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Maximizing Entropy with an
Expectation Constraint and
One-Parameter Exponential
Families of Distributions:
A Reexamination
David L. Neuhoff
Department of Electrical Engineering and Computer Science,
University of Michigan, USA; neuhoff@umich.edu

ABSTRACT
The usual answer to the question “What probability distribu-
tion maximizes entropy or differential entropy of a random
variable X subject to the constraint that the expected value
of a real-valued function g applied to X has a specified
value µ?” is an exponential distribution (probability mass
or probability density function), with g(x) in the exponent
multiplied by a parameter λ, and with the parameter chosen
so the exponential distribution causes the expected value
of g(X) to equal µ. The latter is called moment matching.
While it is well-known that, when there are multiple ex-
pected value constraints, there are functions and expected
value specifications for which moment matching is not pos-
sible, it is not well-known that this can happen when there
is a single expected value constraint and a single parameter.
This motivates the present monograph, whose goal is to
reexammine the question posed above, and to derive its

David L. Neuhoff (2024), “Maximizing Entropy with an Expectation Constraint and
One-Parameter Exponential Families of Distributions: A Reexamination”, Founda-
tions and Trends® in Communications and Information Theory: Vol. 21, No. 5, pp
589–846. DOI: 10.1561/0100000132.
©2024 D. L. Neuhoff
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answer in an accessible, self-contained and complete fashion.
It also derives the maximum entropy/differential entropy
when there is a constraint on the support of the probability
distributions, when there is only a bound on expected value
and when there is a variance constraint. Properties of the re-
sulting maximum entropy/differential entropy as a function
of µ are derived, such as its convexity and its monotonicities.
Example functions are presented, including many for which
moment matching is possible for all relevant values of µ, and
some for which it is not. Indeed, there can be only subtle
differences between the two kinds of functions.

As one-parameter exponential probability distributions play
a dominant role, one section of this monograph provides
a self-contained discussion and derivation of their proper-
ties, such as the finiteness and continuity of the exponential
normalizing constant (sometimes called the partition func-
tion) as λ varies, the finiteness, continuity, monotonicity and
limits of the expected value of g(X) under the exponential
distribution as λ varies, and similar issues for entropy and
differential entropy. Most of these are needed in deriving
the maximum entropy/differential entropy or the properties
of the resulting function of µ.

Aside from addressing the question posed initially, this mono-
graph can be viewed as a warmup for discussions of maxi-
mizing entropy/differential entropy with multiple expected
value constraints and of multiparameter exponential families.
It also provides a small taste of information geometry.

Full text available at: http://dx.doi.org/10.1561/0100000132



1
Introduction

1.1 Goals

The first goal of this monograph is to derive, in an accessible, self-
contained and complete fashion, the largest possible entropy,1 H(X), of
a discrete random variable X for which an alphabet AX is specified (for
example, {1, 2, . . . , n} or {1, 2, 3, . . .}), and the expected value, E[g(X)],
of some real-valued function g applied to X is constrained to have a
specified value µ. The second goal is to derive, in the same manner, the
largest possible differential entropy, Hd(X), of a real-valued continuous
random variable X with, again, a constraint that the expected value of
some real-valued function g has a specified value µ, and also a constraint
that the support of X be a subset of some specified set S (for example,
S = (−∞,∞), [0,∞) or [0, 1]). As one-parameter exponential families
of probability distributions play a principal role in the solution to the
maximum entropy and differential entropy questions, the last goal is to
carefully derive their principal properties.

Entropy, H(X), of a discrete random variable X is an information-
theoretic measure of the randomness of, or uncertainty in, the outcome

1Italics indicates a term with a meaning that is either defined here or will be
defined shortly.

3
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4 Introduction

of X. It is defined by the formula

H(X) , −
∑
x∈AX

p(x) log p(x), (1.1)

where AX is the alphabet of X, i.e., the set of its possible outcomes,
p is its probability mass function (pmf) (p(x) , Pr(X = x)), and the
logarithm is base-2. Indeed, all logarithms in this monograph are base-2
unless specified otherwise. Entropy can also be viewed as a property
or function of the pmf p, and consequently p will often be added as a
subscript, as in Hp(X).

Similarly, the differential entropy, Hd(X), of a continuous, real-
valued random variable X is an information-theoretic relative measure
of the randomness of, or uncertainty in, the outcome of X. It is defined
by the formula

Hd(X) = −
∫ ∞
−∞

p(x) log p(x)dx, (1.2)

where p is the probability density function (pdf) of X (for example,
Pr(a ≤ X ≤ b) =

∫ b
a p(x) dx), and the logarithm is again base-2.

Differential entropy can also be viewed as a property or function of
the pdf p, and consequently, p will often be added as a subscript, as in
Hd,p(X). As for entropy, the appendix provides justification for viewing
differential entropy as a relative measure of randomness or uncertainty,
and discusses some of its operational significance, for example, in lossy
source coding.

Following next, Sections 1.2–1.4 are intended to give a general
idea of what is to be found in this monograph, and how its contents
relate to the literature on maximizing entropy and differential entropy
subject to expected value constraints. Since these subsections are not
self-contained discussions, they might not be well understood by a
newcomer to the subject. Accessible, self-contained explanations come
in subsequent sections. Section 1.5 provides examples of applications
where maximizing entropy subject to expected value constraints are
useful. Section 1.6 describes the closely related task of minimizing
divergence subject to an expected value constraint. Section 1.7 provides
the rationale for why this monograph focuses exclusively on maximizing
entropy and differential entropy of just one random variable with just
one expected value constraint. Finally, Section 1.8 discusses the manner

Full text available at: http://dx.doi.org/10.1561/0100000132



1.2. Maximizing Entropy 5

in which this monograph aims to be accessible, self-contained and
complete.

1.2 Maximizing Entropy

This subsection focuses on the first stated goal of this monograph,
namely, maximizing entropy of a discrete random variable subject to an
expected value constraint. Maximizing differential entropy is deferred
to the next subsection.

For most discrete2 alphabets AX , real-valued functions g, and spec-
ified values µ, Section 2 of this monograph will carefully derive the
well-known result3 that the largest possible entropy of a discrete random
variable X with alphabet AX and expected value of g(X) equal to µ
occurs when, and only when, X has a probability mass function with
the exponential form

qλ(x) = 2−λg(x)

Σλ
, x ∈ AX , (1.3)

and the resulting largest entropy is

Hmax(µ) = λµ− log Σλ, (1.4)

where Σλ =
∑
x∈AX 2−λg(x) is a normalizer chosen to make qλ sum to one,

and λ is a real value chosen to make the expected value of g(X) equal
µ when qλ governs the distribution of X. The resulting distribution is
commonly said to be a moment-matching exponential-form distribution.

Let us call attention to the fact that, in the previous paragraph, we
qualified the well-known result with for “most” alphabets and functions.
We did this because the above result applies when and only when

(i) There exists at least one pmf p such that Ep[g(X)] = µ,4 and
2In this monograph, a discrete set is a finite or countably infinite set.
3It can be found in information theory textbooks, see for example, [34, p. 296], [76,

Prob. 1.8], [12, Chap. 11], [78, p. 308], [13, Chap. 12], [101, Sec. 2.9]), [82, pp. 99,100],
and in books, articles and websites devoted to the maximum entropy principle and
to the many application areas for which the maximum entropy principle is useful,
see for example, [3], [8], [26], [29], [35]–[37], [46]–[49], [64], [77], [81], [84]–[87], [89],
[92], [96], [97], [100].

4As with H for entropy, we will usually subscript an E denoting expected value
with the distribution that governs the random variable.
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6 Introduction

(ii) There exists a λ that makes the expected value of g(X) equal µ
when qλ governs the distribution of X.

As reviewed in Section 5, it is also well known that the above result
generalizes to scenarios in which the expected values of N real-valued
functions g1, . . . , gN on discrete alphabet AX are specified to have values
µ1, . . . , µN , sees for example, [12, Chap. 11], [13, Chap. 12], and also
to scenarios in which X is a discrete-time, discrete-valued stationary
random process X1, X2, . . . for which it is desired to maximize entropy-
rate5 subject to a constraint that the expected value of some real-valued
function g applied to any one of the random variables equals a specified
value µ [77].

Let us focus on the former scenario, for which it is known that, in
most instances, the largest entropy of X is well known to be

Hmax(µ1, . . . , µN ) =
N∑
n=1

λn µn − log
( ∑
x∈AX

2−λngnx)
)
, (1.5)

where λ1, . . . , λN are chosen so the following exponential-form prob-
ability mass function qλ1,...,λN causes Eqλ1,...,λN

[gn(X)] = µn, for n =
1, . . . , N :

qλ1,...,λN (x) =
2−
∑N

n=1 λngn(x)

Σλ1,...,λN

, (1.6)

where

Σλ1,...,λN =
∑
x∈AX

2−
∑N

n=1 λngn(x)
. (1.7)

This, again, is called moment-matching. As with the previous scenario
having just one expected value constraint, it is important to note the
result expressed in (1.5) and (1.6) applies only when

(i) There exists a pmf p on AX such that Ep[gn(X)] = µn for n =
1, . . . , N , and consequently, Hmax(µ1, . . . , µN ) is well-defined, and

5The entropy-rate of a discrete-time, discrete-valued stationary random process
is H∞(X) = limN→∞

1
N
H(X1, . . . , XN ).
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1.2. Maximizing Entropy 7

(ii) There exists λ1, . . . , λN that cause the desired moment-matching,
which includes the requirement that Σλ1,...,λN be finite.

Let us now consider the feasibility of satisfying conditions (i) and
(ii), both for one expected value constraint (N = 1), and for multiple
expected value constraints (N ≥ 2).

In regard to Condition (i), it is straightforwardly shown in the
Appendix, that when N = 1 there is a pmf p such that Ep[g(X)] = µ

whenever µ lies between the infimum and supremum values of g, and
also sometimes when µ is the infimum or supremum of g. On the
other hand, when N ≥ 2, it is easy to construct a set of real-valued
functions g1, . . . , gN on AX , a set of values µ1, . . . , µN , and a set of pmfs
p1, . . . , pN on AX such that for each n ∈ {1, . . . , N}, µn lies between the
infimum and supremum values of gn, and Epn [gn(X)] = µn, but there is
no single pmf p on AX such that Ep[gn(X)] = µn for each n. (A simple
example is AX = {a, b}, g1(a) = 1, g1(b) = 0, g2(a) = 0, g2(b) = 1, and
µ1 = µ2 = 1.) We conclude that, when N ≥ 2, Hmax(µ1, . . . , µN ) is
well-defined only for a subset of the possible µ1, . . . , µN values. We call
the set of such µ1, . . . , µN the range of (E[g1(X)], . . . , E[gN (X)]), and
also, the domain of Hmax. In summary, the domain of Hmax is easily
found for N = 1 and can be nontrivial for N ≥ 2.

In regard to Condition (ii), it is has long been known that there
exists N ≥ 2, a set of functions g1, . . . , gN and a set of values µ1, . . . , µN
in the domain of Hmax for which there does not exist λ1, . . . , λN that
causes the desired moment matching. See, for example, [18], [7, p. 86],
[16]. Thus, the solution expressed in (1.5) and (1.6) is not a panacea for
findingHmax(µ1, . . . , µN ) in all cases, but rather a solution that works in
many cases. In particular, the solution in (1.5) and (1.6) applies to every
(µ1, . . . , µN ) in the set of possible values of (Eqλ [g1(X)], . . . , Eqλ [gN (X)])
as λ = (λ1, . . . , λN ) varies. Let us call this the exponential mean space.

Let us now return to the case of one expected value constraint, i.e.,
N = 1, which is the main focus of this monograph. Here, it is natural
to wonder if the exponential mean space is something simple, just as
the domain of Hmax is simple when N = 1.

On the one hand, if the alphabet AX is finite, it is straightforward
to show (see, for example, Section 2.1), that for any µ in the domain

Full text available at: http://dx.doi.org/10.1561/0100000132



8 Introduction

of Hmax, there is a value λ such that Eqλ [g(X)] = µ, and consequently,
Hmax(µ) is given by (1.4) and the maximizing pmf is given by (1.3). That
is, the exponential moment space simply equals the domain of Hmax.

On the other hand, when the alphabet AX is countably infinite,
the existence of a moment-matching exponential-form pmf is not at all
obvious. For one thing, Σλ can be infinite for all λ, in which case qλ
and Eqλ [g(X)] are undefined for all λ. For example, this happens when
g is bounded.

Accordingly, two questions naturally arise for the case of one ex-
pected value constraint (N = 1):

1. Are there non-idiosyncratic examples for which moment matching
is not possible?

2. If the answer to the previous questions is “yes”, then under what
conditions is moment matching possible?

Surprisingly, the basic treatments in the information theory literature
of maximizing entropy with expected value constraints [12], [13], [34],
[77], [78], [101] do not address these questions.

The present monograph originated when the author unsuccessfully
searched the literature for one or the other of the following:

(a) A result showing that, if g is unbounded on a countably infinite
alphabet AX and also on every infinite subset thereof,6 and if there
exists a probability mass function p on a countably infinite alphabet
AX such that Ep[g(X)] = µ (so Hmax(µ) is well-defined), then
moment matching is possible, i.e., there exists a value λ such that
Eqλ [g(X)] = µ, in which case Hmax(µ) is given by (1.4) with the
moment-matching value of λ, or

(b) An example having

i. A function g that is unbounded on a countably infinite alphabet
AX , as well as on all infinite subsets of AX ,

ii. A finite value µ,
6These assumptions avoid a case in which moment-matching is not possible due

to Σλ =∞ for all λ.
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1.2. Maximizing Entropy 9

iii. A probability mass function p on AX such that Ep[g(X)] = µ

(so Hmax(µ) is well defined), and
iv. No choice of λ such that Eqλ [g(X)] = µ (so Hmax(µ) is not

determined by moment-matching).

Having no luck searching the literature, the author began his own
investigation. After many alternations between attempting to prove a
result like (a) and seeking a counterexample like (b), a counterexample
was found, namely, a countably infinite alphabet AX , a real-valued
function g that is unbounded on AX , as well as on every infinite subset
of AX , and a value µ for which there exists a pmf p on AX such
that Ep[g(X)] = µ, but Eqλ [g(X)] < µ for every λ such that Σλ <

∞. (Indeed, for this example, Ep[g(X)] can be arbitrarily large, but
Eqλ [g(X)] is bounded over all choices of λ such Σλ <∞, i.e., such that
qλ is well defined.)

It next became important to find conditions on AX , g and µ under
which moment-matching yields Hmax(µ). A couple of such sufficient
conditions were found, which are presented in Section 2.

A subsequent re-examination of the literature for multiple expected
value constraints found counterexamples (as mentioned earlier) for the
case of multiple expected value constraints, did not find counterexam-
ples for the case of one expected value constraint, and did find that,
as discussed in Section 5, the sufficient conditions discovered by the
author are specializations to one expected value constraint of sufficient
conditions in the literature that apply to multiple expected value con-
straints. However, for someone interested in just the single expected
value constraint, the theory in the literature leading to these conditions
is, to say the least, not easily accessible.

Accordingly, as mentioned earlier, the first goal of the present mono-
graph is to present the derivation of the maximum entropy with a
single expected value constraint, including both the counterexample
and sufficient conditions, in an accessible and self-contained fashion.
The monograph also aspires to be complete. For example, it presents
some properties of a function g on a countably infinite alphabet AX
that cause the maximum entropy function, Hmax(µ), to be infinite for
all µ.
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Of course the degree to which this monograph is accessible and self-
contained, and complete is somewhat subjective. Section 1.8 mentions
the ways in which it attempts to have these characteristics.

1.3 Maximizing Differential Entropy

Analysis similar to that used to address entropy maximization can be
used to address the second stated goal of this monograph, namely, to
find the maximum differential entropy, Hd(X), of a continuous, real-
valued random variable X with the constraints that the expected value
of some real-valued function g applied to X equals a target value µ,
and the support of X is contained in a specified constraint set S.

Section 3 will carefully derive the well-known result7 that, in many
cases, differential entropy, Hd(X), is maximized when, and only when,
X has a probability density function (pdf) with the exponential form

qλ(x) =


2−λg(x)

Σλ
, x ∈ S

0, x /∈ S
, (1.8)

and the resulting largest differential entropy is

Hdmax(µ) = λµ− log Σλ, (1.9)

where Σλ =
∫
S 2−λg(x) dx is a normalizer chosen to make qλ integrate

to one, and λ is a real value chosen to make the expected value of
g(X) equal µ when qλ governs the distribution of X. That is, moment-
matching applies once again.

As in Section 1.2, this type of analysis is well known to extend
to maximizing differential entropy with multiple expected value con-
straints, E[gi(X)] = µi, i = 1, . . . , N , resulting in expressions for
Hdmax(µ1, . . . , µN ) and the maximizing exponential-form pdf analogous
to those given by (1.5)–(1.7). It also extends to scenarios in which X is a

7It can be found in information theory textbooks, (see, for example, [34, p. 296
ff.], [12, Chap. 11], [13, Chap. 12], [101, Sec. 10.6]), and in books, articles and websites
devoted to the maximum entropy principle and to the many application areas for
which the maximum entropy principle is useful, see for example, [8], [26], [29], [35],
[47]–[49], [84], [97], [100].
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1.3. Maximizing Differential Entropy 11

discrete-time, continuous-valued stationary random process X1, X2, . . .

for which it is desired to maximize differential entropy-rate8 subject
to a constraint that the expected value of some real-valued function g
applied to any one of the random variables equals a specified value µ.

Let us focus on the first scenario. Then, as in the maximizing entropy
case, it is important to note that this analysis applies only when

(i) There exists a pdf p with support contained in S such that
Ep[gn(X)] = µn for n = 1, . . . , N , and consequently,Hdmax(µ1, . . . ,

µN ) is well-defined, and

(ii) There exist λ1, . . . , λN that cause the desired moment-matching,
which includes the requirement that Σλ1,...,λN be finite.

In regard to Condition (i), it is straightforwardly shown in the
Appendix, that when N = 1 (one expected value constraint), there is
a pdf p such that Ep[g(X)] = µ whenever µ lies between the essential
infimum and essential supremum of g, and also sometimes when µ is
the essential infimum or essential supremum. On the other hand, if
N ≥ 2, then as with maximizing entropy, there are examples for which
Hdmax(µ1, . . . , µN ) is undefined due to there not being a single pdf p
such that Ep[gi(X)] = µn, for i = n, . . . , N . In regard to Condition (ii),
let us focus on the case of just one expected value constraint, which is
the main maximizing-differential-entropy concern of this monograph.
Let us also assume for the discussion in this introduction that g is
continuous or piecewise continuous, so as to avoid having to deal with
certain technicalities.9

On the one hand, when S has finite measure10 and g is bounded,
the situation is similar to maximizing entropy when AX is finite. Specif-
ically, it is straightforward to show (see, for example, Section 3.2) that

8The differential entropy-rate of a discrete-time, discrete-valued stationary ran-
dom process is Hd,∞(X) = limn→∞

1
n
Hd(X1, . . . , Xn).

9No such assumption is made in Section 3.
10In this monograph, the measure of an interval is its length, the measure of a

countable union of disjoint intervals is the sum of their lengths, and more generally,
the measure of an arbitrary subset of the reals is its Lebesgue measure, unless it is
an idiosyncratic set for which Lebsgue measure is undefined. Such sets will not arise
in this monograph.
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for any µ between the essential minimum and maximum values of g,
there is a probability mass function p on AX such that Ep[g(X)] = µ,
and so Hdmax(µ) is well defined. Furthermore, for any such µ, it is
straightforward to show (see, for example, Section 3.2) there is a value
λ such that Eqλ [g(X)] = µ, and consequently, Hdmax(µ) is given by the
moment-matching expressions (1.8) and (1.9).

On the other hand, when g is unbounded and S has finite or infinite
measure, the situation is somewhat similar to maximizing entropy when
AX is countably infinite. For one thing, in these cases Σλ can be infinite
for some or all values of λ (depending on g). For example, if S has
infinite measure, then Σλ =∞ for all λ when g is bounded on S, or on
just an infinite-measure subset of S.

Most importantly, no proof or counterexample could be found in the
literature to the hypothesis (similar to (a) for Hmax in Section 1.2) that,
if g is unbounded on S, and also on every subset of S with infinite mea-
sure,11 and if there exists a probability density function p with support
contained in S such that Ep[g(X)] = µ (so Hdmax(µ) is well-defined),
then there necessarily exists a value λ such that Eqλ [g(X)] = µ, in which
case Hdmax(µ) is well defined and given by moment matching. However,
the author discovered that a pdf version of the pmf creating a counterex-
ample in the maximum entropy scenario, provides a counterexample
for the maximum differential entropy scenario, and also that there are
sufficient conditions for moment matching to succeed that are similar to
those for a countably infinite alphabet. As in the maximizing-entropy
case, these conditions turned out to be specializations to one expected
value constraint of the sufficient conditions in the literature that apply
to multiple expected value constraints.

Accordingly, as mentioned earlier, the second goal of the present
monograph is to present the derivation of the maximum differential
entropy with a single expected value constraint, including both the
counterexample and sufficient conditions, in an accessible, self-contained
and complete as possible fashion.

11These assumptions avoid a case in which moment-matching is not possible due
to Σλ =∞ for all λ.
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1.5. Applications of Maximizing Entropy 13

1.4 Properties of One-Parameter Exponential Families of
Probability Distributions

As previously mentioned the distributions that maximize entropy and
differential entropy with an expected value constraint almost always
have an exponential form with the function g in the exponent multiplied
by a parameter λ. Varying λ creates a family of similar probability
distributions, called a one-parameter exponential family. Section 6 in-
troduces one-parameter exponential families in a self-contained manner
and develops a number of their properties, most of which are needed
(Sections 2 and 3). Aside from being useful in these derivations, ex-
ponential families have wide application in many fields of endeavor.
This section can serve as useful introduction one-parameter families
and a self-contained derivation of many of their properties. While most
properties in this section are well known in the literature, the derivations
given here are independent of those in the literature, and may or may
not match them.

1.5 Applications of Maximizing Entropy with an Expected
Value Constraint

This subsection describes a number of application areas in which maxi-
mizing entropy with an expected value constraint arises. Many of them
are for a situation more general than that considered in this mono-
graph. For example, some involve maximizing entropy with multiple
expected value constraints, and some involve maximizing entropy-rate
of a stationary random process with an expected value constraint.

The first application areas come from information theory and com-
munications. The next described application area, is statistical physics,
aka statistical mechanics. Indeed, it was the first area to use maximizing
entropy with an expected value constraint. In turn, this usage moti-
vated its usage in many fields of science and engineering as a method for
choosing an appropriate probability distribution, as outlined in the final
group of application areas. We make no claim that the areas described
below include all, or even most, fields in which maximizing entropy with
an expected value constraint has been applied.
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1.5.1 Capacity of Discrete Noiseless Channels with Average
Cost Constraints

The capacity of a communication channel is the maximum rate in bits
per second (for a continuous-time channel), or bits per channel use
(for a discrete-time channel), at which information bits can be reliably
transmitted across the channel with encoding before transmission and
decoding after transmission. Shannon theory, which originated with
Shannon’s seminal 1948 work [93], shows that, under ordinary assump-
tions about the channel (e.g., stationary and memoryless), the capacity
equals the largest possible mutual information between the channel
input and output when the input is random. Some channels, namely
discrete noiseless channels, can be modeled as having their output equal
their input, provided the input sequence satisfies a certain constraint.
For such a channel, the capacity reduces to the largest possible entropy
per unit time of any random channel input satisfying the constraint or,
sometimes, an expected value version of the constraint.

Shannon’s Discrete Noiseless Channels with an Average
Cost Constraint

In his original work, Shannon [93] gave the first examples of discrete
noiseless channels, including a model for telegraphy as a continuous-
time, discrete-alphabet channel in which (a) the possible inputs are
dot, dash, letter space and word space, (b) each input has a specified
duration in seconds, and (c) the constraint on channel inputs is that two
consecutive spaces are not permitted. He modeled this constraint with a
graph having edges labeled with input symbols and their corresponding
durations. This was done in such a way that the sequences obtainable
by reading the symbol labels on walks through the graph are precisely
the allowable input sequences.

For continuous-time or discrete-time channels that can be modeled
by such graph labelings, Shannon found that capacity, i.e., the largest
possible ratio of input symbol entropy to average symbol duration is
obtained by an assignment of exponential conditional probabilities to
the edges of the graph, with the exponent for the conditional probability
assigned to an edge being proportional to the duration of the symbol
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produced by that edge. The resulting sequence-of-edges random process is
stationary and Markov, and entropy is, actually, entropy-rate, H∞(X) =
limn→∞

1
nH(X1, . . . , Xn). The capacity-attaining channel input process

is that which results from reading the symbols on the edges produced by
the Markov process. This result also applies to scenarios where symbol
costs other than symbol durations label the edges.

In 1983, McEliece and Rodemich [77] found the solution to a closely
related problem, namely, that of finding the largest possible entropy-
rate, Hmax(C), of any stationary random process {Xn} that (i) is
consistent with the symbols labeling edges of a given finite graph, and
(ii) causes the expected value, E[c(Xn)], of a given edge cost function c
to have value C, or less. Here, consistent means that (a) {Xn} results
from reading the symbol labels of the edges produced by a stationary,
sequence-of-edges random process {Zn}, and (b) {Zn} respects the graph
in the sense that the only possible values for Zn+1 are edges beginning
at the graph vertex at which Zn terminates.

Clearly, the McEliece-Rodemich problem is a maximum-entropy-
with-expected-value-constraint problem, albeit in a setting in which it is
the entropy-rate of a stationary random process that is being maximized,
rather than the entropy of a single random variable, as in the focus of
the present monograph. Their paper shows that the entropy-maximizing
sequence-of-edges random process is Markov, which Shannon stated,
but did not explicitly show, and that its conditional probabilities for
edges stemming from each vertex of the graph are exponential, with the
exponent being proportional to the cost of the symbol produced by that
edge. From this, one sees that the exponential nature of the entropy
maximizing distribution carries over from the one-random-variable case
considered in the present monograph to this more general setting.

We also note that the result of [77] was extended somewhat in [53],
and that maximizing entropy-rate of a finite-valued, stationary Markov
process with average cost constraints was also the subject of [46].

Finally, note that the solution to Shannon’s telegraphy scenario
can be derived from that for the McEliece-Rodemich scenario in that
the largest possible ratio of entropy to average symbol duration/cost
is Hmax(C∗)

C∗ , where C∗ is chosen so that in a plot of Hmax(C) vs. C, a
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straight line from the origin to the point (C∗, Hmax(C∗) is tangent to
the plot at C∗, i.e., Hmax(C∗)

C∗ = d
dcHmax(c)

∣∣
c=C∗ .

Storage Channels with an Average Cost Constraint

The process of writing and reading a magnetic storage disk is another
scenario12 that can be modeled as a discrete noiseless channel with an
input constraint, see for example, [92]. It is a binary channel with 0’s
and 1’s as the inputs and outputs. For example, the “(2,7) constraint”,
requires at least two 0’s after every stored 1, and no more than 7. Because
some binary sequences are not allowed for storage, an encoded binary
sequence satisfying the constraints will be longer than the binary data
sequence it encodes. The obvious goal is to encode so as to maximize
the rate, i.e., the average number of data bits per stored bit. The
maximum rate of any such constrained code is the capacity of the
channel model, and as before, capacity reduces to the maximum entropy-
rate of any binary, stationary random input process whose successive
random variables satisfy the input constraints with probability one.

Ordinarily, the constraints associated with a channel model are
represented with a finite graph, each edge of which is labeled with a 0
or 1 in such a way that walks through the graph produce the allowable
stored sequences as the sequence of edge labels, and no others. For
such a model, capacity equals the maximum entropy-rate of any binary,
stationary sequence-of-edges random process consistent with the graph.

Encoding with an average cost constraint is an alternative to the
encoding with a hard constraint described above [38], [54], [55], [58], [66],
[69]. In this case, the channel is modeled with a graph on which each
edge is labeled with both a channel input symbol (0 or 1) and a cost.
Rather than strictly restrict the channel input sequences, a constraint is
placed on the average cost per edge of the input sequence. For example,
the graph describing some particular hard constraint, such as the (2,7)
constraint, could be augmented by adding additional edges, assigning 0
as the cost to each edge allowed by the hard constraint, and assigning
nonzero costs to the augmented edges. Capacity becomes a function
of a target average cost C. As before, information theory shows that

12Writing and reading compact disks presents a similar scenario.
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capacity equals the maximum entropy-rate of any binary, stationary
random process with average cost at most C that is consistent with
the symbols labeling the edges of the graph. Thus, finding capacity
is again a maximum-entropy-with-expected-value-constraint problerm.
Moreover, as shown by the result in [77], the maximizing edge random
process is Markov, in the sense that the edge at time n+ 1 will be any
of the potential successors to the edge at time n, with a probability
that is independent of what edges occurred prior to n, and the edge
transition probabilities are exponential, with exponents proportional to
edge costs.

NAND flash memory is another storage medium for which maxi-
mizing entropy subject to an average cost constraint is relevant, see for
example, [39], [67], [68], [70]. It is a multilevel medium. For example,
each memory cell might store one of four possible values. The issue
is that memory cells wear out after a certain number of writings and
erasings (on the order of 105 or 106 such events), and that writing and
erasing certain cell values cause more wear than others. Accordingly, a
cost can be assigned to each potential cell value, and it makes sense to
encode data to be stored into a sequence of cell values with a constraint
on the average cost, and thereby using lower costs cell values more
frequently than higher cost cell values. With such a constraint, the
maximum encoding rate (in data bits per cell) is the maximum possible
entropy of any random variable whose alphabet is the set of allowed
cell values subject to the constraint that expected cost of cell values is
limited to some preset value.

1.5.2 Shaping Codes

The coding for NAND flash memory just described is an example of
what is sometimes called a shaping code, in that it shapes a distribution
of values. So, too, can the coding for discrete-noiseless-channels-with-
average-cost-constraints be considered to be a shaping code. In the
communications and information theory literature, the term “shaping”
can mean several different things.
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Shaping Codes for an Additive Gaussian Channel

The term “shaping” appears first to have been used in the context of
designing signal constellations13 to be used when reliably transmitting
data14 over a communication channel that adds Gaussian noise to the
transmitted signal, i.e., over an additive Gaussian channel (AGC), [24].
Such constellations are often created from some large or infinite set of
N -dimensional signals (N = 2 is common) having a regular structure,
such as a lattice, by including all members of the set that lie within
some specified N -dimensional bounding region. For example, an N -
dimensional cube centered at the origin is the plain-vanilla choice. With
high data rate, low error probability and low consumed power as the
goals of such a system, it was observed in [24] that choosing the bounding
region to be an N -dimensional sphere, rather than a cube, induces a
reduction in the power required to attain a specified data rate and error
probability. This was referred to as a “shaping gain”.

From a higher level viewpoint, it was also recognized in [24] that
one should consider the sequence of signal constellation component
values produced by a transmitter as having a probability distribution
that depends on the shape of the bounding region. Information theory
indicates that the ideal form of this distribution is Gaussian, and it was
recognized in [24] that a circular bounding region creates a distribution
more similar to Gaussian than a cubic bounding region, and that this
can be considered a source of the aforementioned shaping gain. Relaxing
the requirement that the signal constellation consists of all vectors in a
given bounding region, but encoding data so as to attain a Gaussian-like
distribution of component values is an additional form of shaping. It,
too, induces a gain.

13A signal constellation is a finite set of, say, M signals, each a vector, or equiva-
lently, sequence, in an N -dimensional Euclidean space (often N = 2). The constel-
lation is used to transmit binary data across a channel that adds noise, typically
Gaussian noise. One possibility is that each signal in the constellation conveys one
particular block of log2 M data bits. Another, which involves coding, uses a codebook
of m codewords, each a sequence of n signals in the constellation. In this case, each
block of log2 m data bits is encoded for transmission into one of the codewords.

14Data is assumed to be binary, with successive bits being independent and equally
likely to be 0 or 1.
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Another higher level viewpoint in [24] was that encoding data so as
to use lower energy signals more frequently than higher energy signals is
another way to attain a shaping gain.15 It is a shaping of the probability
distribution on the signals in the constellation. (It also shapes the signal
component distribution.)

Since [24], much work has focused on developing, optimizing and
analyzing codes that do shaping for the additive Gaussian channel in
one or more of the senses described previously, see for example, [9],
[10], [19]–[22], [24], [25], [51], [52], [59], [60], [63], [71], [79], [101]. Some
of these works have used maximizing entropy subject to an expected
value (namely, power) constraint as a guiding criteria, or as a vehicle
for obtaining performance bounds, see for example, [21], [25], [59].

Shaping Codes for DNA Synthesis

Storing data in man-made DNA sequences is a promising storage method-
ology of the future, see for example, [11], [30]. In the approach considered
in [65], data is encoded into DNA sequences in a sequence of steps.
With the goal of maximizing the amount of data that can be stored
with a given number of steps, i.e., with a given synthesis time, [65] uses
a maximum-entropy-with-expected-value-constraint scenario to analyze
the storage capacity of a DNA scheme with a constraint on the average
number of synthesis steps.

1.5.3 Gilbert-Varshamov Bounds for Constrained Noisy Channels

The Gilbert-Varshamov bound [28], [98] is a famous lower bound to
the largest possible rate of a channel code for a discrete-alphabet, noisy
channel, as a function of the minimum Hamming distance between its
codewords. It has been extended to discrete noisy channels with input
constraints characterized by a graph, such as those mentioned earlier
[33], [50], [57], [73]. As shown in [73], [74, pp. 243 ff.] the extended
Gilbert-Varshamov bound is a function of an Hmax(µ) function, with
entropy being the entropy-rate of a stationary random process on the

15This is also called nonuniform signaling, [59].
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graph, and the expected value being that of the Hamming distance
between graph edge labels.

1.5.4 Symbolic Dynamics

Among the many flavors of dynamical systems, maximizing entropy
with an expected value constraint has been useful in the ergodic theory
version of dynamical systems, sometimes called symbolic dynamics,
which has close ties to information theory. For example, [42] addresses
the problem of finding maximum long-term time average of a function g
among sample sequences produced by a shift-invariant ergodic process.
Specifically, it shows that, in the context of the low temperature limit, the
solution is characterized as a maximum entropy-rate with an expected
value constraint.

1.5.5 Statistical Physics, Statistical Mechanics

As nicely described in the review article by Pressé et al. [84], maximizing
entropy with expected value constraints has a long history in statistical
physics, aka statistical mechanics. It was first used by Gibbs [27] to
justify the exponential distribution of gas molecule energies, originally
posited by Maxwell [75] and Boltzmann [6].

Specifically, as described in [84], Gibbs made the following argument.
Suppose (i) there are N gas particles (atoms or molecules) with varying
energies, (ii) the range of possible energies is partitioned into s small cells.
(iii) ni denotes the number particles in cell i, each of which has energy εi,
(iv) the average energy of all particles is known to be ε, and (v) we wish to
find the form of the occupation probabilities pi = ni

N , i = 1, . . . , s. Gibbs
asserted that, at equilibrium, the probability distribution p1, . . . , ps
is that which maximizes entropy16 S , kB

∑
i pi log pi subject to the

constraint that
∑
i piεi = ε, where kB is Boltzmann’s constant. He then

showed the resulting distribution has the exponential form pi = e−βεi∑
j
e−βεj

,

where β is chosen to make the average energy of this distribution equal ε.

16This is the entropy of physics, not information theory.
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1.5.6 Jaynes’ Maximum Entropy Method in Science
and Engineering

As also described in [84], inspired by Gibbs use of maximum entropy,
Jaynes [40] proposed maximizing entropy with constraints, including
expected value constraints, as a widely applicable technique for estimat-
ing a probability distribution in the presence of limited data. This has
been widely used in many areas of science and engineering.

Specifically, in many science and engineering fields, there is a need
to estimate the probability distribution of some random variable based
on rather limited amounts of information, such as its mean value, its
variance, the expected values of one or more functions of the variable, the
alphabet/support of the random variable, or some combination of these.
For such problems, Jaynes argued that best choice of distribution is that
which has largest entropy (in the discrete case), or largest differential
entropy (in the continuous case), and also matches the given information.
The idea is that an entropy maximizing distribution is considered to be
commensurate with the fewest assumptions about the variable, and is,
arguably, the fairest choice of distribution. In statistics, this is called
the principle of maximum entropy or the maximum entropy method or
approach.

Many books have been written on the maximum entropy method
and its applications, see for example, [4], [8], [15], [26], [29], [35], [36],
[47]–[49], [96], [97]. For example, [47] describes its use in regional and
urban planning, marketing, elections, economics, finance, insurance,
accounting, spectral analysis, image reconstruction, pattern recognition,
operations research, biology, medicine and agriculture, [8] describes its
use in MRI, spectroscopy, plasma physics and X-ray crystallography,
[36] describes its use in ecology, and [15] describes its use in biology.

As also discussed in [84], the maximum entropy method has been
criticized that its reliance on maximizing entropy or differential entropy
is not adequately justified. For example, why not maximize some other
function? Such criticism has been ameliorated in the work of Shore
and Johnson [94], [95], who show that “maximizing any function but
entropy will lead to inconsistencies unless that function and entropy
have identical maxima”.
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A few specific engineering applications of the maximum entropy
method are mentioned below.

1.5.7 Natural Language Processing

The maximum entropy method has been widely used in the design of
systems that perform natural language processing tasks, see for example,
[3], [17], [45], [64], [81], [85]–[87], [89]. Such tasks include part-of-speech
tagging (classifying words as nouns, adjectives, verbs, etc.), parsing
sentences into phrases, sentiment analysis (e.g., identifying a segment of
text as expressing a positive or negative sentiment), text classification
(e.g., determining if a segment of text is spam), sentence boundary
classification (e.g., determining if a period indicates an abbreviation or
the end of a sentence), speech recognition, and machine translation of
text from one language to another.

In most of these applications, it is desired to find a model for the
conditional probability distribution p(y|x) for an entity Y taking values
in a finite set AY , given values of another entity X, taking values
in a finite set AX . The conditional probability model is required to
match empirical training data by making the expected values of some
appropriate set of feature functions, f1, . . . , fN , match the empirical
means of these functions on the training data. Specifically, there is a
training set (x1, y1), . . . , (xM , yM ), and it is required that the model
conditional distribution, p(y|x), satisfies the following;

∑
x∈AX

p̃(x)
∑
y∈AY

p(y|x)fn(x, y) = 1
M

M∑
m=1

fn(xm, ym), n = 1, . . . , N,

(1.10)

where p̃(x) is the frequency with which the value x occurs in x1, . . . , xM .
Among the possible conditional probability distributions that satisfy
this constraint, it is argued that one should choose that which maximizes
the following conditional entropy:

−
∑
x∈AX

p̃(x)
∑
y∈AY

p(y|x) log p(y|x). (1.11)
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Thus, the problem becomes a maximum entropy with expected value
constraint, although it is a conditional distribution that is sought, and
a conditional entropy that is to be maximized.

Straightforward analysis shows that the resulting distribution has,
once again, an exponential form:

p(y|x) = 1
Σλ

exp
{
−

N∑
n=1

λnfn(x, y)
}
, (1.12)

where λ = (λ1, . . . , λN ), Σλ =
∑
y∈AY exp

{
−
∑N
n=1 λnfn(x, y)

}
, and

λ1, . . . , λN are chosen so the constraint (1.10) holds.
Often the feature functions are chosen to be binary, i.e., indicator

functions of various events involving X and Y . And often the chosen
set f1, . . . , fM is chosen by successively adding the feature function that
most improves performance from a very large set of potential feature
functions. Addition continues until some stopping criterion is met, such
as a plateauing of performance.

For example, [3] provides a nice introduction to the maximum
entropy method in the context of natural language processing, and in
particular to its use in designing several components of a system for
translating French text to English text.

1.5.8 Computer Vision

The maximum entropy method has also been used in computer vision
to find conditional probability distributions, for example, for use in
making decisions about a scene. The methods are much the same as
described in Section 1.5.7 for natural language processing. For example,
[31], [32] describe a maximum-entropy-based system whose input is a
segment of the audio and video of a baseball game, and whose output
is the set of probabilities for the following mutually exclusive highlight
events to have occurred in this segment: home run, outfield hit, outfield
out, infield hit, infield out, strikeout, walk, none-of-the above. The
probabilities are conditioned on features computed from the segment.
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1.5.9 Control Theory

Maximum entropy with an expected value constraint has been used in
control theory as an optimization strategy, as for example in [5], [56].
Note the latter actually focuses on minimizing divergence, which as
discussed in the next subsection produces the same sort of exponential-
form distributions.

1.6 Minimizing Divergence Subject to an Expected Value
Constraint: A Closely Related Task

Closely related to the task of maximizing entropy or differential entropy
with an expected value constraint is the task of minimizing the diver-
gence D(p‖q) of a probability distribution p with respect to a reference
distribution q.

Divergence is an information-theoretic measure of the similarity of
two probability distribution introduced by Kullback and Leibler [62]. It
also goes by a number of other names, such as relative entropy, cross-
entropy,17 information divergence, directed divergence and Kullback-
Leibler distance.

In the discrete case, the divergence of a pmf p with respect to pmf
q is D(p‖q) ,

∑
x p(x) log p(x)

q(x) . In the continuous case, the divergence
D(p‖q) of a pdf p with respect to pdf q is defined by the same formula
but with the sum replaced by an integral.

In a number of application areas, it is desired to find a distribution
p such that the expected value Ep[g(X)] of some function g matches a
known measurement value µ, and in addition, p is close to some reference
measure q. For example, q might be an initial estimate of p for which
the expected value is not µ, or it might be an empirical distribution for
which a closed form model is sought. In such applications, it is often
argued that the appropriate choice of p is that which has Ep[g(X)] = µ

and also minimizes D(p‖q).
This minimum divergence approach was introduced by Kullback

[61], not long after Jaynes introduced the maximum entropy method,

17In this monograph, cross-entropy refers to a different quantity, which is intro-
duced in Section 2.
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independently of Jaynes approach. Like Jayne’s approach, the minimum
divergence approach has received much attention and has been used
in many applications. For example, it has appeared in the following
information theory books: [12, Prob. 11.2], [13, Prob. 12.2], and [101,
Prob. 10.8]), and in books, articles and websites devoted to the maximum
entropy principle and to the many application areas for which the
maximum entropy principle is useful, see for example, [47, Chap. 7], [48,
Sections IV, V], [29, Sec. 3.3], [100, Sec. 2.3.2], [49, Sections 1,5] [36,
p. 126], and [84].

Note that if the reference distribution q is uniform, i.e., constant,
on a support set S with finite size (discrete case) or finite measure
(continuous case), then for any p, D(p‖q) = −H̃p(X) + log |S|, where
H̃p(X) is a proxy for the entropy of p (discrete case) or the differential
entropy of p (continuous case), and where |S| denotes the number of
elements of S (discrete case), or the length/measure of S (continuous
case). As a result, when q is uniform minimizing divergence D(p‖q) is
equivalent to maximizing entropy Hp(X) (discrete case) or differential
entropy Hd,p(X) (continuous case).

Accordingly, for the case of finite supports, the minimum divergence
approach includes the maximum entropy approach.

1.7 Rationale for Focusing on Maximizing Entropy of One Random
Variable with One Expected Value Constraint

Given that there is a theory of maximizing entropy and differential
entropy when there is a random process rather than a random variable,
and also when there are multiple expected value constraints, one may
wonder why it is worthwhile to have a monograph focused on maximizing
entropy for just one random variable with just one expected value
constraint. The following suggests some rationales.

1. Maximizing entropy with one expected-value constraint is suffi-
ciently important that it deserves to be fleshed out on its own.

2. No previous discussion of maximizing entropy with one expected-
value constraint considers the conditions under which moment
matching yields the solution.
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3. The theory for one expected value constraint can be exposited
with considerably less sophisticated methods than the theory for
multiple expected value constraints.

4. It is possible to say things about the one-expected-value constraint
that are not easily seen from the theory for the more general case
of multiple expected value constraints. For example, in most
instances of this case, the set of λ’s for which Σλ is finite has
a simple form, namely, it is an infinite interval and often a one-
sided infinite interval. As another example, the monotonicities of
Eqλ [g(X)] and Hqλ(X) with changing λ have simple forms, as do
the monotonicities of Hmax(µ) and Hdmax(µ) with changing µ. In
contrast, when there are multiple expected value constraints, it
can be difficult to characterize the set of λ’s for which Σλ is finite
and also the monotonicities of Eqλ [g(X)] with changing λ.18

5. It is possible to spell out function characteristics that cause
Hmax(µ) and Hdmax(µ) to be infinite for all µ in their respec-
tive ranges, such as when the support of X has infinite size and
the function g is bounded.

6. As mentioned earlier, it is not well known that there are instances
that a conventional moment-matching, exponential-form probabil-
ity distribution will not maximize entropy or differential entropy
of a single random variable, subject to a single expected value
constraint. That is, there are functions g and values µ for which
there is a probability distribution p with E[g(X)] = µ, but for no
value of λ does the exponential-form distribution qλ in (1.3) have
Eqλ [g(X)] = µ (or even Eqλ [g(X)] ≈ µ). Hence, moment-matching
is not possible. Furthermore, it is possible to give simple exam-
ples of functions for which moment matching is not possible that
differ only slightly from functions for which moment matching is
possible.

18As discussed in Section 5.2, λ will be a vector in the multiple-expected-value-
constraint case.
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7. It can be beneficial to see the maximum entropy/differential
entropy derived for the basic case of one random variable and
one expected value constraint, as well to become familiar with
simple, one-parameter exponential families, before moving on to
the more general theory, as for example in [7], [99]. That is, it can
provide a warm-up, not only to the general theory of maximizing
entropy/differential entropy subject to expected value constraints,
but also to exponential families of probability distributions and
to information geometry.

1.8 Accessibility, Self-Containment and Completeness

As mentioned earlier, the goals of this monograph include presenting
the subject in an accessible, self-contained and complete manner. One
of the ways in which it attempts to do this is that it defines terms
with which some readers might not be familiar, or for which there
might be multiple interpretations. A second is that derivations are
fairly complete and leave relatively few steps to the reader. A third is
that this monograph is written with the idea that some readers might
be interested primarly in maximizing entropy and some primarily in
maximizing differential entropy. For this reason, Section 3, which deals
with maximizing differential entropy, can be read independently of
Section 2, which deals with maximizing entropy. However, since many
readers will have read Section 2 before Section 3, the latter frequently
comments on how items in the latter relate to items in the former.

As one has probably gathered from the discussion in Sections 1.2 and
1.3, the theory of maximizing entropy or differential entropy becomes
more involved when it comes to considering the feasibility of moment-
matching in the cases of discrete random variables with countably
infinite alphabets and continuous random variables. For example, as
mentioned earlier, there is the issue that in such cases Σλ may be infinite
for some or all values of λ, in which event, for such λ’s, qλ, Eqλ [g(X)],
Hqλ(X) and Hd,qλ(X) are all undefined. There is also the issue that
moment-matching might not be possible.

Accordingly, as the fourth approach to furthering accessibility, the
discussions in Section 2.5 for discrete random variables with a countably
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infinite alphabet begins by ignoring the possibility that Σλ might be
infinite, and derive the basic moment-matching result, presuming that
moment-matching is possible. Only subsequently, in Section 2.6, do these
discussions consider the finiteness of Σλ and the feasibility of moment-
matching. The intention is that a reader with a specific application in
mind (alphabet AX , function g and target value µ) will in many cases
be able to find a value λ with Σλ <∞ that induces moment-matching.
In such cases, s/he can skip Section 2.6 and proceed to the remainder
of Section 2.

As will be seen, going farther in Section 2.6 requires dealing with
exponential-form probability mass functions and the infinite sums defin-
ing quantities such as the normalizer Σλ, the expected value Eqλ [g(X)]
and the entropy Hqλ(X). For example, there are issues regarding the
existence and finiteness of Eqλ [g(X)] and Hqλ(X), and their limits when
λ approaches certain values. While the needed results are quite intuitive
and believable, a number of their proofs involve considerable technical
detail, such as references to series convergence theorems. Accordingly, as
the fifth effort to enhance accessibility, many such details are postponed
to Section 6. All of these are properties of exponential-form probability
distributions. For example, it is shown there that as λ increases, qλ
increasingly concentrates on values of x for which g(x) is smaller19
with the result that Eqλ [g(X)] decreases. Moreover, the fact that qλ
becomes more concentrated usually causes entropy Hqλ(X) to decrease
as λ increases.

Similarly, when deriving the maximum possible differential entropy
with an expected value constraint, the discussion begins in Section 3.1
by ignoring the possibility that Σλ might be infinite and by presuming
moment matching is possible. Then subsequently, in Sections 3.2 and 3.3,
the discussion deals with these issues. Again, the intention is that a
reader with a specific application in mind (CRVSC set S, function
g, target value µ) will in many cases be able to find, for this specific
application, a value λ with Σλ <∞ that induces moment matching. In
such cases, s/he can skip Sections 3.2 and 3.3.

19While this increasing concentration is well known, Lemma 6.1 of Section 6
provides an explicit formula quantifying this concentration.
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Also, like the discrete case, there are again issues regarding the
existence and finiteness of Eqλ [g(X)] and Hd,qλ(X), and their limits
when λ approaches a limit. While again the needed results are almost
all quite intuitive and believable, their proofs involve technical detail of
the same order as for discrete random variables with countably infinite
alphabets. Accordingly, these are again postponed to Section 6.

We note that a number of the derivations in Section 6 are so similar
for the discrete and continuous cases that they can proceed simulta-
neously. To facilitate this, some specialized, nonstandard terminology,
notation and conventions are introduced in Section 4. For example, a
generalized sum is introduced that is interpreted as an ordinary sum in
the discrete case and an integral in the continuous case. This section
appears just before Section 5, which discusses the generalization of max-
imizing entropy and differential entropy subject to multiple expected
value constraints, precisely so the discussion in Section 5 can proceed
simultaneously for the discrete and continuous cases.

Though much of the discussion in Sections 5 and 6 applies simul-
taneously to both cases, the notation and conventions adopted have
the characteristic that if one is interested only in the discrete case, one
should not be distracted by the fact that the discussion also applies to
the continuous case, and vice versa. For example, someone interested
in the discrete case will simply view a generalized sum as an ordinary
sum, and someone interested in the continuous case will view it as an
integral.

Because of the nonstandard nature of these notations, conventions
and terms, even fully versed probabilists and information theorists
should read Section 4.

While one viewpoint is that Section 6 contains technical details
that support the developments of Sections 2 and 3, another is that it
can be viewed as a self-contained tutorial on one-parameter families of
exponential-form pmfs induced by a function g and a range of λ’s.

Sections 2 and 3 also present properties of the maximum entropy/
differential entropy, Hmax(µ) and Hdmax(µ) as functions of µ, such as
their convexity and the fact that, for some functions, they can be infinite
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for all µ.20 Again, to facilitate accessibility some of the more arcane
details are postponed to Section 7.

As a final introductory comment, we note that the Appendix derives
the range of possible values of the expected value, Ep[g(X)], of a function
g applied to a random variable X, as its probability distribution p

ranges over all possibilities. As discussed in Sections 2 and 3, this
range determines the domain of the maximum entropy and differential
entropy functions Hmax(µ) and Hdmax(µ). It is placed at the end of
the monograph rather than in Sections 2 and 3 because it proceeds
simultaneously for the discrete and continuous cases.

20The inclusion of results delimiting when these functions are infinite for all µ is
one of the ways in which this monograph attempts to be complete.
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