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ABSTRACT

Over-complete systems of vectors, or in short, frames, play
the role of analog codes in many areas of communication
and signal processing. To name a few, spreading sequences
for code-division multiple access (CDMA), over-complete
representations for multiple-description (MD) source coding,
space-time codes, sensing matrices for compressed sensing
(CS), and more recently, codes for unreliable distributed
computation. In this survey paper we observe an information-
theoretic random-like behavior of frame subsets. Such sub-
frames arise in setups involving erasures (communication),
random user activity (multiple access), or sparsity (signal
processing), in addition to channel or quantization noise.
The goodness of a frame as an analog code is a function
of the eigenvalues of a sub-frame, averaged over all sub-
frames (e.g., harmonic mean of the eigenvalues relates to
least-square estimation error, while geometric mean to the

Marina Haikin, Matan Gavish, Dustin G. Mixon and Ram Zamir (2021), “Asymptotic
Frame Theory for Analog Coding”, Foundations and Trends® in Communications
and Information Theory: Vol. 18, No. 4, pp 526–645. DOI: 10.1561/0100000125.
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Shannon transform, and condition number to the restricted
isometry property).

Within the highly symmetric class of Equiangular Tight
Frames (ETF), as well as other “near ETF” families, we
show a universal behavior of the empirical eigenvalue dis-
tribution (ESD) of a randomly-selected sub-frame: (i) the
ESD is asymptotically indistinguishable from Wachter’s
MANOVA distribution; and (ii) it exhibits a convergence
rate to this limit that is indistinguishable from that of a
matrix sequence drawn from MANOVA (Jacobi) ensembles
of corresponding dimensions. Some of these results follow
from careful statistical analysis of empirical evidence, and
some are proved analytically using random matrix theory
arguments of independent interest. The goodness measures
of the MANOVA limit distribution are better, in a concrete
formal sense, than those of the Marchenko–Pastur distribu-
tion at the same aspect ratio, implying that deterministic
analog codes are better than random (i.i.d.) analog codes.
We further give evidence that the ETF (and near ETF)
family is in fact superior to any other frame family in terms
of its typical sub-frame goodness.

Full text available at: http://dx.doi.org/10.1561/0100000125



1
Introduction

A frame is an “over-complete basis”, i.e., a system of vectors that spans
the space with more vectors than the space dimension (real or complex).
Let us denote the space dimension by m, and the number of vectors by
n, where n > m. The m × n frame matrix

F = [f1 · · · fn] (1.1)

is generated by stacking the frame vectors f1, . . . , fn as columns, where
we restrict attention to unit-norm vectors ∥fi∥ = 1. The relative position
of frame vectors is determined by their pairwise cross-correlation matrix

F †F =
{

⟨fi, fj⟩
}

, (1.2)

called also Gram or covariance matrix, which is invariant under unitary
operation on the frame vectors (e.g., rotation).

This survey proposes an information-theoretic view on the design
and analysis of frames with favorable performance. We think of a frame
as an “analog code”, which can add redundancy [66], [90], [128], [151],
remove redundancy [22], or multiplex information directly in the signal
space [99], [120], [153]. Multiplication by the frame matrix can expand

3
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4 Introduction

the dimension m : n hence add redundancy, or reduce the dimension
n : m hence compress (with y = F †x for the former and x = F y for the
latter). The aspect ratio n/m is often called the “frame redundancy”.

Although information theory tells us that reliable data transmis-
sion (adding redundancy) and compression (removing redundancy) can
be achieved by digital codes, real-world physical-layer communication
systems combine analog modulation techniques that can be described
in terms of frames1 [16], [17], [22], [67], [94], [158]. We are specifically
interested in some old and new applications of frames that involve a
combination of random activity and noise. Performance in these appli-
cations is a function of the eigenvalues of (the Gram of) a randomly
selected k-subset FS of the n frame vectors,

FS = [fi1 · · · fik
] (1.3)

where S = {i1, . . . , ik} ⊂ [n], |S| = k. (We shall use [n] to denote
{1, . . . , n}.)

For example, in non-orthogonal code-division multiple access (NOMA-
CDMA), [127], [140], [145], n users are allocated with m-length spreading
sequences using the frame F , but only k out of the n users are active at
any given moment, and performance is measured by the Shannon capac-
ity of the vector Gaussian channel associated with the m × k sub-matrix
FS (averaged over the subset S of active users). In transform-based
multiple-description (MD) source coding, [67], [110], an m-dimensional
vector source is expanded into n packets using the frame F , only k

packets are received, and performance is measured by the remote rate-
distortion function associated with FS (averaged over the subset S of
received packets). In coded distributed computation (CDC), [47], [85],
[89], the user (master) node expands m sub-computation tasks into n

redundant tasks using the frame F , and sends them to n noisy compu-
tation nodes (where the noise is due to finite precision computation);
only k nodes return their answers on time (n − k are stragglers), and

1For example, coded-modulation can be thought of as concatenation of an outer
digital code with an inner analog code.

Full text available at: http://dx.doi.org/10.1561/0100000125
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the sub-matrix FS determines the final average precision (or noise am-
plification) after the user node decodes the desired computation value.
Other “(n, m, k) setups” are listed in Table 1.1.

Table 1.1: (n, m, k) setups featuring analog frame codes

Application n m k m ≷ k References

Source
with erasures

block-length bandwidth important
samples

m > k [72], [153]

NOMA-
CDMA

users resources
(spread)

active users m > k [120], [128],
[158]

Impulsive
channel

block-length bandwidth non-erased m < k [138], [151]

Space-time
coding

space
(diversity)

time non-erased an-
tennas

m < k [131], [137],
Section 9.3

∆Σ
modulation

over-sampled original non-erased m < k [25], [64]

Multiple de-
scriptions

transmitted original received m < k [67], [110]

Wavelets coefficients source significant
coefficients

m > k [81]

Compressed
sensing

input output sparsity m > k [24], [40]

Coded
computation

workers computations non-
stragglers

m < k [47], [85], [89]

Neural
networks

input output features m > k [7]

In an ideal noiseless setup one could choose the frame redundancy
n/m equal to the reciprocal of the activity ratio k/n, i.e., m = k = the
effective number of users/packets/nodes in the examples above. This is
similar to digital erasure correction using maximum distance separable
(MDS) codes for a channel with k out of n non-erased symbols [13].
However, when noise is involved (channel/quantization/computation
noise in the setups above), a better trade-off between noise immunity
and information rate is obtained by choosing a lower/higher frame
redundancy; k < m < n in NOMA-CDMA, or m < k < n in MD and
CDC. Thus, m is a design parameter that we can optimize.

Full text available at: http://dx.doi.org/10.1561/0100000125



6 Introduction

Frame design could be viewed as an attempt to find vectors f1, . . . , fn

in Rm or Cm, n > m, that are somehow “as orthogonal to each other as
possible”, either in pairs (k = 2) or in larger k-subsets [81], [148]. As we
shall see in Chapter 3, the sub-frame performance criteria mentioned
above (capacity, rate-distortion function, noise amplification), denoted
in general as Ψ(FS), depend on the spread of the eigenvalues of the
Hessian FSF †

S or Gram F †
SFS matrices2 of the sub-frame FS . More

mutual orthogonality amounts to a more compact eigenvalue spectrum,
and ideal performance occurs when the spectrum shrinks to a delta
function, or equivalently, the sub-frame is orthogonal. The redundant
nature of the frame, however, implies that most of its subsets are
not orthogonal. Our target is therefore to find a frame whose average
performance over all k-subsets

Ψ̄(F, k) = 1(n
k

) ∑
S⊂[n]
|S|=k

Ψ(FS) (1.4)

is “good”; or in other words, a frame whose typical subset has a compact
eigenvalue spectrum.3

We borrow from information theory the probabilistic view of a
communication channel, and the notions of typicality and typical-case
(rather than worst-case) goodness [34]. The information-theoretic view-
point leads us to look for frames with a “typically compact” subset
spectrum for a given (n, m, k) triplet, and for frame families with the
best attainable asymptotic goodness in the limit as n goes to infinity for
fixed (asymptotic) redundancy ratios n/m and k/m. This fresh look on
frames turns out to be fruitful, and opens many interesting questions at
the intersection of signal processing, random matrix theory, geometry,
harmonic analysis and information theory.

Sampling theory suggests the low-pass frame (LPF), the frame
analog of band-limited interpolation, as a practical candidate for signal

2The nonzero eigenvalues of both matrices are the same.
3Simple (though only partial) measures for spectrum compactness are the variance

and kurtosis; see Section 10.2.
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expansion. This turns out to be a far-from-optimal choice, as we shall see,
due to large noise amplification for a typical subset (which corresponds
to noisy reconstruction from a non-uniform sampling pattern [83], [98],
[122], [144]).

Information theory suggests random (i.i.d.) frames as natural candi-
dates for good analog codes. To study the spectrum of these objects,
Random Matrix Theory (RMT) offers a helpful matrix version of the
law of large numbers: the eigenvalue distribution of a typical random
matrix tends to concentrate towards a fixed distribution in the limit of
large dimensions [1], [49]. Indeed, if we choose the elements of the frame
matrix F as i.i.d. Gaussian variables, then the subset Gram matrix
F †

SFS is drawn from a Wishart ensemble, and its spectrum converges
almost surely in distribution to the Marchenko–Pastur (MP) distribu-
tion with parameter β = k/m [93]. We can thus compute the capacity /
rate-distortion function / noise amplification (1.4) associated with the
Marchenko–Pastur distribution, and obtain some achievable asymptotic
performance Ψ(MP, β) for the problems described above.

Is the Marchenko–Pastur distribution - corresponding to random
i.i.d. frames - the “most compact” subset spectrum we can hope for?
One of the key results of this survey is that better deterministic frames
do exist. In fact, a certain class of highly symmetric frames obeys
asymptotic concentration of the spectrum of a randomly-selected subset
to a universal limiting distribution – similarly to the case of a completely
random (i.i.d.) matrix. Crucially, this limiting distribution is more
compact than the MP distribution.

Equiangular tight frames (ETF) are in a sense the most geometrically
symmetric family of frames [26], [54], [148]. They have numerous applica-
tions in communications and signal analysis, [90], and their study brings
together geometry, combinatorics, probability, and harmonic analysis.
Interestingly, as we shall see in Chapter 4, one construction of ETFs
corresponds to signal expansion with an irregular Fourier transform,
[153], as opposed to the low-pass frame (LPF) mentioned above.

Full text available at: http://dx.doi.org/10.1561/0100000125



8 Introduction

A series of recent papers [71]–[75], [92], demonstrated that ETFs,
as well as other deterministic tight frames that we term “near ETFs”,
exhibit an RMT-like behavior familiar from Multivariate ANalysis Of
VAriance (MANOVA) [46], [106], [146]. We shall call this phenomenon
the ETF-MANOVA relation.

Specifically, the work in [74] showed empirically that for any frame
within this class of frames, the eigenvalue distribution of a randomly-
selected subset appears to be indistinguishable from that of a random
matrix taken from the MANOVA (Jacobi) ensemble. The work in [71],
[73], [75], [92] further partially proved analytically4 that as n → ∞,
for aspect ratios m/n → γ and k/m → β, this eigenvalue distribution
converges in distribution almost surely to Wachter’s limiting MANOVA
distribution parameterized by γ and β [146]. The concluded asymptotic
performance (1.4) of the ETF family,

Ψ̄(ETF, γ, β) = Ψ(MANOVA, γ, β), (1.5)

is strictly better than Ψ(MP, β), the asymptotic performance of random
(i.i.d.) frames, for various performance measures Ψ. Figure 1.1 shows
that the gain of MANOVA over MP is ∼ 2 dB in noise amplification, and
∼ 0.35 bit in capacity. We conjecture that in terms of these performance
measures, the MANOVA distribution is, in fact, the most compact
typical sub-frame spectrum achievable by any unit-norm frame.

In this survey paper we propose a common framework for these
topics, located at the intersection of information theory and neighboring
fields. Chapter 2 addresses primarily the information theory audience,
and motivates a passage from digital codes to low-pass interpolation
and analog frame codes, through a side-information source coding
problem. Chapter 3 formalizes the notion of a performance measure

4 The proof is complete for the case γ = 1/2 [92]. For a general 0 < γ < 1,
[73] establishes a recursive formula in r for the asymptotic mean rth moment of a
randomly-selected ETF subset, for r = 1, 2, . . .. Using a symbolic computer program,
we were able to verify that this formula coincides with the first 10 MANOVA moments
(above which the complexity explodes). A proof of the identity for a general r ∈ N
remains a fascinating open problem.

Full text available at: http://dx.doi.org/10.1561/0100000125
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Figure 1.1: Comparison of the asymptotic performance measures Ψ(MANOVA, β, γ),
Ψ(Marchenko-Pastur, β) and Ψ(Band Limited, β, γ), as a function of β, for γ = 1/2
(corresponding to sub-frame aspect ratio β from a redundancy-2 frame, in the
families of ETF, random (i.i.d.), and LPF, respectively). Each figure corresponds to a
different sub-frame performance measure Ψ: (Left) restricted isometry property (RIP)
associated with compressed sensing (lower is better); (Middle) noise amplification
associated with MD and CDC (lower is better); (Right) Shannon transform associated
with the capacity of NOMA-CDMA (higher is better). The 1/3 line in the left figure
is the sharp RIP bound for sparse signal and low rank matrix recovery [21].

that depends on the eigenvalue spectrum of a sub-frame; e.g., noise
amplification amounts to the harmonic mean of the spectrum, while
capacity (Shannon transform) amounts to the geometric mean of the
spectrum. Chapter 4 gives background from frame theory (in particular,
earlier results on the spectral properties of sub-frames motivated by
compressed sensing), while Chapter 5 gives the relevant background on
random matrix theory.

The two highlights of this survey are (i) the ETF-MANOVA relation,
connecting frame theory with random matrix theory, and (ii) the (still
mostly open) possibility of ETF superiority. The first highlight is divided
between two sections: Chapter 6 describes the empirical results of [74]
regarding the universal behavior of sub-frames of ETFs and “near ETFs”;
and Chapter 7 develops analytically the convergence to the MANOVA
limit distribution based on the moment method (see footnote 4 above)
[71], [75], [92]. To support the ETF superiority claim, we examine
numerically in Chapter 9 some of the applications listed in Table 1.1;
and we prove analytically in Chapter 10 the erasure Welch bound, [75],
which implies that tight frames have the smallest sub-frame spectral

Full text available at: http://dx.doi.org/10.1561/0100000125



10 Introduction

variance among all unit-norm frames, and that ETFs have the smallest
sub-frame spectral kurtosis among all unit-norm tight frames. In between
these two highlights, Chapter 8 proves some sub-frame performance
inequalities (in the flavor of the information-theoretic inequalities of
[37]), which explain the role of the sub-frame aspect ratio k/m as a
design parameter. Finally, Chapter 11 concludes and lists interesting
open questions and conjectures that arise in this area.

1.1 Notation

A finite sequence of integers {1, . . . , n} is denoted as [n]. Bold letters
f , x etc. denote column vectors. The n × n identity matrix is denoted by
In. Dagger (·)† denotes transpose or conjugate (Hermitian) transpose,
according to the context. The set of all k-subsets of the set [n] is denoted([n]

k

)
, or {S ⊂ [n] : |S| = k}, or simply {S : |S| = k} when the context

is clear. E denotes expectation. Throughout we try to keep the following
glossary:

m vector space dimension
n frame size
k sub-frame size
p selection probability
γ frame aspect ratio m/n

β sub-frame aspect ratio k/m

F m × n frame matrix
S k-subset of [n]
FS m × k sub-frame matrix
Ψ performance measure

Full text available at: http://dx.doi.org/10.1561/0100000125
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A
Entropy-coded dithered quantization

To asses the rate-distortion performance (2.11) of the analog coding
scheme, we shall adopt the additive-noise “test channel” of entropy-
coded (subtractive) dithered quantization (ECDQ) [159]. In this model,
Q(dither)(x̃) = x̃ + Z, where Z is an independent uniform or Gaussian
noise, and the quantizer entropy is given by the mutual information
H(Q(dither)(X̃)) = I(X̃; X̃ + Z).1 The equivalent error in the important
samples, Es = X̂s−Xs is thus, by (2.8), given by Es = F †

S ·(X̃+Z)−Xs =
F †

S · Z, implying that the mean-squared distortion per important sample
(2.2) is

D = 1
k
E
{

∥Es∥2
}

= σ2
z

k
· trace{F †

SFS} = σ2
z , (A.1)

where σ2
z is the quantizer mean-squared error, and the last equation

follows since FS has k unit-norm columns.2 Since the decoder is blind

1To be more precise, the quantizer operation is given by Q(x̃ + dither) − dither,
where dither is uniform over the fundamental quantizer cell. For good high-
dimensional lattice quantizers, this uniform dither distribution tends to be white
Gaussian. See [161].

2Further improvement can be obtained using minimum mean-squared error
“Wiener” estimation, [72], but this is negligible when σ2

x ≫ D.
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to the location of important samples (that affect the correlation of the
vector X̃), the coding rate is equal to that of a white Gaussian vector W̃
with the same power as X̃, [84]. Assuming the LS estimator (2.9), we
have E∥X̃∥2 = σ2

x · trace{(F †
SFS)−1}, so the ECDQ mutual information

formula (with a Gaussian dither) becomes:

Ranalog = 1
n

I(W̃; W̃ + Z) (A.2)

= m

2n
· log

(
1 +

1
mE∥X̃∥2

σ2
z

)
(A.3)

= β · p

2 · log
(

1 + σ2
x

D
· trace{(F †

SFS)−1}
m

)
(A.4)

where β
∆= k/m, and we used (2.2) with k = pn.
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B
Information theoretic proofs for sub-frame

inequalities

In proving Theorems 8.1 and 8.2 we use the following two lemmas.

Lemma B.1. For any m × n frame F , and k < n,

1(n
k

) ∑
S:|S|=k

FS · F †
S = k

n
· F · F †, (B.1)

where the average in the left hand side is over all k-subsets of {1, . . . , n}
as in (3.8)-(3.2).

Remark: For Bernoulli(p) selection, i.e., when each index in {1, . . . , n}
belongs to S with probability p independently of the other indices, the
lemma becomes ES{FS ·F †

S} = p·F ·F †, where ES{·} denotes expectation
with respect to the selection of S.

Proof: The case k = 1 of (B.1) is the standard expansion
∑n

i=1 fi·f †
i =

F · F † (multiplied by 1/n), where the fi’s are the columns of F . For
a general k, let P denote a random diagonal matrix, whose {0, 1}
diagonal elements correspond to the selection of the subset S. That
is, FS · F †

S = F · P · F †, where the diagonal of P is uniform over
all n choose k binary vectors with k ones and n − k zeroes. Thus
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ES{FS · F †
S} = ES{F · P · F †} = F · ES{P} · F † = F · (k/n · In) · F †,

which is the right-hand side of (B.1). □

Lemma B.2. For k1 < k2 < n, if S2 is uniformly drawn from all k2

subsets of {1, . . . , n}, and S1 is uniformly drawn from all k1 subsets of
S2, then S1 is uniform on all k1 subsets of [n].

Proof: Since the distribution of S1 is invariant under the action of
the symmetric group of [n], it is necessarily uniform. □

Proof of Theorem 8.1: We first prove the inequality with respect to
the “edge”: L(F, k) ≤ L(F, n), and then extend to any k1 < k2. The Ky
Fan inequality [34], says that if K1 and K2 are m × m PSD matrices,
then

det[a · K1 + (1 − a) · K2] ≥ det[K1]a · det[K2]1−a (B.2)

for any 0 < a < 1, which by taking logarithm implies that log det[K] is
concave [34]. Thus, starting from (3.8),

LShannon(F, k) = ES{log[ m
√

det(FS · F †
S)/(k/m)]} (B.3)

≤ log[ m
√

det(ES{FS · F †
S})/(k/m)] (B.4)

= log[ m

√
det(k/n · F · F †)/(k/m)] (B.5)

= log[ m

√
det(F · F †)/(n/m)] (B.6)

= LShannon(F, n) (B.7)

where the second line is by Jensen’s inequality and the log concavity of
the determinant (B.2), and the third line is by the identity in Lemma B.1.
Turning to the general case, for k1 < k2 < n, let S1 ⊂ S2 denote a
k1-subset of a k2-subset S2 of {1, . . . , n}. By the definition of the average
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subset Shannon transform of a frame (3.8), we have

LShannon(F, k1) = ES1{ΨShannon(FS1)} (B.8)
= ES2{ES1|S2{ΨShannon(FS1)} (B.9)
= ES2{LShannon(FS2 , k1)} (B.10)
≤ ES2{LShannon(FS2 , k2)} (B.11)
= ES2{ΨShannon(FS2)} (B.12)
= LShannon(F, k2) (B.13)

where ES1|S2{·} denotes expectation over a uniform distribution on all
k1-subsets of a given S2, and ES2{·} denotes expectation over a uniform
distribution on all k2-subsets of {1, . . . , n}. The second line follows from
Lemma B.2 by iterated expectation; the third line follows by viewing
FS2 as the full frame in the inner expectation; the inequality follows
from the first part of the proof (B.3)-(B.7) setting k = k1 and n = k2;
and the last two lines are again by the definition (3.8). □

Proof of Theorem 8.2: For an n × n covariance matrix K (i.e., K is
a non-negative matrix), and a k-subset S ⊂ {1, . . . , n}, let KS denote
the corresponding k ×k sub-matrix of K. Define the subset trace-inverse
of the covariance K as the average of trace

(
K−1

S

)
/k over all k-subsets:

M
(n)
k = 1(n

k

) ∑
S:|S|=k

1
k

trace
(
K−1

S

)
, (B.14)

for k = 1, . . . , n. For example, the two extremes are M
(n)
1 = 1/n

∑n
i=1

(Kii)−1, and M
(n)
n = 1/n

∑n
i=1(K−1)ii. It is shown in [79] that the

sequence of subset trace inverses is monotonically non decreasing, i.e.,

M
(n)
1 ≤ M

(n)
2 ≤ . . . ≤ M (n)

n (B.15)

with equality if and only if the covariance matrix K is proportional to
identity.1 This inequality can be thought of as the “MSE counterpart” of

1If the matrix K is Toeplitz (corresponding to stationary vector), then the
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the subset determinant inequality in [34] and [37]. Using similar tools as
in [34], we can show the same inequality also for subset log trace-inverse.
Namely, letting

L
(n)
k = 1(n

k

) ∑
S:|S|=k

log
(1

k
trace

(
K−1

S

))
, (B.16)

we have
L

(n)
1 ≤ L

(n)
2 ≤ . . . ≤ L(n)

n . (B.17)

Proof: Starting with the right edge, noting that
(n

n

)
= 1 and

( n
n−1

)
=

n, we have

L(n)
n = log

( 1
n

trace
(
K−1

))
= log

(
M (n)

n

)
≥ log

(
M

(n)
n−1

)
= log

 1
n

∑
S:|S|=n−1

1
n − 1trace

(
K−1

S

)
≥ 1

n

∑
S:|S|=n−1

log
( 1

n − 1trace
(
K−1

S

))
= L

(n)
n−1, (B.18)

where the equality lines are by definition; the first inequality follows
from (B.15); and the second inequality follows by Jensen. We then
continue similarly to the second part of the proof of Theorem 8.1 to
prove that L

(n)
k ≤ L

(n)
k+1 for any k. Specifically, by Lemma B.2, when

computing L
(n)
k we first condition on a specific (k + 1)-subset S2 and

average over all its k-subsets, and then average over all (k + 1)-subsets

inequality between the two edges, M
(n)
1 ≤ M

(n)
n , follows from the arithmetic-to-

harmonic means inequality applied to the eigenvalues λ1, . . . , λn of K, and equality
holds if and only if the eigenvalues are constant, i.e., K = λI. (This is because by
the Toeplitz property Kii = σ2 for all i, and therefore M

(n)
1 = 1/σ2; furthermore,

σ2 = trace (K) /n = (λ1+. . .+λn)/n, while the eigenvalues of K−1 are the reciprocals
of the eigenvalues of K, so M

(n)
n = (1/λ1 + . . . + 1/λn)/n.)
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S2 of {1, . . . , n}. By (B.18), the inner average is upper bounded by the
log trace-inverse of KS2 , which becomes L

(n)
k+1 after taking the outer

average. □
Theorem 8.2 now follows from (B.17) by viewing the F † · F as the

covariance matrix K, so LMSE(F, k) = L
(n)
k . (Note that for k > m the

matrix F †
SFS is singular, so L

(n)
k is infinite.)
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C
Variance of 1st and 2nd moments (proof of

Theorem 7.2)

Using the moment-variance formula (7.15),

Vr ≜ Var
[ 1

n
trace

(
(FPF †)r

)]
= E

[( 1
n

trace
(
(FPF †)r

))2
]

− m2
r
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we obtain for r = 1,

V ETF
1 = E

[( 1
n

trace
(
FPF †

))2
]

− E
[ 1

n
trace

(
FPF †

)]2

= E
[( 1

n
trace

(
FPF †

))2
]

− m2
1

= 1
n2E

( n∑
i=1

⟨fi, fi⟩Pi

) n∑
j=1

⟨fj , fj⟩Pj

− p2

= 1
n2E

( n∑
i=1

Pi

) n∑
j=1

Pj

− p2

= 1
n2

[
np + n(n − 1)p2

]
− p2

= 1
n

[
p − p2

]
. (C.1)

For r = 2, we obtain

V ETF
2 = E

[( 1
n

trace
(
(FPF †)2

))2
]

− E
[ 1

n
trace

(
(FPF †)2

)]2

= E
[( 1

n
trace

(
(FPF †)2

))2
]

− m2
2

= 1
n2E

 n∑
i,j=1

|⟨fi, fj⟩|2PiPj

 n∑
k,m=1

|⟨fk, fm⟩|2PkPm

− (p + p2x)2.

(C.2)

If F is an ETF, then according to the Welch bound |⟨fi, fj⟩|2 = x
n−1 for

i ≠ j. Similarly to the computation of the moments, we split to cases
by number of distinct values of {i, j, k, m}.
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E

 n∑
i,j=1

|⟨fi, fj⟩|2PiPj

 n∑
k,m=1

|⟨fk, fm⟩|2PkPm

 = np

+
[
n(n − 1) + 4n(n − 1) x

n − 1 + 2n(n − 1) x2

(n − 1)2

]
p2

+
[
2n(n − 1)(n − 2) x

n − 1 + 4n(n − 1)(n − 2) x2

(n − 1)2

]
p3

+ n(n − 1)(n − 2)(n − 3) x2

(n − 1)2 p4. (C.3)

It follows that

V2 = 1
n

[
p +

(
−1 + 4x + 2x2

n − 1

)
p2 +

(
−4x + 4(n − 2)x2

n − 1

)
p3

+
(

(6 − 4n)x2

n − 1

)
p4
]
. (C.4)
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