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ABSTRACT

Power control is often used to ensure efficient resource uti-
lization in communication systems. Its role becomes even
more critical in the emerging paradigm of energy harvesting
communications due to the intermittency and randomness
of ambient energy sources. This monograph provides a re-
view of the fundamental power control policies and their
performance analysis in the basic setting of a discrete-time
battery-limited energy harvesting communication system
with independent and identically distributed energy arrivals.
Three different settings, namely, offline power control, on-
line power control, and power control with lookahead, are
considered, corresponding respectively to the cases with
non-causal, causal, and partial non-causal knowledge of the
energy arrival process. A complete characterization of the
optimal offline power control policy is presented. In the on-
line setting, the focus is placed on the greedy policy, which is
optimal in the low-battery-capacity regime, and universally
near-optimal policies, which include the maximin optimal

Shengtian Yang and Jun Chen (2025), “Power Control for Battery-Limited Energy
Harvesting Communications”, Foundations and Trends® in Communications and
Information Theory: Vol. 22, No. 2-3, pp 185–393. DOI: 10.1561/0100000133.
©2025 S. Yang and J. Chen
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2

policy, the fixed fraction policy, the two-piece fixed fraction
policy, and the locally fixed fraction policy. Finally, power
control with lookahead is introduced to bridge offline and
online power control, the entire spectrum of optimal poli-
cies is characterized for Bernoulli energy arrivals, and the
extension beyond the Bernoulli case is also discussed.
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Notation

General

:= is defined to be (in a local scope)
≜ is defined to be (globally)
Z set of integers
Z≥0 set of non-negative integers
Z>0 set of positive intergers
R field of real numbers
R≥0 set of non-negative real numbers
xn

m, x
n, x∞ sequences (xi)n

i=m, (xi)n
i=1, and (xi)∞

i=1, respectively
X,Xn, X∞ random variables or sequences denoted by capital

letters
e Euler’s number 2.71828 . . .
log x loge x

lg x log10 x

⌊x⌋ the largest integer less than or equal to x
⌈x⌉ the smallest integer greater than or equal to x
⟨x⟩a,b clip the number x by the interval [a, b]

3
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4 Notation

⟨x⟩≥a, ⟨x⟩≤b variants of ⟨x⟩a,+∞ and ⟨x⟩−∞,b, respectively
f |A restriction of the function f to A
f (n) nth iteration of the function f with f (0)(x) := x

1{S} indicator function that equals 1 if the statement S is
true and 0 otherwise

B(S) Borel σ-field generated by the topology on a metric
space S

EX expectation of the random variable X
N (µ, σ2) normal distribution with mean µ and variance σ2

δx one-point distribution at x
Bq,a (variant of) Bernoulli distribution supported on {0, a}

with probablity q at a
Eλ exponential distribution with the parameter λ
Ub uniform distribution on [0, b]
epi(f) epigraph of the function f

hyp(f) hypograph of the function f

conv(A) convex hull of the set A
cl(A) closure of the set A

↓f
A

(x) lower semi-continuous envelope of f over A
↑fA(x) upper semi-continuous envelope of f over A

∨fA
(x) lower convex envelope of f over A

∧fA(x) upper concave envelope of f over A
∨(f), ∧(f) convex and concave points of f , respectively
f(x) = O(g(x)) indicate that lim supx→∞ f(x)/g(x) < +∞ (suppos-

ing that f(x) and g(x) are both positive) and the
point where x tends to, if not infinity, can be specified
by, e.g., O↓0(g(x))

f(x) = o(g(x)) indicate that limx→∞ f(x)/g(x) = 0
f(x) = Θ(g(x)) f(x) = O(g(x)) and g(x) = O(f(x))
f(x)∼a g(x) indicate that limx→a(f(x)/g(x)) = 1
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Notation 5

Model

c battery capacity

Rn
m,G(n),G finite-horizon total reward, n-horizon average reward,

and average reward, respectively

µ, µ̄, ς̄ mean, clipped mean, and clipped (standard) deviation
of energy arrivals, respectively

MCR mean-to-capacity ratio

NMCR nominal mean-to-capacity ratio

NSNR nominal signal-to-noise ratio

DCR deviation-to-capacity ratio

iv variation index of energy arrivals

G∗
on maximum online average reward

G∗
lk[w] maximum w-lookahead average reward

G+(π) nominal additive gap of the policy π

G×(π) nominal multiplicative gap of the policy π

G+(π) additive gap of the policy π

G×(π) multiplicative gap of the policy π

Policy

Π(n)
∞ collection of all (admissible) n-horizon offline (power

control) policies

Π0 collection of all (admissible) online (power control)
policies

ΠM
0 collection of all Markov online policies

ΠS
0 collection of all stationary online policies

ΠSN
0 collection of all normal stationary policies

Πw collection of all (admissible) w-lookahead (power con-
trol) policies

ΠS
w collection of all stationary w-lookahead policies
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6 Notation

σ reserve policy corresponding to the stationary online
policy σ

ig(σ; s) greed index of the stationary online policy σ on [0, s]

π∗
off optimal offline policy

πst save-and-transmit policy

σgrd greedy policy

σff(p) fixed fraction policy with parameter p

σmo(p) maximin optimal policy with parameter p

σtff(p) two-piece fixed fraction policy with parameter p

σlff(p) locally fixed fraction policy with parameter p

σb(p,w) Bernoulli-optimal w-lookahead policy with parameter
p and lookahead window size w
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A
Technical Details behind Common Reward

Functions

A.1 AWGN Reward Function

Suppose that, during a time slot, a transmission is performed over a
continuous-time additive white Gaussian noise (AWGN) channel with
bandwidth W , which can be represented by a complex baseband AWGN
channel (W independent uses per second)

Yi = hXi + Zi,

where Xi and Yi are the channel input and output, respectively, h is
the complex channel gain, and Zi is the channel noise that is circular
symmetric complex normal with mean zero and variance N0, denoted
by CN (0, N0). Thus, the whole system can be formulated as follows.

Suppose that the duration of a time slot is Ts and the energy
consumed in time slot t is Ut. Then the maximum amount of data
transmitted in time slot t is

r(Ut) := WTs log
(

1 + |h|2Ut

N0WTs

)
nats (A.1)

152
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A.2. MSE Distortion Reward Function 153

by the AWGN channel capacity formula (e.g., [118, Eq. (5.26)] with L =
1). The n-horizon (expected) throughput and the long-term (expected)
throughput can be computed as

T (n)(b) := 1
nTs

ERn+1
1 (b) nats/s

and
T (b) := lim inf

n→∞
T (n)(b) nats/s,

respectively. Comparing (A.1) with (1.6), we obtain the conversion
law between a real AWGN power control problem and the canonical
problem.

Proposition A.1. Let corg, eorg, T (n)(borg), and T (borg) be the battery
capacity, the energy level (consumed, harvested, or available in the
battery), the n-horizon throughput, and the long-term throughput, re-
spectively, in a real AWGN power control problem. Then, their relations
to the canonical counterparts (c, e, G(n)(b), and G(b) for the canonical
AWGN reward (1.6), respectively) are given by

c = γcorg, (A.2a)
e = γeorg, (A.2b)

T (n)(borg) = W G(n)(b) = W G(n)(γborg), (A.2c)
T (borg) = W G(b) = W G(γborg), (A.2d)

where
γ := |h|2

N0WTs
(A.3)

is called channel coefficient.

Sketch of Proof. Comparing (1.6) with (A.1) gives (A.2a) and (A.2b).
The verification of (A.2c) and (A.2d) is straightforward.

A.2 MSE Distortion Reward Function

Consider a sensor node collecting data from an i.i.d. Gaussian source
with sample rate fs samples/s. The collected data are then transmitted
to another node over a continuous-time AWGN channel with bandwidth

Full text available at: http://dx.doi.org/10.1561/0100000133



154 Technical Details behind Common Reward Functions

W . Suppose that the duration of a time slot is Ts and the energy
consumed in time slot t is Ut. By (A.1), the maximum quantization
rate in time slot t is

WTs log
(

1 + |h|2Ut

N0WTs

)
fsTs

= αs

2 log(1 + γUt) bits/sample,

where αs := 2W/fs and γ is the channel coefficient defined by (A.3).
By [30, Thm. 10.3.2], the rate-distortion function for a N (0, σ2

s)
source with squared-error distortion is

R(D) = 1
2

〈
log σ

2
s

D

〉
≥0
,

where N (µ, σ2
s) denotes a Gaussian distribution with mean µ and vari-

ance σ2
s . Thus, the minimum MSE distortion of samples in time slot t

is
c(Ut) = σ2

se−αs log(1+γUt) = σ2
s(1 + γUt)−αs . (A.4)

The n-horizon (expected) average distortion and the long-term (ex-
pected) average distortion can be computed as

C(n)(b) := 1
n
E

n∑
t=1

c(Ut)

and
C(b) := lim inf

n→∞
C(n)(b),

respectively. Comparing (A.4) with (1.7), we obtain the conversion law
between a real MSE distortion power control problem and the canonical
problem.

Proposition A.2. Let corg, eorg, C(n)(borg), and C(borg) be the battery
capacity, the energy level (consumed, harvested, or available in the
battery), the n-horizon average distortion, and the long-term average
distortion, respectively, in a real MSE distortion power control problem.
Then, their relations to the canonical counterparts (c, e, G(n)(b), and
G(b) for the canonical MSE distortion reward (1.7), respectively) are
given by
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A.2. MSE Distortion Reward Function 155

c = γcorg, (A.5a)
e = γeorg, (A.5b)

C(n)(borg) = − σ2
s G(n)(b) = −σ2

s G(n)(γborg), (A.5c)
C(borg) = − σ2

s G(b) = −σ2
s G(γborg). (A.5d)

Sketch of Proof. Comparing (1.7) with (A.4) gives (A.5a) and (A.5b).
The verification of (A.5c) and (A.5d) is straightforward.
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B
Proofs of Some Results in Chapters 3 and 4

B.1 Optimality of Greedy Policy

Proof of Proposition 3.1. For c ∈ (x, x),

ψ̌(c) ≥ r′(c)−
∫

[0,c)
∧r′[x,c](s)Q(ds)

(a)
≥ r′(c)− ρ(c)∧r′[x,c]

(∫
[0,c) sdQ
ρ(c)

)
(b)
≥ ψ̌↓(c) := r′(c)− ρ(c)∧r′[x,c](ξ(ρ(c))),

where (a) follows from Jensen’s inequality, and (b) follows from the
strictly decreasing property of ∧r′[x,c] (Proposition C.4) and the fact
that∫

[0,c)
sdQ = µ−

∫
[c,+∞)

sdQ ≥ µ− xQ([c,+∞)) = µ− (1− ρ(c))x

and ∫
[0,c)

sdQ ≥ ρ(c)x.

156
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B.1. Optimality of Greedy Policy 157

Then the inequality ψ̌↓(c) ≥ 0 always implies ψ̌(c) ≥ 0, and hence

c∗ ≥ sup{c < x : ψ̌↓(c) ≥ 0} (Theorem 3.11 and Remark 3.3)
(a)= sup{c ∈ (x, x) : ψ̌↓(c) ≥ 0} = c,

where (a) is due to the fact that limc↓x ψ̌↓(c) = r′(x)−Q(x)r′(x) > 0.

Proof of Proposition 3.2. For c ∈ (x, x),

ψ̌(c) ≤ r′(c)−
∫

[0,c)
∨r

′
[x,c](s)Q(ds)

(a)
≤ r′(c)− ρ(c)∨r

′
[x,c]

(∫
[0,c) sdQ
ρ(c)

)
(b)
≤ ψ̌↑(c) := r′(c)− ρ(c)∨r

′
[x,c](⟨ξ(ρ(c), c)⟩≤c),

where (a) follows from Jensen’s inequality, and (b) follows from the
strictly decreasing property of ∨r

′
[x,c] (Proposition C.4) and the fact

that∫
[0,c)

sdQ = µ−
∫

[c,+∞)
sdQ ≤ µ− cQ([c,+∞)) = µ− (1− ρ(c))c

and ∫
[0,c)

sdQ ≤ ρ(c)c.

Then the inequality ψ̌(c) ≥ 0 always implies ψ̌↑(c) ≥ 0, and hence

c∗ ≤ sup{c ∈ (x, x) : ψ̌↑(c) ≥ 0} (Theorem 3.11 and Remark 3.3)
(a)= sup{c ∈ (µ, x) : ψ̌↑(c) ≥ 0}
(b)= c,

where (a) is due to the fact that

lim
c↓µ

ψ̌↑(c) = r′(µ)−Q([0, µ])r′(µ) > 0,

and (b) follows from the inequality ξ(t, c) < c for c > µ.
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158 Proofs of Some Results in Chapters 3 and 4

Proof of Lemma 3.12. By definition, any c ∈ [0, c′(x1, x2, µ0)) satisfies

r′(c) ≥ χ(c, x1, x2, µ0) ≥ χ(c,Q),

or equivalently, c ≤ c∗(Q), for all Q ∈ Qx1,x2,µ0 . This implies that
c ≤ c(x1, x2, µ0) for all c ∈ [0, c′(x1, x2, µ0)) and hence c′(x1, x2, µ0) ≤
c(x1, x2, µ0). On the other hand, any c ∈ [0, c(x1, x2, µ0)) satisfies r′(c) ≥
χ(c,Q) for all Q ∈ Qx1,x2,µ0 , or equivalently,

r′(c) ≥ χ(c, x1, x2, µ0).

This implies that c ≤ c′(x1, x2, µ0) for all c ∈ [0, c(x1, x2, µ0)) and hence
c(x1, x2, µ0) ≤ c′(x1, x2, µ0). Therefore, c(x1, x2, µ0) = c′(x1, x2, µ0).

Similarly, any c ∈ (x1, c
′(x1, x2, µ0)) (which is non-empty by Re-

mark 3.3) satisfies

r′(c) ≥ χ(c, x1, x2, µ0) = χ(c,Q0)

for some Q0 ∈ Qx1,x2,µ0 (Lemma 3.13). This implies that c ≤ c∗(Q0) ≤
c(x1, x2, µ0) for all c ∈ (x1, c

′(x1, x2, µ0)) and hence c
′(x1, x2, µ0) ≤

c(x1, x2, µ0). On the other hand, for any c ∈ [0, c(x1, x2, µ0)), there
exists some Q0 ∈ Qx1,x2,µ0 such that c ≤ c∗(Q0), or

r′(c) ≥ χ(c,Q0) ≥ χ(c, x1, x2, µ0).

This implies that c ≤ c′(x1, x2, µ0) for all c ∈ [0, c(x1, x2, µ0)) and hence
c(x1, x2, µ0) ≤ c

′(x1, x2, µ0). Therefore, c(x1, x2, µ0) = c
′(x1, x2, µ0).

Proof of Proposition 3.3. Observe that∫
f(x)Q(dx) ≥

∫
∨f(x)Q(dx) ≥ ∨f(µ0),

where the last inequality follows from Jensen’s inequality. Use Proposi-
tion C.5 to obtain (3.53) and (3.56).

To prove (3.59), we consider two typical cases, and other cases can
be proved in a similar way.

If f(s) ̸= ↓f(s), s < µ0, and f(t) = ↓f(t), then f(s) > ↓f(s), hence
the point ps := (s, ↓f(s)) must be a limit point of epi(f), and therefore
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B.1. Optimality of Greedy Policy 159

there exists a sequence of points (sn, yn) converging to ps and satisfying
sn ∈ [a, µ0) and yn ≥ f(sn). Since lim infx→s f(x) ≥ ↓f(s) (by the lower
semi-continuity of ↓f(x)), the sequence (sn, f(sn))∞

n=1 also converges to
ps. In other words,

a ≤ sn < µ0, lim
n→∞

sn = s, lim
n→∞

f(sn) = ↓f(s).

It is easy to verify that

Qn := ρ̂(sn, t, µ0)δsn + (1− ρ̂(sn, t, µ0))δt

satisfies (3.59) as well as Qn([a, b]) = 1 and µ(Qn) = µ0.
If f(s) ̸= ↓f(s) but s = t = µ0 ∈ (a, b) (regardless of whether

f(t) = ↓f(t)), then there exists a sequence (sn)∞
n=1 satisfying

|sn − µ0| < ϵ, lim
n→∞

sn = µ0, lim
n→∞

f(sn) = ↓f(µ0),

where ϵ := (min{µ0 − a, b− µ0, 1})2. Let

tn := µ0 + |sn − µ0|1/2(1{sn < µ0} − 1{sn > µ0}).

It is clear that sn, tn ∈ (a, b), limn→∞ tn = µ0, and

lim
n→∞

ρ̂(sn, tn, µ0) = lim
n→∞

tn − µ0
tn − sn

= lim
n→∞

|sn − µ0|1/2

|sn − µ0|+ |sn − µ0|1/2 = 1.

It is then easy to verify that

Qn := ρ̂(sn, tn, µ0)δsn + (1− ρ̂(sn, tn, µ0))δtn

satisfies (3.59) as well as Qn([a, b]) = 1 and µ(Qn) = µ0.

Proof of Lemma 3.13. Let

f(x) := r′(x)1{0 ≤ x < c}.

For c ∈ (x1, x2), it is clear that ↓f [x1,x2]
(x) = f(x) and ↑f [x1,x2](x) =

r′(x)1{0 ≤ x ≤ c}.
By Proposition 3.3,

χ(c, x1, x2, µ0) = sup
Q∈Qx1,x2,µ0

χ(c,Q)

= ∧f [x1,x2](µ0)

= t↑f [x1,x2](s1) + (1− t)↑f [x1,x2](s2),
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where s1 ≤ µ0 ≤ s2, ts1 + (1 − t)s2 = µ0, and both s1 and s2 are
adjacent or equal concave points of f |[x1,x2]. Note that the points x1
and x2 are the concave points of f |[x1,x2]. Candidates of other concave
points of f |[x1,x2] are the concave points of r′|[x1,c]. If s2 = µ0, then

x1 < s1 = s2 = µ0 ≤ c

and
∧f [x1,x2](µ0) = r′(µ0).

This case can be regarded as a degenerate case of the next case with µ0
being a concave point of r′|[x1,c]. If µ0 < s2 < x2, then

x1 ≤ s1 < µ0 < s2 ≤ c < x2

and
∧f [x1,x2](µ0) = tr′(s1) + (1− t)r′(s2) = ∧r′[x1,c](µ0).

If s2 = x2, then

x1 ≤ s1 ≤ c < s2 = x2, x1 ≤ s1 < µ0 < s2 = x2,

and
∧f [x1,x2](µ0) = ρ̂(s1, x2, µ0)r′(s1),

where ρ̂(s, t, v) is defined by (3.55). In summary, we have

χ(c, x1, x2, µ0) = max
s∈A

ρ̂(s, x2, µ0)r′[x1,c](s),

where A is defined by (3.63).
In the same vein, by Proposition 3.3 with ↓f [x1,x2]

= f(x),

χ(c, x1, x2, µ0) = min
Q∈Qx1,x2,µ0

χ(c,Q)

= tf(s1) + (1− t)f(s2),

where s1 ≤ µ0 ≤ s2, ts1 + (1 − t)s2 = µ0, and both s1 and s2 are
adjacent or equal convex points of f |[x1,x2]. Note that the points x1, c,
and x2 are the convex points of f |[x1,x2]. Candidates of other convex
points are the convex points of r′|[x1,c).

For c ∈ (x1, µ0], we have s1 = c and s2 = x2 (or c if c = µ0), and
hence

χ(c, x1, x2, µ0) = ∨f [x1,x2](µ0) = χ(c, δµ0) = 0.

Full text available at: http://dx.doi.org/10.1561/0100000133



B.1. Optimality of Greedy Policy 161

For c ∈ (µ0, x2), according to the value of s2, there are three cases
to be considered. Note that s2 ̸= x2, because in this case, s1 and s2 are
not adjacent convex points of f |[x1,x2]. If s2 = µ0, then

x1 < s1 = s2 = µ0 < c

and
∨f [x1,x2](µ0) = r′(µ0).

This case can be regarded as a degenerate case of the next case with µ0
being a concave point of r′|[x1,c). If µ0 < s2 < c, then

x1 ≤ s1 < µ0 < s2 < c < x2

and
∨f [x1,x2](µ0) = tr′(s1) + (1− t)r′(s2) = ∨r

′
[x1,c)(µ0).

If s2 = c, then
x1 ≤ s1 < µ0 < s2 = c < x2

and
∨f [x1,x2](µ0) = ρ̂(s1, c, µ0)r′(s1).

In all the three cases, we have

χ(c,Q0) = ∨f [x1,x2](µ0)

with Q0 := tδs1 + (1− t)δs2 . In summary, we have

χ(c, x1, x2, µ0) = min
s∈A′

ρ̂(s, c, µ0)∨r
′
[x1,c)(s) = min

s∈A
ρ̂(s, c, µ0)∨r

′
[x1,c](s)

= χ(c,Q0),

where A′ := ⟨∨(r′|[x1,c))⟩≤µ0 ∪ {µ0} and A is defined by (3.64).

Proof of Proposition 3.4. When r = rawgn,

∧r′[x,c](x) = 1 + x+ c− x
(1 + x)(1 + c) for x ∈ [x, c] (B.1)

and
∨r

′
[x,c](x) = 1

1 + x
for x ∈ [x, c], (B.2)
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from which (3.69) and (3.70) follow immediately (Propositions 3.1
and 3.2).

By Theorem 3.14 and (B.1),

χ(c, x, x, µ) = max
{
ρ̂(x, x, µ)

1 + x
,
ρ̂(⟨c⟩≤µ, x, µ)(1 + x+ c− ⟨c⟩≤µ)

(1 + x)(1 + c)

}
for c ∈ (x, x), and the semi-universal lower bound c(x, x, µ) is the
supremum of the intersection of the solution sets

C1 :=
{
c ∈ (x, x) : r′(c) ≥ ρ̂(x, x, µ)

1 + x

}
and

C2 :=
{
c ∈ (x, x) : r′(c) ≥ ρ̂(⟨c⟩≤µ, x, µ)(1 + x+ c− ⟨c⟩≤µ)

(1 + x)(1 + c)

}
.

It is clear that
C1 =

(
x,

(1 + x)(x− x)
x− µ

− 1
]

and C2 = (x, µ], from which (3.71) and (3.72) follow.
By Theorem 3.14 and (B.2), for c ∈ (µ, x),

χ(c, x, x, µ) = min
s∈[x,µ]

c− µ
(c− s)(1 + s)

= min
s∈[x,µ]

c− µ

−
(
s− c− 1

2

)2
+ (c+ 1)2

4

=



c− µ
(c− x)(1 + x) , c < ι(x),

4(c− µ)
(c+ 1)2 , ι(x) ≤ c ≤ ι(µ),

1
1 + µ

, c > ι(µ),

and the semi-universal upper bound c(x, x, µ) is the supremum of the
union of the solution sets

C1 :=
{
c ∈ (µ, x) ∩ [0, ι(x)) : r′(x) ≥ c− µ

(c− x)(1 + x)

}
,

C2 :=
{
c ∈ (µ, x) ∩ [ι(x), ι(µ)] : r′(x) ≥ 4(c− µ)

(c+ 1)2

}
,

C3 :=
{
c ∈ (µ, x) ∩ (ι(µ),+∞) : r′(x) ≥ 1

1 + µ

}
,
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where
ι(x) := 2x+ 1.

Some algebraic manipulations yield

C1 = (µ, x) ∩ [0, ι(x)) ∩ (µ, c1],
C2 = (µ, x) ∩ [ι(x), ι(µ)] ∩ (µ, c2],
C3 = (µ, x) ∩ (ι(µ),+∞) ∩ [0, µ] = ∅.

Thus,

c(x, x, µ) =
{

sup((µ, c1] ∩ (µ, x)), µ ≤ 3
2x+ 1

2 ,
sup((µ, c2] ∩ (µ, x)), µ > 3

2x+ 1
2 ,

=
{
⟨c1⟩≤x, µ ≤ 3

2x+ 1
2 ,

⟨c2⟩≤x, µ > 3
2x+ 1

2 ,

where c1 and c2 are defined by (3.77) and (3.78), respectively, because

c1 ⪋ ι(x) for µ ⪋
3
2x+ 1

2
and

c2 ⪋ ι(x) for µ ⪋
3
2x+ 1

2 .

This proves (3.73).

B.2 Universally Near-Optimal Online Policies

Proof of Theorem 3.22. By Lemma 3.18 and Theorem 3.19,

sup
c>0

G+(σff;Qc,p)

= lim
c→+∞

(
r(pc)−

∞∑
i=0

p(1− p)ir(σff(p)(σff(p)
(i)(c)))

)

= lim
c→+∞

∞∑
i=0

p(1− p)i(log(1 + pc)− log(1 + p(1− p)ic))

(a)=
∞∑

i=0
p(1− p)i lim

c→+∞
log 1 + pc

1 + p(1− p)ic

=
∞∑

i=1
ip(1− p)i log 1

1− p
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= 1− p
p

log 1
1− p,

where (a) follows from the dominated convergence theorem. Since(1− p
p

log 1
1− p

)′
= log(1− p)

p2 + 1
p
≤ − p

p2 + 1
p

= 0,

we have

MG+(σff) = sup
p∈(0,1)

1− p
p

log 1
1− p

= lim
p→0

1− p
p

log 1
1− p = 1.

Proof of Theorem 3.23. It is easy to verify that for any u > 0,

σff(p)(σff(p)
(i)(σ−1

ff(p)(u))) = (1− p)iu

and
pσ−1

ff(p)(u) = u. (B.3)

Let hu,p(t) := σff(p)(σff(p)
(⌊t/p⌋)(σ−1

ff(p)(u))). Then we have hu,p(t) ≤ ue1−t

and
lim
p→0

hu,p(t) = ue−t (Proposition C.11). (B.4)

Hence,

r0 :=
∫ +∞

0
e−tr(ue−t)dt = log(1 + u)− 1 + log(1 + u)

u

and

lim
p→0

gσff(p)
(c, p)

|r(pc)|

∣∣∣∣∣
c=σ−1

ff(p)(u)
= log(1 + u)− r0

log(1 + u) (Theorem 3.20)

= 1
log(1 + u) −

1
u
,
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which concludes (3.130). Furthermore, we have

MG×(σff) = sup
c>0,

p∈(0,1)

gσff(c, p)
r(pc) (Lemma 3.18)

= sup
u>0,

p∈(0,1)

gσff(c, p)
r(pc)

∣∣∣∣∣
c=σ−1

ff(p)(u)

≥ sup
u>0

lim
p→0

gσff(c, p)
r(pc)

∣∣∣∣∣
c=σ−1

ff(p)(u)

= sup
u>0

( 1
log(1 + u) −

1
u

)
(a)= lim

u→0

( 1
log(1 + u) −

1
u

)
= 1

2 , (B.5)

where (a) is due to the strictly decreasing property of 1/ log(1+u)−1/u
for u > 0 because( 1

log(1 + u) −
1
u

)′
= − 1

(1 + u)(log(1 + u))2 + 1
u2 < 0 ([26, p. 184]).

On the other hand, since for all c > 0 and p ∈ (0, 1),

GB(c, p;σff(p)) =
∞∑

i=0
p(1− p)ir((1− p)ipc+ [1− (1− p)i]0)

≥
∞∑

i=0
p(1− p)2ir(pc) (Jensen’s inequality)

= p

1− (1− p)2 r(pc) = 1
2− pr(pc),

we have
MG×(σff) ≤ sup

p∈(0,1)

(
1− 1

2− p

)
≤ 1

2 ,

which together with (B.5) concludes (3.131).

Proof of Theorem 3.24. By Lemma 3.18 and Theorem 3.19,

MG+(σgrd) = sup
p∈(0,1)

lim
c→+∞

gσgrd(c, p)
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and
MG×(σgrd) = sup

c>0,
p∈(0,1)

gσgrd(c, p)
r(pc) ,

where gσgrd(c, p) = r(pc)− pr(c). Furthermore, we have

sup
p∈(0,1)

lim
c→+∞

gσgrd(c, p) = sup
p∈(0,1)

lim
c→+∞

(log(1 + pc)− p log(1 + c))

= sup
p∈(0,1)

lim
c→+∞

log 1 + pc

(1 + c)p

= sup
p∈(0,1)

lim
c→+∞

log c
1−p(1/c+ p)
(1/c+ 1)p

= +∞

and

sup
c>0,

p∈(0,1)

gσgrd(c, p)
r(pc) ≥ sup

c>0
lim
p→0

r(pc)− pr(c)
r(pc)

(a)= sup
c>0

lim
p→0

cr′(pc)− r(c)
cr′(pc)

= sup
c>0

c− r(c)
c

= 1,

where (a) follows from L’Hospital’s rule. The proof is complete by noting
that the nominal multiplicative gap cannot be larger than one.

Proof of Corollary 3.28. Let y = σmo(p)(x). We have

κs(x) = 1 + x

s
− 1, (B.6)

so

x = η1/(1−p)(y) (Theorem 3.27)

=
M̃−1∑
i=0

[(1 + y)(1− p)i − 1] (Proposition 3.8)

= (1 + y)1− (1− p)M̃

p
− M̃, (B.7)
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where

− log(1 + y)
log(1− p) < M̃ =

⌊
− log(1 + y)

log(1− p)

⌋
+ 1 ≤ − log(1 + y)

log(1− p) + 1.

Solving (B.7) for y then gives

y = p(x+ M̃)
1− (1− p)M̃

− 1.

The proof is complete by noting that

1− p ≤ (1 + y)(1− p)M̃ < 1
⇒ (1− p)[1− (1− p)M̃ ] ≤ p(x+ M̃)(1− p)M̃ < 1− (1− p)M̃

⇒ [1 + p(x+ M̃)](1− p)M̃ < 1 ≤ [1 + p(x+ M̃ − 1)](1− p)M̃−1.

Proof of Theorem 3.29. By (B.6), q∞(κ1/(1−p)) = 1 − p, and hence
ρ̄ = 1− q∞(κ1/(1−p)) = p. By Theorem 3.27, we have

σmo(p)(x) ≥ ρ̄x = σff(p)(x)

and

lim
x→+∞

(r(σmo(p)(x))− r(σff(p)(x))) = log lim
x→+∞

1 + σmo(p)(x)
1 + px

= log
q∞(σmo(p))

p
= log ρ̄

p
= 0.

Then,

lim sup
c→+∞

(GB(c, p;σmo(p))− GB(c, p;σff(p))) ≤ 0 (Theorem 3.21),

hence
lim

c→+∞
(GB(c, p;σmo(p))− GB(c, p;σff(p))) = 0 (B.8)

by the optimality of σmo(p) for Bp, and therefore

sup
c>0

G+(σmo;Qc,p) = lim
c→+∞

gσmo(c, p) (Theorems 3.19 and 3.27)

= lim
c→+∞

gσff(c, p)

= sup
c>0

G+(σff;Qc,p) (Theorem 3.19).

This together with Theorem 3.22 establishes the theorem.
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Proof of Theorem 3.30. By Theorem 3.27, it is easy to see that

σmo(p)(σmo(p)
(i)(σ−1

mo(p)(u))) =
{
κ1/(1−p)i(u), if i < M(u),
0, otherwise,

and

pσ−1
mo(p)(u) = p

M(u)−1∑
i=0

σmo(p)(σmo(p)
(i)(σ−1

mo(p)(u))),

where
κ1/(1−p)i(u) = (1− p)i(1 + u)− 1

and
M(u) =

⌈
− log(1 + u)

log(1− p)

⌉
.

Let hu,p(t) := σmo(p)(σmo(p)
(⌊t/p⌋)(σ−1

mo(p)(u))). Observe that

pM(u) < −p log(1 + u)
log(1− p) + p ≤ log(1 + u) + 1

and
lim
p→0

pM(u) = log(1 + u).

Then by Proposition C.11,

hu,p(t) ≤ [e1−t(1 + u)− 1]1{0 ≤ t < pM(u)}
≤ [e1−t(1 + u)− 1]1{0 ≤ t < log(1 + u) + 1}

and

lim
p→0

hu,p(t) = lim
p→0

[(1− p)⌊t/p⌋(1 + u)− 1]1{0 ≤ t < pM(u)}

= [e−t(1 + u)− 1]1{0 ≤ t < log(1 + u)}.

Applying Theorem 3.20, we have

r0 :=
∫ log(1+u)

0
e−tr(e−t(1 + u)− 1)dt

=
∫ log(1+u)

0
e−t(log(1 + u)− t)dt = 1

1 + u
+ log(1 + u)− 1,

µ̄0 :=
∫ log(1+u)

0
[e−t(1 + u)− 1]dt = u− log(1 + u),
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and

lim
p→0

gσmo(c, p)
r(pc)

∣∣∣∣
c=σ−1

mo(p)(u)

= log(1− log(1 + u)/(1 + u))− 1/(1 + u) + 1
log(1 + u− log(1 + u))

= g×
0 (1 + u).

Finally,

MG×(σmo) = sup
c>0,

p∈(0,1)

gσmo(c, p)
r(pc) (Lemma 3.18)

≥ sup
u>0

lim
p→0

gσmo(c, p)
r(pc)

∣∣∣∣
c=σ−1

mo(p)(u)

= sup
t>1

g×
0 (t).

Proof of Theorem 3.31. By Theorem 3.23 and Lemma 3.15, we have
MG×(σff) ≤ 1

2 , so it suffices to show that MG×(σff) ≥ 1
2 . For this

purpose, we will show that G×(σff; Bp) converges to 1/2 as c and p go
to zero. We have

lim
p→0

lim
c→0

G×(σff; Bp) = 1− lim
p→0

lim
c→0

GB(c, p;σff(p))
GB(c, p;σmo(p))

(a)= 1− lim
p→0

∞∑
i=0

p(1− p)i lim
c→0

r(p(1− p)ic)
GB(c, p;σmo(p))

(b)= 1− lim
p→0

∞∑
i=0

p(1− p)i lim
c→0

p(1− p)ir′(p(1− p)ic)
pr′(σmo(p)(0))

(c)= 1− lim
p→0

∞∑
i=0

p(1− p)2i

= 1− lim
p→0

1
2− p = 1

2 ,

where (a) follows from Theorem 3.17 and the dominated convergence
theorem with

r(p(1− p)ic)
GB(c, p;σmo(p))

≤
GB(c, p;σff(p))
GB(c, p;σmo(p))

≤ 1,
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(b) from L’Hospital’s rule and Theorem 3.32, and (c) follows from
Corollary 3.28.

Proof of Theorem 3.32. For almost every c ≥ 0,

∂ GB(c, p;σmo(p))
∂c

=
M(σmo(p)(c))−1∑

i=0
p(1− p)ir′(σmo(p)(σmo(p)

i(c)))
∂σmo(p)(σmo(p)

i(c))
∂c

(a)=
M(σmo(p)(c))−1∑

i=0
pr′(σmo(p)(c))

∂σmo(p)(σmo(p)
i(c))

∂c

= pr′(σmo(p)(c))
∂
∑M(σmo(p)(c))−1

i=0 σmo(p)(σmo(p)
i(c))

∂c
(b)= pr′(σmo(p)(c))

∂η1/(1−p)(σmo(p)(c))
∂c

= pr′(σmo(p)(c)),

where (a) and (b) both follow from Theorem 3.27.

Proof of Corollary 3.35. At first, we have τ1/(1−p) = p/(1−p) and ρ̄ = p

(see (B.6)). (3.177) and the first piece of (3.178) then follow easily. It
remains to prove the second piece of (3.178), which can be obtained by
solving the equation

x = y2

y − κ1/(1−p)(y)
for y ≥ p/(1− p), which also implies that x ≥ p/(1− p).

Proof of Theorem 3.36. Since

σff(p)(x) ≤ σtff(p)(x) ≤ σlff(p)(x) ≤ σmo(p)(x) (Theorem 3.34)

and
lim

x→+∞
(r(σmo(p)(x))− r(σff(p)(x))) = 0 (B.8),

Full text available at: http://dx.doi.org/10.1561/0100000133



B.2. Universally Near-Optimal Online Policies 171

we have

lim
c→+∞

(GB(c, p;σmo(p))− GB(c, p;σtff(p)))

= lim
c→+∞

(GB(c, p;σmo(p))− GB(c, p;σlff(p))) = 0. (Theorem 3.21)

With the help of Theorem 3.34 again, the theorem is established by a
similar argument to the proof of Theorem 3.29.

Proof of Theorem 3.37. It is easy to verify that for any u > 0,

σtff(p)(σtff(p)
(i)(σ−1

tff(p)(u))) =


(1− p)iu, 0 ≤ i < i0,

(1− p)i

p
u− 1, i = i0,

0, i > i0,

pσ−1
tff(p)(u) =


pu, 0 ≤ u < p

1− p,

u− p, u ≥ p

1− p,

i0 :=
⌊ log(p/u)

log(1− p)

⌋
.

Let hu,p(t) := σtff(p)(σtff(p)
(⌊t/p⌋)(σ−1

tff(p)(u))). Then we have

lim
p→0

hu,p(t) = ue−t, lim
p→0

pσ−1
tff(p)(u) = u, (B.9)

and for p ∈ (0, 1/2),

hu,p(t)
(a)
≤ (1− p)⌊t/p⌋u1{0 ≤ t < pi0}+ p

1− p1{pi0 ≤ t < p(i0 + 1)}

(b)
≤ ue1−t + 2ue1−t = 3ue1−t,

where (a) is due to

(1− p)i0

p
u− 1 < (1− p)log(p/u)/ log(1−p)−1

p
u− 1 = p

1− p

and (b) follows from

2ue1−t ≥ 2ue1−p(i0+1) ≥ p

1− p for p ∈ (0, 1/2)

Full text available at: http://dx.doi.org/10.1561/0100000133



172 Proofs of Some Results in Chapters 3 and 4

with
pi0 ≤

p log(u/p)
− log(1− p) ≤ log(u/p).

Comparing (B.9) with the limit (B.4) and the identity (B.3) in the
proof of Theorem 3.23, we conclude that

lim
p→0

gσtff(c, p)
|r(pc)|

∣∣∣∣∣
c=σ−1

tff(p)(u)
= lim

p→0

gσff(c, p)
|r(pc)|

∣∣∣∣∣
c=σ−1

ff(p)(u)
(Theorem 3.20),

which further gives (3.181) and (3.182) (Theorem 3.23).

B.3 Optimal w-lookahead Policy for Bernoulli Energy Arrivals

Proof of Proposition 4.1. The function g(ξ∞
0 ) can be rewritten as

g(ξ∞
0 ) =

w∑
k=1

p2(1− p)k−1kr

(
c

k

)

+
∞∑

i=w

p2(1− p)i

i−w∑
j=0

r(ξj) + wr

(
c−

∑i−w
j=0 ξj

w

)
by the step (b) of (4.12). Observing that for i ≥ n+ w,

1
i− n+ 1

i−w∑
j=n

r(ξj) + wr

(
c−

∑i−w
j=0 ξj

w

) ≤ r(c−∑n−1
j=0 ξj

i− n+ 1

)

by Jensen’s inequality, we further have

g(ξ∞
0 ) ≤

w∑
k=1

p2(1− p)k−1kr
( c
k

)

+
n+w−1∑

i=w

p2(1− p)i

i−w∑
j=0

r(ξj) + wr

(
c−

∑i−w
j=0 ξj

w

)
+

∞∑
i=n+w

p2(1− p)i

n−1∑
j=0

r(ξj) + (i− n+ 1)r
(
c−

∑n−1
j=0 ξj

i− n+ 1

)
=

w∑
k=1

p2(1− p)k−1kr
( c
k

)
+

n−1∑
j=0

p2r(ξj)
∞∑

i=j+w

(1− p)i
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+
n−1∑
k=0

p2(1− p)k+wwr

(
c−

∑k
i=0 ξi

w

)

+
∞∑

k=w+1
p2(1− p)k+n−1kr

(
c−

∑n−1
i=0 ξi

k

)

=
w∑

k=1
p2(1− p)k−1kr

( c
k

)
+

n−1∑
k=0

p(1− p)k+wr(ξk)

+
n−2∑
k=0

p2(1− p)k+wwr

(
c−

∑k
i=0 ξi

w

)

+
∞∑

k=w

p2(1− p)k+n−1kr

(
c−

∑n−1
i=0 ξi

k

)
,

which concludes (4.17).
The identity (4.18) follows easily from (4.16) with ξi = 0 for i ≥ n

and the observation that
∞∑

k=n−1
p2(1− p)k+wwr

(
c−

∑k
i=0 ξi

w

)

= p2(1− p)n+w−1wr

(
c−

∑n−1
i=0 ξi

w

) ∞∑
i=0

(1− p)i

= p(1− p)n+w−1wr

(
c−

∑n−1
i=0 ξi

w

)
.

By (4.17) and (4.18), the gap g(ξ∞
0 ) is

∞∑
k=w

p2(1− p)k+n−1kr

(
∆(ξn−1

0 )
k

)
− p(1− p)n+w−1wr

(
∆(ξn−1

0 )
w

)

=
∞∑

k=w+1
p2(1− p)k+n−1

(
kr

(
∆(ξn−1

0 )
k

)
− wr

(
∆(ξn−1

0 )
w

))
(a)
≤

∞∑
k=w+1

p2(1− p)k+n−1
(
kr(0) + r′(0)∆(ξn−1

0 )− wr
(

∆(ξn−1
0 )
w

))

= p(1− p)n+w

[
r(0)(w +ϖ) + r′(0)∆(ξn−1

0 )− wr
(

∆(ξn−1
0 )
w

)]
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which concludes (4.19b), where (a) follows from the second inequality
of

r(0) + r′(x)x ≤ r(x) ≤ r(0) + r′(0)x for x ≥ 0, (B.10)

which is a consequence of the mean value theorem and the concavity of
r(x). By the first inequality of (B.10), we further have

g(ξ∞
0 ) ≤ p(1− p)n+w

[
r(0)ϖ +

(
r′(0)− r′

(
∆(ξn−1

0 )
w

))
∆(ξn−1

0 )
]

(a)
≤ p(1− p)n+w

[
r(0)ϖ + Mr

w
(∆(ξn−1

0 ))2
]
,

where (a) follows from the mean value theorem with r′′(x) ≥ −Mr.

Proof of Theorem 4.4. The inequality (4.25) as well as the uniqueness
of the three maximizers is an easy consequence of Proposition 4.1 and
the strict concavity of r(x).

It is easy to see that Gn is bounded and non-decreasing in n, so Gn

converges as n→∞. Observe that

Gn − Gn ≤ gn((ξ∗(n))n−1
0 )− g

n
((ξ∗(n))n−1

0 ) ≤ ∆gn((ξ∗(n))n−1
0 ),

which, combined with Proposition 4.1, gives (4.26) and (4.27).
If for every i ≥ 0, ξ∗(n)

i
converges as n→∞, then we will show that

the limit (ξ∗(∞)
i

:= limn→∞ ξ∗(n)
i

)∞
i=0 is a maximizer of Problem 4.2, and

hence the uniqueness of the maximizer implies that ξ∗(∞)
i

= ξ∗
i for all

i ≥ 0. To this end, it suffices to show that g((ξ∗(∞))∞
0 ) ≥ g((ξ∗)∞

0 ). It
is easy to verify that

∑∞
i=0 ξ

∗(∞)
i

≤ c. Then we have

g((ξ∗(∞))∞
0 ) (a)= lim

n→∞
g((ξ∗(n))∞

0 ) = lim
n→∞

g
n
((ξ∗(n))n−1

0 ) (b)= G∗,

where (a) follows from the continuity of r(x) and the dominated con-
vergence theorem with

r(ξ∗(n)
i

) ≤ r(c) and wr

c−∑i
j=0 ξ

∗(n)
j

w

 ≤ r′(0)c, (B.11)

and (b) follows from (4.26).
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Similarly, if for every i ≥ 0, ξ∗(n)
i converges as n → ∞, then we

will show that the limit (ξ∗(∞)
i := limn→∞ ξ

∗(n)
i )∞

i=0 is a maximizer of
Problem 4.2, and hence the uniqueness of the maximizer implies that
ξ

∗(∞)
i = ξ∗

i for all i ≥ 0. It is easy to verify that
∑∞

i=0 ξ
∗(∞)
i ≤ c, and

then

g((ξ∗(∞))∞
0 ) (a)= lim

n→∞
g((ξ∗(n))∞

0 )

= lim
n→∞

g
n
((ξ∗(n))n−1

0 )
(b)= lim

n→∞
(Gn −∆gn((ξ∗(n))n−1

0 ))

≥ lim sup
n→∞

gn((ξ∗(n))n−1
0 )− lim sup

n→∞
∆gn((ξ∗(n))n−1

0 )

(c)
≥ G∗− lim

n→∞
p(1− p)n+w[r(0)(w +ϖ) + r′(0)c]

= G∗,

where (a) follows from the continuity of r(x) and the dominated con-
vergence theorem with (B.11), (b) from (4.27a), and (c) from (4.26)
and (4.27b) with ∆((ξ∗(n))) ≤ c.

Proof of Theorem 4.5. Define the Lagrangian function

L(ξn−1
0 , γn−1

0 , δ) := g
n
(ξn−1

0 ) +
n−1∑
i=0

γiξi − δ
(

n−1∑
i=0

ξi − c
)

for Problem 4.3, where ξn−1
0 , γn−1

0 ∈ Rn
≥0 and δ ≥ 0. The corresponding

KKT conditions for the maximizer (ξ∗(n))n−1
0 are

p(1− p)i+wr′(ξ∗(n)
i

)−
n−2∑
k=i

p2(1− p)k+wr′

c−∑k
j=0 ξ

∗(n)
j

w


− p(1− p)n+w−1r′

c−∑n−1
j=0 ξ

∗(n)
j

w

+ γi − δ = 0,

i = 0, . . . , n− 1,
γi ≥ 0, i = 0, . . . , n− 1,
δ ≥ 0,
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γiξ
∗(n)
i

= 0, i = 0, . . . , n− 1,

δ

(
n−1∑
i=0

ξ∗(n)
i
− c
)

= 0.

Note that the uniqueness of the maximizer (Theorem 4.4) implies the
uniqueness of the solution to the KKT conditions. Substituting γi and
δ with p(1− p)i+wγi and p(1− p)n+w−1δ, respectively, we further have

r′(ξ∗(n)
i

) + γi = pr′

c−∑i
j=0 ξ

∗(n)
j

w

+ (1− p)(r′(ξ∗(n)
i+1 ) + γi+1),

i = 0, . . . , n− 2, (B.12a)

r′(ξ∗(n)
n−1) + γn−1 = r′

c−∑n−1
j=0 ξ

∗(n)
j

w

+ δ, (B.12b)

γi ≥ 0, i = 0, . . . , n− 1, (B.12c)
δ ≥ 0, (B.12d)

γiξ
∗(n)
i

= 0, i = 0, . . . , n− 1, (B.12e)

δ

(
n−1∑
i=0

ξ∗(n)
i
− c
)

= 0. (B.12f)

We first show that
∑n−1

j=0 ξ
∗(n)
j

< c. If
∑n−1

j=0 ξ
∗(n)
j

= c, then

r′(ξ∗(n)
n−1) + γn−1 ≥ r′(0) (B.12b),

which together with (B.12e) implies that ξ∗(n)
n−1 = 0, whether γn−1 is

positive or not, because r′(x) is strictly decreasing. This further implies
that

∑n−2
j=0 ξ

∗(n)
j

= c, so

r′(ξ∗(n)
n−2) + γn−2 ≥ r′(0) (B.12a),

which in the same vein implies that ξ∗(n)
n−2 = 0. Repeating this backward

induction thus leads to the conclusion ξ∗(n)
0 = c = 0, which is absurd.

Hence
∑n−1

j=0 ξ
∗(n)
j

< c, and therefore δ = 0 (B.12f).
From this conclusion and (B.12b), it follows that

r′(ξ∗(n)
n−1) ≤ r′(ξ∗(n)

n−1) + γn−1 < r′(0),
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which implies that ξ∗(n)
n−1 > 0 and γn−1 = 0 (B.12e). Hence,

r′(ξ∗(n)
n−1) = r′

c−∑n−1
j=0 ξ

∗(n)
j

w

 (B.12b),

which concludes (4.31b). Continuing this kind of arguments, we further
have

r′(ξ∗(n)
n−2) ≤ r′(ξ∗(n)

n−2) + γn−2 < r′(0) (B.12a),

which implies that ξ∗(n)
n−2 > 0 and γn−2 = 0 (B.12e). Consequently,

r′(ξ∗(n)
n−2) = pr′

c−∑n−2
j=0 ξ

∗(n)
j

w

+ (1− p)r′(ξ∗(n)
n−1) (B.12a),

which concludes (4.31a) for i = n− 2. Since

0 < ξ∗(n)
n−1 =

c−
∑n−1

j=0 ξ
∗(n)
j

w
<
c−

∑n−2
j=0 ξ

∗(n)
j

w
,

we immediately have

ξ∗(n)
n−1 < ξ∗(n)

n−2 <
c−

∑n−2
j=0 ξ

∗(n)
j

w

because of the monotonicity of r′(x). Repeating such a backward induc-
tion finally establishes the theorem.

Proof of Theorem 4.6. Define the Lagrangian function

L(ξn−1
0 , γn−1

0 , δ) := gn(ξn−1
0 ) +

n−1∑
i=0

γiξi − δ
(

n−1∑
i=0

ξi − c
)

for Problem 4.4, where ξn−1
0 , γn−1

0 ∈ Rn
≥0 and δ ≥ 0. The corresponding

KKT conditions for the maximizer (ξ∗(n))n−1
0 are
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p(1− p)i+wr′(ξ∗(n)
i )−

n−2∑
k=i

p2(1− p)k+wr′

c−∑k
j=0 ξ

∗(n)
j

w


−

∞∑
k=w

p2(1− p)k+n−1r′

c−∑n−1
j=0 ξ

∗(n)
j

k

+ γi − δ = 0,

i = 0, . . . , n− 1,
γi ≥ 0, i = 0, . . . , n− 1,
δ ≥ 0,

γiξ
∗(n)
i = 0, i = 0, . . . , n− 1,

δ

(
n−1∑
i=0

ξ
∗(n)
i − c

)
= 0.

Note that the uniqueness of the maximizer (Theorem 4.4) implies the
uniqueness of the solution to the KKT conditions. Substituting γi and
δ with p(1− p)i+wγi and p(1− p)n+w−1δ, respectively, we further have

r′(ξ∗(n)
i ) + γi = pr′

c−∑i
j=0 ξ

∗(n)
j

w

+ (1− p)(r′(ξ∗(n)
i+1 ) + γi+1),

i = 0, . . . , n− 2, (B.13a)

r′(ξ∗(n)
n−1) + γn−1 =

∞∑
k=w

p(1− p)k−wr′

c−∑n−1
j=0 ξ

∗(n)
j

k

+ δ,

(B.13b)
γi ≥ 0, i = 0, . . . , n− 1, (B.13c)
δ ≥ 0, (B.13d)

γiξ
∗(n)
i = 0, i = 0, . . . , n− 1, (B.13e)

δ

(
n−1∑
i=0

ξ
∗(n)
i − c

)
= 0. (B.13f)

We first show that
∑n−1

j=0 ξ
∗(n)
j < c. If

∑n−1
j=0 ξ

∗(n)
j = c, then

r′(ξ∗(n)
n−1) + γn−1 ≥ r′(0) (B.13b),
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which together with (B.13e) implies that ξ∗(n)
n−1 = 0, whether γn−1 is

positive or not, because r′(x) is strictly decreasing. This further implies
that

∑n−2
j=0 ξ

∗(n)
j = c, so

r′(ξ∗(n)
n−2) + γn−2 ≥ r′(0) (B.13a),

which in the same vein implies that ξ∗(n)
n−2 = 0. Repeating this backward

induction thus leads to the conclusion ξ
∗(n)
0 = c = 0, which is absurd.

Hence
∑n−1

j=0 ξ
∗(n)
j < c, and therefore δ = 0 (B.13f).

From this conclusion and (B.13b), it follows that

r′(ξ∗(n)
n−1) ≤ r′(ξ∗(n)

n−1) + γn−1 < r′(0),

which implies that ξ∗(n)
n−1 > 0 and γn−1 = 0 (B.13e). Hence,

r′(ξ∗(n)
n−1) =

∞∑
k=w

p(1− p)k−wr′

c−∑n−1
j=0 ξ

∗(n)
j

k

 (B.13b)

> r′

c−∑n−1
j=0 ξ

∗(n)
j

w

 ,
which concludes (4.33b) as well as (4.34) for i = n− 1. Continuing this
kind of arguments, we further have

r′(ξ∗(n)
n−2) ≤ r′(ξ∗(n)

n−2) + γn−2 < r′(0) (B.13a),

which implies that ξ∗(n)
n−2 > 0 and γn−2 = 0 (B.12e). Consequently,

r′(ξ∗(n)
n−2) = pr′

c−∑n−2
j=0 ξ

∗(n)
j

w

+ (1− p)r′(ξ∗(n)
n−1) (B.13a),

which concludes (4.33a) for i = n− 2. Since

0 < ξ
∗(n)
n−1 <

c−
∑n−1

j=0 ξ
∗(n)
j

w
<
c−

∑n−2
j=0 ξ

∗(n)
j

w
,

we immediately have

ξ
∗(n)
n−1 < ξ

∗(n)
n−2 <

c−
∑n−2

j=0 ξ
∗(n)
j

w

because of the monotonicity of r′(x). Repeating such a backward induc-
tion finally establishes the theorem.
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C
Auxiliary Results

C.1 Optimality of Greedy Policy

Proposition C.1. Let

ϕ(u; b) := r(u) +
∫
r(⟨b− u+ s⟩≤c)Q(ds) (C.1)

and
ψ(u; b) := r′(u)−

∫
[0,c−b+u)

r′(b− u+ s)Q(ds), (C.2)

where Q is the energy arrival distribution, b ∈ [0, c], and x ∈ [0, b]. For
0 ≤ u1 < u2 ≤ b,

ϕ(u2; b)− ϕ(u1; b) =
∫

(u1,u2)
ψ(t; b)dt.

Proof. By definition,

ϕ(u2; b)− ϕ(u1; b)

= r(u2)− r(u1)−
∫

(r(⟨b− u1 + s⟩≤c)− r(⟨b− u2 + s⟩≤c))Q(ds).

Since
r(u2)− r(u1) =

∫
(u1,u2)

r′(t)dt

180
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and∫
(r(⟨b− u1 + s⟩≤c)− r(⟨b− u2 + s⟩≤c))Q(ds)

=
∫
Q(ds)

∫
r′(b− t+ s)1{b− t+ s < c}1{u1 < t < u2}dt

(a)=
∫

1{u1 < t < u2}dt
∫
r′(b− t+ s)1{b− t+ s < c}Q(ds)

=
∫

(u1,u2)
dt
∫

[0,c−b+t)
r′(b− t+ s)Q(ds),

where (a) follows from Fubini’s theorem, we have

ϕ(u2; b)− ϕ(u1; b) =
∫

(u1,u2)
ψ(t; b)dt.

Proposition C.2. The function ψ(u; b) is strictly decreasing in u ∈ [0, b]
for fixed b ∈ [0, c], and is increasing in b ∈ [u, c] for fixed u ∈ [0, c]. Let

ψ(b) := ψ(b; b). (C.3)

The function ψ(b) is strictly decreasing on [0, c].

Sketch of Proof. Observe that the function r′(u) is positive and strictly
decreasing (Assumption 1.1) and that the interval [0, c − b + u) is
increasing in u. Applying these two properties to (C.2) establishes the
proposition.

Proposition C.3. The function ψ(u; b) is left continuous in u ∈ [0, b] for
fixed b ∈ [0, c]. The function ψ(b) is continuous on [0, c].

Proof. The continuity of ψ(b) is an easy consequence of the continuity
of r′(x) (Assumption 1.1). As for ψ(u; b), note that for ϵ > 0,∫

[0,c−b+u)
r′(b− u+ s)Q(ds)−

∫
[0,c−b+(u−ϵ))

r′(b− (u− ϵ) + s)Q(ds)

=
∫

[c−b+u−ϵ,c−b+u)
r′(b− u+ s)Q(ds)

+
∫

[0,c−b+u−ϵ)
(r′(b− u+ s)− r′(b− u+ s+ ϵ))Q(ds)

≤ r′(0)Q([c− b+ u− ϵ, c− b+ u))

Full text available at: http://dx.doi.org/10.1561/0100000133



182 Auxiliary Results

+
∫

[0,c−b+u)
(r′(b− u+ s)− r′(b− u+ s+ ϵ))Q(ds)

→ r′(0)Q(∅) +
∫

[0,c−b+u)
0Q(ds) = 0

as ϵ→ 0 by the continuity of Q and the dominated convergence theorem.
Therefore, ψ(u; b) is left continuous in u.

Proposition C.4. Let ∧f [a,b](x) and ∨f [a,b](x) be the upper concave
envelope and lower convex envelope of f over [a, b], respectively. If f
is strictly decreasing (resp., non-increasing), then both ∧f [a,b](x) and
∨f [a,b](x) are strictly decreasing (resp., non-increasing).

Proof. It is clear that f(x) < f(a) for x ∈ (a, b]. Then for any a ≤ x1 <

x2 ≤ b, ∧f [a,b](x1) ≤ f(a) and ∧f [a,b](x2) < f(a). Note that the number
x1 can be rewritten as

x1 = λa+ (1− λ)x2,

where
λ := x2 − x1

x2 − a
∈ (0, 1].

By the concavity of ∧f [a,b](x),

∧f [a,b](x2) < λf(a) + (1− λ)∧f [a,b](x2)
= λ∧f [a,b](a) + (1− λ)∧f [a,b](x2)
≤ ∧f [a,b](λa+ (1− λ)x2)
= ∧f [a,b](x1).

Analogously, it can be shown that f [a,b](x) is strictly decreasing.

Proposition C.5. Let f(x) be a bounded real-valued function on [a, b].
Every point on the graph of the lower convex (resp., upper concave)
envelope of f (over [a, b]) lies on a line segment between two points on
the graph of the lower (resp., upper) semi-continuous envelope of f ,
corresponding to two adjacent or equal convex (resp., concave) points
of f .
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Proof. Since f(x) is bounded,

∨f [a,b](x) = min{y : (x, y) ∈ cl(conv(epi(⟨f⟩≤M )))}
(a)= min{y : (x, y) ∈ conv(C ′)}

for some sufficiently large M > 0, where

C ′ := cl(epi(⟨f⟩≤M )),
⟨f⟩≤M (x) := ⟨f(x)⟩≤M ,

and (a) follows from the compactness of C ′. Note that conv(C ′) is also
compact.

By the Krein-Milman theorem [41, Thm 5.5] with the compactness
of conv(C ′), every point px := (x, ∨f [a,b](x)) is a convex combination
of extreme points of conv(C ′). In particular, these extreme points are
on the lower boundary of C ′, or equivalently, on the lower boundary of
C := cl(epi(f)), the graph of ↓f [a,b]

. Since px is on the lower boundary
of convC ′, we consider a support line L (which exists by [41, Thm 4.2])
of convC ′ at px. Let L′ := L ∩ convC ′. It is easy to see that L′

is a closed line segment, whose two endpoints (or one point in the
degenerate case) are the extreme points of conv(C ′) on the graph of
↓f [a,b]

. Let (α, ↓f [a,b]
(α)) and (β, ↓f [a,b]

(β)) denote the two (possibly
equal) endpoints. It is clear that α and β are adjacent or equal convex
points of f .

The “convex” part is thus established, and the “concave” part is an
easy consequence of the “convex” part with f replaced with −f .

Proposition C.6. Let

ρ̂(s, t, v) := t− v
t− s

for s < v < t. (C.4)

Then ρ̂(s, t, v) is strictly increasing in t ∈ (s,+∞) for fixed s and v, and
ρ̂(s, t, v) is strictly increasing in s ∈ [0, t) for fixed t and v.

Proof. Observe that

ρ̂(s, t, v) = 1 + s− v
t− s

,

so ρ̂(s, t, v) is strictly increasing in t ∈ (s, x) for fixed s. The remaining
part is straightforward by definition.
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C.2 Universally Near-Optimal Online Policies

Proposition C.7. A non-negative convex function f(x) on [0, c] with
f(0) = 0 must be non-decreasing.

Proof. For 0 ≤ x < y ≤ c,

f(x) = f

(
x

y
y +

(
1− x

y

)
0
)
≤ x

y
f(y) +

(
1− x

y

)
f(0) ≤ f(y).

Proposition C.8 (Generalization of [137, Lemma 1]). Let x1 ∈ [0, c].
For a normal policy σ ∈ ΠSN

0 and a real-valued function g on [0, c], if
σ is affine on [x1, c], g is non-decreasing, Lipschitz, and concave, and
g′(σ(x)) ≤ r′(σ(x)) a.e. on [0, x1], then

h(x) := r(σ(x)) + g(σ(x)) (C.5)

is non-decreasing, Lipschitz, and concave, and h′(x) ≤ r′(σ(x)) a.e. on
[0, x1].

Proof. By the conditions and Proposition 3.5, h is non-decreasing and
Lipschitz. Then, all Lipschitz functions, h, r, g, σ, and σ, are differen-
tiable a.e. [48, Lemma 6.1.3 and Cor. 6.1.5]. Moreover, the derivative
h′(x) can be computed by the chain rule [48, Thm. 6.5.2] as follows:

h′(x) = r′(σ(x))σ′(x) + g′(σ(x))σ′(x)
= r′(σ(x)) + σ′(x)(g′(σ(x))− r′(σ(x))) a.e., (C.6)

which implies h′(x) ≤ r′(σ(x)) a.e. on [0, x1] because σ′ is non-negative
a.e. (Proposition 3.5).

Let

A := {x ∈ [0, c] : (C.6) holds}
∩ ({x ∈ [0, x1] : g′(σ(x)) ≤ r′(σ(x))} ∪ [x1, c]).

It is clear that A is measurable and its Lebesgue measure is c. For any
x, y ∈ A, we have

h′(y)− h′(x) = (r′(σ(y))− r′(σ(x)))σ′(y)
+ (g′(σ(y))− g′(σ(x)))σ′(y)
+ (σ′(y)− σ′(x))(r′(σ(x))− g′(σ(x))).
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Note that r′, g′, and σ′ are all non-increasing on A ([48, Thm. 6.6.7]).
Then for x < y (both in A),

h′(y)− h′(x)
(a)
≤ (σ′(y)− σ′(x))(r′(σ(x))− g′(σ(x)))

(b)
≤ 0,

where (a) follows from the non-increasing property of r′(σ(x)) and
g′(σ(x)) and the non-negativity of σ′ and σ′ (Proposition 3.5), and (b)
from

σ′(y) = σ′(x) for x ≥ x1

or

σ′(y) ≤ σ′(x),
g′(σ(x)) ≤ r′(σ(x)) for x ≤ x1.

Therefore, h′ is non-increasing on A and hence h is concave on [0, c]
(Proposition C.9).

Proposition C.9. If f : [a, b] → R is absolutely continuous and its
derivative f ′ is non-decreasing a.e. on the set where it exists, then f is
convex.

Proof. Since f is absolutely continuous, it is differentiable a.e. and

f(x)− f(a) =
∫ x

a
f ′(s)ds for all x ∈ [a, b] ([48, Thm. 6.4.2]).

Let A be the set where f ′ exists and is non-decreasing. The Lebesgue
measure of A is b− a. Then, for any a ≤ x < y ≤ b and t ∈ (0, 1),

(1− t)f(x) + tf(y)− f(z)
= (1− t)(f(x)− f(z)) + t(f(y)− f(z))

= − (1− t)
∫ z

x
f ′(s)ds+ t

∫ y

z
f ′(s)ds

= − (1− t)
∫

[x,z]∩A
f ′(s)ds+ t

∫
[z,y]∩A

f ′(s)ds

≥ − (1− t)
∫

[x,z]∩A
gzds+ t

∫
[z,y]∩A

gzds

= gz[−(1− t)(z − x) + t(y − z)] = 0,

where z := (1− t)x+ ty, gz := sups∈[x,z]∩A f
′(s). Consequently, f is a

convex function.
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Proposition C.10. Let σ ∈ ΠSN
0 be a normal policy. If σ(x) > 0 for

x > 0, then
∞∑

i=0
σ(σ(i)(x)) = x (C.7)

for all x > 0.

Proof. Since σ(x) > 0 for x > 0, σ(x) < x for x > 0, and hence
xi := σ(i)(x) < x is strictly decreasing in i. Let x∞ := limn→∞ σ(n)(x).
It is clear that

σ(x∞) = σ( lim
n→∞

σ(n)(x)) = lim
n→∞

σ(σ(n)(x))

= lim
n→∞

σ(n+1)(x) = x∞,

which must be zero, the unique solution of σ(x) = x. Observing that
n−1∑
i=0

σ(σ(i)(x)) =
n−1∑
i=0

(σ(i)(x)− σ(i+1)(x)) = x− σ(n)(x),

we finally have
∑∞

i=0 σ(σ(i)(x)) = x.

Proposition C.11. For t ≥ 0 and p ∈ (0, 1),

e−t/(1−p) ≤ (1− p)⌊t/p⌋ ≤ ep−t, (C.8a)
lim
p→0

(1− p)⌊t/p⌋ = e−t. (C.8b)

Proof. Recall the inequalities ex/(1+x) ≤ 1 + x ≤ ex for x > −1 and
x− 1 < ⌊x⌋ ≤ x. We have

(1− p)⌊t/p⌋ ≤ e−p(t/p−1) = ep−t

and
(1− p)⌊t/p⌋ ≥ e−t/(1−p).

Letting p → 0, we have e−t ≤ limp→0(1 − p)⌊t/p⌋ ≤ e−t, and hence
limp→0(1− p)⌊t/p⌋ = e−t.

Proposition C.12. Let f(x) be a non-negative function on R≥0. Let
q(x) := f(x)/x. If f(x) is convex (resp., concave), then q(x) is non-
decreasing (resp., non-increasing).
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Sketch of Proof. Use [48, Lemma 6.6.3]).

Proposition C.13. Let f(x) be a positive and strictly decreasing func-
tion on R≥0. If g(x) := f−1(sf(x)) is convex (on its domain of definition)
for some positive s ≠ 1, then limx→+∞ f(x) = 0 and limx→+∞ g(x) =
+∞.

Proof. Choose a point q from the domain of g(x). It is clear that
g(2q) > g(q) ≥ 0, and furthermore,

g(x)
x
≥ g(2q)

2q > 0 for all x ≥ 2q (Proposition C.12),

which implies that limx→+∞ g(x) = +∞. Therefore,

lim
x→+∞

f(x) = lim
x′→+∞

f(g(x′))

= lim
x′→+∞

f(f−1(sf(x′))) = s lim
x′→+∞

f(x′),

which implies that limx→+∞ f(x) = 0.

Proposition C.14. Let f be a strictly increasing function from A to B,
where both A and B are convex subsets of R. Then f is convex if and
only if f−1 is concave.

Proof. Since f is strictly increasing, the epigraph epi(f) = {(x, y) :
y ≥ f(x)} is exactly the hypograph hyp(f−1) = {(x, y) : x ≤ f−1(y)}.
Therefore, f is convex if and only if f−1 is concave.

Proposition C.15. Let

f(x) := x2

x− g(x) , (C.9)

where g(x) is a twice-differentiable, convex function satisfying g(x) < x.
Then f(x) is convex (on its domain of definition).

Sketch of Proof. It is straightforward to verify that

f ′′(x) = 2(g(x)− xg′(x))2 + x2g′′(x)(x− g(x))
(x− g(x))3 ≥ 0.
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Proposition C.16. Let f and g be two bijections from A to A, where A
is a subset of R. If f and g are both strictly increasing and f(x) ≤ g(x)
for all x ∈ A, then f−1(x) ≥ g−1(x) for all x ∈ A.

Proof. Let y1 := f−1(x) and y2 := g−1(x). Then we have x = f(y1) ≤
g(y1), and hence y2 = g−1(x) ≤ g−1(g(y1)) = y1.

C.3 Optimal w-lookahead Policy for Bernoulli Energy Arrivals

Proposition C.17. Let f(x) be a positive, strictly decreasing function on
R≥0. Let a∞

w be a sequence of positive numbers satisfying
∑∞

k=w ak = 1.
Let

bk(x, y) := f((x+ y)/(k + 1))− f(x/k)
f(y)− f(x/k) , (C.10)

where x, y > 0 and k ∈ Z>0 but k ̸= x/y. For a given x > 0, if

min
w≤k<x/x̄

bk(x, x̄) ≥ max
k>x/x̄

bk(x, x̄), (C.11)

then ∞∑
k=w

akf

(
x

k

)
<

∞∑
k=w

akf

(
x+ x̄

k + 1

)
, (C.12)

where
x̄ := f−1

( ∞∑
k=w

akf

(
x

k

))
. (C.13)

Proof. At first, note that limk→∞ bk(x, x̄) = 0, so the supremum of
bk(x, x̄) over all k > x/x̄ is always a maximum attained at finite number
of points.

Let d(x, x̄) := minw≤k<x/x̄ bk(x, x̄), which is positive. Then,

f

(
x+ x̄

k + 1

)
− f

(
x

k

)
≥ d(x, x̄)

(
f(x̄)− f

(
x

k

))
for w ≤ k < x/x̄

and

f

(
x+ x̄

k + 1

)
− f

(
x

k

)
≥ d(x, x̄)

(
f(x̄)− f

(
x

k

))
for k > x/x̄,

Full text available at: http://dx.doi.org/10.1561/0100000133



C.3. Optimal w-lookahead Policy for Bernoulli Energy Arrivals 189

but with equality only for finite number of k’s. Therefore,
∞∑

k=w

akf

(
x+ x̄

k + 1

)
−

∞∑
k=w

akf

(
x

k

)
=

∞∑
k=w

ak

(
f

(
x+ x̄

k + 1

)
− f

(
x

k

))

> d(x, x̄)
∞∑

k=w

ak

(
f(x̄)− f

(
x

k

))
= 0.

Proposition C.18. Let f(x) be a positive, strictly decreasing, and
continuously differentiable function on R≥0 with f ′(0) ∈ (−∞, 0). Let

x̄ := f−1
( ∞∑

k=w

p(1− p)k−wf

(
x

k

))
, (C.14)

where w ∈ Z>0 and p ∈ (0, 1). Then there exists some x0 > 0 such that
for all x ∈ (0, x0],

x

2
(
w +

⌈ log(1/4)
log(1− p)

⌉) < x̄. (C.15)

Proof. Since f(x) is continuously differentiable and f ′(0) ∈ (−∞, 0),
we can choose x0 > 0 such that

4f ′(0)
3 < f ′(χ) < 2f ′(0)

3 for all χ ∈ [0, x0]. (C.16)

Choose
k1 := w +

⌈ log(1/4)
log(1− p)

⌉
≥ w + 1

so that
(1− p)k1−w ≤ 1

4 .

Then for x ∈ (0, x0],
∞∑

k=w

p(1− p)k−wf

(
x

k

)
<

k1−1∑
k=w

p(1− p)k−wf

(
x

k1

)

+
∞∑

k=k1

p(1− p)k−wf(0)

= (1− (1− p)k1−w)f
(
x

k1

)
+ (1− p)k1−wf(0)
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= f

(
x

k1

)
+ (1− p)k1−w

(
f(0)− f

(
x

k1

))
(a)= f

(
x

k1

)
− (1− p)k1−wf ′(χ1) x

k1
(b)= f

(
x

k1

[
1− (1− p)k1−w f

′(χ1)
f ′(χ2)

])
(c)
< f

(
x

k1

[
1− 2(1− p)k1−w

])
(d)
≤ f

(
x

k1[1 + 4(1− p)k1−w]

)
≤ f

(
x

2k1

)
,

where χ1, χ2 ∈ (0, x0), (a) follows from the mean value theorem, (b)
from the identity

f

(
a+ b

f ′(χ2)

)
− f(a) = b

for some χ2 ∈ (0, a) by the mean value theorem again, (c) from (C.16),
and (d) from the inequality

1− t ≥ 1
1 + 2t , t ∈ [0, 1

2 ].

By the strictly decreasing property of f(x), we have x̄ > x/(2k1).

Proposition C.19. Let f(x) be a positive, strictly decreasing, and
continuously differentiable function on R≥0 with f ′(0) ∈ (−∞, 0). Then
there exists some x0 > 0 such that for all x ∈ (0, x0],

min
w≤k<x/x̄

bk(x, x̄) ≥ max
k>x/x̄

bk(x, x̄), (C.17)

where bk(x, y) and x̄ are defined by (C.10) and (C.14), respectively.

Proof. Let
k0 := 2

(
w +

⌈ log(1/4)
log(1− p)

⌉)
.

Choose x1 > 0 such that

f ′(χ1)
f ′(χ2) <

√
1 + 1

k0
for all χ1, χ2 ∈ [0, x1].
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By Proposition C.18, there exists some x2 > 0 such that for all x ∈
(0, x2], x̄ > x/k0. Let x0 := min{x1, x2}.

Then, for any x ∈ (0, x0] and any k1 < x/x̄ < k2,

bk1(x, x̄)
bk2(x, x̄)

(a)=
f ′(χ11)

(
x+ x̄

k1 + 1 −
x

k1

)
f ′(χ12)

(
x̄− x

k1

) ·
f ′(χ22)

(
x̄− x

k2

)
f ′(χ21)

(
x+ x̄

k2 + 1 −
x

k2

)
= f ′(χ11)f ′(χ22)(k2 + 1)
f ′(χ12)f ′(χ21)(k1 + 1)

>
k0(⌊x/x̄⌋+ 2)
(k0 + 1) ⌈x/x̄⌉

≥ k0(1 + 1/ ⌈x/x̄⌉)
(k0 + 1)

≥ k0(1 + 1/k0)
(k0 + 1) = 1,

where (a) follows from the mean value theorem and χ11, χ12, χ21, χ22 ∈
(0, x0). This thus establishes the proposition.
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