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Probabilistic Amplitude Shaping
Georg Böcherer

Huawei Technologies, Germany; georg.boecherer@ieee.org

ABSTRACT
Probabilistic amplitude shaping (PAS) proposed in Böcherer,
Steiner, Schulte [24] is a practical architecture for combin-
ing non-uniform distributions on higher-order constellations
with off-the-shelf forward error correction (FEC) codes. PAS
consists of a distribution matcher (DM) that imposes a de-
sired distribution on the signal point amplitudes, followed
by systematic FEC encoding, preserving the amplitude dis-
tribution. FEC encoding generates additional parity bits,
which select the signs of the signal points. At the receiver,
FEC decoding is followed by an inverse DM. PAS quickly
had a large industrial impact, in particular in fiber-optic
communications. This monograph details the practical con-
siderations that led to the invention of PAS and provides an
information-theoretic assessment of the PAS architecture.
Because of the separation into a shaping layer and an FEC
layer, the theoretic analysis of PAS requires new tools. On
the shaping layer, the cost penalty and rate loss of finite
length DMs is analyzed. On the FEC layer, achievable FEC
rates are derived. Using mismatched decoding, achievable
rates are studied for decoding metrics of practical impor-
tance. Combining the findings, it is shown that PAS with
linear codes is capacity-achieving on a class of discrete input
channels. Open questions for future study are discussed.

Georg Böcherer (2023), “Probabilistic Amplitude Shaping”, Foundations and Trends®

in Communications and Information Theory: Vol. 20, No. 4, pp 390–511. DOI:
10.1561/0100000111.
©2023 G. Böcherer
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Preface

Almost 10 years ago, we simulated for the first time a communica-
tion system architecture that we later called Probabilistic Amplitude
Shaping1, the title of this monograph.

How to use this monograph All readers should read Section 1: it
discusses the line of thoughts that led to the invention of PAS, outlines
this monograph, and provides pointers to the literature.

The theorist may then read the discussion sections provided at the
ends of Sections 2–5. The discussion sections summarize the sections,
provide pointers to the literature, and outline open problems for future
study. Also of interest to the theorist may be some of the proof tech-
niques. For instance, the study of cost and rate scaling of distribution
matchers2 in Section 2.6, the layered probabilistic shaping (PS) random
code ensemble in Section 3.1, the “any channel” achievable forward
error correction (FEC) rate in Theorem 3.2, and the derivation of the
PAS error exponent in Section 5.

The practitioner may implement the formulas provided throughout
the monograph for numerical evaluation as guidance for designing PAS
systems for industrial application. He/she may consult the PAS webpage
(see below) to check for available implementations and may also consider
contributing his/her implementations. For instance, one may use the

1We introduced the name Probabilistic Amplitude Shaping (PAS) in [24].
2We introduced the term Distribution Matching (DM) in [22].

2
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Preface 3

formulas from Section 2 for choosing a DM class and dimensioning DM
input and output lengths for trading rate and cost against latency and
complexity. Also, the practitioner may implement the cross-equivocation
formulas from Section 4 to compare the performance limits of binary and
nonbinary codes, to choose between hard-decision and soft-decision, or
to select the resolution for quantized soft-decision decoding. Similarily,
one may implement the PAS achievable rate formulas from Section 5 for
assessing the performance penalty caused by a constrained FEC rate,
or for plotting PAS rate limits for finite length at a required reliability.
Also of practical interest are the PAS system parameters FEC overhead,
shaping set rate, and PS overhead as discussed in Sections 3.3 and 4.1.

For the lecturer, the cross-equivocation formalism from Section 4
may be of interest. Besides the basic decoding metrics discussed in
this monograph, one can easily come up with many more variations,
which according to my own teaching experience provide a rich source
for homework and exam questions.

The machine learning engineer may find interest in the cross-
equivocation formalism from Section 4. The underlying empirical cross-
equivocation defined in Section 3 is identical to the cross-entropy loss
frequently used in machine learning. Thus, the discussion in this mono-
graph may provide the machine learning engineer with an interesting
communication system perspective on the cross-entropy loss.

Webpage One shortcoming of this monograph is an insufficient num-
ber of plots with numerical evaluations for illustrating the developed
concepts. I just did not have the time to add all the illustrations I
would like to have. I have therefore set up a webpage3 to accompany
this monograph, for the following purposes:

• To host implementations of formulas and algorithms provided by
the community.

• To share numerical plots of performance evaluations provided by
the community.

• To publish the errata of this monograph.

3https://github.com/gbsha/PAS
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4 Preface

I hope this provides an effective alternative to providing numerical
evaluations in the monograph.

Acknowledgments Prof. Valdemar da Rocha and Prof. Cecilio Pi-
mentel suggested to me as a master thesis topic the study of the discrete
noiseless channel at their chair at the Federal University of Pernam-
buco. This triggered my interest in constrained coding and led to my
study of variable length DM algorithms during my PhD at Prof. Rudolf
Mathar’s chair at the RWTH Aachen University. The work of Prof.
David MacKay and his students (in particular the MacKay-Neal codes4

and the sparse-dense codes5) inspired me to combine DM and FEC. Prof.
Alex Alvarado brought my interest to the study of bit-interleaved coded
modulation. Coded modulation in general was brought to my attention
by Gottfried Ungerboeck when I served as his teaching assistant during
the first months of my postdoc at Prof. Gerhard Kramer’s chair at the
Technical University of Munich.

The invention of PAS resulted in an exciting time with great people.
Some memories are: Studying variable length DMs with Rana Ali Amjad
and Sebastian Baur; Prof. Stephan ten Brink looking at an early PAS
diagram and understanding it faster than anyone else before or after; a
discussion with Irina Bocharova and Boris Kudryashov that led to the
development of constant composition distribution matching (CCDM)
by Patrick Schulte; the first implementation of PAS for a simulated
optical transmission with Tobias Fehenberger; Gianluigi Liva asking
whether one could change the DM distribution to adjust the PAS
rate; the first PAS optical transmission experiment with Fred Buchali
and Prof. Laurent Schmalen; the Bell Labs Prize 2015 together with
Fabian Steiner and Patrick Schulte; Prof. Richard Wesel suggesting to
change “rate-compatible” for “rate-matched” in the title of the PAS
paper; working with Bernhard Geiger on quantization for distribution
synthesis; Tobias Prinz developing polar coded PAS; the suggestion of
Prof. Frans Willems to use sequences up to a maximum cost for DM,
which led to the development of minimum cost distribution matching

4MacKay [54, Section VI].
5Ratzer [61, Chapter 5].
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1
Probabilistic Amplitude Shaping

In this section, we discuss the line of thoughts that led to the invention
of probabilistic amplitude shaping (PAS). The key ingredients are three
tools that have been available to the communications engineer already for
some time. These three tools are: first, the additive white Gaussian noise
(AWGN) capacity formula [71], second, powerful capacity-approaching
binary low-density parity-check (LDPC) codes [37] and the possibility to
simulate them on a personal computer [54], and third, the bit-interleaved
coded modulation (BICM) architecture [27]. We briefly discuss the
capacity formula in Section 1.1.1, binary forward error correction (FEC)
in Section 1.1.2, word error rates (WERs) and bit error rates (BERs)
in Section 1.1.3 and BICM in Section 1.2. With these tools at hand, the
thought process that leads to PAS is rather of practical than theoretic
nature. The steps consist in successive modifications of a practical
system for simulating WERs of a binary FEC in AWGN. We discuss
these modifications in Section 1.3. The PAS architecture raises several
design questions, which we list in Section 1.4 and address in greater
detail in the following sections of this monograph.

6
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1.1. Preliminaries 7

1.1 Preliminaries

1.1.1 AWGN Capacity

The real-valued discrete time AWGN channel is

Yi = Xi + Zi, i = 1, 2, . . . , n (1.1)

where the Yi, Xi, and Zi are outputs, inputs, and noise, respectively.
Inputs and noise are independent and the Zi are independent zero mean
Gaussian with variance σ2, i.e.,

pZi(z) = 1√
2πσ2

e− z2
2σ2 . (1.2)

The input is subject to an average power constraint

1
n

n∑
i=1

E(X2
i ) ≤ P. (1.3)

The capacity of the AWGN channel is

max
PX : E(X2)≤P

I(X; Y ) = 1
2 log2

(
1 + P

σ2

)
(1.4)

where I(X; Y ) denotes the mutual information of X and Y , see (A.3.5).
The ratio P/σ2 is called the signal-to-noise ratio (SNR). The capacity-
achieving density of the AWGN is zero mean Gaussian with variance P.

1.1.2 Binary Linear FEC

Parity Check Matrix To protect a block c = c1 . . . cn of n bits against
errors, a linear FEC code imposes mfec linear constraints on c. Each
constraint requires that a certain subset of the n bits in c add to an
even number, i.e., zeros in the binary field. The constraints are therefore
called parity checks. The ith parity check is compactly written as a
length n row vector hi = hi1 . . . hin and the vector c must fulfill chT

i = 0.
Arranging mfec parity checks in a matrix results in the parity check
matrix H with transpose

HT =
[
hT

1 hT
2 · · · hT

mfec

]
(1.5)

Full text available at: http://dx.doi.org/10.1561/0100000111



8 Probabilistic Amplitude Shaping

and c is a codeword if and only if it fulfills all mfec parity checks, i.e.,

cHT = 0. (1.6)

This defines the linear FEC code

C :=
{

c ∈ {0, 1}n : cHT = 0
}

. (1.7)

Systematic Encoding It is convenient for the last mfec columns of H

to be linearly independent, which can always be achieved, when H is
full rank, by suitable rearrangement of columns. Then, the matrix is of
the form

H = [Q|R] (1.8)

where the mfec ×mfec matrix R is full rank and invertible. Systematic
encoding of k bits u can now be done in two steps.

1. Calculate s = uQT.

2. Solve pRT = s⇒ p = s(RT)−1.

The vector c = [u|p] is then a codeword, i.e., it fulfills cHT = 0. A
convenient way to represent systematic encoding is via a systematic
generator matrix

G = [I|P ] (1.9)

where I is a k × k identity matrix and P = QT(RT)−1. We can now
compactly write systematic encoding by the multiplication of u with
G, i.e.,

uG = [u|p] = c. (1.10)

Since p = uP , we call P the parity forming part of G.

1.1.3 Word- and Bit Error Rate

The performance of FEC codes are usually characterized either by their
WER or by their BER. While information theorists mainly use WER,
e.g., for channel capacity, communications engineers mainly use BER.

Full text available at: http://dx.doi.org/10.1561/0100000111



1.1. Preliminaries 9

In the remainder of this section, we consider WER, for the sake of
simplicity. The obtained insights hold similarly for BER. We next define
WER and BER formally and relate them to each other.

Consider a binary code with codeword length n. Suppose #{W}
codewords were transmitted and after decoding, #{WE} word errors
occured. The WER is then

WER = #{WE}
#{W} . (1.11)

The number of transmitted bits is #{B} = n ·#{W}. In each erroneous
codeword, the number of erroneous bits is at least one and at most n.
Thus, the number of bit errors is bounded as

#{WE} ≤ #{BE} ≤ n ·#{WE}. (1.12)

The BER is

BER = #{BE}
#{B} (1.13)

and bounded by

1
n

WER ≤ BER ≤WER. (1.14)

In particular, the BER is upper bounded by the WER, so if we design
a communication link with low WER, we can guarantee that it has a
low BER, too.

Another way to relate the two error rates is to consider error expo-
nents. Suppose we have a family of FEC codes where we can choose the
codeword length n as large as we want. Denote the corresponding error
rates by WER(n) and BER(n). Then, the word and bit error exponents
are respectively

EW = lim
n→∞

− log WER(n)
n

(1.15)

EB = lim
n→∞

− log BER(n)
n

. (1.16)

Full text available at: http://dx.doi.org/10.1561/0100000111



10 Probabilistic Amplitude Shaping

By (1.14), EB is lower bounded by EW and to bound EB from above,
consider

− log BER(n)
n

≤ −
log

(
1
nWER(n)

)
n

(1.17)

= − log WER(n)
n

+ log n

n
(1.18)

n→∞−−−→ − log WER(n)
n

(1.19)

which implies that EB is also upper bounded by EW . Consequently, the
bit error exponent is equal to the word error exponent.

1.2 Bit-Interleaved Coded Modulation

1.2.1 BPSK in AWGN

Full System
Systematic
Encoder

Mapper
AWGN
Channel

Demapper Decoder
bk bkpn−k

xn yn `n b̂kp̂n−k

This diagram lays out a coded transmission over the AWGN channel
using a binary FEC code with a soft decision (SD) decoder. Let’s go
through the components from left to right.

Information bits bk are encoded by a systematic encoder, which
appends parity bits pn−k. Together, information and parity bits form
the codeword cn. The coded bits are then mapped to binary phase shift
keying (BPSK) symbols by the binary mapping

0 7→ x(0) = −1 (1.20)
1 7→ x(1) = 1. (1.21)

The BPSK symbols are transmitted over the channel and the channel
output is

yi = xi + zi, i = 1, . . . , n (1.22)

where the zi are independent zero mean Gaussians with variance σ2.
The demapper calculates the soft-decisions

ℓi = log
pY |B(yi|0)
pY |B(yi|1) = log

pY |X(yi| − 1)
pY |X(yi|+ 1) , i = 1, . . . , n (1.23)

Full text available at: http://dx.doi.org/10.1561/0100000111



1.2. Bit-Interleaved Coded Modulation 11

and the decoder outputs its decision ĉn = b̂kp̂n−k. For our discussion in
this section, three ways to calculate the decision ĉn from the soft-decision
ℓn (or equivalently, from the likelihoods pY |B(yi|0) and pY |B(yi|1)) are
relevant.

1. To assess performance limits, we consider the mutual information
I(B; Y ) for uniformly distributed input bits. The achievability of
mutual information is proven, e.g., in [39, Chapter 5], by consid-
ering a random code ensemble and the maximum-likelihood (ML)
decision rule

ĉn = arg max
cn∈C

n∑
i=1

ℓi(1− 2ci) (1.24)

which minimizes the WER. We discuss decision rules and achiev-
able rates for non-uniformly distributed input in detail in Sec-
tions 3, 4, and 5.

2. A bitwise maximum a posteriori probability (MAP) decoder, see,
e.g., [62, Section 2.5.1], uses the decision rule

ĉi = arg max
b∈{0,1}

PBi|Y n(b|yn) (1.25)

= arg max
b∈{0,1}

∑
cn∈C
ci=b

PBn|Y n(cn|yn) (1.26)

= arg max
b∈{0,1}

∑
cn∈C
ci=b

n∏
j=1

pY |B(yj |cj). (1.27)

3. A practical LDPC decoder approximates the bitwise MAP rule
by message passing on a graph with cycles. All simulation results
presented in this section were obtained by using the DVB-S2 rate
4/5 LDPC code with parameters specifed in Table 1.1.

We evaluate the peformance by estimating the WER

WER = Pr(Ĉn ̸= Cn) (1.28)

by Monte Carlo simulation. We display the WER curve in Figure 1.1,
and we show the operating point at WER = 1 × 10−3 in Figure 1.2.

Full text available at: http://dx.doi.org/10.1561/0100000111



12 Probabilistic Amplitude Shaping

Table 1.1: Parameters of the DVB-S2 LDPC code.

Rfec 4/5
n 64 800
k 51 840

mfec 12 960
decoding algorithm belief propagation

number of iterations 50

We note that the operating point is ≈ 0.6 dB away from the BPSK
limit I(B; Y ) and ≈ 1.6 dB away from capacity. Later in this section,
we will use the 0.6 dB gap to the BPSK limit as a rough estimate of
the FEC penalty of the considered code.

All Zero Codeword

AWGN Channel Demapper Decoder
−1n yn

ℓn ĉn

If we are only interested in evaluating the WER and don’t need a
fully functioning system, we can simplify our setup. For BPSK in
AWGN, the two input symbols −1 and +1 are affected equally by noise.
Therefore, since the FEC code is linear, the WER does not depend
on the transmitted codeword. All linear codes have the all-zero vector
as codeword, so that we can remove the encoder and the mapper and
transmit the −1n vector. The WER is then

Pr(Ĉn ̸= 0n) (1.29)

which we can estimate by Monte Carlo simulation. As expected, in
Figures 1.1 and 1.2, the all-zero codeword WER is on top of the full
system WER. The all-zero codeword system has several advantages.

1. We need to write less code for implementing it.

2. The simulation runs faster since unnecessary calculations are
skipped.

3. We can evaluate FEC codes for which we have a decoder but no
encoder.

Full text available at: http://dx.doi.org/10.1561/0100000111



1.2. Bit-Interleaved Coded Modulation 13
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Figure 1.1: WER of BPSK.
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Figure 1.2: WER = 1 × 10−3 operating point of BPSK.
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14 Probabilistic Amplitude Shaping

Scrambled All-Zero Codeword

PX AWGN Channel Demapper × Decoder

binary label (−1)(·)

xn yn ℓn ĉn

bn

Instead of transmitting always −1, we can also sample the BPSK
symbols independently with distribution PX(−1) = PX(1) = 1

2 . The
binary label bn of the random sequence xn is unlikely to be a codeword.
Therefore, we interpret bn as a scrambling sequence that was applied to
the all-zero codeword. Accordingly, we must descramble the demapper
output ℓn before we pass it to the decoder. The WER is now again

Pr(Ĉn ̸= 0n) (1.30)

and we estimate it by Monte Carlo simulation. As expected, in Figures
1.1 and 1.2, the scrambled all-zero codeword WER is on top of the full
system WER.

1.2.2 Bit-Interleaved Coded Modulation

As we can see in Figure 1.2, for sufficiently high SNR, the BPSK limit
flattens out and the gap to capacity becomes arbitrarily large. We
therefore need to use constellations larger than BPSK, which is called
higher-order modulation. BICM [27] provides the appropriate framework
for combining higher-order modulation with binary FEC. For specifying
a BICM system, we first need some definitions.

Amplitude Shift Keying We use amplitude shift keying (ASK) con-
stellations with M symbols

X = {±1,±3, . . . ,±(M − 1)} (1.31)

where M = 2m for some integer m. Note that M = 2 recovers BPSK.

Bitwise Demapping We associate with each symbol x ∈ X a binary
label bm = ϕ(x) ∈ {0, 1}m. The jth bit level is bj = ϕj(x). Define the
symbol sets

X j
b = {x ∈ X : ϕj(x) = b}, j = 1, . . . , m, b ∈ {0, 1}. (1.32)
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1.2. Bit-Interleaved Coded Modulation 15

Table 1.2: The BRGC for 8-ASK.

symbol x label ϕ(x)

−7 000
−5 001
−3 011
−1 010

1 110
3 111
5 101
7 100

For each bit level j, the constellation X is partitioned into X j
0 with

symbols where bit level j is 0, and X j
1 where bit level j is 1. The

demapper calculates

ℓji = log
PY |Bj

(yi|0)
PY |Bj

(yi|1) = log
∑

x∈X j
0

pY |X(yi|x)∑
x∈X j

1
pY |X(yi|x)

j = 1, . . . , m, i = 1, . . . , n/m. (1.33)

The ℓji are reindexed to a length n vector ℓn and passed to the LDPC
decoder, which outputs the decision ĉn. The internal processing of the
LDPC decoder only depends on ℓn and not on whether ℓn was calculated
for BPSK with one bit level or BICM with more than one bit level.

Gray Code BICM works best when the binary label ϕ is a Gray code,
i.e., when any pair of neighboring symbols in X have labels that differ
in only 1 bit level. For M = 8, a Gray code is listed in Table 1.2,
specifically, a binary reflected Gray code (BRGC). We note that for bit
level 1, we have one decision boundary, as all negative symbols have
b1 = 0 and all positive symbol have b1 = 1. On the other hand, bit
level 3 has three decision boundaries. This indicates that bit level 3 is
affected more by noise than bit level 1.

Interleaver As the different bit levels have different reliability, their
distribution over the codeword may affect performance. In BICM, an
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16 Probabilistic Amplitude Shaping

interleaver takes care of how bit levels map to coded bits. Here, we simply
use a bit interleaver π that we sample randomly once and then leave it
fixed. We discuss interleaver design in more detail in Section 1.4.3.

BICM System with Scrambled All-Zero Codeword

PX
AWGN
Channel

Demapper × π Decoder

binary
label

(−1)(·)

xn/m yn/m ℓn ĉn

bn

This diagram shows a system for simulating the WER of BICM. We
note that compared to the scrambled all-zero codeword BPSK system,
not much has changed. The only differences are

• The demapper function (1.33) for calculating ℓn, which is more
complex than before.

• The interleaver π, which distributes the different bit levels uni-
formly over the codeword.

• The source PX , which now samples the xi uniformly from a 2m-
ASK constellation.

• The length of the channel input sequence, which is reduced from
n to n/m, as each symbol is labelled by m bits.

Note that for m = 1 bit levels, we recover the BPSK system we con-
sidered before. Note that the WER is always given by (1.28), inde-
pendent of the number of bit levels. We show the operating point for
WER = 1× 10−3 in Figure 1.3 and we also plot the BICM limit

m∑
i=1

I(Bi; Y ). (1.34)

We provide a derivation of (1.34) in Section 4.4.2. We observe that
the gap to the BICM achievable rate is ≈ 0.6 dB, similar to the FEC
penalty we observed for BPSK. However, the BICM achievable rate
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Figure 1.3: WER = 1 × 10−3 operating point of 8-ASK BICM.

itself has a gap of 1.2 dB to capacity. The achievable rate gap is pretty
constant over the range of considered SNR values. Thus, it is unlikely
to overcome this gap by using a larger constellation. Two alternative
options for reducing the gap of the operating point to capacity are as
follows.

1. Reduce the FEC penalty.

2. Use a non-uniform symbol distribution.

Because it is much simpler, let’s focus on the second option.

1.3 Probabilistic Amplitude Shaping

Taking again a look at the BICM diagram, we note that we can change
the probability distribution PX and evaluate the WER, without affecting
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8 9 10 11 12 13 14 15 16
10−3
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SNR [dB]

W
E
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H(X) [bits] 2.0 2.2 2.4 2.6 2.8 3.0
PX aware

PX agnostic

Figure 1.4: WER using demapper (1.33), agnostic of PX , and demapper (1.36),
aware of PX .
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1.3. Probabilistic Amplitude Shaping 19

any other part of the system. As the Gaussian density is capacity-
achieving for AWGN, we choose a sampled Gaussian density, i.e.,

PX(x) = e−νx2∑
a∈X e−νa2 , x ∈ X . (1.35)

Following [51, Section IV.], we call (1.35) a Maxwell-Boltzmann (MB)
distribution. The parameter ν ≥ 0 controls the shaping degree. For
ν = 0, PX is uniform, and for ν →∞, the probability mass concentrates
on the two innermost points −1 and +1. We quantify the shaping degree
by the entropy H(X) in bits. We now evaluate the WER curves for
H(X) = 2.0, 2.1, . . . , 3.0 bits.

1.3.1 WER

We observe in Figure 1.4 (solid lines) that by lowering H(X), the SNR
required for achieving WER = 1× 10−3 is also lowered, using the same
FEC code and decoder. The reason is that if we fix the noise variance
and we decrease the entropy H(X), we also decrease the transmit power
and thereby the SNR, while the distance between neighboring signal
points remains unchanged. Equivalently, at the same SNR, lower entropy
translates into larger distance.

We note that the demapper (1.33) is not aware of the input distri-
bution PX . To make the prior PX available to the decoder, we modify
the demapper to

ℓji = log
∑

x∈X j
0

PX(x)pY |X(yi|x)∑
x∈X j

1
PX(x)pY |X(yi|x)

j = 1, . . . , m, i = 1, . . . , n/m. (1.36)

We display the resulting WER curves in Figure 1.4 (dashed lines). We
note that the WER curves are shifted to the left and the SNR required
for WER = 1× 10−3 is lowered further by up to 0.6 dB.

1.3.2 Spectral Efficiency

We now would like to display the WER = 1 × 10−3 operating point
in the SNR versus spectral efficiency (SE) plot to evaluate the gap to
capacity. However,
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20 Probabilistic Amplitude Shaping

For H(X) < m, what is the SE?

Note that as the FEC code is unchanged, the decoder still decodes
against a code of rate Rfec, which corresponds to Rfecm bits per symbol.
For the unshaped case, the SE is mRfec, which we can rewrite as

SE = m−m(1−Rfec). (1.37)

Here, m is the SE of an uncoded system, and m(1−Rfec) is the FEC
redundancy. For the shaped case, the uncoded SE is H(X) and in
analogy to (1.37), we may guess the coded SE is

SE ?= H(X)−m(1−Rfec). (1.38)

If entropy is very small, the right-hand side may become negative, which
is not a meaningful value, so we modify our guess to

SE = [H(X)−m(1−Rfec)]+ . (1.39)

In Figure 1.5 we plot required SNR versus SE assuming the correctness
of (1.39). We note that below 14 dB of SNR, the curve is almost within
the FEC penalty of capacity! This is an exciting observation!

1.3.3 Probabilistic Amplitude Shaping

We have to address two urgent questions:

1. How can we verify the spectral efficiency claim (1.39)?

2. How can we encode?

First, we observe that in our system, the decoder effectively decodes the
binary labels of shaped symbols. Thus, we need to place the encoder
between the shaped source and the channel. Using a systematic encoder,
at least the information part is left unchanged by the encoder, so we
may draw the following preliminary diagram.
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Figure 1.5: WER = 1 × 10−3 operating points. The PX agnostic demapper uses
(1.33) to calculate bitwise soft-decisions, while the PX aware demapper uses (1.36).
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PX

binary label
Systematic
Encoder

/

n
m symbols

/
n bits

/
k bits

bk

/ k bitsbk

pn−k

The information bits bk are left unchanged by systematic encoding and
no further processing is required. We indicate this by the terminated
encoder output in the diagram. In contrast, the parity bits pn−k are
newly generated by the encoder and do require further processing. This
diagram has 2 issues. First, the encoder gets n bits at its input, while
it only accepts k bits. Second, we must modulate the n− k parity bits
onto the transmitted signal somehow. The key observation is now that
we cannot impose any specific distribution onto the parity bits. Looking
at the Gray label in Table 1.2, we note that bit level 1 decides on the
sign, and consequently, the transmitted power and thereby the received
SNR does not depend on the distribution of bit level 1. A quick fix for
the two issues is therefore as follows:

1. Mark n− k sign bit positions.

2. Puncture these marked positions before the encoder, reducing the
number of bits from n to k, as required.

3. Modify the n − k signs corresponding to the marked positions
according to the parity bits pn−k output by the systematic encoder.

PX
modify

n− k signs

binary label
puncture

n− k sign bits
Systematic
Encoder

/

n
m symbols

/

n
m symbols

/
n bits

/
k bits

bk

/ k bitsbk

pn−k
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1.4. PAS Components 23

We are now in a position to calculate the SE. Note that for ASK
constellations (1.31) the MB distribution PX (1.35) can be factorized
into amplitude A and sign S via

PX(x) = PA(|x|)PS(sign(x)) (1.40)

= PA(|x|)1
2 . (1.41)

In terms of entropy, this corresponds to

H(X) = H(A) + H(S) = H(A) + 1. (1.42)

The total amount of information per codeword is thus
n

m
H(A) +

(
n

m
− (n− k)

)
H(S) = n

m

[
H(X)− (n− k)m

n

]
(1.43)

= n

m

[
H(X)−m(1−Rfec)

]
(1.44)

which confirms the SE we postulated in (1.39). Note that on the right-
hand side of (1.43), only the information bit carrying signs are counted,
not the signs carrying parity bits. Thus, this SE calculation does not
assume any specific distribution of the parity bits.

Having confirmed the SE, the complete PAS architecture is only a
few steps away. We need to:

1. Separate the source into n/m amplitudes and n/m− (n−k) signs.

2. Remove the sign puncturer.

3. Replace the sign polluter by a sign multiplexer.

4. Add an interleaver.

The diagram in Figure 1.6 shows the complete PAS architecture as we
proposed it in [24].

1.4 PAS Components

At several points during the development of PAS in this section, we
made design choices based on intuition, which require further study.
In the following, we discuss some of them and if possible, we provide
pointers to the parts of this monograph, where they are discussed in
more detail.
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PA ×

binary label
ϕa(·)

MUX π Systematic
Encoder

(−1)(·) MUX

binary label
ϕs(·)

PS

/

n/m amplitudes

/
(m−1)n

m bits

/
k bits

/
n− k bits

/

n− k signs

/
n
m signs

/
n
m − (n− k) bits

/

n
m − (n− k) signs

/

n
m symbols

/ k bits

Figure 1.6: The PAS architecture as proposed in [24].

1.4.1 Distribution Matcher

A key ingredients of PAS is the amplitude source PA, which generates
amplitudes according to a desired distribution. To quantify the SE
of PAS, we postulated the information content of this source to be
H(A) bits per amplitude. In a practical system, we need to replace the
amplitude source PA by a distribution matcher (DM), which maps k

uniformly distributed input bits to n amplitudes with distribution PA.
In Section 2, we study DMs in detail. The key result of Section 2 is
that optimal DMs have an inherent rate loss H(A)− k/n that scales as
log n

n and a cost penalty (e.g., increased average power) that also scales
as log n

n . On the downside, this requires the use of DMs that process
sufficiently many amplitudes jointly. On the positive side, the rate H(A)
can indeed be achieved, by a sufficiently long DM.

Remark 1.1. Because of the inherent rate loss, DMs operate at a rate
that is below the entropy of the generated amplitude distribution PA.
This implies that a source decoder for a discrete memoryless source
(DMS) PA cannot be used as a DM, as it would operate at a rate above
the entropy of PA. We revisit this observation in Sections 2.4.2 and
2.5.6.
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1.4.2 Achievable Spectral Efficiency

We postulated for PAS the SE

SE = [H(X)−m(1−Rfec)]+ (1.45)

where m = log2 |X | is the logarithmic size of the channel input alphabet
X and where [·]+ = max{·, 0}. In Section 3, we study what SEs are
achievable by a PAS-like architecture that consists of two layers, namely
the shaping layer and the FEC layer. The two layers are reflected in the
achievable SEs, namely, it decomposes into two parts. The first part is
the shaping set rate Rss, which is bounded as

mRss ≤ H(X) (1.46)

and which can achieve this bound for sufficiently large n. The second
part is the achievable FEC rate, which is given by

m(1−R∗
fec) = H(X|Y ) (1.47)

that is, for Rfec < R∗
fec and sufficiently large n, reliable communication

is possible. The two parts together provide an achievable SE.
The use of a linear code is a key aspect of PAS. In Section 5, we

derive an achievable SE for PAS using a random linear code. Again, this
achievable SE consists of two parts. The shaping layer part is basically
the rate of the employed DM (which, by Section 2, is asymptotically
optimal). The FEC part recovers (1.47).

Both for the PAS-like architecture considered in Section 3 and the
PAS architecture considered in Section 5, we find that I(X; Y ) is an
achievable SE, which shows that PAS is capacity-achieving for a certain
class of discrete input channels.

1.4.3 Interleaver Design for Practical FEC

In our derivation of PAS we used an intra-codeword “random inter-
leaver” (because we did not know better). In Section 3.4.3, we show that
under ML-like decoding, the achievable FEC rate is invariant under
intra-codeword interleaving and conclude that intra-codeword inter-
leaver design should be considered part of practical FEC code design,
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accounting for suboptimal decoding. In Section 4.4.3, we revisit the
interleaver question and derive the optimal decoding metric for the
case when the interleaver is not known to the decoder. The design of
interleavers for PAS has been considered for different families of FEC
codes.

LDPC Codes When using an already designed binary LDPC code with
higher order modulation, one may optimize the interleaver separately
as done, e.g., in [47]. This approach was used in [16, Section V.D], [6,
Section V.B], and [24, Section VIII] for optimizing the interleaver for
PAS with DVB-S2 LDPC codes. In [76], [77], the joint design of LDPC
codes and interleavers for PAS is considered.

Product Codes The PAS interleaver design for product codes based
on algebraic component codes is considered for hard-decision decoding
in [72] and for soft-decision decoding in [20].

Spatially Coupled Codes (This family of codes is known under many
different names, see, e.g., [79, Section I]). PAS is combined with spa-
tially coupled LDPC codes in [14], [15]. The PAS interleaver design for
staircase codes [75] under hard-decision decoding is considered in [73].
A similar design can be used for continuously interleaved algebraic com-
ponent codes under hard-decision decoding [64] and under soft-decision
decoding, e.g., the oFEC code [74]. Usually, the PAS interleaver design
is simpler for spatially coupled codes than for product codes.

Polar Codes The work [59] designs a PAS interleaver for polar codes, a
family of FEC codes proposed in [3], [78]. The work [48] points out that
polar codes inherently allow for probabilistic shaping. Various strategies
for polar coding with probabilistic shaping are evaluated in [63]. We
note that [63] evaluates polar coded PAS for constant composition
distribution matching (CCDM). As we detail in Section 2, minimum
cost distribution matcher (MCDM) performs significantly better than
CCDM for short output lengths, so the comparison of [48] and polar
coded PAS with MCDM is an important topic for future work.
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1.4.4 Decoding Metrics

We observed that switching the demapper from calculating log pY |B(y|0)
pY |B(y|1)

to calculating log PB|Y (0|y)
PB|Y (1|y) improved the WER of PAS. In Section 4, we

derive optimal decoding metrics for several practically relevant scenarios,
including bitwise demapping and hard-decision decoding.

1.4.5 Optimal Input Distribution

By our findings in Section 3 and Section 5, PAS can achieve

SE = I(X; Y ). (1.48)

We may therefore assume that the optimal input distribution for PAS is

PX∗ = arg max
PX

I(X; Y ). (1.49)

This, however, is only true if we can also choose the FEC rate freely. In
practical applications, however, the FEC rate is often determined by
the available FEC engine. In this case, the layered nature of the PAS
architecture as reflected by the achievable SE expression needs to be
taken into account. The optimization problem is then

maximize
PX

H(X) (1.50)

subject to H(X|Y ) ≤ m(1−Rfec). (1.51)

This is a concave objective with a convex constraint. The Lagrangian
to be maximized is

H(X)− λH(X|Y ) (1.52)

which is the sum of a concave and a convex function. For λ = 1,
fortunately, we have

H(X)−H(X|Y ) = I(X; Y ) (1.53)

which is known to be concave in PX . However, for λ > 1, this may not
be the case. Finding optimal distributions for FEC rate constrained
PAS is interesting and of practical relevance, and we leave it for future
research.
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For i = 1, . . . , n, define

ui = log(bi)
√

aiex log bi (5.88)

vi =
√

aiex log bi . (5.89)

The numerator of the second derivative is now

uuT vvT − (uvT )2 (5.90)

which is non-negative, by the Cauchy-Schwarz inequality (A.1). The
derivation above also holds if the sum over i is replaced by an integral
over some variable τ .

5.7 Discussion

In [1], achievable rates are derived for PAS assuming a random source,
in place of a DM. The work [43] analyzes PAS using typicality.

The PAS error exponent that we derived in this section has several
appealing properties, for instance, it holds for linear codes, it explicitly
uses a DM, and it provides an error bound for finite length. Somewhat
unsatisfactory is that we had to use a CCDM so that all amplitudes
have equal composition. As we have seen in Section 2, CCDM loses
significantly compared to MCDM for finite length. Thus, a finite length
analysis that allows for the use of an MCDM is interesting to study.
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Preliminaries

A.1 Mathematics

Cauchy-Schwarz Inequality

For two row vectors u, v ∈ RM , the Cauchy-Schwarz inequality is

uuT vvT − (uvT ) ≥ 0 (A.1)

with equality if and only if u and v are linearly dependent.

Big O Notation

• f is bounded below by g asymptotically:

f ∈ Ω(g)⇔ lim inf
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ > 0. (A.2)

• f is bounded above by g asymptotically:

f ∈ O(g)⇔ lim inf
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ <∞. (A.3)

• f is bounded above and below by g asymptotically:

f ∈ Θ(g)⇔ f ∈ Ω(g) and f ∈ O(g). (A.4)

106
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Stirling’s Formula

By [36, Section II.9],
√

2πnn+ 1
2 e−ne

1
12n+1 < n! <

√
2πnn+ 1

2 e−ne
1

12n . (A.5)

Convexity

• A real-valued function f is convex on the interval [A, B] ⊆ R if
for each x1, x2 ∈ [A, B] and 0 ≤ λ ≤ 1, we have

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2).

• The function f is concave on [A, B] if −f is convex on [A, B].

• Let X be a random variable with support [A, B]. Jensen’s inequal-
ity states that for f convex on [A, B], we have

f [E(X)] ≤ E[f(X)]. (A.6)

For f concave on [A, B], Jensen’s inequality states that

f [E(X)] ≥ E[f(X)]. (A.7)

Sum-of-Products and Product-of-Sums

Consider m sets X1,X2, . . . ,Xm. The Cartesian product of the m sets
is the set of ordered m tuples

X1 ×X2 × · · · × Xm = {a = (a1, a2, . . . , am)|ai ∈ Xi, i = 1, 2, . . . , m}.
(A.8)

We now have the following sum-of-products as product-of-sums identity:

∑
a∈X1×···×Xm

m∏
j=1

aj =
m∏

j=1

∑
a∈Xj

a. (A.9)

Example A.1. Consider

m = 2, X1 = {b, c}, X2 = {d, e, f}.
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We have ∑
a∈X1×X2

2∏
j=1

aj = bd + be + bf + cd + ce + cf

2∏
j=1

∑
a∈Xj

= (b + c)(d + e + f) = bd + be + bf + cd + ce + cf.

Example A.2. We often encounter the case when Xj is the set of
probabilities defined by a distribution PXj on an alphabet X , i.e.,

Xj = {PXj (a)|a ∈ X}.

In particular, the sets Xj are all of the same size, i.e., |X1| = |X2| =
· · · = |Xm| = |X |. The Cartesian product of m copies of X is

Xm = X × X × · · · × X︸ ︷︷ ︸
m times

The sum-of-products as product-of-sums identity can now be written as∑
p∈X1×···Xm

m∏
j=1

pj =
∑

a∈X m

m∏
j=1

PXj (aj)

=
m∏

j=1

∑
a∈X

PXj (a).

A.2 Probability

• Probability distribution PX on discrete set X :

∀x ∈ X : Pr(X = x) = PX(x). (A.10)

• Probability density function (pdf) pX on real numbers R:

∀x ∈ R : Pr(X ≤ x) =
∫ x

−∞
pX(τ)dτ. (A.11)

• Markov’s inequality, [38, Section 1.6.1]: Let X be a non-
negative random variable, i.e., Pr(X < 0) = 0. Then for a > 0

Pr(X ≥ a) ≤ E(X)
a

. (A.12)
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• Moments: Real-valued random variable X, positive integer k.

mgfX(r) = E(erX) (A.13)
∂k

∂rk
mgfX(r)

∣∣∣∣∣
r=0

= E(Xk). (A.14)

mgfX(r) is the moment generating function (MGF) of X and
E(Xk) is the kth moment of X.

A.3 Information Theory

A.3.1 Types and Typical Sequences

Types Consider a sequence xn = x1x2 · · ·xn with entries in a finite
alphabet X . Let N(a|xn) be the number of times letter a ∈ X occurs
in xn, i.e.,

N(a|xn) =
∣∣∣{i ∈ {1, 2, . . . , n} : xi = a

}∣∣∣ , a ∈ X . (A.15)

The empirical distribution of xn is

Pxn(a) = N(a|xn)
n

, a ∈ X . (A.16)

Since every permutation of xn has the same empirical distribution, we
define na = N(a|xn) and write

PX(a) = na

n
, a ∈ X . (A.17)

Note that every probability PX(a), a ∈ X , is an integer multiple of 1/n.
The distribution PX is therefore called an n-type. The set of all length
n sequences with empirical distribution PX is called the type class of
the n-type PX and denoted by T n(PX).

A.3.2 Differential Entropy

• Differential entropy:

h(X) := E[− log2 pX(X)]. (A.18)

• Independence bound:

h(X, Y ) ≤ h(X) + h(Y ). (A.19)
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A.3.3 Entropy

Random variable X with distribution PX on finite set X .

• Entropy:

H(PX) = H(X) := E[− log2 PX(X)]. (A.20)

• Conditional Entropy, Equivocation:

H(PX|Y |PY ) = H(X|Y ) := E[− log2 PX|Y (X|Y )]. (A.21)

• Relation to differential entropy: Properties (A.19) also hold
for entropy.

• Continuity: Distributions PX , PX′ on finite set X . Suppose
∥PX − PX′∥1 = δ ≤ 1

2 . Then

|H(PX)−H(PX′)| ≤ −δ log2
δ

|X |
. (A.22)

• Cross-Entropy: PX , QX distributions on X .

X(PX∥QX) = E[− log2 QX(X)]. (A.23)

• Information inequality:

X(PX∥QX) ≥ H(PX) (A.24)

with equality if and only if QX = PX .

• Cross-Equivocation: PX|Y (·|b) distribution on X for each b ∈ Y .
Y ∼ pY .

– QX|Y (·|b) distribution on X for each b ∈ Y.

X(PX|Y ∥QX|Y |pY ) = E[− log2 QX|Y (X|Y )]. (A.25)

– q(·, ·) non-negative function on X × Y.

X(q, X, Y ) = E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
. (A.26)
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A.3.4 Informational Divergence

• Informational divergence:

D(pX∥pY ) := E
[
log2

pX(X)
pY (X)

]
(A.27)

• Information inequality:

D(pX∥pY ) ≥ 0 (A.28)

with equality if and only if pX = pY .

A.3.5 Mutual Information

• Mutual Information:

– X, Y continuous:

I(X; Y ) := D(pXY ∥pXpY ) (A.29)
= D(pY |X∥pY |pX) (A.30)
= D(pX|Y ∥pX |pY ) (A.31)
= h(Y )− h(Y |X) (A.32)
= h(X)− h(X|Y ). (A.33)

– X discrete, Y continuous:

I(X; Y ) := D(PXpY |X∥PXpY ) (A.34)
= D(PX|Y ∥PX |pY ) (A.35)
= D(pY |X∥pY |PX) (A.36)
= h(Y )− h(Y |X) (A.37)
= H(X)−H(X|Y ). (A.38)

- Other combinations of discrete/continuous accordingly.
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ASK amplitude shift keying

AWGN additive white Gaussian noise

BER bit error rate

BIACM bit-interleaver-agnostic coded modulation

BICM bit-interleaved coded modulation

BMD bit-metric decoding

BPSK binary phase shift keying

BRGC binary reflected Gray code
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BSC binary symmetric channel

CCDM constant composition distribution matching

DM distribution matcher

DMS discrete memoryless source

FEC forward error correction

GHC geometric Huffman coding

GMI generalized mutual information

IACM interleaver-agnostic coded modulation

ID informational divergence

iid independent and identically-distributed

ILD invertible low-divergence

LDPC low-density parity-check

LUT lookup table

MAP maximum a posteriori probability
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MB Maxwell-Boltzmann

MCDM minimum cost distribution matcher

MGF moment generating function

ML maximum-likelihood

PAS probabilistic amplitude shaping

PS probabilistic shaping

QAM quadrature amplitude modulation

SD soft decision

SE spectral efficiency

SNR signal-to-noise ratio

VD variational distance

WER word error rate
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