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ABSTRACT

Over the last 70 years, information theory and coding has en-
abled communication technologies that have had an astound-
ing impact on our lives. This is possible due to the match
between encoding/decoding strategies and corresponding
channel models. Traditional studies of channels have taken
one of two extremes: Shannon-theoretic models are inher-
ently average-case in which channel noise is governed by
a memoryless stochastic process, whereas coding-theoretic
(referred to as “Hamming”) models take a worst-case, adver-
sarial, view of the noise. However, for several existing and
emerging communication systems the Shannon/average-case
view may be too optimistic, whereas the Hamming/worst-
case view may be too pessimistic. This monograph takes up
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the challenge of studying adversarial channel models that
lie between the Shannon and Hamming extremes.
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Preface

The arbitrarily varying channel (AVC) has often been considered an
esoteric subject in information theory: a Shannon-theoretic take on
worst-case communication that sometimes coincides with the notorious
zero-error capacity problem. We think of the AVC and its many variants
as capturing a class of models which are “between Shannon and Ham-
ming” or between average-case and worst-case. We came to work on
this topic via different routes but are motivated by a common question:
what causes the gap between average-case and worst-case performance?
It turns out there are many subtleties involved in reinvestigating the
very basics of our communication models. As we dug deeper, we found
new questions, even for the simplest of models, which required new
techniques to answer.

This monograph is the product of research conducted by the authors
and their collaborators over the last two decades. When we started
writing it became clear that the task was more complicated than we
had first imagined. A comprehensive treatment of the prior work on
AVCs is necessary to understand the more recent models which form
the later part of the monograph. The challenges of remote collaboration
and the COVID pandemic stretched the process longer than we would
have liked but we hope that you find it worth the wait!

Our goal in this work to convince the reader that there are fascinating
connections between coding problems for AVCs and a wide range of

3
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4 Preface

topics ranging from game theory to tensor factorization to Ramsey
theory. Tools such as list decoding and encoder randomization turn out
to be natural tools for achievability arguments in these settings. List
decoding is also a key tool in converse bounds, along with generalizations
of the classical Plotkin bound. Giving a fresh look at these old topics
can reveal interesting questions for future work.

Full text available at: http://dx.doi.org/10.1561/0100000112



1
Introduction

Information Theory and Coding Theory have made great advances
since their start in the mid-20th century while having fundamentally
different emphases. In the Shannon information-theoretic view, for
general channels with memoryless random noise, we have codes that
can achieve reliable communication at rates approaching capacity. At
the other extreme, in the coding-theoretic view (which we refer to
as “Hamming”), while some results are known for specific channels
with worst-case adversarial/malicious noise (that may depend on the
transmission), general capacity results are still elusive. The fundamental
difference lies in the dependence between the message, the code, and
the channel’s effect on the transmitted symbols. Broadly speaking,
Shannon-like models address average-case channel behavior whereas
Hamming-like models deal with worst-case channel behavior.

This monograph addresses what happens in between these models.
Recent work has identified a rich class of channels which interpolate
between average and worst-case channel behavior. Using the language
of arbitrarily varying channels (AVCs), these models consider a channel
with a state input controlled by a malicious jammer who wishes to
prevent reliable communication. The jammer’s power comes in making

5
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6 Introduction

the state dependent on the transmitted symbols and code structure.
Several models that lie between worst-case and average-case behavior
can be captured formally by characterizing the jammer’s view: different
views correspond to different types of dependence that the channel
interference can have on the channel input.

Our study is motivated by fundamental issues in using information-
theoretic models for communications as well as emerging applications
for communication systems. In systems such as critical infrastruc-
ture and cyberphysical systems, low-power wireless communication
systems for body-area networks, and multi-hop packet networks, the
Shannon/average-case view may not be appropriate due to high variabil-
ity in the channel, whereas the Hamming/worst-case view may be too
pessimistic. Because the gap in capacity between these two models can
be significant, it is important to understand where this gap comes from.
As we will describe in this monograph, understanding these models that
lie “between Shannon and Hamming” uncover some different insights
about communication channels in terms of successful strategies for
encoding/decoding and the nature of the “most harmful” interference.

1.1 The Jammer’s View

At one extreme, there are jammers that can view the entire transmitted
codeword noncausally before choosing an interference sequence; this
corresponds to worst-case (Hamming-like) models. The other extreme
includes jammers whose interference is oblivious of the transmitted
codeword; corresponding the average-case (Shannon-type) models. Be-
tween these two extremes, one can consider a plethora of restrictions
on the jammer’s view. For example, consider the impact of causality
and myopia: in the former, the jammer may be able to see transmitted
symbols with some delay, while in the latter the jammer may observe
noisy versions of the transmitted symbols. How do these, and other,
restrictions impact the achievable communication rate and code design?

This monograph addresses models that lie between worst-case and
average-case jamming behavior through the lens of the jammer’s view.
A clear view of the jammer brings it closer to the Hamming worst-
case model, while an obstructed view moves the jammer towards the

Full text available at: http://dx.doi.org/10.1561/0100000112



1.2. Channel Modeling Using Arbitrarily Varying Channels (AVCs) 7

Shannon average-case setting. In particular, the presentation highlights
key mathematical tools, code construction strategies, and novel con-
verse strategies for establishing capacity bounds and strict separations
between the Shannon and Hamming models. While the monograph
focuses on the impact on capacity of limiting the jammer’s view of the
transmitted codeword, we note that our perspective does not capture all
aspects that differentiate between Shannon and Hamming type models,
e.g., the memoryless nature of Shannon interference.

A driving force for several of the results presented in the monograph
stems from new work on the worst-case Hamming model, which not only
sheds new light for worst-case settings, but also advances knowledge in
the intermediate models discussed throughout. Beyond the theoretical
novelties presented here, this study is motivated by several existing
and emerging communication systems. Applications of these models
include smart infrastructures, autonomous vehicles, and other scenarios
in which a random noise model is inappropriate but for which truly
worst-case interference is too pessimistic.

1.2 Channel Modeling Using Arbitrarily Varying Channels (AVCs)

In what follows we present the basic model of study throughout the
monograph. A more formal treatment appears in Section 2. We use the
notation [N ] = {1, 2, . . . , N}. The starting point for our investigation
is a channel with time-varying state. There are three parties in the
model: a transmitter (Alice), a receiver (Bob), and a state generator
(the jammer James). Alice wishes to send a message reliably to Bob
over a channel that is partially controlled by James. For each channel
use, James may generate a different state input. This model, which
generalizes the compound channel, is known as an arbitrarily varying
channel (AVC): a family of channels {W (y|x, s) : s ∈ S} with input x,
output y, and state s taking values in the sets X , Y and S, respectively.
We consider coding over a fixed blocklength n. The probability of an
output sequence y ∈ Yn, given an input sequence x ∈ X n and state
sequence s ∈ Sn, is W (y|x, s) =

∏n
t=1 W (yt|xt, st). An (n, 2Rn) code

for this channel is a pair of maps (Enc, Dec) where Enc : [2Rn] → X n

and Dec : Yn → [2Rn]. The maximal probability of error is defined

Full text available at: http://dx.doi.org/10.1561/0100000112



8 Introduction

as maxm P(Dec(y) ̸= m|x = Enc(m)) and the average probability of
error as 1

2Rn

∑2Rn

i=1 P(Dec(y) ̸= m|x = Enc(m)). While many of our code
construction use list-decoding (see Section 5), the criteria for successful
communication is the standard one of unique decoding.

The common erasure and error models for binary-input channels
can be cast in this framework by treating the erasure or error pattern as
the state. In an erasure model we have X ,S = {0, 1} and Y = {0, 1,⊥},
where ⊥ stands for an erasure. The channel W (y|x, 0) is noiseless and
y = x with probability 1. The channel W (y|x, 1) is an erasure where
y = ⊥ with probability 1 regardless of x. The second model is a bit-
flip model where X ,S,Y = {0, 1} and the channel W (y|x, s) satisfies
y = x ⊕ s with probability 1, where ⊕ is addition modulo 2. These
examples exhibit binary channels which are deterministic, however our
framework supports a variety of models including channels over large
(or continuous) alphabets and channels in which the action of James is
governed by a general distribution W (y|x, s) over y.

The codes described above are deterministic codes: each message
m corresponds to a single codeword Enc(m). We also consider encod-
ing functions REnc(m) using private randomization. These encoders
are randomized map, but in privately randomized codes, the encoder
randomness is known only by Alice and not revealed to Bob or James.
This is in contrast to (fully) randomized encoding/decoding functions
REnc(m) and RDec(m) where a source r of common randomness is
shared by Alice and Bob, but not known to James [4], [31], [50], [51],
[53], [103]. Randomized coding allows Alice and Bob to select a codebook
privately without James’s knowledge.1 For both privately randomized
and fully randomized codes we average the error probabilities (maxi-
mum and average) over encoder/shared randomness. When compared to
privately randomized encoding, fully randomized coding gives Alice and
Bob significantly more power. For example, if the common randomness
is unlimited, they may mask the codeword (with a random permutation
and additive one time pad), thus hiding the codeword completely from

1In some works on AVCs, codes with only private randomization are called
“stochastic codes” and fully randomized codes are called “random codes.” We are
using more distinct terminology to help the reader remember the difference.
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1.3. Comparing Average-Case and Worst-Case Channel Behavior 9

James. This typically reduces the Hamming setting to the Shannon
one, as in the work of Bennett et al. [25]. The original AVC paper by
Blackwell et al. [31] modeled communication as a game and randomized
codes corresponded to mixed strategies. In this monograph we mainly
focus on privately randomized codes and discuss fully randomized codes
in Section 6.

1.3 Comparing Average-Case and Worst-Case Channel Behavior

1.3.1 Average case (Shannon)

The classical Shannon model [74], [149] for a discrete memoryless channel
(DMC) or additive white Gaussian noise channel (AWGN) is shown in
Figure 1.1.

Figure 1.1: A memoryless channel with i.i.d. state. We can think of s as a state
variable which contains the randomness in the channel. For additive channels such
as the Binary Symmetric Channel or additive white Gaussian noise channel (AWGN)
channel, the state can be taken as the noise in the channel.

The channel model assumes that the state sequence s is random
and independent and identically distributed (i.i.d.) from some known
distribution. A rate R is achievable if for any positive ε there exists
a sufficiently large n and an (n, 2Rn) code whose error is less than ε.
The capacity is the supremum of achievable rates. For erasure (binary
erasure channel BEC(p)) and bit-flip (binary symmetric channel BSC(p))
models the state s is generated i.i.d. according to a Bernoulli distribution
with parameter p. There are many strategies for achieving capacity in
these channels, but the classical approach is random coding in which the
codebook is constructed at random using a (single-letter) distribution
over X . For both the average and maximal error criteria, the capacities
for the erasure and bit-flip models are 1− p and 1−H(p), respectively.

Full text available at: http://dx.doi.org/10.1561/0100000112



10 Introduction

1.3.2 Worst-Case (Hamming)

The classical Hamming model [98] corresponds to the problem of error-
control coding and is depicted in Figure 1.2. The state s controlled by
James can be any sequence whose type belongs to a family Πs of types
over S.

Figure 1.2: A channel with state controlled by an adversary. The state s is chosen
to maximize the probability of decoding error. This is the model taken in classical
coding theory.

A rate R is achievable if there is a sufficiently large n and an (n, 2Rn)
code with error equal to 0 (relaxing to a small positive average error
does not change the achievable rate). For the erasure and bit-flip models,
Πs corresponds to sequences of {0, 1}n whose Hamming weight is at
most pn.

The capacity in both the erasure and bit-flip models is upper
bounded by the MRRW (or LP) bound [125] and lower bounded by
the Gilbert-Varshamov (GV) bound [86], [165] (see Section 4 for more
details in the erasure case).

1.3.3 Views between Shannon and Hamming

The Shannon and Hamming models represent two extremes: in the
former, the state is i.i.d. and the goal is to achieve small error probability
on average over interference. The Hamming model requires correct
decoding for every s whose type lies in Πs and represents a worst-case
perspective. The traditional way to view this distinction is a difference
in error criterion—the probability of error averaged over channel state
versus the probability of error maximized over channel state. Here, we
take a different perspective: we focus on how the interference depends on

Full text available at: http://dx.doi.org/10.1561/0100000112



1.3. Comparing Average-Case and Worst-Case Channel Behavior 11

the codeword. In the Shannon model the state s is chosen independently
of the codeword x whereas in the Hamming model the state can depend
noncausally on the entire codeword x.

To study models that lie between the Shannon and Hamming ones,
we treat the state generator James as an adversarial jammer by explicitly
describing how the state s can depend on the channel input x (and thus
implicitly on the transmitted message m). We capture this dependence
throughout the monograph by limiting James’s view of the codeword
(e.g., causal, myopic). Limiting James creates models between Shannon
and Hamming: the stronger the limitations on James, the closer we are
to the Shannon model. See Figure 1.3.

Figure 1.3: A channel with state that can depend on side information about the
transmitted codeword x. We model the state as controlled by a jammer James and
call this side information the jammer’s view. The view can be restricted in some
way: for example, James may see a noisy version of x (myopic jammers) or be able
to observe x sequentially (causal jammers).

1.3.4 Connection to arbitrarily varying channels

As discussed previously, the models studied herein are examples of the
arbitrarily varying channel (AVC) model first proposed by Blackwell et
al. [31]. The AVC model is broad in nature and, in its full generality,
captures the setting in which the state vector s may depend on the
transmitted codeword x and may be subject to lie in a given subset
of Sn. As such, the AVC model captures both the Hamming model
and that of Shannon. Nevertheless, the majority of previous studies
on AVCs address the Shannon model in which s does not depend on
the transmitted codeword x [4], [50], [51], [53]. Early work focused on
the difference between randomized and deterministic codes [4], [51].
In the randomized setting, Alice and Bob may mask the codeword

Full text available at: http://dx.doi.org/10.1561/0100000112



12 Introduction

and typically reduce the Hamming setting to that of Shannon [25],
[31], [50], [81], [104], [117], [140], [141], [156], [160]. Ahlswede’s classic
derandomization technique [4] showed that the deterministic coding
capacity of unconstrained AVCs is either 0 or equal to the randomized
coding capacity. If James can “spoof” the codeword by selecting an input
that makes the channel simulate a symmetric multiple access channel
(MAC) with users Alice and James—the channel is symmetrizable and
the capacity is 0 [51], [105]. We discuss the notion of symmetrizability
in detail in later sections of the monograph. For more early results
on AVCs, see Section 7 (also recommended is the excellent survey by
Lapidoth et al. [119]).

1.4 Organization and Overview of Models Studied

This monograph is organized as follows. The first half of the monograph,
including Section 2 through Section 5, sets the mathematical background
and intuition towards the study of channels between the Shannon and
Hamming models. Section 2 sets the notation and describes the models
studied throughout the monograph. Section 3 and Section 4 present a
number of motivating examples whose analyses are representative of
those appearing later in the monograph. Section 5 presents a spectrum
of results regarding list decoding in the context of AVCs. Although our
ultimate goal in communication is that of unique decoding, as mentioned
previously, list decoding, as a preliminary step in communication and as
a measure of uncertainty of both the receiver Bob and jammer James,
will play a major role in our analysis. The remaining sections of the
monograph include a detailed analysis of the different channel models
discussed in Section 2, including new results on general AVCs under
the worst-case Hamming model; results which are used in the analysis
of other models as well.

1.4.1 Section 3: Large Alphabets

The first example presented, studied in Section 3, addresses causal ad-
versarial models in the setting in which the alphabet X of the codewords
is large. Here, we investigate limitations on James through temporal
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constraints. Namely, James’ action st at time t depends on his view
of the codeword up to time t −∆. Equivalently, a codeword symbol
transmitted at time t reaches James at time t + ∆. Formally, we require
for all t that Xn → Xt−∆ → St is a Markov chain. Delay ∆ = n

corresponds to the Shannon model, full lookahead ∆ = −n corresponds
to the Hamming model, and intermediate delay ∆ bridges between these
extremes. See Figure 1.4.

Figure 1.4: A channel with state that can depend on delayed observations of the
transmitted codeword x. The delay ∆ controls how much of the codeword x James
can see at each time i.

The study of causal jamming models in the large alphabet setting is
an appropriate model for packet communication over multi-hop systems
or ad-hoc networks in which a jammer can either eavesdrop or intercept
transmissions over the channel. For example, in wireless packet commu-
nication, if James is eavesdropping, his action st at time t can depend
only on past packets (i.e., ∆ = 1), whereas if he is acting as a relay he
can tamper with the current channel input (∆ = 0). The large alphabet
setting studied in Section 3 allows us to reduce the causal adversarial
model to the well understood model of erasures.

1.4.2 Section 4: Binary Erasures

Deviating from the large alphabet case, Section 4 studies both causality
and myopia in the classical setting of binary channels. Here, the geometry
of binary vs. large-alphabet vector spaces poses several challenges.
To distill some of the main ideas, we focus on the simplest case of
binary input channels - one with an adversary who can erase some of
the transmitted bits. While causality deals with temporal constraints,
myopia addresses interference in communication between Alice and
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the jammer James. Indeed, in several systems, such as all forms of
wireless communication (over a private-designated or public-ISM band),
there is little reason to assume that James has noiseless access to the
transmitted codeword. This is true in any system operating in a noisy
environment, from the emerging setting of IoT to that of Body-Area
Networks. Thus, the study of myopic jammers arises naturally. More
formally, myopic jammers can be modeled by an additional channel
Wz|x(z|x) between Alice and James. In this example section, we fix
Wz|x to be the binary erasure channel. See Figure 1.5.

Figure 1.5: A channel with state that can depend on a noisy observation of the
transmitted codeword x. The channel W (z|x) controls how good a view of the
codeword x James has prior to his choosing s.

A purely myopic jammer does not have additional causality con-
straints and communication can be considered to proceed in rounds.
First Alice sends the encoding x over the channel, then James views
the corrupted codeword z with probability W n(z|x) (which equals∏n

t=1 W (zt|xt)) and chooses a state sequence s, finally Bob receives y

with probability
∏n

t=1 W (yt|xt, st) and decodes. The major challenges
in the study of both the causal and myopic adversarial models are
discussed. We review the major ideas and proof techniques to address
these challenges as a preview to the upcoming sections.

1.4.3 Section 5: List Decoding

In list-decoding, one decodes a received word, not to a unique message,
but rather to a list of potential messages. James’s uncertainty about
the transmitted codeword can be captured by the list of potential
codewords transmitted by Alice that are consistent with James’s view.
Likewise, Bob’s uncertainty is captured by the list consistent with his
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view. The evolution of James’s and Bob’s lists plays a central role in the
design and analysis of coding schemes for the channel models studied.
Quantifying the interplay between James and Bob in the communication
process using the concept of list-decoding plays a major role in the
monograph. Section 5 introduces a formal model for list decoding
of AVCs in the average-case (Shannon) and worst-case (Hamming)
settings. Quantitative bounds on the list size, decoding radii, and rate
are discussed. The codes and results presented in Section 5 are used in
the constructions for later sections.

1.4.4 Sections 6-11

The second half of the monograph, spanning Sections 6-11, includes a
detailed discussion of the different channel models outlined in Section 2,
starting from the more traditional Shannon and Hamming models of
study to the newer models that lie between average- and worst-case
analysis. For the traditional models, Section 6 starts with the study
of AVCs in the setting of common randomness, Section 7 addresses
oblivious AVCs for which the state s does not depend on the transmitted
codeword x, and Section 8 addresses the omniscient AVC setting in
which James has full knowledge of the transmitted codeword. Myopic
jammers, that view the transmitted codeword through a noisy channel,
are studied in Section 9. Causal jammers, whose access of the transmitted
codeword is limited by temporal constraints, are analyzed in Section 10.
Finally, a collection of additional channel models between Shannon
and Hamming are addressed in Section 11. A short description of the
sections is given below.

• Section 6 reviews some of the “classical” results for AVCs with
common randomness, starting with the first paper on AVCs [31]
and then turning to methods for reducing the amount of common
randomness for oblivious [4] and omniscient [117], [141], [156]
adversaries - focusing on quantifying the amount of common
randomness needed to achieve the randomized coding capacity.
Here, the oblivious AVC model refers to the commonly studied
setting in which James has no knowledge of the transmitted
codeword x.
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• Section 7 gives a comprehensive study of the oblivious channel
model in the setting in which common randomness is not permitted.
From classical derandomization [4] to more general settings with
constraints [51], the oblivious adversarial model without common
randomness (the “standard” AVC model) has received a lot of
attention in past decades. This section reviews the crucial notion
of symmetrizability, which we later generalize for more complex
adversarial settings.

• Section 8 revisits the Hamming setting for general AVCs and
reviews the known bounds for positive zero-error capacity. A
unified approach, via a geometric and effectively computable cri-
terion [170], is presented for necessary and sufficient conditions
for positive capacity. The sufficient condition presented leads to
positive-rate code design via cloud codes, which are a strict gen-
eralization of Gilbert-Varshamov (GV) type codes. The necessary
condition generalizes the Plotkin bound.

• Section 9 examines myopic jammers that access the codeword via
a noisy channel. Central to the study of myopic jammers is the
interplay between James’ and Bob’s view. Does the jammer’s side
information reveal more information on the codeword transmitted
than eventually available at the receiver Bob? A jammer who can
reveal more information than Bob is significantly more powerful
than one who cannot. Governed by this dichotomy, the section
reviews code design and converse proofs.

• Section 10 examines causal adversarial jammers that access and
corrupt the codeword with temporal limitations. Tight achievabil-
ity and converse proofs are given for a family of channel models.

• Finally, Section 11 touches briefly on several additional channel
models and topics that fall within the general theme addressed
by the monograph. These include, e.g., delayed jammers, quadrat-
ically constrained jammers, computational bounded jammers,
jamming when the encoder possesses (noiseless) feedback, and
more.
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1.5 Major Analytical Tools and Techniques

In general, to leverage the limitations posed on James’ view, it is crucial
to design coding schemes that do not (implicitly) allow him to discover
the transmitted codeword. More precisely, James should not be able to
reliably choose a state vector s that results in a decoding error for Bob.
For example, for deterministic additive channels W (y|s, x) in which
y = x + s, linear codes can at best achieve the (worst-case) Hamming
capacity: the linear structure allows James to use the same state vector
to cause an error for every codeword. Similarly, when using deterministic
encoding functions, our model is of significance only under the average
error criteria: under maximum error James need only cause an error
on one message/codeword, which is exactly the Hamming model. With
these challenges in mind, we here briefly outline the main analytical
tools that allow to leverage James’s limitations. Additional details are
found in the sections that follow.

Privately randomized codes

In a privately randomized code, the randomness Alice uses in the
encoding function REnc(m) is not known by Bob or James. Nevertheless,
it can help: James has only limited knowledge of which codeword is
transmitted, even if he knows the message m. Indeed, Ahlswede et
al. [8] gave several equivalences between classes of AVC models and
further showed that private randomization alone can have some benefit
over deterministic encoding. Alice’s ability to cause uncertainty at
James through privately randomized coding is central to leverage the
restrictions posed on James. However this comes at a price – Bob’s
uncertainty is simultaneously increased. Balancing the utility of privately
randomized coding with this limiting factor plays a central role in the
sections to come.

Chunkwise encoding

In our channel models, privately randomized codes need to be designed
carefully to hide the transmitted codeword from James. For example, if
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the randomness of the encoder can be deduced by the jammer from a pre-
fix or corrupted view of the codeword, then from that point on the code
can be considered deterministic—the jammer holds full knowledge of the
transmitted codeword. Therefore Alice must hide her random choices
from the jammer, otherwise the setting is reduced to the worst-case
setting of Hamming. The models studied throughout this monograph
consider coding schemes in which encoder randomness is spread out
evenly over the transmitted codeword, and cannot be deduced from lim-
ited views of the codeword. We call such schemes chunkwise stochastic
encoding schemes. Formally, a chunkwise stochastic code of blocklength
n consists of the concatenation of ℓ = n

k privately randomized codes
of blocklength k, where each subcode typically uses independent ran-
domness. Namely, REncn(m) = REnck(m) ◦ REnck(m) ◦ · · · ◦ REnck(m),
where each subcode uses independent encoder randomness. Here, the
subscript n and k refer to the corresponding code’s blocklegth. For ex-
ample, chunkwise codes fit the temporal constraint of causal adversaries.
If encoder randomness used in any codeword prefix is independent of
that used in the remaining suffix, the jammer in his actions on the
codeword prefix cannot plan ahead to fit the encoder randomness used
in the design of the codeword suffix. This underlying structure is similar
to block Markov encoding for relay channels [46], [75], [115], [164], [169],
except that here the relay is the malicious adversary James, and can be
used in studies of individual channels and streaming settings [82], [122],
[152]. Chunkwise stochastic coding schemes leverage James’s limitations
and cause significant uncertainty in choosing the interference. However,
the question now is how to deal with the increased uncertainty for Bob.

Converse proofs

The capacity gap between Shannon and Hamming models comes from
understanding the jamming attacks that can be generated from lim-
ited adversaries. “Shannon-type” converse bounds, such as Fano’s in-
equality, are too weak to model input-dependent interference, whereas
combinatorial “Hamming-type” bounds, such as the Hamming, Sin-
gleton, or Plotkin bounds, strongly rely on James full knowledge of
the transmitted codeword. This gives rise to the need of attacks that
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combine information-theoretic and combinatorial tools. For example,
causal James may proceed in two phases by using “Shannon-like” input-
independent interference in the first phase and then a “Hamming-
like” input-dependent combinatorial attack in the second phase. The
knowledge acquired by James in the first phase allows him to use
input-dependent combinatorial bounds in the second. Examples of such
attacks, termed “babble-and-push” attacks, appear throughout the
monograph. Special emphasis is given on the concept of symmetrizabil-
ity, which asks when James can make the channel at hand simulate a
symmetric multiple access channel (MAC) with users Alice and James
[51], [105], and as such cause an ambiguity about which message was
encoded by which user. While symmetrizability is well understood in
the oblivious setting, less is known in the models in which James holds
(limited) codeword information.

1.6 A Note on Our Perspective

We wish to emphasize that our rhetorical use of “Shannon” and “Ham-
ming” is not meant to imply that the particular channel modeling
questions we discuss are the sole object of study in Shannon theory
and coding theory. This monograph does not comprehensively cover
all modeling options that lie between an average and worst-case error
models. What we focus on are bounds on the capacity: finding the
fundamental limits of achievable rates given the information available to
the adversary. We will use random constructions to show bounds on the
capacity and leave aside issues of computationally efficient code designs.
We therefore do not examine more practical designs using sophisticated
combinatorial and algebraic techniques that have been developed in
coding theory. Our focus on point-to-point communication also not
address the rich body of work on codes for other applications in which
there are additional constraints on the encoding schemes such as locality
or low-cost repair. These new settings have led to several breakthroughs
in recent years.
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