions for future work.

Ramji Venkataramanan, Sekhar Tatikonda and Andrew Barron (2019), “Sparse
Regression Codes”, Foundations and TrendsR© in Communications and Information
Theory: Vol. 15, No. 1-2, pp 1–195. DOI: 10.1561/0100000092.
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1
Introduction

Developing computationally-efficient codes that approach the Shannon-
theoretic limits for communication and compression has long been one
of the major goals of information and coding theory. There have been
significant advances towards this goal in the last couple of decades, with
the emergence of turbo and sparse-graph codes in the ’90s [20, 28, 92],
and more recently polar codes and spatially-coupled LDPC codes [4,
68, 73]. These codes are primarily designed for channels with discrete
input alphabet, and for discrete-alphabet sources.

There are many channels and sources of practical interest where the
alphabet is inherently continuous, e.g., additive white Gaussian noise
(AWGN) channels, and Gaussian sources. This monograph discusses
a class of codes for such Gaussian models called Sparse Superposition
Codes or Sparse Regression Codes (SPARCs). These codes were intro-
duced by Barron and Joseph [15, 63] for efficient communication over
AWGN channels, but have since also been used for lossy compression
[112, 113] and multi-terminal communication [114]. Our goal in this
monograph is to provide a unified and comprehensive view of SPARCs,
covering theory, algorithms, as well as practical implementation aspects.

2
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3

To motivate the construction of SPARCs, let us begin with the
standard AWGN channel. The goal is to construct codes with compu-
tationally efficient encoding and decoding that provably achieve the
channel capacity C = 1

2 log2(1+snr) bits/transmission, where snr denotes
the signal-to-noise ratio. In particular, we are interested in codes whose
encoding and decoding complexity grows no faster than a low-order
polynomial in the block length n.

Though it is well known that rates approaching C can be achieved
with Gaussian codebooks, this has been largely avoided in practice
because of the high decoding complexity of unstructured Gaussian codes.
Instead, the popular approach has been to separate the design of the
coding scheme into two steps: coding and modulation. State-of-the-art
coding schemes for the AWGN channel such as coded modulation [43, 50,
22] use this two-step design, and combine binary error-correcting codes
such as LDPC and turbo codes with standard modulation schemes such
as Quadrature Amplitude Modulation (QAM). Though such schemes
have good empirical performance, they have not been proven to be
capacity-achieving for the AWGN channel. With sparse regression codes,
we step back from the coding/modulation divide and instead use a
structured codebook to construct low-complexity, capacity-achieving
schemes tailored to the AWGN channel.

There have been several lattice based schemes [40, 122] proposed for
communication over the AWGN channel, including low density lattice
codes [101] and polar lattices [118, 2]. The reader is referred to the cited
works for details of the performance vs. complexity trade-offs of these
codes.

In the rest of this chapter, we describe the sparse regression codebook,
and give a brief overview of the topics covered in the later chapters. First,
we lay down some notation that will be used throughout the monograph.

Notation The Gaussian distribution with mean µ and variance σ2 is
denoted by N (µ, σ2). For a positive integer L, we use [L] to denote the
set {1, . . . , L}. The Euclidean norm of a vector x is denoted by ‖x‖.
The indicator function of an event E is denoted by 1{E}. The transpose
of a matrix A is denoted by A∗. The n× n identity matrix is denoted
by In, with the subscript dropped when it is clear from context.

Full text available at: http://dx.doi.org/10.1561/0100000092



4 Introduction

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1, 0, 0,

Figure 1.1: A Gaussian sparse regression codebook of block length n: A is
a design matrix with independent Gaussian entries, and β is a sparse vector
with one non-zero in each of L sections. Codewords are of the form Aβ, i.e.,
linear combinations of the columns corresponding to the non-zeros in β. The
message is indexed by the locations of the non-zeros, and the values c1, . . . , cL
are fixed a priori.

Both log and ln are used to denote the natural logarithm. Logarithms
to the base 2 are denoted by log2. For most of the theoretical analysis,
we will find it convenient to use natural logarithms. Therefore, rate is
measured in nats, unless otherwise specified. Throughout, we use n for
the block length of the code.

For random vectors X,Y defined on the same probability space, we
write X d= Y to indicate that X and Y have the same distribution.

1.1 The Sparse Regression Codebook

As shown in Fig. 1.1, a SPARC is defined in terms of a ‘dictionary’ or
design matrix A of dimension n×ML, whose entries are chosen i.i.d.
∼ N (0, 1

n). Here n is the block length, and M,L are integers whose
values are specified below in terms of n and the rate R. We think of the
matrix A as being composed of L sections with M columns each. The
variance of the entries ensures that the lengths of the columns of A are
close to 1 for large n. 1

1In some papers, the entries of A are assumed to be ∼i.i.d N (0, 1). For consistency,
throughout this monograph we will assume that the entries are ∼i.i.d. N (0, 1/n).
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1.1. The Sparse Regression Codebook 5

Each codeword is a linear combination of L columns, with exactly
one column chosen per section. Formally, a codeword can be expressed
as Aβ, where β = (β1, . . . , βML)∗ is a length ML message vector with
the following property: there is exactly one non-zero βj for 1 ≤ j ≤M ,
one non-zero βj for M + 1 ≤ j ≤ 2M , and so forth. We denote the set
of valid message vectors by BM,L. Since each of the L sections contains
M columns, the size of this set is

|BM,L| = ML. (1.1)

The non-zero value of β in section ` ∈ [L] is set to c`, where the
coefficients {c`} are specified a priori. Since the entries of A are i.i.d.
N (0, 1

n), the entries of the codeword Aβ are i.i.d. N (0, 1
n

∑L
`=1 c

2
`). In

the case of AWGN channel coding, the variance 1
n

∑L
`=1 c

2
` is equal to

the average symbol power.
Rate: Since each of the L sections contains M columns, the total

number of codewords is ML. To obtain a rate R code, we need

ML = enR or L logM = nR. (1.2)

There are several choices for the pair (M,L) which satisfy (1.2). For
example, L = 1 and M = enR recovers the Shannon-style random
codebook in which the number of columns in A is enR. For most of our
constructions, we will often choose M equal to La, for some constant
a > 0. In this case, (1.2) becomes

aL logL = nR. (1.3)

Thus L = Θ( n
logn), and the size of the design matrix A (given by n×

ML = n×La+1) grows polynomially in n. In our numerical simulations,
typical values for L are 512 or 1024.

We note that the SPARC is a non-linear code with pairwise de-
pendent codewords. Indeed, two codewords Aβ and Aβ′ are dependent
whenever the underlying message vectors β, β′ share one or more com-
mon non-zero entries.

Subset superposition coding The SPARC described above has a par-
titioned structure, i.e., the message vector contains exactly one non-zero

Full text available at: http://dx.doi.org/10.1561/0100000092



6 Introduction

in each of the L sections, with each section having M entries. One
could also define a non-partitioned SPARC, where a message can be
indexed by any subset of L entries of the length-ML vector β. The
number of codewords in this case would be

(ML
L

)
, compared to ML

for the partitioned case. For a given pair (M,L), the non-partitioned
SPARC has a larger number of codewords. However, using Stirling’s
formula we find that

log
(ML
L

)
logML

= 1 +O

( 1
logM

)
.

Hence the ratio of the rates tends to 1 as M grows large. Though subset
based (non-partitioned) superposition codes have a small rate advantage
for finite M , we focus on the partitioned structure in this monograph
as it facilitates the design and analysis of efficient coding algorithms.

1.2 Organization of the monograph

In Part I, we focus on communication over the AWGN channel. The per-
formance of SPARCs with optimal (least-squares) decoding is analyzed
in Chapter 2. Though optimal decoding is infeasible, its performance
provides a benchmark for the computationally efficient decoders de-
scribed in the next chapter. It is shown that SPARCs with optimal
encoding achieve the AWGN capacity with an error exponent of the
same order as Shannon’s random coding ensemble. Similar results are
also obtained for SPARCs defined via Bernoulli dictionaries rather than
Gaussian ones.

In Chapter 3, we describe three efficient iterative decoders. These
decoders generate an updated estimate of the message vector in each
iteration based on a test statistic. The first decoder makes hard decisions,
decoding a few sections of the message vector β in each iteration.
The other two decoders are based on soft-decisions, and generate new
estimates of the whole message vector in each iteration. All three efficient
decoders are asymptotically capacity-achieving, but the soft-decision
decoders have better finite length error performance.

In Chapter 4, we turn our attention to techniques for improving
the decoding performance at moderate block lengths. We observe that

Full text available at: http://dx.doi.org/10.1561/0100000092



1.2. Organization of the monograph 7

Figure 1.2: Average bit error rate (left) and codeword error rate (right) vs.
rate for SPARC over an AWGN channel with snr = 15, C = 2 bits. The SPARC
parameters are M = 512, L = 1024, n ∈ [5100, 7700]. Curves are shown for for
power allocated SPARC (Chapter 4) and spatially coupled SPARC (Chapter
5). The different ways of measuring error rate performance in a SPARC are
discussed in Chapter 2 (p.12). The SPARC is decoded using the Approximate
Message Passing (AMP) algorithm described in Chapters 3 and 5.

the power allocation (choice of the non-zero coefficients {c`}) has a
crucial effect on the finite length error performance. We describe an
algorithm to determine a good power allocation, provide guidelines
on choosing the parameters of the design matrix, and compare the
empirical performance with coded modulation using LDPC codes from
the WiMAX standard. In Chapter 5, we discuss spatially coupled
SPARCs, which consist of several smaller SPARCs chained together in
a band-diagonal structure. An attractive feature of spatially coupled
SPARCs is that they are asymptotically capacity-achieving and have
good finite length performance without requiring a tailored power
allocation. Figure 1.2 shows the finite length error rate performance of
power allocated SPARCs and spatially coupled SPARCs over an AWGN
channel. The figure is discussed in detail in Sec. 5.4.

In Part II of the monograph, we use SPARCs for lossy compres-
sion with the squared error distortion criterion. In Chapter 6, we ana-
lyze compression with optimal (least-squares) encoding, and show that
SPARCs attain the optimal rate-distortion function and the optimal
excess-distortion exponent for i.i.d. Gaussian sources. We then describe
an efficient successive cancellation encoder in Chapter 7, and show

Full text available at: http://dx.doi.org/10.1561/0100000092



8 Introduction

that it achieves the optimal Gaussian rate-distortion function, with
the probability of excess distortion decaying exponentially in the block
length.

In Part III, we design rate optimal coding schemes using SPARCs
for a few canonical models in multiuser information theory. In Chapter 8,
we show how SPARCs designed for point-to-point AWGN channels can
be combined to construct rate-optimal superposition coding schemes
for the AWGN broadcast and multiple-access channels. In Chapter 9,
we show how to implement random binning using SPARCs. Using this,
we can nest the channel coding and source coding SPARCs constructed
in Parts I and II to construct rate-optimal schemes for a variety of
problems in multiuser information theory. We conclude in Chapter 10
with a discussion of open problems and directions for future work.

Proofs or proof sketches for the main results in a chapter are given
at the end of the chapter. The proofs of some intermediate lemmas are
omitted, with pointers to the relevant references. The goal is to describe
the key technical ideas in the proofs, while not impeding the flow within
the chapter.
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