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ABSTRACT
Codes in the sum-rank metric have attracted significant at-
tention for their applications in distributed storage systems,
multishot network coding, streaming over erasure channels,
and multi-antenna wireless communication. This monograph
provides a tutorial introduction to the theory and applica-
tions of sum-rank metric codes over finite fields. At the
heart of the monograph is the construction of linearized
Reed–Solomon codes, a general construction of maximum
sum-rank distance (MSRD) codes with polynomial field sizes.
Linearized Reed–Solomon codes specialize to classical Reed–
Solomon and Gabidulin code constructions in the Hamming
and rank metrics, respectively, and they admit an efficient
Welch–Berlekamp decoding algorithm. Applications of these
codes in distributed storage systems, network coding, and
multi-antenna communication are developed. Other families
of codes in the sum-rank metric, including convolutional
codes and subfield subcodes are described, and recent results
in the general theory of codes in the sum-rank metric are
surveyed.
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1
Introduction to the Sum-Rank Metric and MSRD

Codes

This first section provides an overview of this monograph followed by a
careful introduction to the sum-rank metric and maximum sum-rank
distance (MSRD) codes. We will focus on their definitions and main
properties, deferring an actual construction to Section 2. However, before
delving into any of this, we will preface with an informal introduction
which aims to immediately answer the basic questions of what codes
in the sum-rank metric are and why they are of both practical and
theoretical interest.

Why the Sum-Rank Metric?

The sum-rank metric arises in problems of communication over multipli-
cative-additive matrix channels involving the action of a block diagonal
matrix. In particular, consider the scenario where Alice communicates
with Bob by transmitting a matrix X ∈ Fn×m where F is some field.
Bob then receives Y ∈ F s×m given by

Y = AX + Z

= Diag(A1, A2, . . . , Aℓ)X + Z
(1.1)

2
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3

where Z ∈ F s×m and A = Diag(A1, A2, . . . , Aℓ) ∈ F s×n is a block
diagonal matrix with A1 ∈ F s1×n1 , A2 ∈ F s2×n2 , . . . , Aℓ ∈ F sℓ×nℓ (in
which case we must have s1 +s2 + · · ·+sℓ = s and n1 +n2 + · · ·+nℓ = n).
It is convenient to partition X into X1 ∈ Fn1×m, X2 ∈ Fn2×m, . . . , Xℓ ∈
Fnℓ×m and appropriately partition Y and Z so that (1.1) becomes

Y1
Y2
...
Yℓ

 =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Aℓ



X1
X2
...
Xℓ

+


Z1
Z2
...
Zℓ



=


A1X1
A2X2

...
AℓXℓ

+


Z1
Z2
...
Zℓ

 ,
(1.2)

which lends itself to the interpretation of being ℓ transmissions across
a varying multiplicative-additive matrix channel. The classic coding-
theoretic task is then to construct the largest possible code C ⊆ Fn×m

for Alice to signal with, while allowing Bob to reliably recover X ∈ C
from a distorted observation Y .

We now make the first of three crucial points. This first point is that
the communication scenario described by (1.1) occurs in a variety of
disparate applications covered in Sections 3, 4, and 5 of this monograph:

• Section 3 considers applications to erasure coding for distributed
storage. The problem of constructing information-theoretically
optimal locally repairable codes can be cast as the problem of con-
structing a code for communication across the channel described
by (1.1) with F being a finite field, A being a rank-deficient block
diagonal matrix, and Z being the zero matrix (see Proposition
3.3 or Theorem 3.4). In this application, a rank-deficient block
diagonal A represents the composition of local codes with erasures.

• Section 4 considers applications to network coding. Here, the
problem of adversarial multishot network coding is similarly for-
mulated as (1.1) with F a finite field and A a rank-deficient and
block diagonal matrix. However, this time, Z1, Z2, . . . , Zℓ are po-
tentially nonzero but are of bounded rank (see Section 4.1). In
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4 Introduction to the Sum-Rank Metric and MSRD Codes

this application, the rank deficiency of A represents packet losses
in the network and the rank-constrained Z1, Z2, . . . , Zℓ represent
the action of an adversary injecting a limited number of packets
into the network.

• Section 5 considers applications to multi-antenna wireless commu-
nication. The problem of communicating across a multiple-input
multiple-output block-fading channel can be formulated as (1.1)
with F being the field of complex numbers and A1, A2, . . . , Aℓ

and Z being random complex Gaussian matrices.

Note that depending on the conventions of the application area, we may
consider in this monograph alternative but equivalent descriptions of
(1.1) or (1.2) such as transposed formulations involving right instead of
left matrix multiplications. In fact, the main parts of this section will
consider the transposed situation with right matrix multiplications.

We come now to the second crucial point. In all three of these
applications, including the markedly different third application involving
randomness and the complex field, the problem of constructing a good
code C ⊆ Fn×m, i.e., one which facilitates reliable recovery of X from
Y in some sense, reduces to the problem of constructing C so that the
minimum sum-rank distance is large. In particular, for any codeword
pair X,X ′ ∈ C with X ̸= X ′, we require that the quantity

Rk(X1 −X ′
1) + Rk(X2 −X ′

2) + · · ·+ Rk(Xℓ −X ′
ℓ), (1.3)

where Rk(·) denotes the matrix rank, is large. The quantity (1.3) is
termed the sum-rank distance between X and X ′ and will soon be
shown to be a metric in the mathematical sense (see Proposition 1.1).
Thus, we have that the sum-rank metric (1.3) arises when considering
communication across channels of the form (1.1) or (1.2) whether ad-
versarial or probabilistic and whether over finite fields or the field of
complex numbers.

Apart from its role in applications, the sum-rank metric (1.3) can be
seen as a generalization of the Hamming and rank metrics. The Hamming
metric has played a major role in coding theory since Hamming’s
seminal work [62]. The alternative metric called the rank metric was
later introduced independently in [41], [46], [152]. This metric has
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5

gained considerable attention in the past decades since codes with large
minimum rank distance can correct error and erasure patterns, such as
those appearing in matrix-multiplicative channels [88], uncorrectable
by traditional codes. See [57] for a nice survey of rank-metric codes.

For a long time, results in the rank metric were called q-analogues
of similar results in the Hamming metric [18], [47], [56], [79]. The
sum-rank metric (1.3) was explicitly introduced more recently in the
network coding literature [136] but was used implicitly much earlier in
the space–time coding literature [42], [102] (see Section 5.1 for details).
As observed in [116, Ex. 36 & 37], the sum-rank metric recovers the
Hamming metric and the rank metric as two extremal particular cases.
This will be seen soon in Propositions 1.4 and 1.5 but the impatient
reader can consider taking m = n1 = n2 = · · · = nℓ = 1 in which case
(1.3) simply becomes the Hamming distance between X ∈ F ℓ×1 and
X ′ ∈ F ℓ×1. On the other hand, if ℓ = 1, then (1.3) becomes the rank of
the difference between X ∈ Fn×m and X ′ ∈ Fn×m which is precisely the
rank distance. In this sense, the sum-rank metric interpolates between
the Hamming and rank metrics.

The sum-rank metric is not, however, simply a theoretical framework
to provide common generalizations of results for the Hamming and
rank metrics. In problem domains described in Sections 3, 4, and
5, block codes with maximum sum-rank distance (MSRD) arise as
natural solutions. Interestingly, such codes can always be constructed
as maximum rank distance (MRD) block codes [41], [46], [152], as
will be seen soon (see Proposition 1.8 and the ensuing discussion),
every MRD code is also an MSRD code. However, the alphabet size
required for such MRD solutions is exponential in the code length
(see 1.34), making MRD codes computationally impractical except for
small parameter regimes. Additionally, the parameters of MRD codes
impose further disadvantages such as constrained codeword dimensions
in matrix representation which translates to long delay in space–time
coding with multiple fading blocks (see Section 5).

This brings us to the third and final crucial point of this preface. The
theory of sum-rank metric codes becomes interesting precisely because
of the existence of MSRD block codes with sub-exponential alphabet
size that overcome the disadvantages of these MRD solutions. In other
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6 Introduction to the Sum-Rank Metric and MSRD Codes

words, while the strength of the MRD property is sufficient to solve the
various coding problems considered here, the introduction of non-MRD
MSRD codes makes it unnecessary to pay the cost (in alphabet size)
of MRD codes. We will treat a particular family of such MSRD codes
called linearized Reed–Solomon codes in Section 2.

This monograph ends with Section 6 which considers other codes
in the sum-rank metric besides the linearized Reed–Solomon codes
introduced in Section 2 and applied in Sections 3, 4, and 5. These
include alternative constructions and analogues to BCH codes and to
convolutional codes.

Notation: Throughout the text, N, Z>0, Z, R≥0, R, and C denote,
respectively, the natural numbers (including 0), the positive integers,
the integers, the nonnegative real numbers, the real numbers, and the
complex numbers. A finite field with q elements is denoted as Fq. The
finite field F4, which is often used to provide examples in the first two
sections, is written concretely as

F4 = {0, 1, ω, ω̄}, where ω̄ = ω2 = 1 + ω. (1.4)

For positive integers m and n, the n-fold Cartesian product of a set A
with itself is denoted as An, and the set of matrices with m rows and n
columns having entries from A is denoted as Am×n. The transpose of a
matrix M ∈ Am×n is the matrix M⊺ ∈ An×m. The set {1, 2, . . . , n} will
be denoted as [n]. The cardinality (the number of elements) of a finite
set A is denoted as |A|. For x ∈ R, the function max(x, 0) is denoted
as (x)+. Further notation will be introduced as needed.

1.1 The Sum-Rank Metric

This initial section introduces the sum-rank metric. We present its defi-
nition on tuples of matrices and on vectors over an extended finite field,
and we prove that it is indeed a distance function. In this monograph, we
will use the words metric and distance interchangeably. For a definition,
see Proposition 1.1 below.

As its name would suggest, the simplest way to define the sum-rank
metric is by sums of ranks. To this end, we fix a finite field Fq, where q
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1.1. The Sum-Rank Metric 7

is a power of a prime number, often a power of 2. The ambient space
for the sum-rank metric is the Cartesian-product set

Fm1×n1
q × Fm2×n2

q × · · · × Fmℓ×nℓ
q , (1.5)

for positive integers ℓ, m1,m2, . . . ,mℓ, n1, n2, . . . , nℓ. The set in (1.5)
therefore is the set of tuples of length ℓ containing an mi × ni matrix
with entries in Fq at the ith position.

Example 1.1. Consider q = 2, ℓ = 2, m1 = m2 = 2, n1 = 2 and n2 = 3.
An element in the set in (1.5) for these parameters could be

C = (C1, C2) =
((

1 0
0 1

)
,

(
1 0 1
0 0 0

))
.

The set of all such tuples is F2×2
2 × F2×3

2 .

Observe that the set in (1.5) is a vector space over the finite field
Fq under componentwise addition of tuples of matrices in Fm1×n1

q ×
Fm2×n2

q × · · · × Fmℓ×nℓ
q and multiplication by arbitrary scalars in Fq.

The sum-rank metric can be defined using sum-rank weights, in the
same way that the Hamming metric can be defined using Hamming
weights. The first explicit formal definition of this metric was given in
[136] under the name extended distance.

Definition 1.1 (Sum-rank metric). The sum-rank weight is the function

wtSR : Fm1×n1
q × Fm2×n2

q × · · · × Fmℓ×nℓ
q −→ N

given by

wtSR (C1, C2, . . . , Cℓ) = Rk(C1) + Rk(C2) + · · ·+ Rk(Cℓ)

=
ℓ∑

i=1
Rk(Ci),

where Rk(·) returns the rank of its argument as a matrix over Fq and
where Ci ∈ Fmi×ni

q , for i ∈ [ℓ]. With such weights at hand, we may
define the sum-rank metric as the function

dSR :
(
Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q

)2
−→ N
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8 Introduction to the Sum-Rank Metric and MSRD Codes

given by
dSR (C,D) = wtSR (C −D) ,

for arbitrary C,D ∈ Fm1×n1
q × Fm2×n2

q × · · · × Fmℓ×nℓ
q .

Example 1.2. For the ordered pair C = (C1, C2) of matrices in Exam-
ple 1.1, we have

wtSR(C) = Rk
(

1 0
0 1

)
+ Rk

(
1 0 1
0 0 0

)
= 2 + 1 = 3.

Consider another ordered pair of matrices

D = (D1, D2) =
((

0 0
0 1

)
,

(
1 0 1
1 1 1

))

having parameters commensurate with those of C. The sum-rank dis-
tance between C and D is

dSR(C,D) = Rk
(

1 0
0 0

)
+ Rk

(
0 0 0
1 1 1

)
= 1 + 1 = 2.

The following proposition shows that the sum-rank metric is indeed
a metric (or distance).

Proposition 1.1. The sum-rank metric dSR is a metric in the set
Fm1×n1

q ×Fm2×n2
q ×· · ·×Fmℓ×nℓ

q . In other words, it satisfies the following
properties, for all C,D,E ∈ Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q :

1. dSR(C,D) ≥ 0, and dSR(C,D) = 0 if, and only if, C = D.
2. dSR(C,D) = dSR(D,C).
3. dSR(C,D) ≤ dSR(C,E) + dSR(E,D).

Proposition 1.1 above follows from the fact that wtSR is a weight. In
other words, wtSR satisfies the following properties (left to the reader
to prove) for all C,D ∈ Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q :

1. wtSR(C) ≥ 0, and wtSR(C) = 0 if, and only if, C = 0.
2. wtSR(λC) = wtSR(C), for all λ ∈ Fq \ {0}.
3. wtSR(C +D) ≤ wtSR(C) + wtSR(D).
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1.1. The Sum-Rank Metric 9

Notice that the last inequality follows from the sub-additivity of matrix
rank.

A code suitable for the sum-rank metric is just a nonempty subset
of the set in (1.5), and it is often called a sum-rank code. We may define
its minimum sum-rank distance in the same way as with any other
metric.
Definition 1.2. Given a code C ⊆ Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q , we
define its minimum sum-rank distance as

dSR(C) = min{dSR(C,D) | C,D ∈ C, C ̸= D}.

As for any other distance, the minimum sum-rank distance measures
the sum-rank weight of additive errors that the code may correct. In
other words, dSR(C) ≥ d if, and only if, C has a decoder that can
uniquely correct any additive error E such that 2t + 1 ≤ d, where
t = wtSR(E). A similar statement holds for erasures. We will come back
to error (and erasure) correction in Section 2.7, when we describe a
Welch–Berlekamp decoder for linearized Reed–Solomon codes in the
sum-rank metric. Sum-rank error correction will be of importance in
Section 4.

Since the ambient space (1.5) is a vector space over Fq, we may con-
sider linear codes as Fq-linear subspaces. For such codes, the minimum
sum-rank distance coincides with the minimum sum-rank weight.
Proposition 1.2. If C ⊆ Fm1×n1

q × Fm2×n2
q × · · · × Fmℓ×nℓ

q is a linear
code (over Fq), then

dSR(C) = min{wtSR(C) | C ∈ C, C ̸= 0},
where 0 denotes the tuple formed by placing a zero matrix in each
coordinate.
Example 1.3. Let q = 2, ℓ = 2, m1 = m2 = 2, n1 = 2 and n2 = 3, as in
Example 1.1. Consider the F2-linear subspace

C = ⟨C,D⟩F2 ⊆ F2×2
2 × F2×3

2 ,

spanned by {C,D} where C,D ∈ F2×2
2 × F2×3

2 are as in Example 1.2.
Since F2 = {0, 1}, we deduce that C = {0, C,D,C+D}. Since wtSR(C) =
wtSR(D) = 3 and wtSR(C +D) = 2, we conclude that

dSR(C) = 2.
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10 Introduction to the Sum-Rank Metric and MSRD Codes

We turn now to a different representation of the sum-rank metric.
We will consider the case where the matrices at different positions of
the tuple all have m rows, i.e., the case where

m = m1 = m2 = . . . = mℓ. (1.6)

In this particular case, as we will elaborate upon below, we can represent
tuples of matrices from the set (1.5) simply as vectors in the vector
space

Fn
qm = Fn1+n2+···+nℓ

qm , (1.7)

where Fn
qm = F1×n

qm (the set of row vectors of length n with entries in
the finite field Fqm), and

n = n1 + n2 + · · ·+ nℓ. (1.8)

In other words, each column of each matrix in the tuple is viewed
as an element of the finite field Fqm . We refer to any ℓ-tuple n =
(n1, n2, . . . , nℓ), where n1, . . . , nℓ are positive integers summing to n, as
a length-n sum-rank partition of order ℓ, or simply a length partition.
Unless otherwise stated, for the remainder of this monograph we will
assume that (1.6) and (1.8) hold.

In order to see tuples of matrices as vectors in Fn
qm , we need the

so-called matrix representation map. As its name suggests, it represents
an ni-tuple in Fni

qm as a matrix in Fm×ni
q . Recall that Fqm can be seen

as an m-dimensional vector space over its subfield Fq. If {α1, . . . , αm}
is any basis for this vector space, then each element c1 ∈ Fqm can
be written as c1 = c1,1α1 + c2,1α2 + · · · + cm,1αm for unique scalars
c1,1, c2,1, . . . , cm,1 ∈ Fq. If the basis is ordered as α = (α1, . . . , αm) then
c1 can be associated with a unique column vector (c1,1, . . . , cm,1)⊺ of
coordinates. The matrix representation map extends this representation
to r-tuples in the obvious way.
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1.1. The Sum-Rank Metric 11

Definition 1.3. Fix an ordered basis α = (α1, α2, . . . , αm) ∈ Fm
qm of Fqm

over Fq. For each positive integer r, define the matrix representation
map M r

α : Fr
qm −→ Fm×r

q which takes c = (c1, . . . , cr) to

M r
α (c) =


c1,1 c1,2 . . . c1,r

c2,1 c2,2 . . . c2,r
...

... . . . ...
cm,1 cm,2 . . . cm,r

 ∈ Fm×r
q , (1.9)

where ci,j ∈ Fq, for i ∈ [m] and j ∈ [r] and where αM r
α(c) =∑m

i=1 αi(ci,1, ci,2, . . . , ci,r) = c.

Evidently the jth column of M r
α(c1, . . . , cr) is the vector of coordi-

nates of cj with respect to the ordered basis α. It is also important to
observe that M r

α is an isomorphism of vector spaces over Fq, that is, it
is bijective and Fq-linear.

Example 1.4. Consider the finite field Fq = F4 as defined in (1.4). Then
we may consider m = 3 and construct Fqm = F43 using the polynomial
1 + x+ x3, which is irreducible over F4. An ordered basis of F43 over F4
is α = (1, α, α2), where α ∈ F43 is such that α3 = α+ 1. Take now as
an example the vector

c = (ω + α, 1 + ω̄α2) ∈ F2
43 .

Then its matrix representation is

M2
α(c) =

 ω 1
1 0
0 ω̄

 ∈ F3×2
4 ,

and of course αM2
α(c) = c.

Given a length partition n = (n1, . . . , nℓ), the next step is to sub-
divide a vector in Fn

qm into vectors in Fni
qm , for i ∈ [ℓ], and apply the

matrix representation map to each of the shorter vectors.

Definition 1.4. Let n = (n1, . . . , nℓ) be a length-n sum-rank partition
of order ℓ. Subdivide any given vector c in Fn

qm as

c =
(
c(1), c(2), . . . , c(ℓ)

)
∈ Fn

qm , (1.10)
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12 Introduction to the Sum-Rank Metric and MSRD Codes

where c(i) ∈ Fni
qm , for i ∈ [ℓ]. For any ordered basis α ∈ Fm

qm of Fqm over
Fq, we may define the total matrix representation map

Mn
α : Fn

qm −→ Fm×n1
q × Fm×n2

q × · · · × Fm×nℓ
q

by

Mn
α(c) =

(
Mn1

α

(
c(1)

)
,Mn2

α

(
c(2)

)
, . . . ,Mnℓ

α

(
c(ℓ)

))
, (1.11)

where c ∈ Fn
qm is subdivided as in (1.10).

For vectors c,d ∈ Fn
qm , we define sum-rank weights and distances

via Mn
α as

wtSR(c) = wtSR (Mn
α(c)) , and

dSR(c,d) = dSR (Mn
α(c),Mn

α(d)) = wtSR(c− d).
(1.12)

For a (linear or nonlinear) code C ⊆ Fn
qm , we define its minimum

sum-rank distance via the total matrix representation map, as

dSR(C) = dSR (Mn
α(C))

= min{dSR(c,d) | c,d ∈ C, c ̸= d}
∗= min{wtSR(c) | c ∈ C, c ̸= 0},

(1.13)

where (*) holds if C is a linear code.

Now that we may see codes as subsets of Fn
qm , we will say that a

code C ⊆ Fn
qm is linear if it is Fqm-linear.

Although for simplicity we do not write it explicitly, it is important
to note that the sum-rank weight and metric defined on Fn

qm depend on
the subfield Fq and the length partition (n1, . . . , nℓ), i.e., they depend
on the pair (q,n). However, the sum-rank weight and metric do not
depend on the choice of ordered basis α, as shown in the following
proposition.

Proposition 1.3. Given two ordered bases α,β ∈ Fm
qm of Fqm over Fq,

the equality
wtSR (Mn

α(c)) = wtSR

(
Mn

β (c)
)
,

holds for all c ∈ Fn
qm .
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1.1. The Sum-Rank Metric 13

Proof. We only need to prove that, for each i ∈ [ℓ], we have that

Rk (Mni
α (d)) = Rk

(
Mni

β (d)
)
, (1.14)

for all d ∈ Fni
qm . We know from linear algebra that there exists an

invertible matrix A ∈ Fm×m
q such that β = αA. Since d = αMni

α (d) =
αAMni

β (d) holds for every d ∈ Fni
qm , we must have that

Mni
α (d) = A ·Mni

β (d).

Since multiplying by an invertible matrix does not change rank, we
conclude that (1.14) holds.

Since the matrix representation map Mni
α is a vector space iso-

morphism, for i ∈ [ℓ], the total matrix representation map Mn
α is a

vector space isomorphism too (over Fq). For this reason, for nonlinear
or Fq-linear codes, we may work with either C ⊆ Fn

qm or its matrix form
C′ = Mn

α(C) ⊆ Fm×n1
q × Fm×n2

q × · · · × Fm×nℓ
q . It is important to take

into account that, if C ⊆ Fn
qm is a linear code (over Fqm), then Mn

α(C)
is only Fq-linear (Fqm-linearity is lost).

Unless otherwise stated, we will work with linear codes in Fn
qm ,

meaning Fqm-linear, and with assumptions as in (1.6) and (1.8).
As the last results of the section, we show that the sum-rank metric

recovers both the rank metric [41], [46], [152] and the Hamming metric
[62] as particular cases.

Proposition 1.4. If ℓ = 1, then the sum-rank weight wtSR and metric
dSR become the rank weight and metric, respectively, and the ambient
space (1.5) becomes the space of matrices Fm×n

q .

Proposition 1.5. If m = m1 = m2 = . . . = mℓ = 1 and n1 = n2 = . . . =
nℓ = 1, then for the ordered basis α = (1) ∈ F1

q1 , we may think of the
matrix representation map as the identity map

Mn
α ≡ Id : Fℓ

q −→
(
F1×1

q

)ℓ
,

and the sum-rank weight wtSR and metric dSR in this setting become
the Hamming weight and metric, defined respectively as

wtH(c1, c2, . . . , cℓ) = |{i ∈ [n] | ci ̸= 0}|, and
dH(c,d) = wtH(c− d),

(1.15)

for all c1, c2, . . . , cℓ ∈ Fq and all c,d ∈ Fℓ
q.
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14 Introduction to the Sum-Rank Metric and MSRD Codes

Proof. This follows from the observation that when a scalar c ∈ Fq is
regarded as a 1× 1 matrix, i.e., c ∈ F1×1

q , we have

Rk(c) =

1, if c ̸= 0;
0, if c = 0.

(1.16)

Proposition 1.5 also holds when m > 1. To see this, recall the
extended definition (1.12) of sum-rank weights and distances for vectors
over extension fields and note that (1.16) also holds for all c ∈ Fm×1

q .
We will illustrate the points made above with an extension to the

sum-rank metric of the classical repetition code.

Example 1.5 (The sum-rank repetition code). The traditional rep-
etition code is the linear code generated by the vector (1, 1, . . . , 1) of
arbitrary length n. It is a “good” code for the Hamming metric (it is
MDS, that is, maximum distance separable) since the Hamming weight
of the vector (1, 1, . . . , 1) equals its length n. However, its sum-rank
weight is smaller than n in general. To remedy this, fix an ordered basis
α = (α1, α2, . . . , αm) of Fqm over Fq, and take a length-n sum-rank
partition n = (n1, . . . , nℓ) of order ℓ with ni ≤ m for all i ∈ [ℓ]. We may
then define the sum-rank repetition code as the one-dimensional linear
code

C =
〈(

α(n1),α(n2), . . . ,α(nℓ)
)〉
Fqm
⊆ Fn

qm ,

where ⟨·⟩Fqm denotes Fqm-linear span and

α(ni) = (α1, α2, . . . , αni) ∈ F
ni
qm ,

for i ∈ [ℓ]. Observe that

Mn
α

(
α(n1),α(n2), . . . ,α(nℓ)

)
= (In1

m , In2
m , . . . , Inℓ

m ) ,

where Ini
m ∈ Fm×ni

q denotes the first ni columns of the m×m identity
matrix for i ∈ [ℓ]. Therefore, we have that

wtSR

(
α(n1),α(n2), . . . ,α(nℓ)

)
=

ℓ∑
i=1

Rk (Ini
m ) =

ℓ∑
i=1

ni = n.
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1.2. Linear Isometries for the Sum-Rank Metric 15

By Proposition 1.6 below, we have that dSR(C) = dSR (Mn
α(C)) =

n, as in the classical Hamming-metric repetition code. Finally, note
that, since Mn

α

(
α(n1),α(n2), . . . ,α(nℓ)

)
= (In1

m , In2
m , . . . , Inℓ

m ), then in
the Hamming-metric case (m = n1 = n2 = . . . = nℓ = 1), we have
that Mn

α

(
α(n1),α(n2), . . . ,α(nℓ)

)
= (1, 1, . . . , 1), n = ℓ times. Hence we

recover the classical repetition code as a particular case, which motivates
this definition of the sum-rank repetition code.

1.2 Linear Isometries for the Sum-Rank Metric

In this section, we describe the linear maps (over Fqm) that preserve
sum-rank weights, i.e., the linear isometries for the sum-rank metric.

Our interest in this concept is that it enables us to connect sum-
rank weights and Hamming weights (see Theorem 1.2, Corollary 1.3 and
(1.20) below). We will also use this connection in Section 1.4 to define
maximum sum-rank distance (MSRD) codes in terms of MDS codes
(see Theorem 1.4 and Definition 1.7 below). Such a characterization
will also be of interest in some applications (see Section 3), where we
want codes which are MDS after being multiplied on the right by any
invertible block-diagonal matrix.

We start with the following basic definition.

Definition 1.5. We say that a map ϕ : Fn
qm −→ Fn

qm is a linear sum-rank
isometry if it is linear (over Fqm), bijective, and

wtSR (ϕ(c)) = wtSR(c),

for all c ∈ Fn
qm .

Although defined as being weight-preserving, if ϕ is a linear sum-rank
isometry, then it preserves distances also, i.e., it really is an isometry.
This follows since for any pair of vectors c,d ∈ Fn

qm , we have

dSR(ϕ(c), ϕ(d)) = wtSR(ϕ(c)− ϕ(d))
(a)= wtSR(ϕ(c− d))
(b)= wtSR(c− d) = dSR(c,d),
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16 Introduction to the Sum-Rank Metric and MSRD Codes

where (a) follows from the linearity of ϕ and (b) follows from the fact
that ϕ is weight-preserving.

In fact there is some redundancy in the definition, since as is the
case for any metric, a linear map preserving distances is necessarily
injective (dSR(c,d) = 0 if, and only if, c = d). Since the domains and
codomains in Definition 1.5 are vector spaces of equal dimension, a
linear injective map is also bijective. In other words, we may remove
the condition of being bijective from Definition 1.5 above. We have kept
it as a reminder for the reader.

As is the case with any other metric, we may say that two linear
codes C1, C2 ⊆ Fn

qm are equivalent for the sum-rank metric if there exists
a linear sum-rank isometry ϕ : Fn

qm −→ Fn
qm such that ϕ(C1) = C2. Since

ϕ is a linear sum-rank isometry, additive errors and their sum-rank
weights are preserved, and the sum-rank error correction capability of
C1 and C2 is the same. Furthermore, since ϕ is linear and bijective, then
C1 and C2 are isomorphic as vector spaces and have the same dimension.

We start with the following basic result, which is also useful on its
own (see, e.g., Example 1.5 above).

Proposition 1.6. For any c ∈ Fn
qm and any β ∈ Fqm \ {0},

wtSR(βc) = wtSR(c).

Proof. Since β ̸= 0, the reader may verify that the vector

βα = (βα1, βα2, . . . , βαm) ∈ Fm
qm

is an ordered basis of Fqm over Fq, for any ordered basis α ∈ Fm
qm of

Fqm over Fq. It now follows from the definition of the total matrix
representation map (Definition 1.11) that

Mn
βα(βc) = Mn

α(c),

for all c ∈ Fn
qm , and the result follows by Proposition 1.3.

We now give a different family of linear sum-rank isometries.
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1.2. Linear Isometries for the Sum-Rank Metric 17

Proposition 1.7. Given c ∈ Fn
qm , invertible matrices Ai ∈ Fni×ni

q , for
i ∈ [ℓ], and setting

A = Diag(A1, A2, . . . , Aℓ) =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Aℓ

 ∈ Fn×n
q , (1.17)

we have, for the length partition n = (n1, . . . , nℓ), that

wtSR (cA) = wtSR(c).

Proof. Consider C = Mn
α(c) = (C1, C2, . . . , Cℓ), where

Ci = Mni
α

(
c(i)
)
∈ Fm×ni

q ,

for i ∈ [ℓ], and where c is subdivided as in (1.10).
Fix invertible matrices Ai ∈ Fni×ni

q , for i ∈ [ℓ]. Fix one such index i.
The reader may verify that

CiAi = Mni
α

(
c(i)
)
Ai = Mni

α

(
c(i)Ai

)
. (1.18)

In other words, writing A = Diag(A1, A2, . . . , Aℓ), we have that

Mn
α (cA) = (C1A1, C2A2, . . . , CℓAℓ).

Since Ai ∈ Fm×ni
q is invertible, we have

Rk(Ci) = Rk(CiAi).

Therefore, we conclude that

wtSR (cA) =
ℓ∑

i=1
Rk(CiAi) =

ℓ∑
i=1

Rk(Ci) = wtSR(c),

and we are done.

In fact, combining the linear isometries from Propositions 1.6 and
1.7, together with possibly some permutations of coordinates, we obtain
all linear sum-rank isometries. The following result was obtained in
[119, Th. 2]. We omit the proof for brevity.
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18 Introduction to the Sum-Rank Metric and MSRD Codes

Theorem 1.1. A map ϕ : Fn
qm −→ Fn

qm is a linear isometry if, and
only if, there exist scalars β1, β2, . . . , βℓ ∈ Fqm \ {0}, invertible matrices
Ai ∈ Fni×ni

q , for i ∈ [ℓ], and a permutation σ : [ℓ] −→ [ℓ] satisfying that
σ(i) ̸= j if ni ̸= nj , and such that

ϕ(c) =
(
β1c(σ(1))A1, β2c(σ(2))A2, . . . , βℓc(σ(ℓ))Aℓ

)
,

for all c ∈ Fn
qm , subdivided as in (1.10).

Note that Theorem 1.1 recovers, as particular cases, the classical
expressions of linear isometries for the Hamming and rank metrics.

Finally, the main result of this section is to describe sum-rank weights
as a function of Hamming weights and the linear sum-rank isometries
from Proposition 1.7. This result was obtained in [124, Th. 1].

Theorem 1.2. Given c ∈ Fn
qm and defining the Hamming weight and

metric in Fn
qm as in Proposition 1.5 (wtH(c) is the number of nonzero

entries over Fqm of c ∈ Fn
qm), the sum-rank weight of c satisfies

wtSR(c) = min{wtH(cA) |A = Diag(A1, A2, . . . , Aℓ) ∈ Fn×n
q ,

Ai ∈ Fni×ni
q invertible, 1 ≤ i ≤ ℓ}.

(1.19)

Proof. We will start by proving the inequality ≤ in (1.19). Since the
number of nonzero columns is an upper bound on the rank of a matrix,
we deduce that wtSR(d) ≤ wtH(d), for all d ∈ Fn

qm . Combined with
Proposition 1.7, we conclude that

wtSR(c) = wtSR(cA) ≤ wtH(cA).

Next, we prove the opposite inequality ≥ in (1.19). As in the proof
of Proposition 1.7, consider C = Mn

α(c) = (C1, C2, . . . , Cℓ), where

Ci = Mni
α

(
c(i)
)
∈ Fm×ni

q ,

for i ∈ [ℓ], and where c is subdivided as in (1.10). Fix an index i ∈ [ℓ].
There exists an invertible matrix Ai ∈ Fni×ni

q such that

CiAi = Di, and wtH(Di) = Rk(Ci).
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1.2. Linear Isometries for the Sum-Rank Metric 19

For instance, if we apply Gauss–Jordan elimination column-wise on
Ci, then Di is the resulting matrix and Ai is the matrix encoding the
column transformations. Setting A = Diag(A1, A2, . . . , Aℓ), we conclude
that

wtH(cA) =
ℓ∑

i=1
wtH(CiAi) =

ℓ∑
i=1

wtH(Di) =
ℓ∑

i=1
Rk(Ci) = wtSR(c),

where we have used (1.18), and we are done.

In fact, since coordinate-wise multiplications by nonzero scalars and
permutations of coordinates are also linear isometries for the Hamming
metric, then by Theorem 1.1, (1.19) can be rewritten as

wtSR(c) = min{wtH(ϕ(c)) |ϕ : Fn
qm −→ Fn

qm is a
linear sum-rank isometry}.

(1.20)

Theorem 1.2 yields the following corollary on minimum distances.
We will use this fact to connect maximum sum-rank distance (MSRD)
codes and MDS codes (see Theorem 1.4 and Definition 1.7).

Corollary 1.3. The minimum sum-rank distance of a (linear or nonlinear)
code C ⊆ Fn

qm satisfies

dSR(C) = min{dH(CA) |A = Diag(A1, A2, . . . , Aℓ) ∈ Fn×n
q ,

Ai ∈ Fni×ni
q invertible , 1 ≤ i ≤ ℓ},

(1.21)

where dH(CA) denotes the minimum Hamming distance of the code

CA = {cA | c ∈ C} ⊆ Fn
qm . (1.22)

Example 1.6. Consider the classical repetition code C = ⟨(1, 1, . . . , 1)⟩Fqm

⊆ Fn
qm , for an arbitrary length partition n = (n1, . . . , nℓ). If we assume

that m = 1 and we choose the length partition n = (1, 1, . . . , 1), then
the sum-rank metric recovers the Hamming metric (Proposition 1.5),
and Theorem 1.2 says that

dH (CA) = n,

if A = Diag(a1, a2, . . . , an) ∈ Fn×n
q , for all a1, a2, . . . , an ∈ Fq \{0}. This

is the case because invertible diagonal matrices constitute Hamming
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20 Introduction to the Sum-Rank Metric and MSRD Codes

isometries, that is, they preserve Hamming distances. However, if n is
even and we choose the length partition n = (2, 2, . . . , 2) of order n/2,
then we may choose the invertible matrices

Ai =
(

1 −1
0 1

)
∈ F2×2

q ,

for i ∈ [n/2]. Setting A = Diag(A1, A2, . . . , An/2) ∈ Fn×n
q , we have that

(1, 1, 1, 1 . . . , 1, 1) ·A = (1, 0, 1, 0, . . . , 1, 0).

Hence in this case, we have that

dH (CA) = n

2 < n = dH (C) .

For this length partition, the “correct” sum-rank repetition code would
be D = ⟨(α1, α2, α1, α2, . . . , α1, α2)⟩Fq2 ⊆ Fn

q2 , where m = 2, and
α1, α2 ∈ Fq2 are linearly independent over Fq (Example 1.5).

1.3 The Singleton Bound for the Sum-Rank Metric

In this section, we will provide two Singleton bounds on the size of a
code, given its minimum sum-rank distance, or vice versa. Other general
upper bounds and existential bounds are explored in [20], [141]. As in
the classical case of codes considered with the Hamming metric, the
minimum distance and the code size are competing parameters, each of
which we would like to be as large as possible.

Taking A as the n× n identity matrix in (1.21), we have that

dSR(C) ≤ dH(C), (1.23)

for all (linear or nonlinear) codes C ⊆ Fn
qm . The inequality (1.23) implies

that any upper bound on the minimum Hamming distance of a code
is also an upper bound on its minimum sum-rank distance. However,
(1.21) is stronger (as it states that equality holds for some matrix A),
and implies the following form of the Singleton bound, obtained in [124].

Theorem 1.4 (First Singleton bound). Let C ⊆ Fn
qm be a (linear or

nonlinear) code. Then

|C| ≤ qm(n−dSR(C)+1), (1.24)
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where equality holds if, and only if,

|CA| = qm(n−dH(CA)+1) (1.25)

for all A = Diag(A1, A2, . . . , Aℓ) ∈ Fn×n
q , such that Ai ∈ Fni×ni

q is
invertible, for all i ∈ [ℓ].

If C is a linear code, then (1.24) and (1.25) can be rewritten as

dSR(C) ≤ n− dim(C) + 1, (1.26)

where equality holds if, and only if,

dH(CA) = n− dim(CA) + 1, (1.27)

for all A = Diag(A1, A2, . . . , Aℓ) ∈ Fn×n
q , such that Ai ∈ Fni×ni

q is
invertible, for i ∈ [ℓ].

We may obtain an alternative Singleton bound by transposing
matrices in the ambient space Fm×n1

q × Fm×n2
q × · · · × Fm×nℓ

q . We give
a formal definition as follows.

Definition 1.6. Assume that a length-(Nℓ) sum-rank partition n of
order ℓ is given as n = (N,N, . . . , N). Given a (linear or nonlinear)
code C ⊆

(
Fm×N

q

)ℓ
, we define its transposed code as

C⊺ =
{(
C⊺

1 , C
⊺
2 , . . . , C

⊺
ℓ

)
| (C1, C2, . . . , Cℓ) ∈ C

}
,

where C⊺ ∈ FN×m
q . Fix an ordered basis α = (α1, . . . , αm) for Fqm

over Fq and an ordered basis β = (β1, . . . , βN ) for FqN over Fq. For a
code C ⊆ Fn

qm = FℓN
qm , we define its transposed code with length-(mℓ)

sum-rank partition m of order ℓ given as m = (m,m, . . . ,m) via

C⊺ =
(
Mm

β

)−1
(Mn

α (C)⊺) ⊆ Fℓm
qN .

We are now ready to give a second Singleton bound. Observe that
this bound works when the matrix sizes are the same at different
positions. This result was obtained in [124].

Theorem 1.5 (Second Singleton bound). Let n = (N,N, . . . , N) be a
length-(ℓN) sum-rank partition of order ℓ and let C ⊆ Fn

qm be a (linear
or nonlinear) code. Then

|C| ≤ qN(ℓm−dSR(C)+1). (1.28)
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22 Introduction to the Sum-Rank Metric and MSRD Codes

If C is linear, then (1.28) can be rewritten as

dSR(C) ≤ N

m
(ℓm− dim(C) + 1) . (1.29)

Proof. The inequality (1.28) follows from (1.24), applied on the trans-
posed code C⊺ ⊆ Fℓm

qN , and combined with the following equalities:

|C⊺| = |C| and dSR (C⊺) = dSR(C). (1.30)

Although there exist codes attaining this bound (the transposed
code of any code attaining the bound (1.24)), we will only use it to
obtain a bound on the parameters of codes attaining the first bound
(1.24). See Proposition 1.8 below.

1.4 Maximum Sum-Rank Distance (MSRD) Codes

Among different possible bounds on the code size given the minimum
sum-rank distance, the first Singleton bound (1.24) plays an important
role in some applications (for instance, in distributed storage, as we
will see in Section 3). This is due to the fact that, by Theorem 1.4,
a code C ⊆ Fn

qm meets the bound (1.24) for the sum-rank metric if,
and only if, the code CA ⊆ Fn

qm meets the classical Singleton bound
for its minimum Hamming distance (i.e., CA is an MDS code), for any
invertible block-diagonal matrix A as in (1.17).

Due to this result, in this monograph we define maximum sum-rank
distance (MSRD) codes as those meeting the first Singleton bound.

Definition 1.7 (MSRD codes). We say that a (linear or nonlinear)
code C ⊆ Fn

qm is a maximum sum-rank distance code, or MSRD code
for short, if one of the following equivalent conditions holds:

1. Equality holds in (1.24), i.e.,

|C| = qm(n−dSR(C)+1). (1.31)

2. CA ⊆ Fn
qm is MDS, for all A = Diag(A1, A2, . . . , Aℓ) ∈ Fn×n

q , such
that Ai ∈ Fni×ni

q is invertible, for all i ∈ [ℓ].
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3. (If C is linear)
dSR(C) = n− dim(C) + 1. (1.32)

Example 1.7. The sum-rank repetition code is an MSRD code. Let
the notation be as in Example 1.5. We know from that example that
dSR(C) = n and dim(C) = 1. Hence (1.32) holds. Now, for all invertible
matrices Ai ∈ Fni×ni

q , for i ∈ [ℓ], if we set A = Diag(A1, A2, . . . , Aℓ),
then CA is also a sum-rank repetition code, hence dH(CA) = n and
dim(CA) = 1, thus CA is MDS.

Observe that, when ℓ = 1 and m ≥ N = n1, the families of MSRD
codes and maximum rank distance (MRD) codes in FN

qm coincide. Anal-
ogously, when m = n1 = n2 = . . . = nℓ = 1, the families of MSRD
codes and MDS codes in Fℓ

q coincide.
Note that, when N = n1 = n2 = . . . = nℓ, one may obtain a code

attaining the second Singleton bound (1.28) from any MSRD code as in
Definition 1.7, simply by considering its transposed code (Definition 1.6).
However, if the original code is Fqm-linear, then we may only guarantee
that the transposed code is Fq-linear.

We devote the remainder of this section to non-existence results for
(linear or nonlinear) MSRD codes. Such results will be given in the form
of bounds on the parameters m, ℓ, n1, n2, . . . , nℓ, and q.

The next result follows from the second Singleton bound (Theo-
rem 1.5) and was obtained in [124].

Proposition 1.8. Assume that n = (N,N, . . . , N) is a length- (ℓN)
sum-rank partition of order ℓ. If there exists a (linear or nonlinear)
MSRD code C ⊆ FN

qm with dSR(C) > 1 over Fq, then m ≥ N .

Proof. Assume that C ⊆ FN
qm is a code with d = dSR(C). If m < N and

d > 1, then by Theorem 1.5, we have that

|C| ≤ qN(ℓm−d+1)

= qℓmN−(d−1)N

< qℓmN−(d−1)m

= qm(n−d+1),

and the code C cannot satisfy (1.31), hence it cannot be MSRD.
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24 Introduction to the Sum-Rank Metric and MSRD Codes

In the previous proposition, we assumed that N = n1 = n2 =
. . . = nℓ. Using puncturing (see Definition 1.9 and Corollary 1.9 below),
we may prove that, if there exists a (linear or nonlinear) MSRD code
C ⊊ Fn

qm with dSR(C) > 1 over Fq, for arbitrary n1, n2, . . . , nℓ, then

m ≥ min{n1, n2, . . . , nℓ}. (1.33)

In fact, linearized Reed–Solomon codes, described in Section 2, are
MSRD and exist as long as m ≥ max{n1, n2, . . . , nℓ} and q > ℓ.

It is important to observe that any MRD code in Fn
qm (i.e., an

MSRD code for the length-n sum-rank partition of order 1) is MSRD
for a length-n sum-rank partition of any order ℓ ≤ n. However, by
Proposition 1.8 above for ℓ = 1, MRD codes always require that

m ≥ n = n1 + n2 + · · ·+ nℓ. (1.34)

In particular, their symbol alphabet sizes |Fqm | ≥ qn are exponential
in the code length n, which is impractical except for small values of
n. In Section 2, we will describe linearized Reed–Solomon codes [116],
which are the first known family of MSRD codes with sub-exponential
field sizes, and the only known MSRD codes accepting parameters
such that m = max{n1, n2, . . . , nℓ}. Further linear MSRD codes with
sub-exponential symbol alphabet sizes (smaller than those of linearized
Reed–Solomon codes in many cases) appeared recently in [120] (see
Section 6.1).

Recently in [20], the following bounds for the existence of MSRD
codes were provided. While Proposition 1.8 bounds m in terms of N ,
the following are bounds on ℓ that take q into account. They follow
from combining the Singleton bound with the projective sphere-packing
bound, but we omit the proof for brevity.

Proposition 1.9. Let n = (N,N, . . . , N) be a length-(ℓN) sum-rank
partition of order ℓ and suppose that m ≥ N . Assume that there exists a
(linear or nonlinear) MSRD code C ⊆ Fn

qm = FℓN
qm with d = dSR(C) ≥ 3.

Then

ℓ ≤
⌊
d− 3
N

⌋
+

qN − qN⌊ d−3
N ⌋+N−d+3 + (q − 1)qm

qN − 1

 . (1.35)
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From (1.35) we deduce the following bounds. First, we have that

ℓ ≤
⌊
d− 3
N

⌋
+
⌊
(q − 1) · qm

qN − 1

⌋
+ 1. (1.36)

For the case d = 3 and arbitrary m and N (with m ≥ N), we have that

ℓ ≤
⌊
(q − 1) · q

m + 1
qN − 1

⌋
, (1.37)

and if, furthermore, N divides m, and N ≥ 2, then

ℓ ≤ (q − 1) · q
m − 1
qN − 1 . (1.38)

Finally, for the case m = N and arbitrary d, we have the bound

ℓ ≤
⌊
d− 3
N

⌋
+ q + 1. (1.39)

Observe that the bounds above can be rewritten as lower bounds
on the field size qm. For instance, (1.36) can be rewritten as

qm ≥ qN − 1
q − 1 ·

(
ℓ−

⌊
d− 3
N

⌋
− 1

)
. (1.40)

As in (1.33), we may deduce, via puncturing, non-existence bounds
as above in the case of an arbitrary length partition n = (n1, n2, . . . , nℓ)
of order ℓ, replacing N by min{n1, n2, . . . , nℓ}.

As we will show in Example 1.8, there exist codes with minimum
sum-rank distance d = 2, for ℓ unbounded and for any fixed q, m and
N . Hence the assumption d ≥ 3 in Proposition 1.9 cannot be lifted.

Linearized Reed–Solomon codes (Section 2) are the only known
general MSRD codes with m = N . They require that ℓ ≤ q − 1, where
equality may be attained. Hence there is an additive gap of⌊

d− 3
N

⌋
+ 2

between the value of ℓ that they may attain and the bound (1.39).
When d ≤ N + 2, such an additive gap is reduced to 2, as the bound
(1.39) becomes ℓ ≤ q + 1 in that case.

Finally, we note that the bound (1.38) is sharp, and it was attained
by the linear MSRD codes introduced in [120], which we study in
Section 6.1. It is still an open problem to find if the other bounds from
Proposition 1.9 are sharp.
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1.5 Generator Matrices of MSRD Codes

In this section, we provide characterizations of generator and parity-
check matrices of linear MSRD codes in Fn

qm . These characterizations
are of interest for some applications (see Section 3). They can also be
used to prove that linear codes are MSRD with high probability over
large fields [141]. We assume that a length partition n = (n1, . . . , nℓ) of
order ℓ is given.

Theorem 1.6. Let C ⊆ Fn
qm be a k-dimensional linear code with genera-

tor and parity-check matrices G ∈ Fk×n
qm and H ∈ F(n−k)×n

qm , respectively.
Then the following conditions are equivalent:

1. C is an MSRD code.
2. Every square k × k submatrix of GA ∈ Fk×n

qm is invertible, for
all invertible matrices Ai ∈ Fni×ni

q , for i ∈ [ℓ], setting A =
Diag(A1, A2, . . . , Aℓ).

3. Every square (n − k) × (n − k) submatrix of HA ∈ F(n−k)×n
qm

is invertible, for all invertible matrices Ai ∈ Fni×ni
q , for i ∈ [ℓ],

setting A = Diag(A1, A2, . . . , Aℓ).

Proof. Let Ai ∈ Fni×ni
q be invertible matrices, for i ∈ [ℓ], and set

A = Diag(A1, A2, . . . , Aℓ). Then GA ∈ Fk×n
qm and H (A⊺)−1 ∈ F(n−k)×n

qm

are generator and parity-check matrices, respectively, of the linear code
CA ⊆ Fn

qm . By Definition 1.7, C is MSRD if, and only if, CA is MDS
for all such block-diagonal invertible matrices. Therefore, the result
follows from the fact that a linear code is MDS if, and only if, every
square k × k submatrix of one of its generator matrices is invertible,
and similarly for parity-check matrices.

The previous theorem implies that any k coordinates in [n] form an
information set of a k-dimensional linear MSRD code, as is the case for
linear MDS codes. In particular, we may choose any k coordinates to
form a systematic generator matrix of a linear MSRD code.

We conclude with a characterization of systematic generator matrices
of linear MSRD codes. For this purpose, we need to revisit the definition
of superregular matrices. See also [153] and [110, Ch. 11, Th. 8].
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Definition 1.8. For arbitrary positive integers r and s, we say that a
matrix M ∈ Fr×s

qm is superregular if all square submatrices of M (of any
size up to min{r, s}) are invertible.

We have the following characterization of systematic generator
matrices of linear MSRD codes in terms of superregular matrices. This
result was given in [4].

Theorem 1.7. Let C ⊆ Fn
qm be a k-dimensional linear code with

generator matrix G ∈ Fk×n
qm . Consider a dimension partition k =

k1 + k2 + · · ·+ kℓ, where 0 ≤ ki ≤ ni, for i ∈ [ℓ], and assume that

G = (J1, P1, J2, P2, . . . , Jℓ, Pℓ) ∈ Fk×n
qm ,

for matrices Ji ∈ Fk×ki
qm and Pi ∈ Fk×(ni−ki)

qm , such that

Ik = (J1, J2, . . . , Jℓ) ∈ Fk×k
qm

is the k × k identity matrix. Let P = (P1, P2, . . . , Pℓ) ∈ F
k×(n−k)
qm . Then

C is MSRD if, and only if, the matrix

BPA+ C ∈ Fk×(n−k)
qm

is superregular, for all matrices Ci ∈ Fki×(ni−ki)
q and for all invertible

matrices Bi ∈ Fki×ki
q and Ai ∈ F(ni−ki)×(ni−ki)

q , for i ∈ [ℓ], and where
we set

A = Diag(A1, A2, . . . , Aℓ) ∈ F(n−k)×(n−k)
q ,

B = Diag(B1, B2, . . . , Bℓ) ∈ Fk×k
q ,

C = Diag(C1, C2, . . . , Cℓ) ∈ Fk×(n−k)
q .

(1.41)

Here, it may happen that ki = 0 or ni − ki = 0, for some i ∈ [ℓ]. If for
instance ki = 0, then in the ith block we add ni − ki > 0 zero columns
but we add no rows to form C. To form B, nothing is added in this
case in the ith block. Similarly if ni − ki = 0 (then ki > 0).

Proof. Let A ∈ F(n−k)×(n−k)
q , B ∈ Fk×k

q , and C ∈ Fk×(n−k)
q be as in

(1.41), where A and B are invertible. Define the invertible matrix

Di =
(
B−1

i B−1
i Ci

0 Ai

)
∈ Fni×ni

q ,
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for i ∈ [ℓ], and set D = Diag(D1, D2, . . . , Dℓ) ∈ Fn×n
q . Then

BGD = (J1, Q1, J2, Q2, . . . , Jℓ, Qℓ) ∈ Fk×n
qm ,

where Qi ∈ Fk×(ni−ki)
qm , for i ∈ [ℓ], and

(Q1, Q2, . . . , Qℓ) = BPA+ C ∈ F(n−k)×n
qm .

Finally, we have that BGD ∈ Fk×n
qm is a systematic generator matrix of

the k-dimensional linear code CD ⊆ Fn
qm .

Now, if C is MSRD, then by Definition 1.7, CD is MDS, and therefore,
BPA+ C ∈ F(n−k)×n

qm is superregular [110, Ch. 11, Th. 8].
Conversely, if BPA+ C ∈ F(n−k)×n

qm is superregular, then we have
that CD is MDS [110, Ch. 11, Th. 8]. Since any invertible matrix in
Fni×ni

q is a product of matrices of the form of Di, we deduce that C is
MSRD by Definition 1.7.

Observe that, in the classical Hamming-metric case, Theorem 1.7 re-
covers the well known characterization of systematic generator matrices
of MDS codes.

Assume that n = (1, 1, . . . , 1) and that m = 1. For each i ∈ [ℓ],
since ni = 1 and 0 ≤ ki ≤ 1, then either ki = 0 or ni − ki = 0. This
means that C = 0 necessarily and B ∈ Fk×k

q and A ∈ F(n−k)×(n−k)
q are

invertible diagonal matrices. Now, BPA+ C = BPA is superregular if,
and only if, P is superregular, since A and B are invertible diagonal
matrices. Hence in this case, Theorem 1.7 says that C is MDS if, and
only if, P is superregular.

In the rank-metric case, Theorem 1.7 recovers the characterization
of systematic generator matrices of MRD codes obtained in [132].

1.6 Constructing New Codes from Old Codes

In this section, we will explore constructions of new codes from old ones.
We will investigate dual codes, punctured codes, shortened codes, and
subfield subcodes.

Define the dual code of a linear code C ⊆ Fn
qm as usual:

C⊥ =
{

d ∈ Fn
qm | cd⊺ = 0, for all c ∈ C

}
. (1.42)
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The next theorem follows immediately from Theorem 1.6.

Theorem 1.8. A linear code C ⊆ Fn
qm is MSRD with respect to a given

length partition and subfield Fq if, and only if, so is its dual C⊥ ⊆ Fn
qm .

We illustrate Theorem 1.8 with the sum-rank repetition code from
Example 1.5.

Example 1.8 (The sum-rank single-parity-check code). Let the no-
tation and assumptions be as in Example 1.5. Using the language
of generator and parity-check matrices, we know that the sum-rank
repetition code C ⊆ Fn

qm has the generator matrix

G =
(
α(n1),α(n2), . . . ,α(nℓ)

)
∈ F1×n

qm .

The reader may verify that a parity-check matrix of C, that is, a generator
matrix of its dual C⊥ ⊆ Fn

qm , is

H =



In1 0 . . . 0 0 α−1
nℓ

(α(n1))⊺
0 In2 . . . 0 0 α−1

nℓ
(α(n2))⊺

...
... . . . ...

...
...

0 0 · · · In(ℓ−1) 0 α−1
nℓ

(α(nℓ−1))⊺

0 0 · · · 0 I(nℓ)−1 α−1
nℓ

(α((nℓ)−1))⊺


,

where Ini is the ni × ni identity matrix. It can be verified directly that
dSR

(
C⊥
)

= 2. Since dim
(
C⊥
)

= n− 1, we deduce that C⊥ is also an
MSRD code.

We now explore puncturing and shortening. One may consider
conceptually more general definitions of puncturing and shortening in
the context of the sum-rank metric [20], [118]. For simplicity, in this
monograph we restrict ourselves to classical puncturing and shortening.

Definition 1.9. Let C ⊆ Fn
qm be a linear code, and let I = {i1, i2, . . . , it},

where t > 0 and 1 ≤ i1 < i2 < . . . < it ≤ n. We define the linear codes

CI = {(ci1 , ci2 , . . . , cit) | (c1, c2, . . . , cn) ∈ C} ⊆ Ft
qm , and

CI = {(ci1 , ci2 , . . . , cit) | (c1, c2, . . . , cn) ∈ C, and ci = 0 if i /∈ I} ⊆ Ft
qm ,
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called, respectively, the restricted code and shortened code of C on the
coordinates in I. We also say that CI is the punctured code of C in the
coordinates in J = [n] \ I.

Punctured and shortened codes behave similarly with respect to the
sum-rank metric and the Hamming metric, as shown in the following
proposition. However, one needs to be careful about length partitions.

Proposition 1.10. Let C ⊆ Fn
qm be a linear code with d = dSR(C). Let

I ⊆ [n] be a subset such that |I| > n− d ≥ 0 (thus |I| ≥ dim(C) by the
Singleton bound). Then the following hold:

1. dim (CI) = dim(C) and dSR (CI) ≥ d− (n− |I|), and
2. dim

(
CI
)
≥ dim(C)− (n− |I|) and dSR

(
CI
)
≥ d,

for the length-|I| sum-rank partition (|I1|, |I2|, . . . , |Iℓ|), where Ii is the
set I restricted to the ith block of ni coordinates, for i ∈ [ℓ], and
omitting positions where |Ii| = 0.

Proof. First, the statements on dimensions are general classical results
using the minimum Hamming distance of C, and hold because, by (1.23),

dH(C) ≥ d > n− |I|.

The statements on minimum sum-rank distances in items 1 and 2
need a proof but it is similar to the case of the Hamming metric. We
show this for item 1. For c ∈ C, denote by cI ∈ CI the restriction of c
to the coordinates in I. Set

Mn
α(c) = (C1, C2, . . . , Cℓ) ∈ Fm×n1

q × Fm×n2
q × · · · × Fm×nℓ

q ,

where Ci ∈ Fm×ni
q , for i ∈ [ℓ]. The restricted codeword cI ∈ CI

corresponds to the ℓ-tuple of matrices (C1I1 , C2I2 , . . . , CℓIℓ
), where

CiIi ∈ F
m×|Ii|
q is the restriction of the matrix Ci to the columns in

Ii, for i ∈ [ℓ]. Since deleting ni − |Ii| columns from Ci may only reduce
its rank by ni − |Ii|, for i ∈ [ℓ], we deduce that

wtSR(cI) ≥ wtSR(c)−
(

ℓ∑
i=1

(ni − |Ii|)
)

= wtSR(c)− (n− |I|),

and we are done.
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The following result on puncturing and shortening linear MSRD
codes follows immediately.

Corollary 1.9. Let C ⊆ Fn
qm be a k-dimensional linear MSRD code. Let

I ⊆ [n] be a subset such that |I| ≥ k, which in this case is equivalent
to |I| > n− d. Then CI and CI are linear MSRD codes in F|I|

qm , for the
length partition (|I1|, |I2|, . . . , |Iℓ|), omitting zero positions, where Ii is
the set I restricted to the ith block of ni coordinates, for i ∈ [ℓ]. We
also have

1. dim (CI) = dim(C) and dSR (CI) = dSR(C)− (n− |I|), and
2. dim

(
CI
)

= dim(C)− (n− |I|) and dSR

(
CI
)

= dSR(C).

We conclude this section by discussing subfield subcodes as in [124].
To this end, we will consider a subfield Fq0 ⊆ Fq, which is equivalent to
considering q = qs

0, for some positive integer s. Therefore, we have two
finite-field extensions

Fq0 ⊆ Fqm
0

and Fq ⊆ Fqm , where q = qs
0 and s ≥ 1.

To relate these four fields, the following directed graph might be helpful,
where K −→ L means that K is a subfield of L:

Fqm

↗ ↖
Fqm

0
Fq = Fqs

0
.

↖ ↗
Fq0

If we take an ordered basis α0 ∈ Fm
qm

0
of Fqm

0
over Fq0 , then we may

consider the total matrix representation map (Definition 1.4)

Mn
α0 : Fn

qm
0
−→ Fm×n1

q0 × Fm×n2
q0 × · · · × Fm×nℓ

q0 . (1.43)

Using Mn
α0 , the sum-rank metric in Fn

qm
0

coincides with that in Fm×n1
q0 ×

Fm×n2
q0 × · · · × Fm×nℓ

q0 . This motivates the following definition.

Definition 1.10. Given a (linear or nonlinear) code C ⊆ Fn
qm , we define

its subfield subcode over Fqm
0

as the code

C|qm
0

= C ∩ Fn
qm

0
.
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The following bound on the minimum sum-rank distance of subfield
subcodes was given in [124].

Proposition 1.11. For any (linear or nonlinear) code C ⊆ Fn
qm , we have

dSR

(
C|qm

0

)
≥ dSR(C),

where the minimum sum-rank distance dSR

(
C|qm

0

)
is considered via

the map Mn
α0 as in (1.43).

Proof. This follows directly from Theorem 1.2, by noting that an in-
vertible matrix in Fni×ni

q0 is also an invertible matrix in Fni×ni
q , for

i ∈ [ℓ].

For linear codes, we have the following bound on dimensions given
by Delsarte [40], which holds regardless of the metric.

Proposition 1.12. Given a linear code C ⊆ Fn
qm , the subfield subcode

C|qm
0
⊆ Fn

qm
0

is Fqm
0

-linear, and if q = qs
0, then

dimFqm
0

(
C|qm

0

)
≥ n− s

(
n− dimFqm (C)

)
.

In Section 6.2, we will describe sum-rank BCH codes [114], which are
subfield subcodes of certain linearized Reed–Solomon codes (Section 2),
and for which we may give tighter bounds on the dimension than
Delsarte’s bound (Proposition 1.12).
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72, 76, 77, 79, 91, 117,
183

skew-cyclic, 185
dual, 29, 177, 183

of linearized Reed–
Solomon, 79

of MSRD code, 29
equivalence, 16
Fqm-linear, 12
generalized Reed–Solomon,

69, 76
Golden, 156
hierarchical MR-LRC, 113
lifting construction, 128
linear dispersion, 143, 156
linearized Reed–Solomon, 9,

24, 69–81, 100, 103, 113,
118, 128, 132, 134, 153

locally repairable, see code,
LRC

LRC, 90, 92, 110
maximally-recoverable

LRC, see code, MR-
LRC

maximum distance separa-
ble, see code, MDS

maximum sum-rank dis-
tance, see code, MSRD

MDS, 22, 79, 89
MR-LRC, 91, 96, 112

erasure correction capabil-
ity, 96

universality, 108
via linearized Reed–

Solomon code, 100, 103
MRD, 79
MSRD, 22, 78

in network coding, 128
table of, 180

optimal LRC, 98
partial MDS, 91
punctured, 25, 29, 31
Reed–Solomon, 68
repetition, 89
restricted, 30
shortened, 29, 31
skew Reed–Solomon, 67
space–time, 135

rate–diversity optimal,
143

subfield subcode, 31, 183
sum-constant-dimension,

129
sum-rank, 9
sum-rank A, 153
sum-rank B, 153
sum-rank BCH, 183
sum-rank repetition, 14, 20,

23
sum-rank single-parity-
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check, 29
transposed, 21, 22

coding gain, 144
column space, 125
conjugacy, 56

in base field, 65
conjugacy classes, 57

structure of, 62
constellation, 142
cyclicity, 181

decoding
maximum likelihood, 137,

160
noncoherent communica-

tion, 133
sequential, 161
stack, 161

delay, 187
derivation, 38
distance, see metric
distributed storage systems, 89
diversity gain, 142
diversity–multiplexing tradeoff,

144
division

of skew polynomials, 41
domain

Euclidean, 40

Eisenstein integers, 148, 152
error and erasure correction

coherent communication,
123

noncoherent communica-
tion, 124

evaluation
linear operator polynomial,

70
of skew polynomials, 43

linearity, 47
product rule, 47
via operator polynomial,

71
excess erasures, 95

Gaussian integers, 148, 152
global erasure correction, 95

hierarchical locality, 108
Horner’s method, 46, 88

isometry
sum-rank, 15–17

Kronecker product, 178

Lagrange interpolation, 48, 53
Laurent series, 187
length partition, 10
linear network coding, 116
local distance, 92
local erasure correction, 95
local group, 92
locality, 92

hierarchical, 108

map
lifting, 131
matrix representation, 11,

121
quantization, 148
rank-metric-preserving, 147
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total matrix representation,
12

matrix
basic generator, 189
dispersion, 144
generator

linearized Reed–Solomon
code, 34, 75

linearized Vandermonde, 73,
177

MDS generator
systematic, 28

MRD generator
systematic, 28

MSRD generator, 26
systematic, 27

MSRD parity-check, 26
parity-check

linearized Reed–Solomon
code, 80

skew Vandermonde, 66
superregular, 27
transfer, 121
truncated sliding generator,

191
metric

Hamming, 13
properties, 8
rank, 13
sum-injection, 125
sum-rank, 7

motivation for, 2–6
sum-rank column, 191
sum-subspace, 127

MIMO, see channel
minimum distance

sum-rank, 9
MSRD code, see code, MSRD

network coding, 116
coherent, 122
multishot, 117
noncoherent, 122

Newton interpolation, 55
norm

ith truncated, 44, 45, 66
Frobenius, 136

normal basis, 182

operator
Da, 69
cyclic inter-block shifting,

184
skew-cyclic intra-block shift-

ing, 184

P-independence, 52, 61, 67
of unions, 60

packet network, 119
polynomial

linear operator, 70
minimal skew, 51
remainder, 44
skew, 39
skew evaluation, 43
zero set, 50

ideal defined by, 50
puncturing, 29, 31

Q function, 138

rate–diversity tradeoff, 145
rational function, 187
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ring
linear operator polynomials,

70
skew polynomials, 39

sequential decoding, 161
set

P-independent, 52
shortening, 29, 31
signal constellation, 142
signal-to-noise ratio, 136
SNR, see signal-to-noise ratio
spherical bounding, 171
SRA, see code, sum-rank A
SRB, see code, sum-rank B

subfield subcode, 31
sum-rank partition, 10

t-wise independence, 178
tensor product, 178
transmit diversity gain, 142

universality, 108

weight
Hamming, 13
rank, 13
sum-rank, 7

connection to Hamming,
18
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