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ABSTRACT
This monograph offers a toolbox of mathematical techniques
that have been effective and widely applicable in information-
theoretic analyses. The first tool is a generalization of the
method of types to Gaussian settings, and then to general
exponential families. The second tool is Laplace and saddle-
point integration, which allow to refine the results of the
method of types, and can obtain various precise asymptotic
results. The third is the type class enumeration method,
a principled method to evaluate the exact random-coding
exponent of coded systems, which results in the best known
exponent in various problems. The fourth is a subset of tools
aimed at evaluating the expectation of non-linear functions
of random variables, either via integral representations, by
a refinement of Jensen’s inequality via change-of-measure,
by complementing Jensen’s inequality with a reversed in-
equality, or by a class of generalized Jensen’s inequalities
that are applicable for functions beyond convex/concave.
Various examples of all these tools are provided throughout
the monograph.

Neri Merhav and Nir Weinberger (2025), “A Toolbox for Refined Information-
Theoretic Analyses with Applications”, Foundations and Trends® in Communications
and Information Theory: Vol. 22, No. 1, pp 1–184. DOI: 10.1561/0100000142.
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1
Introduction

This monograph is concerned with a set of analytical tools for infor-
mation-theoretic analyses. The use of analytical methods to address
challenging combinatorial problems is a classical method in mathematics,
and includes various widely used techniques such as Stirling’s approx-
imation, Chernoff’s bound, transform methods (with interchanging
summation or integration order), among others. Analytical techniques
also formed the basis of the inception of information-theory by Shannon
[182]: On the face of it, and even at a deeper look, efficient coding
for noisy channels is a formidable combinatorial problem, in a high
dimensional space. Shannon addressed that challenge using analytical
techniques:

1. The asymptotic equipartition property, and the estimation of vol-
umes in high dimensional spaces, which allows to evaluate the size
of high-probability sets. In the proof of the noisy channel coding
theorem for discrete memoryless channels (DMCs), this allows to
show that when an n-dimensional codeword is transmitted, the
set of likely outputs has size roughly given by enH(Y |X), where
H(Y |X) is the conditional entropy of the channel output Y con-
ditioned on the input X, and the total set of likely outputs has
roughly size of enH(Y ) (where H(Y ) is the entropy of Y ).

2
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3

2. The random-coding argument, which establishes the existence of
optimal codes by evaluating the ensemble-average of randomly
chosen code, and forms the basis for achievability (direct) results.

3. Convexity of information-measures, which is used to establish
data-processing theorems, and consequently forms the basis for
impossibility (converse) results.

Combining these ideas directly led, among other results, to the analytical
formula for the capacity of DMCs, given by C = maxPX

I(X; Y ) (where
I(X; Y ) = H(Y ) − H(Y |X) is the mutual information). Since Shan-
non’s work, these ideas have been continuously extended and refined in
numerous ways.

The goal of this monograph is to follow this path and propose
a set of advanced analytical tools that are affirmed to be efficient
and widely applicable for information-theoretic problems, allowing to
obtain accurate and refined performance measure characterizations.
Sections 2 and 3 to follow address the problem of estimating volumes in
high dimensions, first, via a generalized method of types and, second,
via the more advanced saddle-point method; Section 4 describes the
type class enumeration method (TCEM), a tight analysis method of
the performance of random-coding ensembles, and Section 5 considers
various aspects of convexity and Jensen’s inequality, mostly related to
the computation of the expected values of non-linear functions. We next
describe each one of these with more detail.

In Section 2, we describe a generalization of the method of types [38],
[41], which was originally developed for finite alphabets, to Gaussian
distributions, which are distributions over a continuous alphabet, and
more generally, to distributions from exponential families. We introduce
the notion of a typical set with respect to (WRT) a given parametric
family of probability distributions. Such typical sets are defined in a way
that the probability of each vector in the set is roughly the same for all
possible distributions in the defined parametric family. This generalizes
both the notion of weak typicality (a family consisting of a single
distribution), and the notion of strong typicality for finite alphabets
(the family is the set of all possible PMFs). Moreover, it allows to define,
e.g., typical sets for the Gaussian distribution. A key property of typical
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4 Introduction

sets is their volume, because if an event of interest can be represented
as the union over typical sets, then its probability can be accurately
determined on the exponential scale using the volumes of these sets,
and the probability of a single representative element from each of these
sets. We thus develop a general method to evaluate the volumes of
typical sets, and demonstrate its use on memoryless Gaussian sources,
on Gaussian sources conditioned on other vectors, and on Gaussian
sources with memory. We then generalize this method to distributions
from an exponential family.

While the method of types is a general and widely applicable ap-
proach that leads to useful exponential bounds, there are settings which
require more delicate analysis, and thus, more advanced tools. In Sec-
tion 3, we begin by describing the Laplace method of integration, and
exemplify its use in the problems of universal coding and extreme-value
statistics. We then discuss the closely-related saddle-point method of
integration in the complex plane, and show how it allows to accurately
evaluate the size of type classes, volumes of hyper-spheres, and large-
deviations probabilities, not only in the exact exponential rate, but also
with the exact pre-exponential factor. We show that this method is
applicable beyond parametric models. We further demonstrate its use
for the evaluation of the number of lattice points in an L1 ball, and
the evaluation of the volume of an intersection of a hyper-sphere and
hyperplane, refining the analysis of Section 2.

In Section 4, we consider coded settings and ensembles of random
codes. We introduce the TCEM, which is a principled method for
deriving the error exponent of random codes. We first describe the
standard techniques commonly used to derive bounds on the error
exponent, such as Jensen’s inequality and its implications, and various
types of union bounds. While these methods indeed turned out to
be effective in the error-exponent analysis of basic settings, such as
point-to-point channels and standard decoding rules, there is no general
guarantee that they are accurate in more advanced scenarios. Indeed,
we survey various settings in which these methods are sub-optimal,
and do not provide the exact random-coding error exponent. As an
alternative, we show that ensemble-average error probabilities (and
other related performance measures) may be expressed via type class
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enumerators (TCEs), and specifically, via their (non-integer) moments
and tail probabilities. We demonstrate this both on basic settings as
well as more involved ones. We explore the probabilistic and statistical
properties of TCEs, and then discuss a number of settings in multi-user
information theory, in distributed compression and in hypothesis testing,
for generalized decoding rules such as those allowing erasures and list
outputs, and for the analysis of the typical random code. We outline how
the TCEM is used in each of these settings, and how it allows to obtain,
among other things, exact error-exponents for optimal decoding rules.
In Appendix B we show that the exponents obtained by the TCEM can
also be computed effectively.

In Section 5, we address the problem of evaluating the expectation
of a non-linear function f(·) of a random variable (RV) X. In many
cases, this function is either convex or concave, and so a natural course
of action is to bound it using Jensen’s inequality. However, there is no
guarantee that the resulting bound is tight enough for the intended
application. We present two general and useful strategies that can be
employed in such cases. The first one is based on finding an integral
representation of the function. Then, we interchange the expectation and
integral order, and obtain an alternative expression for E{f(X)}. The
technique is useful if computing the inner expectation is simpler than
the original expectation, or if it can be evaluated more accurately. After
evaluating the inner expectation, the expectation E{f(X)} of interest
can be computed by solving a one-dimensional integral. For example,
when f(t) = ln(t), this allows to replace the evaluation of the expected
logarithm with the evaluation of its moment-generating function (MGF).
This is especially appealing since if X =

∑n
i=1 Xi is the sum of n

independent and identically distributed (IID) RVs, then its MGF is
the n-th power of the MGF of just one of them. In accordance, this
transforms the original expectation, which is an integral in Rn, to a one-
dimensional integral. We focus on the logarithmic function f(t) = ln(t)
(and its integer powers), as well as the power function f(t) = tρ for
some ρ > 0 (even non-integer), and exemplify the use of this technique
in a multitude of problems such as differential entropy for generalized
multivariate Cauchy densities, ergodic capacity of the Rayleigh single-
input multiple-output (SIMO) channel, and moments of guesswork.
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6 Introduction

The second strategy exploits convexity or concavity properties, but
goes beyond the standard Jensen’s inequality. This strategy may come in
various flavors. First, a change of measure can be performed before using
Jensen’s inequality, and then the alternative measure can be optimized
over a given class to improve the bound. As a notable example, when
f(t) = ln(t), this reproduces the Donsker–Varadhan variational charac-
terization of the Kullback–Leibler (KL) divergence. Second, one may use
Jensen’s inequality, but accompany it with an inequality in the opposite
direction, i.e., a reverse Jensen’s inequality (RJI), in order to evaluate
its tightness. We provide a few techniques, all of which rely on a general
form of such a RJI. Third, the “supporting-line” approach used to prove
Jensen’s inequality may be generalized to cases in which the function
whose expected value is sought of is not convex/concave, but takes a
more complicated form, such as the composition or a multiplication
of a different function with a convex/concave function. A generalized
version of Jensen’s inequality can still be derived, by properly optimizing
the supporting line. We exemplify the use of this technique in various
problems involving the evaluation of data compression performance and
channel capacity.

In summary, we present a diverse toolbox of analytical techniques,
indispensable to every information-theorist aiming to obtain tight and
accurate results. We mention in passing other analytical techniques
widely used in information theory, such as central-limit theorems ex-
tensively used in non-vanishing error regimes [198], concentration of
measure bounds [169], statistical-physics methods such as the cavity and
the replica method [151], and various methods described in the recent
book [56]. These complement the tools outlined in this monograph.

This monograph was invited and written following a plenary talk
by the first author, at the 2023 IEEE International Symposium on
Information Theory (ISIT 2023), Taipei, Taiwan, June 25-30, 2023. It
should be pointed out that some of the proposed techniques (like in
Sections 2, 4, and many parts of Section 5) are original, while others
are not new (like in Section 3).
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A
On the Tightness of Chernoff’s Bound via the

Method of Types

Let P be a memoryless source over an alphabet X . For simplicity, we
focus on finite-alphabet sources, though a similar derivation can be
carried out using the extended method of types developed in Section
2 for more general sources. Let f be a real function of probability
distributions over X , and α ∈ R. Then,

Pr
[
f(P̂x) ≥ α

]
=

∑
x∈X n

P (x) · 1
[
f(P̂x) ≥ α

]
(A.1)

(a)=
∑

x∈X n

P (x) · inf
s≥0

ens[f(P̂x)−α] (A.2)

(b)=
∑
Q

e−n·D(Q||P ) · inf
s≥0

ens[f(P̂x)−α] (A.3)

(c).= exp
[
−n · min

Q

{
D(Q||P ) − inf

s≥0
s
[
f(P̂x) − α

]}]
(A.4)

= exp
[
−n · min

Q
sup
s≥0

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.5)

(d)
≤ exp

[
−n · sup

s≥0
min

Q

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.6)

144
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= inf
s≥0

exp
[
−n · min

Q

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.7)

(e).= inf
s≥0

∑
x∈X n

P (x) · ens[f(P̂x)−α] (A.8)

= inf
s≥0

E
[
ens[f(P̂x)−α]

]
, (A.9)

where (a) follows from the elementary bound 1{t ≥ α} ≤ ens(t−α) that
holds for any s ≥ 0, (b) follows from the probability of a type class
[(2.12) in Section 2.2.1], and where the summation is over all possible
types, (c) follows since the number of possible types is polynomial in
n [(2.2) in Section 2.2.1], and so the sum is exponentially on the same
scale as the maximum element, (d) follows since maximin is always less
or equal than the minimax, and (e) follows again from the method of
types, reversing the reasoning above.

The final term in (A.9) is exactly Chernoff’s bound for the event
{f(P̂x) ≥ α}. Importantly, if f is concave then the minimax theorem
[188] implies the inequality in (d) above is, in fact, an equality, and
so the chain of passages is exponentially tight. In many applications,
f is affine (e.g., the empirical mean of some cost) and thus concave,
and so Chernoff’s bound is assured to be tight. See [49] for a thorough
discussion.
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B
Computation of Exponents

In this appendix, we describe two possible approaches to efficiently
compute or bound the exponents obtained using the TCEM. This
aspect is an indispensable part of the TCEM, since it is possible for an
error exponent to take a rather intricate formula. Indeed, recall that
the TCEM exponents are given by Csiszár–Körner-style formulas, e.g.,
as in (4.10). Thus, they involve a constrained optimization problem
over joint distributions, and the dimensionality of the optimized joint
distributions increases with the alphabet sizes of the problem (e.g.,
input and output alphabets of the channel). Thus, a direct optimization,
using an exhaustive search or “general-purpose” global optimization
over the probability simplex may be prohibitively complex.

The first approach we consider is based on Lagrange duality [21]
(see also [180, Appendix]), in which the original exponent optimization
problem is considered to be the primal optimization problem. When
deriving instead the dual optimization problem of the exponent, the
result is a Gallager-style bound [71, Chapter 5], which is often rather
easy to compute and plot for an entire range of rates, rather than
for a specific rate; see (B.19) in what follows for a typical formula.
This is especially useful in multiuser problems [59], for which even

146
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problem instances with binary alphabets lead to optimization problems
in non-trivial dimensions. For example, for a broadcast channel problem
with input alphabet X and two receivers, each with an alphabet Y, a
joint distribution of the input and the two outputs has dimensionality
|X | · |Y|2 − 1, which is at least 7. In some of the problems, the number
of optimization variables for the Gallager-style bound does not increase
with the alphabet size of the source or channel. The downside is that, as
we shall see, the derivation might include the utilization of bounds that
may sacrifice tightness. Indeed, in minimization optimization problems,
the value of the dual problem is a lower bound on the value of the
primal problem, and if the primal optimization problem is convex then
strong duality holds (under typically mild conditions) [21, Chapter 5],
and both values are equal. However, there is no guarantee that the
primal optimization problem of the exponent is convex, and sometimes
obtaining reasonably simple dual problems requires additional steps,
which may also sacrifice tightness.

The second approach is based on utilization of convex optimization
solvers. While the optimization problem involved in the computation of
the exponent may not be convex as is, in many cases it is possible to
develop a procedure that allows to compute it by only solving convex
optimization problems.

Moreover, typically, the primal problem involves mostly minimiza-
tion operators (over joint types), while the dual problem involves maxi-
mization operators (over scalar parameters). From this aspect, the dual
exponent is preferable, because even a sub-optimal choice of the dual
variables leads to a valid bound on the exponent. Thus, e.g., a coarse
exhaustive search on the dual variables may be performed and still lead
to a tight bound. In contrast, the minimization in the primal problem
must be performed accurately in order to obtain a valid numerical
value of the exponent. Nonetheless, it also possible for the primal prob-
lem to include a maximization operator (possibly intertwined between
minimization operators), and the same holds for such maximization
problems — any sub-optimal choice leads to a valid bound. In fact, in
some cases, an educated guess for the maximizing primal variable may
be proposed, and in some settings it is possible to show that this choice
is actually optimal.
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148 Computation of Exponents

B.1 Exponent Computation by Lagrange Duality

Lagrange duality is based on the minimax theorem [188], stating the
minimax value of a functional convex in the minimization variable and
concave in the maximization variable equals to the maximin value.
We will next exemplify this technique on the random-coding error
exponent Erc,α(R, PX) from (4.27), and derive a Lagrange dual lower
bound on its value. As we have seen, if we consider the MMI rule,
then the random-coding error exponent is greatly simplified to the
standard random-coding error exponent in (4.10), which only contains
a minimization over QY |X (with the minimization over Q̃Y |X removed).
In accordance, it is not very difficult to obtain a dual Lagrange form
of this exponent. In order to demonstrate a few other techniques that
are generally useful for the TCE-based exponents, we will next let
α(·) be general, yet restricted to be a linear function of QXY , given
by α(QXY ) ≜

∑
x∈X ,y∈Y α(x, y) · Q(x, y) (this includes, e.g., the ML

decoder).
Let us start by writing the objective function of Erc,α(R, PX) using

a dual variable ρ ∈ R as

Erc,α(R, PX)

= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) +
[
I(PX × Q̃Y |X) − R

]
+

(B.1)

= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + max
{

I(PX × Q̃Y |X) − R, 0
}

(B.2)

(∗)= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + max
ρ∈[0,1]

ρ ·
[
I(PX × Q̃Y |X) − R

]
(B.3)

= min
QY |X ,Q̃Y |X

max
ρ∈[0,1]

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
, (B.4)

where (∗) follows from the identity max{t, 0} = maxρ∈[0,1] ρt. Now,
the objective function is linear, and hence concave, in the maximizing
variable ρ, and the interval [0, 1] is convex. Moreover, D(QY |X ||W |PX)
is convex in QY |X and ρ · I(PX × Q̃Y |X) is convex in Q̃Y |X (for ρ ≥ 0),
hence the objective functional is jointly convex in (QY |X , Q̃Y |X). The
constraint set for (QY |X , Q̃Y |X), given by
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B.1. Computation by Lagrange Duality 149

{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X)
}

, (B.5)

is the intersection of a hyperplane and a half space. We also note
the implicit constraint that QY |X and Q̃Y |X are conditional probabil-
ities, i.e., ∑y∈Y QY |X(y|x) =

∑
y∈Y Q̃Y |X(y|x) = 1 for all x ∈ X and

QY |X(y|x), Q̃Y |X(y|x) ≥ 0 for all x ∈ X , y ∈ Y. These are also convex
constraints, and since the intersection of convex sets is convex, the
constraint set for (QY |X , Q̃Y |X) is convex. So, the minimax theorem
[188] implies that

Erc,α(R, PX) =

max
ρ∈[0,1]

min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
(B.6)

over the constraint set. We next focus on the inner minimization for
a given ρ ∈ [0, 1]. Following Lagrange duality [21, Chapter 5], we
introduce dual variables λ ≥ 0 and {ν(y)}y∈Y ⊂ R. The variable λ is
for the inequality constraint α(PX × Q̃Y |X) ≥ α(PX × QY |X), whereas
the variables {ν(y)}y∈Y are for the constraint of equal output marginals,
that is, the |Y| constraints (PX × QY |X)Y = (PX × Q̃Y |X)Y . Note
that the constraint that QY |X and Q̃Y |X are conditional probability
distributions is kept implicit. Hence, the minimization of interest is

min
QY |X ,Q̃Y |X

max
λ≥0

max
{ν(y)}y∈Y

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
+
∑
y∈Y

ν(y) ·
[∑

x∈X
PX(x)

(
Q̃Y |X(y|x) − QY |X(y|x)

)]

+ λ ·

∑
x∈X

∑
y∈Y

α(x, y) · PX(x)
(
QY |X(y|x) − Q̃Y |X(y|x)

) . (B.7)

The minimax theorem now implies that we may interchange the mini-
mization and maximization order. We next focus on the minimization,
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150 Computation of Exponents

and begin by expressing the mutual information term via the golden
formula using an arbitrary probability distribution SY on Y, as

I(PX × Q̃Y |X) = D(Q̃Y |X ||Q̃Y |PX) − D(Q̃Y ||SY ) (B.8)
= min

SY

D(Q̃Y |X ||SY |PX). (B.9)

Using this relation and slightly re-organizing the objective function, we
are left with the minimization of the functional

min
SY

D(QY |X ||W |PX)+∑
x∈X

∑
y∈Y

PX(x)QY |X(y|x) · [−ν(y) + λ · α(x, y)]

+ ρD(Q̃Y |X ||SY |PX)

+
∑
x∈X

∑
y∈Y

PX(x)Q̃Y |X(y|x) · [ν(y) − λ · α(x, y)] (B.10)

over (QY |X , Q̃Y |X). It can be noticed that the minimization over QY |X
is decoupled from the minimization over Q̃Y |X , and each of them can
be solved directly. Alternatively, we may use the Donsker–Varadhan
variational formula [20, Corollary 4.15], [53], stating that for any two
probability measures P1 and P2 on Z and a function f : Z → R that
does not depend on P1

min
P2

{D(P2||P1) + EP2 [f(Z)]} = − lnEP1

[
e−f(Z)

]
. (B.11)

Let W (·|x) denote the conditional output of the channel given x ∈ X .
By employing (B.11) separately for each x ∈ X we get

min
QY |X

D(QY |X ||W |PX) +
∑
x∈X

∑
y∈Y

PX(x)QY |X(y|x) · [−ν(y) + λ · α(x, y)]

=
∑
x∈X

PX(x) ·

{
min

QY |X=x

D(QY |X=x||W (·|x))

+
∑
y∈Y

QY |X(y|x) · [−ν(y) + λ · α(x, y)]
}

(B.12)

= −
∑
x∈X

PX(x) · ln

∑
y∈Y

W (y|x) · eν(y)−λ·α(x,y)

 . (B.13)
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Similarly, the minimization over Q̃Y |X leads to

∑
x∈X

PX(x) ·
{

min
Q̃Y |X=x

ρD(Q̃Y |X=x||SY )

+
∑
y∈Y

Q̃Y |X(y|x) · [ν(y) − λ · α(x, y)]
}

= min
SY

−ρ
∑
x∈X

PX(x) · ln

∑
y∈Y

SY (y) · e−[ν(y)+λ·α(x,y)]/ρ

 (B.14)

≥ min
SY

−ρ ln

∑
x∈X

∑
y∈Y

PX(x)SY (y) · e−[ν(y)+λ·α(x,y)]/ρ

 , (B.15)

where the inequality follows from convexity and Jensen inequality, yet
is not guaranteed to be tight. Since ρ ∈ [0, 1], minimizing this last term
over SY corresponds to maximizing∑

y∈Y
SY (y)

∑
x∈X

PX(x) · e−[ν(y)+λ·α(x,y)]/ρ, (B.16)

which, due to Schwarz–Cauchy inequality, occurs when

SY (y) =
∑

x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

. (B.17)

The minimal value over SY is then

min
SY

−ρ ln

∑
x∈X

∑
y∈Y

PX(x)SY (y) · e−[ν(y)+λ·α(x,y)]/ρ


= −ρ ln


∑

y∈Y

(∑
x∈X PX(x)e−[ν(y)+λ·α(x,y)]/ρ

)2

∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

 . (B.18)

We thus conclude the dual lower bound

Erc,α(R, PX)

≥ −
∑
x∈X

PX(x) · ln

∑
y∈Y

W (y|x) · eν(y)−λ·α(x,y)
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− ρ ln


∑

y∈Y

(∑
x∈X PX(x)e−[ν(y)+λ·α(x,y)]/ρ

)2

∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

 , (B.19)

for any choice of ρ ∈ [0, 1], λ ≥ 0 and {ν(y)}y∈Y ⊂ R.
Let us compare the primal optimization in (B.1), with the dual

lower bound (B.19). The primal problem is a minimization problem
of dimension 2|X |(|Y| − 1) over a constrained set (QY |X , Q̃Y |X) (the
constraints further reduce the dimension by |Y| + 1). For the exact
exponent, this minimization must be accurately solved. By comparison,
the dual exponent is a lower bound on the exact exponent [recall
(B.15)], and can be maximized over dimension |Y| + 2. Nonetheless, this
maximization can be performed in a crude manner, since any choice of
the dual parameters leads to a valid lower bound on the exponent.

For additional derivations of dual Lagrange exponents formulations
and Gallager-style bounds, see [41, Exercise 10.24] and [165] (in Russian),
and in the context of the TCEM, see [11], [137], [177].

B.2 Exponent Computation Procedures with Convex Optimization
Solvers

As we have seen, we may write

Erc,α(R, PX) = max
ρ∈[0,1]

min
QY |X ,Q̃Y |X

D(QY |X ||W |PX)

+ ρ ·
[
I(PX × Q̃Y |X) − R

]
, (B.20)

and when α(QXY ) is a linear function of QXY , then the feasible set
of (QY |X , Q̃Y |X) is convex. Hence, the inner minimization problem is a
convex optimization problem that can be efficiently solved. However, in
principle, it should be solved for the continuous set of values ρ ∈ [0, 1].
We next describe an alternative method to evaluate Erc,α(R, PX).

Let us write Erc,α(R, PX) = min{E−(R), E+(R} where1

E−(R) = min
QY |X ,Q̃Y |X

D(QY |X ||W |PX), (B.21)

1For brevity, we omit the explicit dependence on the score α and the input
distribution PX .
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where the minimization is over the set{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X), I(PX × Q̃Y |X) ≤ R

}
, (B.22)

and where

E+(R) = min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + I(PX × Q̃Y |X) − R, (B.23)

where the minimization over the set{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X), I(PX × Q̃Y |X) ≥ R

}
. (B.24)

Note that the only difference between E−(R) and E+(R) is the con-
straint I(PX × Q̃Y |X) ⋛ R, and due to the continuity of the objective
function, we have included the points {I(PX × Q̃Y |X) = R} in both
problems. Now, since the KL divergence is also a convex function of
QY |X , it can be seen that the objective function is jointly convex in
{QY |X , Q̃Y |X} for both optimization problems. Since α(QXY ) is a linear
function of QXY , the set {QY = Q̃Y , α(PX × Q̃Y |X) ≥ α(PX × QY |X)}
is a convex set. Furthermore, the set {I(PX × Q̃Y |X) ≤ R} is also a
convex set, and thus so is its intersection with the previous set. Conse-
quently, the minimization problem of E−(R) is a convex optimization
problem [21] (of dimension 2|X | × (|Y| − 1)), which can be efficiently
solved, e.g., using software packages such as CVX [78]. In contrast, the
minimization problem of E+(R) involves the set {I(PX × Q̃Y |X) ≥ R},
which is not a convex set.

We thus proceed as follows. First, let us solve E+(R) for R = 0. In
this case, the constraint I(PX × QY |X) ≥ R is idle, and so
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E+(0) =
min

QY |X ,Q̃Y |X : α(PX×Q̃Y |X)≥α(PX×QY |X)
D(QY |X ||W |PX)+I(PX ×Q̃Y |X).

(B.25)

This is a convex optimization problem, which can be efficiently solved.
Let us denote the solution of this problem as (Q(0)

Y |X , Q̃
(0)
Y |X). Now, as

long as R ≤ Rcr ≜ I(Q̃(0)
Y |X), then the objective function in E+(R) is

minimized by the unconstrained solution (Q(0)
Y |X , Q̃

(0)
Y |X), even if the

constraint I(PX × QY |X) ≥ R is imposed. For these rates it thus holds
that E+(R) = E+(0) − R. Now, if R ≥ Rcr then the unconstrained
solution (Q(0)

Y |X , Q̃
(0)
Y |X) does not solve E+(R), and so the solution must

be obtained on the boundary {I(PX × Q̃Y |X) = R}. However, for such
rates

E+(R)
= min

QY |X ,Q̃Y |X : I(PX×Q̃Y |X)=R
D(QY |X ||W |PX) + I(PX × Q̃Y |X) − R

(B.26)
= min

QY |X ,Q̃Y |X : I(PX×Q̃Y |X)=R
D(QY |X ||W |PX) (B.27)

≥ min
QY |X ,Q̃Y |X : I(PX×Q̃Y |X)≤R

D(QY |X ||W |PX) (B.28)

= E−(R), (B.29)

where all the above minimization operators are under the constraint
α(PX × Q̃Y |X) ≥ α(PX × QY |X), and the inequality holds since the
feasible set is larger for E−(R). Consequently, for rates R ≥ Rcr, the
exponent is given by min{E−(R), E+(R)} = E−(R).

To conclude, despite the fact that the minimization problem of
E+(R) is not a convex optimization problem, the exponent can be
computed for all rates by only solving convex optimization problems.
To summarize, this is done by the following procedure: (1) Solve the
optimization problem for E+(0), and compute the critical rate Rcr. (2)
Solve the optimization problem E−(R) for any R > Rcr. The exponent
is
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E+(0) − R, 0 ≤ R ≤ Rcr

E−(R), R > Rcr
. (B.30)

Note that this method requires solving two convex optimization prob-
lems at most for each rate, and the first one for finding E+(0) one is
common to all rates.

For additional computational algorithms, see, for example, [64, Sec-
tion V] for the computation of the exponent of the interference channel,
[216, Appendix A] for the exponents of joint detection and decoding,
and [215, Section VI] for exponents of distributed hypothesis testing.
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C
The Derivation of the Expurgated Exponent

In this appendix, we outline the expurgation argument that follows the
TCEM method. The proof follows [128, Appendix]. Let us focus on a
specific codeword index m. We showed in Section 4.3 that, effectively,
Nm(QXX̃) ∼ Binomial(enR, e−nI(QXX̃)). Thus, we separate between
typically populated joint types (I(QXX̃) ≤ R) and typically empty joint
types (I(QXX̃) > R). First, for the populated types, for any ϵ > 0, it
holds by (4.66) that

Pr
[
Nm(QXX̃) ≥ en(R−I(QXX̃)+ϵ)

] .= e−n∞. (C.1)

Taking the union over an exponentially number of codewords enR and a
polynomial number of joint types, it follows from the union bound that

F ≜

enR⋃
m=1

⋃
QXX̃ : QX=QX̃=PX , I(QXX̃)≥R

{
Nm(QXX̃) ≥ en(R−I(QXX̃)+ϵ)

}
(C.2)

satisfies Pr[F ] .= e−n∞. Since by (4.67) the lower tail also similarly
decays double-exponentially, for the sake of exponent analysis, the TCE

156
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are effectively deterministic, for all codewords in the codebook and all
joint types with I(QXX̃) ≤ R, and is given by

Nm(QXX̃) .= en[R−I(QXX̃)]. (C.3)

Second, for the empty types for which I(QXX̃) > R, it holds by (4.66)
that

Pr
[
Nm(QXX̃) ≥ 1

] .= e−n[I(QXX̃)−R], (C.4)
which is exponentially small. Thus, we do not expect to observe other
codewords m̃ ≠ m which have joint type QXX̃ with Xm. Indeed, the
event

Em ≜

 ⋃
QXX̃ : QX=QX̃=PX , I(QXX̃)>R

{
Nm(QXX̃) ≥ 1

} (C.5)

is the event that the mth codeword is a a-typical neighboring codeword,
in the sense that there exists a QXX̃ with I(QXX̃) > R and at least
one neighboring codeword Xm̃ so that Q̂XmXm̃ = QXX̃ . By the union
bound, since the number of joint types increases polynomially with n,
pn ≜ Pr[Em] .= e−n(I(QXX̃)−R). Thus, on the average, we expect that
pnenR codewords will have such a-typical neighboring codewords. So,
the event

E∗ ≜

 1
enR

enR∑
m=1

1{Em} ≥ 2pn

 , (C.6)

in which more than 2pnenR have such a-typical neighboring codeword
has low probability. Indeed, Markov’s inequality, which does not require
independence of the events {Em}, implies that Pr[E∗] ≤ 1

2 . Hence, with
probability larger than 1/2 − Pr[F ] ≥ 1/3, both Fc and [E∗]c hold. We
thus may choose a codebook Cn that belongs to the event Fc ∩ [E∗]c. The
number of codewords in this codebook for which 1{Em} = 1 is less than
3pnenR. Thus, we can expurgate those codewords from the codebook,
and obtain a new codebook C∗

n which satisfies: (1) Its size is larger than
|C∗

n| ≥ enR(1 − 3pn) .= enR. (2) Its TCEs N
∗
m(QXX̃) are only smaller

than those of the original codebook, and specifically, N
∗
m(QXX̃) = 0

for all QXX̃ with I(QXX̃) > R. (3) N
∗
m(QXX̃) ≤ en(R−I(QXX̃)+ϵ) for all

QXX̃ with I(QXX̃) ≤ R.
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For such a codebook, and after taking ϵ ↓ 0, the error probability
bound in (4.38) is given by

Pe ≤ exp [−n · Eex(R, PX)] , (C.7)

where Eex(R, PX) is as defined in (4.14).
Compared to the TCEM, the properties of codebook C∗

n tradition-
ally follow from the packing lemma [41, Exercise 10.2], [42] (which is
somewhat similar) or from a graph decomposition lemma [40, Corollary
to Lemma 2]. In the latter case, equipped with the existence of such
a codebook, [40] derived a bound for decoders with general score α(·),
and when α(·) is set to be the ML decoder, then this exponent is shown
to be at least as high as both the random-coding error exponent and
the expurgated exponent.
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D
Proofs for Section 4.3

Before proving Theorems 4.1, 4.2 and 4.3, we recall the following Cher-
noff tail bounds of a binomial RV X ∼ Binomial(m, p). If r > p then
rm > E[X] = pm and so the probability of the upper tail is

e−m·D(r||p)−o(m) ≤ Pr [X > rm] ≤ e−m·D(r||p), (D.1)

where D(r||p) ≜ r ln r
p + (1 − r) ln (1−r)

(1−p) is the binary KL divergence. If
r < p then this probability Pr[X > rm] ≥ Pr[X > ⌊E[X]⌋] ≥ 1/2, and
the so the exponent is zero. Similarly, if r < p then the probability of
the lower tail is

e−m·D(r∥p)−o(m) ≤ Pr [X < rm] ≤ e−m·D(r∥p), (D.2)

and if r > p then the exponent is zero.
We will also need the following simple lemma regarding the KL

divergence.

Lemma D.1. Let {an, bn} be sequences in (0, 1) such that an = o(1)
and bn = o(1). Then,

D(an||bn) ∼

bn
an
bn

= o(1)
an ln an

bn
, an

bn
= ω(1)

, (D.3)

159
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where for a sequence {cn}, the notation cn = o(1) means that limn→∞ cn

= 0 and the notation cn = ω(1) means that limn→∞ cn = ∞.

Proof. We use the expansion ln(1 + x) = x + Θ(x2) throughout. If
an
bn

= o(1) then it holds that

(1 − an) ln
[1 − an

1 − bn

]
= (1 − an) ln(1 − an) − (1 − an) ln(1 − bn) (D.4)
= −an(1 − an) + Θ(a2

n) + bn(1 − an) + Θ(b2
n) (D.5)

= (bn − an)(1 − an) + Θ(b2
n) (D.6)

= bn ·
[(

1 − an

bn

)
− an(1 − an) + Θ(b2

n)
]

(D.7)

∼ bn, (D.8)

and so for all n large enough∣∣∣∣an ln an

bn

∣∣∣∣ = an ln bn

an
= −bn · an

bn
ln an

bn
= −o(bn) (D.9)

since limt↓0 t ln t = 0. This is negligible compared to the first term.
If an

bn
= ω(1) then∣∣∣∣(1 − an) ln

(1 − an

1 − bn

)∣∣∣∣
= |(1 − an) ln(1 − an) − (1 − an) ln(1 − bn)| (D.10)

=
∣∣∣(1 − an)

[
−an + Θ(a2

n) + bn + Θ(b2
n)
]∣∣∣ (D.11)

= Θ(an), (D.12)

which is negligible compared to an ln an
bn

= ω(an).

We are now ready to prove Theorem 4.1, which provides exact
exponents of the tail probabilities of the TCE N .

Proof of Theorem 4.1. In the case of a TCE, we are dealing with both
an exponential number of trials and an exponentially decaying success
probability, and so we consider the events {N > enλ} and {N < enλ}
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for some λ ∈ R. Throughout, we will use the asymptotic expansion of
the binary KL divergence in Lemma D.1.

We distinguish between two cases:

1. If A > B then the mean value E[N ] = en(A−B) is exponentially
large. For the upper tail, we assume λ > A − B, for which

Pr
[
N > enλ

]
≤ exp

[
−enA · D(e−n(A−λ)||e−nB)

]
. (D.13)

Since A − B < λ then e−n(A−λ)/e−nB = ω(1) and the exponent is

enA · D(e−n(A−λ)||e−nB) ∼ enAe−n(A−λ) ln e−n(A−λ)

e−nB
(D.14)

= n(λ − (A − B))enλ. (D.15)

Thus, the right-tail probability decays double-exponentially. Simi-
larly, for the lower tail, we assume λ < A − B, for which

Pr
[
N < enλ

]
≤ exp

[
−enA · D(e−n(A−λ)||e−nB)

]
. (D.16)

Since A − B > λ then e−n(A−λ)/e−nB = o(1) and the exponent is

enA · D(e−n(A−λ)||e−nB) ∼ en(A−B). (D.17)

Thus, the lower-tail probability also decays double-exponentially.

2. If B > A then the mean value E[N ] = e−n(B−A) ≤ 1 is exponen-
tially small. For the upper tail, we set λ > 0 > A−B and obtain a
double-exponentially decay, exactly as in the previous case. Next,
as N is integer, for λ ≤ 0, Markov’s inequality implies that

Pr
[
N > enλ

]
= Pr [N ≥ 1] ≤ E[N ] = exp [−n(B − A)] . (D.18)

On the other hand,

Pr
[
N > enλ

]
≥ Pr [N = 1] =

(
enA

1

)
· e−nB · (1 − e−nB)enA−1

(D.19)

= e−n(B−A) · (1 − e−nB)enA−1 (D.20)
∼ exp [−n(B − A)] , (D.21)

which shows that Markov’s inequality is exponentially tight in this
case, and hence Pr[N > enλ] .= e−n(B−A). The variable N has no
lower tail since the above implies that Pr[N = 0] ≥ 1 − e−n(B−A).
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Combining the two cases leads to the claimed result.

We next prove Theorem 4.2, which states the exponent of E[N s].

Proof of Theorem 4.2. We separate again between two cases, depending
on the sign of A − B.

1. If A > B then we know that any exponential deviation from
the mean leads to a double-exponentially decay. Hence, for any
λ > A − B

E [N s] = Pr[N ≤ enλ] · E
[
N s|N ≤ enλ

]
+ Pr[N > enλ] · E

[
N s|N ≥ enλ

]
(D.22)

≤̇ enλs + e−n∞ · ensA (D.23)
.= enλs, (D.24)

where we have used the fact that N ≤ enA with probability 1,
and write e−n∞ for a probability that decays super-exponentially.
Taking the limit λ ↓ A − B shows that

E [N s] ≤̇ en(A−B)s. (D.25)

A matching lower bound can be derived in an analogous way: For
any λ < A − B

E [N s] = Pr[N ≥ enλ] · E
[
N s|N ≥ enλ

]
+ Pr[N < enλ] · E

[
N s|N < enλ

]
(D.26)

≥
[
1 − Pr[N < enλ]

]
· enλs (D.27)

∼ enλs, (D.28)

after taking the limit λ ↑ A − B. Hence,

E [N s] .= en(A−B)s. (D.29)

2. If A < B then we take λ > 0 to obtain

E [N s] = Pr[1 ≤ N ≤ enλ] · E
[
N s|1 ≤ N ≤ enλ

]
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+ Pr[N > enλ] · E
[
N s|N ≥ enλ

]
(D.30)

≤̇ Pr[N ≥ 1] · enλ + e−n∞ · ensA (D.31)
≤̇ e−n(B−A) · enλ. (D.32)

Taking the limit λ ↓ 0 shows that

E [N s] ≤̇ e−n(B−A). (D.33)

A lower bound is obtained by

E [N s] ≥ Pr[N = 1] · 1s ≥ [1 + o(1)] · e−n(B−A), (D.34)

which shows that the upper bound is tight.

Combining the two cases leads to the claimed result.

We finally prove Theorem 4.3, which states that the probability of
an intersection of lower tail events of a set of TCEs is exponentially
equivalent to either 0 or 1.

Proof of Theorem 4.3. If there is a j∗ ∈ [kn] so that Bj∗ < Aj∗ and
λ < Aj∗ − Bj∗ then Pr[Nj∗ < enλ] .= e−n∞. So,

Pr

 kn⋂
j=1

{
Nj < enλ

} ≤ min
1≤j≤kn

Pr
[
Nj < enλ

] .= e−n∞. (D.35)

Otherwise, if all j = 1, . . . , kn it holds that either Bj > Aj or λ > Aj−Bj

then (4.66) implies that Pr[Nj > enλ] ≤̇ e−n∞ for all j = 1, . . . , kn. Thus,
from the union bound, as n → ∞

Pr

 kn⋂
j=1

{
Nj ≤ enλ

} = 1 − Pr

 kn⋃
j=1

{
Nj > enλ

} (D.36)

≥ 1 −
kn∑

j=1
Pr
[
Nj > enλ

]
(D.37)

≥ 1 − kn · max
1≤j≤kn

Pr
[
Nj > enλ

]
(D.38)

≥ 1 − kn · e− min1≤j≤kn Ej (D.39)
→ 1. (D.40)

Combining (D.35) and (D.40) leads to the stated claim.

Full text available at: http://dx.doi.org/10.1561/0100000142



References

[1] R. Ahlswede and I. Csiszár, “Hypothesis testing with commu-
nication constraints,” IEEE Trans. Inf. Theory, vol. 32, no. 4,
1986, pp. 533–542.

[2] R. Ahlswede and G. Dueck, “Good codes can be produced by
a few permutations,” IEEE Trans. Inf. Theory, vol. 28, no. 3,
1982, pp. 430–443.

[3] M. A. Ali, H. Budak, and Z. Zhang, “A new extension of quan-
tum Simpson’s and quantum Newton’s inequalities for quantum
differentiable convex functions,” Mathematical Methods in the
Applied Sciences, 2021. doi: 10.1002/mma.7889.

[4] S. M. Ali and S. D. Silvey, “A general class of coefficients of
divergence of one distribution from another,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 28, no. 1, 1966,
pp. 131–142.

[5] Y. Altuğ and A. B. Wagner, “Moderate deviations in channel
coding,” IEEE Trans. Inf. Theory, vol. 60, no. 8, 2014, pp. 4417–
4426.

[6] Y. Altuğ and A. B. Wagner, “Refinement of the random coding
bound,” IEEE Trans. Inf. Theory, vol. 60, no. 10, 2014, pp. 6005–
6023.

164

Full text available at: http://dx.doi.org/10.1561/0100000142

https://doi.org/10.1002/mma.7889


References 165

[7] D. Anade, J.-M. Gorce, P. Mary, and S. M. Perlaza, “An upper
bound on the error induced by saddlepoint approximations –
applications to information theory,” Entropy, vol. 22, no. 6, 2020,
p. 690. doi: 10.3390/e22060690.

[8] E. Arikan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, 2009, pp. 3051–
3073.

[9] E. Arikan and N. Merhav, “Guessing subject to distortion,”
IEEE Trans. Inf. Theory, vol. 44, no. 3, 1998, pp. 1041–1056.

[10] S. Arimoto, “On the converse to the coding theorem for dis-
crete memoryless channels (corresp.),” IEEE Trans. Inf. Theory,
vol. 19, no. 3, 1973, pp. 357–359.

[11] R. Averbuch and N. Merhav, “Exact random coding exponents
and universal decoders for the asymmetric broadcast channel,”
IEEE Trans. Inf. Theory, vol. 64, no. 7, 2018, pp. 5070–5086.

[12] R. Averbuch, N. Weinberger, and N. Merhav, “Expurgated
bounds for the asymmetric broadcast channel,” IEEE Trans.
Inf. Theory, vol. 65, no. 6, 2019, pp. 3412–3435.

[13] R. R. Bahadur and R. R. Rao, “On deviations of the sample
mean,” Ann. Math. Statist., vol. 31, no. 4, 1960, pp. 1015–1027.

[14] A. Barg and G. D. Forney, “Random codes: Minimum distances
and error exponents,” IEEE Trans. Inf. Theory, vol. 48, no. 9,
2002, pp. 2568–2573.

[15] L. A. Bassalygo, S. I. Gel’fand, and M. S. Pinsker, “Simple
methods for deriving lower bounds in the theory of codes,” Probl.
Pered. Inform, vol. 27, no. 4, 1991, pp. 3–8.

[16] P. Bergmans, “Random coding theorem for broadcast channels
with degraded components,” IEEE Trans. Inf. Theory, vol. 19,
no. 2, 1973, pp. 197–207.

[17] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: Turbo-codes. 1,”
in Proceedings of ICC’93-IEEE International Conference on
Communications, IEEE, vol. 2, pp. 1064–1070, 1993.

[18] P. Billingsley, “Statistical methods in Markov chains,” Ann.
Math. Statist., vol. 32, 1961, pp. 12–40.

Full text available at: http://dx.doi.org/10.1561/0100000142

https://doi.org/10.3390/e22060690


166 References

[19] R. E. Blahut, “Hypothesis testing and information theory,” IEEE
Trans. Inf. Theory, vol. 20, no. 4, 1974, pp. 405–417.

[20] S. Boucheron, G. Lugosi, and P. Massart, Concentration In-
equalities: A Nonasymptotic Theory of Independence. Oxford
University Press, 2013.

[21] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[22] L. B. Boza, “Asymptotically optimal tests for finite Markov
chains,” Ann. Math. Stat., vol. 42, 1971, pp. 1992–2007.

[23] N. G. de Bruijn, Asymptotic Methods in Analysis. Dover Publi-
cations, 1981.

[24] H. Budak, M. A. Ali, and M. Tarhanaci, “Some new quantum
Hermite–Hadamard like inequalities for coordinated convex func-
tions,” Journal of Optimization Theory and Applications, vol. 186,
no. 3, 2020, pp. 899–910.

[25] I. Budimir, S. S. Dragomir, and J. Pečari, “Further reverse results
for Jensen’s discrete inequality and applications in information
theory,” Journal of Inequalities in Pure and Applied Mathematics,
vol. 2, 2001, pp. 1–14.

[26] M. V. Burnashev, “Data transmission over a discrete channel
with feedback. random transmission time,” Problemy peredachi
informatsii, vol. 12, no. 4, 1976, pp. 10–30.

[27] D. Cao and V. Y. F. Tan, “Exact error and erasure exponents for
the asymmetric broadcast channel,” IEEE Trans. Inf. Theory,
vol. 66, no. 2, 2019, pp. 865–885.

[28] V. Chandar, A. Tchamkerten, and D. Tse, “Asynchronous capac-
ity per unit cost,” IEEE Trans. Inf. Theory, vol. 59, no. 3, 2012,
pp. 1213–1226.

[29] V. Chandar, A. Tchamkerten, and G. W. Wornell, “Optimal
sequential frame synchronization,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, 2008, pp. 3725–3728.

[30] J. Chen, D.-k. He, A. Jagmohan, and L. A. Lastras-Montaño, “On
universal variable-rate Slepian-Wolf coding,” in Proc. of IEEE
International Conference on Communications, IEEE, pp. 1426–
1430, 2008.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 167

[31] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke,
“On the design of low-density parity-check codes within 0.0045
dB of the Shannon limit,” IEEE Communications letters, vol. 5,
no. 2, 2001, pp. 58–60.

[32] M. Costa, “Writing on dirty paper (corresp.),” IEEE Trans. Inf.
Theory, vol. 29, no. 3, 1983, pp. 439–441.

[33] T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18,
no. 1, 1972, pp. 2–14.

[34] T. Cover and A. E. Gamal, “Capacity theorems for the relay
channel,” IEEE Trans. Inf. Theory, vol. 25, no. 5, 1979, pp. 572–
584.

[35] T. Cover and C. Leung, “An achievable rate region for the
multiple-access channel with feedback,” IEEE Trans. Inf. Theory,
vol. 27, no. 3, 1981, pp. 292–298.

[36] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. John Wiley & Sons, 2006.

[37] I. Csiszár, “Eine informationstheoretische ungleichung und ihre
anwendung auf den beweis der ergodizität von markoffschen
ketten,” A Magyar Tudományos Akadémia Matematikai Kutató
Intézetének Közleményei, vol. 8, no. 1-2, 1963, pp. 85–108.

[38] I. Csiszár, “The method of types,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, 1998, pp. 2505–2523.

[39] I. Csiszár and J. Körner, “Broadcast channels with confidential
messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, 1978, pp. 339–
348.

[40] I. Csiszár and J. Körner, “Graph decomposition: A new key to
coding theorems,” IEEE Trans. Inf. Theory, vol. 27, no. 1, 1981,
pp. 5–12.

[41] I. Csiszár and J. Körner, Information Theory: Coding Theorems
for Discrete Memoryless Systems. Cambridge University Press,
2011.

[42] I. Csiszár, J. Körner, and K. Marton, “A new look at the error
exponent of discrete memoryless channels,” in Proc. of Interna-
tional Symposium on Information Theory, 107 (abstract), 1977.

Full text available at: http://dx.doi.org/10.1561/0100000142



168 References

[43] A. G. D’yachkov, “Bounds on the average error probability for
a code ensemble with fixed composition,” Problemy Peredachi
Informatsii, vol. 16, no. 4, 1980, pp. 3–8.

[44] G. Dasarathy and S. C. Draper, “On reliability of content iden-
tification from databases based on noisy queries,” in 2011 IEEE
International Symposium on Information Theory Proceedings,
IEEE, pp. 1066–1070, 2011.

[45] G. Dasarathy and S. C. Draper, “Upper and lower bounds on
the reliability of content identification,” in 23th International
Zurich Seminar on Communications (IZS 2014), ETH-Zürich,
2014.

[46] L. D. Davisson, “Universal noiseless coding,” IEEE Trans. Inf.
Theory, vol. 29, no. 6, 1973, pp. 783–795.

[47] L. D. Davisson, G. Longo, and A. Sgarro, “The error exponent
for noiseless encoding of finite ergodic Markov sources,” IEEE
Trans. Inf. Theory, vol. 27, no. 4, 1981, pp. 431–438.

[48] D. De Caen, “A lower bound on the probability of a union,”
Discrete mathematics, vol. 169, no. 1-3, 1997, pp. 217–220.

[49] A. Dembo and O. Zeitouni, Large Deviations and Applications.
Jones and Bartlett Publishers, 1993.

[50] B. Derrida, “Random-energy model: Limit of a family of dis-
ordered models,” Physical Review Letters, vol. 45, no. 2, 1980,
p. 79.

[51] B. Derrida, “The random energy model,” CEA Centre d’Etudes
Nucleaires de Saclay, Tech. Rep., 1980.

[52] B. Derrida, “Random-energy model: An exactly solvable model
of disordered systems,” Physical Review B, vol. 24, no. 5, 1981,
p. 2613.

[53] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation
of certain Markov process expectations for large time. iv,” Com-
munications on pure and applied mathematics, vol. 36, no. 2,
1983, pp. 183–212.

[54] S. S. Dragomir, “Some reverses of the Jensen inequality for
functions of selfadjoint operators in Hilbert spaces,” Journal of
Inequalities and Applications, 2010. doi: https://doi.org/10.
1155/2010/496821.

Full text available at: http://dx.doi.org/10.1561/0100000142

https://doi.org/https://doi.org/10.1155/2010/496821
https://doi.org/https://doi.org/10.1155/2010/496821


References 169

[55] S. S. Dragomir, “Some reverses of the Jensen inequality with
applications,” Bulletin of the Australian Mathematical Society,
vol. 87, 2013, pp. 177–194.

[56] M. Drmota and W. Szpankowski, Analytic Information Theory:
From Compression to Learning. Cambridge University Press,
2023.

[57] G. Dueck and J. Körner, “Reliability function of a discrete
memoryless channel at rates above capacity (corresp.),” IEEE
Trans. Inf. Theory, vol. 25, no. 1, 1979, pp. 82–85.

[58] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the
Theory of Large Deviations. John Wiley & Sons, 1997.

[59] A. El Gamal and Y.-H. Kim, Network Information Theory. Cam-
bridge University Press, 2011.

[60] P. Elias, “Coding for noisy channels,” in IRE Conv. Rec., vol. 3,
pp. 37–46, 1955.

[61] P. Elias, “List decoding for noisy channels,” in IRE WESCON
Conf. Rec., vol. 2, pp. 94–104, 1957.

[62] T. Erseghe, “Coding in the finite-blocklength regime: Bounds
based on Laplace integrals and their asymptotic approximations,”
IEEE Trans. Inf. Theory, vol. 62, no. 12, 2016, pp. 6854–6883.

[63] S. E. Esipov and T. J. Newman, “Interface growth and Burgers
turbulence: The problem of random initial conditions,” Physical
Review E, vol. 48, no. 2, 1993, pp. 1046–1050.

[64] R. H. Etkin, N. Merhav, and E. Ordentlich, “Error exponents
of optimum decoding for the interference channel,” IEEE Trans.
Inf. Theory, vol. 56, no. 1, 2009, pp. 40–56.

[65] R. M. Fano, Transmission of Information: A Statistical Theory
of Communications. M.I.T. Press, 1961.

[66] M. Feder and N. Merhav, “Universal composite hypothesis test-
ing: A competitive minimax approach,” IEEE Trans. Inf. Theory,
vol. 48, no. 6, 2002, pp. 1504–1517.

[67] J. Font-Segura, G. Vázquez-Vilar, A. Martinez, A. Guillén i
Fàbregas, and A. Lancho, “Saddlepoint approximations of lower
and upper bounds to the error probability in channel coding,”
in Proc. 2018 52nd Annual Conference on Information Sciences
and Systems (CISS 2018), Princeton, NJ, USA, 2018.

Full text available at: http://dx.doi.org/10.1561/0100000142



170 References

[68] G. D. Forney, “Exponential error bounds for erasure, list, and
decision feedback schemes,” IEEE Trans. Inf. Theory, vol. 14,
no. 2, 1968, pp. 206–220.

[69] R. G. Gallager, “Low-density parity-check codes,” IRE Transac-
tions on information theory, vol. 8, no. 1, 1962, pp. 21–28.

[70] R. G. Gallager, “A simple derivation of the coding theorem and
some applications,” IEEE Trans. Inf. Theory, vol. 11, no. 1, 1965,
pp. 3–18.

[71] R. G. Gallager, Information Theory and Reliable Communication,
vol. 588. Springer, 1968.

[72] R. G. Gallager, “The random coding bound is tight for the
average code (corresp.),” IEEE Trans. Inf. Theory, vol. 19, no. 2,
1973, pp. 244–246.

[73] R. G. Gallager, “Capacity and coding for degraded broadcast
channels,” Problemy Peredachi Informatsii, vol. 10, no. 3, 1974,
pp. 3–14.

[74] R. G. Gallager, “Source coding with side information and uni-
versal coding,” M.I.T., LIDS- P-937, 1976.

[75] S. I. Gel’fand and M. S. Pinsker, “Coding for channels with
random parameters,” Probl. Contr. Inform. Theory, vol. 9, no. 1,
1980, pp. 19–31.

[76] S. Ginzach, N. Merhav, and I. Sason, “Random-coding error
exponent of variable-length codes with a single-bit noiseless
feedback,” in 2017 IEEE Information Theory Workshop (ITW),
IEEE, pp. 584–588, 2017.

[77] V. D. Goppa, “Nonprobabilitistic mutual information without
memory,” Problems of Control and Inform., Theory, vol. 4, 1975,
pp. 97–102.

[78] M. Grant, S. P. Boyd, and Y. Ye, “CVX users’ guide,” 2009.
url: http://www.%20stanford.%20edu/boyd/software.%20html.

[79] T. S. Han and S. Amari, “Statistical inference under multitermi-
nal data compression,” IEEE Trans. Inf. Theory, vol. 44, no. 6,
1998, pp. 2300–2324.

[80] T. S. Han and K. Kobayashi, “A new achievable rate region
for the interference channel,” IEEE Trans. Inf. Theory, vol. 27,
no. 1, 1981, pp. 49–60.

Full text available at: http://dx.doi.org/10.1561/0100000142

http://www.%20stanford.%20edu/boyd/software.%20html


References 171

[81] T. S. Han and K. Kobayashi, “Exponential-type error proba-
bilities for multiterminal hypothesis testing,” IEEE Trans. Inf.
Theory, vol. 35, no. 1, 2006, pp. 2–14.

[82] E. A. Haroutunian, “Bounds for the exponent of the probability
of error for a semicontinuous memoryless channel,” Problemy
Peredachi Informatsii, vol. 4, no. 4, 1968, pp. 37–48.

[83] M. Hayashi, “General nonasymptotic and asymptotic formulas
in channel resolvability and identification capacity and their
application to the wiretap channel,” IEEE Trans. Inf. Theory,
vol. 52, no. 4, 2006, pp. 1562–1575.

[84] M. Hayashi, “Exponential decreasing rate of leaked information
in universal random privacy amplification,” IEEE Trans. Inf.
Theory, vol. 57, no. 6, 2011, pp. 3989–4001.

[85] M. Hayashi and V. Y. F. Tan, “Asymmetric evaluations of erasure
and undetected error probabilities,” IEEE Trans. Inf. Theory,
vol. 61, no. 12, 2015, pp. 6560–6577.

[86] E. Hille, Analytic Function Theory, vol. 2. American Mathemati-
cal Soc., 1959.

[87] J. Honda, “Exact asymptotics of random coding error proba-
bility for general memoryless channels,” in Proc. 2018 IEEE
International Symposium on Information Theory (ISIT 2018),
pp. 1844–1848, Vail, CO, U.S.A, 2018.

[88] W. Huleihel and N. Merhav, “Universal decoding for Gaussian
intersymbol interference channels,” IEEE Trans. Inf. Theory,
vol. 61, no. 4, 2015, pp. 1606–1618.

[89] W. Huleihel and N. Merhav, “Random coding error exponents
for the two-user interference channel,” IEEE Trans. Inf. Theory,
vol. 63, no. 2, 2016, pp. 1019–1042.

[90] W. Huleihel, S. Salamatian, N. Merhav, and M. Médard, “Gaus-
sian intersymbol interference channels with mismatch,” IEEE
Trans. Inf. Theory, vol. 65, no. 7, 2019, pp. 4499–4517.

[91] W. Huleihel, N. Weinberger, and N. Merhav, “Erasure/list ran-
dom coding error exponents are not universally achievable,”
IEEE Trans. Inf. Theory, vol. 62, no. 10, 2016, pp. 5403–5421.

Full text available at: http://dx.doi.org/10.1561/0100000142



172 References

[92] P. A. Humblet, “Generalization of Huffman coding to minimize
the probability of buffer overflow,” IEEE Trans. Inf. Theory,
vol. 27, 1981, pp. 230–232.

[93] T. Ignatenko and F. M. J. Willems, “Biometric security from an
information-theoretical perspective,” Foundations and Trends®
in Communications and Information Theory, vol. 7, no. 2–3,
2012, pp. 135–316.

[94] A. Ingber, T. Courtade, and T. Weissman, “Compression for
quadratic similarity queries,” IEEE Trans. Inf. Theory, vol. 61,
no. 5, 2015, pp. 2729–2747.

[95] S. Janson, “New versions of Suen’s correlation inequality,” Ran-
dom Structures and Algorithms, vol. 13, no. 3-4, 1998, pp. 467–
483.

[96] T. Jebara and A. Pentland, “On reversing Jensen’s inequality,”
in Proc. 13th International Conference on Neural Information
Processing Systems (NIPS 2000), pp. 213–219, Denver, CO,
U.S.A., 2000.

[97] F. Jelinek, “Buffer overflow in variable length coding of fixed
rate sources,” IEEE Trans. Inf. Theory, vol. 14, no. 3, 1968,
pp. 490–501.

[98] F. Jelinek, “Evaluation of expurgated bound exponents,” IEEE
Trans. Inf. Theory, vol. 14, no. 3, 1968, pp. 501–505.

[99] F. Jelinek, Probabilistic Information Theory. McGraw-Hill, 1968.
[100] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolu-

tional Coding. John Wiley & Sons, 2015.
[101] Y. Kaspi and N. Merhav, “Error exponents for broadcast channels

with degraded message sets,” IEEE Trans. Inf. Theory, vol. 57,
no. 1, 2010, pp. 101–123.

[102] B. G. Kelly and A. B. Wagner, “Reliability in source coding with
side information,” IEEE Trans. Inf. Theory, vol. 58, no. 8, 2012,
pp. 5086–5111.

[103] G. Keshet, Y. Steinberg, and N. Merhav, “Channel coding in
the presence of side information,” Foundations and Trends® in
Communications and Information Theory, vol. 4, no. 6, 2008,
pp. 445–586.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 173

[104] S. Khan, M. A. Khan, and Y.-M. Chu, “Converses of Jensen
inequality derived from the Green functions with applications in
information theory,” Mathematical Methods in Applied Sciences,
vol. 43, 2020, pp. 2577–2587.

[105] S. Khan, M. A. Khan, and Y.-M. Chu, “New converses of Jensen
inequality via Green functions with applications,” Revista de la
Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie
A, Matematicas, vol. 114, no. 3, 2020.

[106] J. Körner and K. Marton, “General broadcast channels with
degraded message sets,” IEEE Trans. Inf. Theory, vol. 23, no. 1,
1977, pp. 60–64.

[107] J. Körner and A. Sgarro, “Universally attainable error exponents
for broadcast channels with degraded message sets,” IEEE Trans.
Inf. Theory, vol. 26, no. 6, 1980, pp. 670–679.

[108] R. E. Krichevsky and V. K. Trofimov, “The performance of
universal encoding,” IEEE Trans. Inf. Theory, vol. 27, no. 2,
1981, pp. 199–207.

[109] A. Lancho, J. Östman, G. Durisi, T. Koch, and G. Vázquez-
Vilar, “Saddlepoint approximations for short-packet wireless
communications,” IEEE Trans. on Wireless Communications,
vol. 19, no. 7, 2020, pp. 4831–4846.

[110] E. L. Lehmann, Theory of Point Estimation. New York: John
Wiley & Sons, 1983.

[111] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Information the-
oretic security,” Foundations and Trends® in Communications
and Information Theory, vol. 5, no. 4–5, 2009, pp. 355–580.

[112] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, vol. 16. Elsevier, 1977.

[113] A. Martinez and A. Guillén i Fàbregas, “Random-coding bounds
for threshold decoders: Error exponent and saddlepoint approxi-
mation,” in Proc. 2011 IEEE International Symposium on In-
formation Theory (ISIT 2011), pp. 2905–2909, St. Petersburg,
Russia, 2011.

Full text available at: http://dx.doi.org/10.1561/0100000142



174 References

[114] A. Martinez and A. Guillén i Fàbregas, “Saddlepoint approx-
imation of random-coding bounds,” in The 2011 Information
Theory and Applications Workshop (ITA 2011), La Jolla, CA,
USA, 2011.

[115] N. Merhav, “On the estimation of the model order in exponential
families,” IEEE Trans. Inf. Theory, vol. 35, no. 5, 1989, pp. 1109–
1114.

[116] N. Merhav, “Universal decoding for memoryless Gaussian chan-
nels with a deterministic interference,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, 1993, pp. 1261–1269.

[117] N. Merhav, “A large-deviations notion of perfect secrecy,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, 2003, pp. 506–508.

[118] N. Merhav, “Error exponents of erasure/list decoding revisited
via moments of distance enumerators,” IEEE Trans. Inf. Theory,
vol. 54, no. 10, 2008, pp. 4439–4447.

[119] N. Merhav, “Relations between random coding exponents and the
statistical physics of random codes,” IEEE Trans. Inf. Theory,
vol. 55, no. 1, 2008, pp. 83–92.

[120] N. Merhav, “Statistical physics and information theory,” Foun-
dations and Trends in Communications and Information Theory,
vol. 6, no. 1-2, 2009.

[121] N. Merhav, “On optimum strategies for minimizing exponential
moments of a given cost function,” Communications in Informa-
tion and Systems, vol. 11, no. 4, 2011, pp. 343–368.

[122] N. Merhav, “Subset-sum phase transitions and data compres-
sion,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2011, 2011, P09017.

[123] N. Merhav, “Another look at expurgated bounds and their
statistical-mechanical interpretation,” arXiv preprint arXiv:1301.
4117, 2013.

[124] N. Merhav, “Universal decoding for arbitrary channels relative
to a given class of decoding metrics,” IEEE Trans. Inf. Theory,
vol. 59, no. 9, 2013, pp. 5566–5576.

[125] N. Merhav, “Erasure/list exponents for Slepian–Wolf decoding,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, 2014, pp. 4463–4471.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 175

[126] N. Merhav, “Exact correct-decoding exponent of the wiretap
channel decoder,” IEEE Trans. Inf. Theory, vol. 60, no. 12, 2014,
pp. 7606–7615.

[127] N. Merhav, “Exact random coding error exponents of optimal
bin index decoding,” IEEE Trans. Inf. Theory, vol. 60, no. 10,
2014, pp. 6024–6031.

[128] N. Merhav, “List decoding – random coding exponents and
expurgated exponents,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
2014, pp. 6749–6759.

[129] N. Merhav, “Statistical physics of random binning,” IEEE Trans.
Inf. Theory, vol. 61, no. 5, 2015, pp. 2454–2464.

[130] N. Merhav, “Universal decoding for source–channel coding with
side information,” Communications in Information and Systems,
vol. 16, no. 1, 2016, pp. 17–58.

[131] N. Merhav, “Correction to "the generalized stochastic likelihood
decoder: Random coding and expurgated bounds",” IEEE Trans.
Inf. Theory, vol. 63, no. 10, 2017, pp. 6827–6829.

[132] N. Merhav, “Reliability of universal decoding based on vector-
quantized codewords,” IEEE Trans. Inf. Theory, vol. 63, no. 5,
2017, pp. 2696–2709.

[133] N. Merhav, “The generalized stochastic likelihood decoder: Ran-
dom coding and expurgated bounds,” IEEE Trans. Inf. Theory,
vol. 63, no. 8, 2017, pp. 5039–5051.

[134] N. Merhav, “Ensemble performance of biometric authentica-
tion systems based on secret key generation,” IEEE Trans. Inf.
Theory, vol. 65, no. 4, 2018, pp. 2477–2491.

[135] N. Merhav, “Error exponents of typical random codes,” IEEE
Trans. Inf. Theory, vol. 64, no. 9, 2018, pp. 6223–6235.

[136] N. Merhav, “Lower bounds on exponential moments of the
quadratic error in parameter estimation,” IEEE Trans. Inf. The-
ory, vol. 64, no. 12, 2018, pp. 7636–7648.

[137] N. Merhav, “A Lagrange-dual lower bound to the error exponent
of the typical random code,” IEEE Trans. Inf. Theory, vol. 66,
no. 6, 2019, pp. 3456–3464.

Full text available at: http://dx.doi.org/10.1561/0100000142



176 References

[138] N. Merhav, “Error exponents of typical random codes for the
colored Gaussian channel,” IEEE Trans. Inf. Theory, vol. 65,
no. 12, 2019, pp. 8164–8179.

[139] N. Merhav, “Error exponents of typical random trellis codes,”
IEEE Trans. Inf. Theory, vol. 66, no. 4, 2019, pp. 2067–2077.

[140] N. Merhav, “Universal decoding for asynchronous Slepian–Wolf
encoding,” IEEE Trans. Inf. Theory, vol. 67, no. 5, 2020,
pp. 2652–2662.

[141] N. Merhav, “On more general distributions of random binning
for Slepian–Wolf encoding,” IEEE Trans. Inf. Theory, vol. 68,
no. 2, 2021, pp. 737–751.

[142] N. Merhav, “Reversing Jensen’s inequality for information-theo-
retic analyses,” Information, vol. 13, no. 1, 2022, p. 39. doi:
10.3390/info13010039.

[143] N. Merhav, “D-semifaithful codes that are universal over both
memoryless sources and distortion measures,” IEEE Trans. Inf.
Theory, vol. 69, no. 7, 2023, pp. 4746–4757.

[144] N. Merhav, “Some families of Jensen-like inequalities with ap-
plication to information theory,” Entropy, vol. 25, no. 5, 2023,
p. 752. doi: 10.3390/e25050752.

[145] N. Merhav and M. Feder, “Minimax universal decoding with an
erasure option,” IEEE Trans. Inf. Theory, vol. 53, no. 5, 2007,
pp. 1664–1675.

[146] N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai (Shitz), “On
information rates for mismatched decoders,” IEEE Trans. Inf.
Theory, vol. 40, no. 6, 1994, pp. 1953–1967.

[147] N. Merhav and E. Sabbag, “Optimal watermark embedding and
detection strategies under limited detection resources,” IEEE
Trans. Inf. Theory, vol. 54, no. 1, 2008, pp. 255–274.

[148] N. Merhav and I. Sason, “An integral representation of the
logarithmic function with applications in information theory,”
Entropy, vol. 22, no. 1, 2020, p. 51. doi: 10.3390/e22010051.

[149] N. Merhav and I. Sason, “Some useful integral representations
for information-theoretic analyses,” Entropy, vol. 22, no. 6, 2020,
p. 707. doi: 10.3390/e22060707.

Full text available at: http://dx.doi.org/10.1561/0100000142

https://doi.org/10.3390/info13010039
https://doi.org/10.3390/e25050752
https://doi.org/10.3390/e22010051
https://doi.org/10.3390/e22060707


References 177

[150] N. Merhav and M. J. Weinberger, “On universal simulation
of information sources using training data,” IEEE Trans. Inf.
Theory, vol. 50, no. 1, 2004, pp. 5–20.

[151] M. Mézard and A. Montanari, Information, Physics and Com-
putation. Oxford University Press, 2009.

[152] M. Mitzenmacher and E. Upfal, Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and
Data Analysis. Cambridge University Press, 2017.

[153] P. Moulin, “The log-volume of optimal codes for memoryless
channels, asymptotically within a few nats,” IEEE Trans. Inf.
Theory, vol. 63, no. 4, 2017, pp. 2278–2313.

[154] P. Moulin and Y. Wang, “Capacity and random-coding exponents
for channel coding with side information,” IEEE Trans. Inf.
Theory, vol. 53, no. 4, 2007, pp. 1326–1347.

[155] S. Natarajan, “Large deviations, hypotheses testing, and source
coding for finite Markov chains,” IEEE Trans. Inf. Theory,
vol. 31, no. 3, 1985, pp. 360–365.

[156] A. Nazari, A. Anastasopoulos, and S. S. Pradhan, “Error expo-
nent for multiple-access channels: Lower bounds,” IEEE Trans.
Inf. Theory, vol. 60, no. 9, 2014, pp. 5095–5115.

[157] A. Nazari, R. Venkataramanan, D. Krithivasan, S. S. Pradhan,
and A. Anastasopoulos, “Typicality graphs: Large deviation
analysis,” arXiv preprint arXiv:1010.1317, 2010.

[158] T. Neuschel, “Apéry polynomials and the multivariate saddle
point method,” Contr. Approx., vol. 40, 2014, pp. 487–507.

[159] R. Nevanlinna and V. Paatero, Introduction to Complex Analysis,
vol. 310. American Mathematical Society, 2007.

[160] Y. Oohama and T. S. Han, “Universal coding for the Slepian-
Wolf data compression system and the strong converse theorem,”
IEEE Trans. Inf. Theory, vol. 40, no. 6, 1994, pp. 1908–1919.

[161] L. Ozarow, “The capacity of the white Gaussian multiple access
channel with feedback,” IEEE Trans. Inf. Theory, vol. 30, no. 4,
1984, pp. 623–629.

[162] A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses. McGraw-Hill, 1991.

Full text available at: http://dx.doi.org/10.1561/0100000142



178 References

[163] M. B. Parizi and E. Telatar, “On the secrecy exponent of the
wire-tap channel,” in Proc. 2015-Fall IEEE Information Theory
Workshop (ITW 2015-Fall), IEEE, pp. 287–291, 2015.

[164] M. B. Parizi, E. Telatar, and N. Merhav, “Exact random coding
secrecy exponents for the wiretap channel,” IEEE Trans. Inf.
Theory, vol. 63, no. 1, 2016, pp. 509–531.

[165] G. S. Poltyrev, “Random coding bounds for discrete memoryless
channels,” Problemy Peredachi Informatsii, vol. 18, no. 1, 1982,
pp. 12–26.

[166] Y. Polyanskiy, “Channel coding: Non-asymptotic fundamental
limits,” Ph.D. dissertation, Department of Electrical Engineering,
Princeton University, 2010.

[167] Y. Polyanskiy and S. Verdú, “Channel dispersion and moderate
deviations limits for memoryless channels,” in 2010 48th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, pp. 1334–1339, 2010.

[168] S. S. Pradhan, J. Chou, and K. Ramchandran, “Duality between
source coding and channel coding and its extension to the side
information case,” IEEE Trans. Inf. Theory, vol. 49, no. 5, 2003,
pp. 1181–1203.

[169] M. Raginsky and I. Sason, “Concentration of measure inequalities
in information theory, communications, and coding,” Founda-
tions and Trends® in Communications and Information Theory,
vol. 10, no. 1-2, 2013, pp. 1–246.

[170] M. S. Rahman and A. B. Wagner, “On the optimality of binning
for distributed hypothesis testing,” IEEE Trans. Inf. Theory,
vol. 58, no. 10, 2012, pp. 6282–6303.

[171] T. Richardson and R. Urbanke, Modern Coding Theory. Cam-
bridge University Press, 2008.

[172] P. Ruján, “Finite temperature error-correcting codes,” Physical
review letters, vol. 70, no. 19, 1993, p. 2968.

[173] J. Scarlett, “On the dispersions of the Gel’fand–Pinsker channel
and dirty paper coding,” IEEE Trans. Inf. Theory, vol. 61, no. 9,
2015, pp. 4569–4586.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 179

[174] J. Scarlett, A. A. Martinez, and A. Guillén i Fàbregas, “Mis-
matched decoding: Error exponents, second-order rates and sad-
dlepoint approximations,” IEEE Trans. Inf. Theory, vol. 60,
no. 5, 2014, pp. 2647–2666.

[175] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, “Multiuser
random coding techniques for mismatched decoding,” IEEE
Trans. Inf. Theory, vol. 62, no. 7, 2016, pp. 3950–3970.

[176] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, “Mismatched
multi-letter successive decoding for the multiple-access channel,”
IEEE Trans. Inf. Theory, vol. 64, no. 4, 2017, pp. 2253–2266.

[177] J. Scarlett, L. Peng, N. Merhav, A. Martinez, and A. Guillén
i Fàbregas, “Expurgated random-coding ensembles: Exponents,
refinements, and connections,” IEEE Trans. Inf. Theory, vol. 60,
no. 8, 2014, pp. 4449–4462.

[178] J. Scarlett and V. Y. F. Tan, “Second-order asymptotics for the
Gaussian MAC with degraded message sets,” IEEE Trans. Inf.
Theory, vol. 61, no. 12, 2015, pp. 6700–6718.

[179] J. Scarlett, A. G. i Fàbregas, A. Somekh-Baruch, and A. Mar-
tinez, “Information-theoretic foundations of mismatched decod-
ing,” Foundations and Trends® in Communications and Infor-
mation Theory, vol. 17, no. 2–3, 2020, pp. 149–401.

[180] J. M. Scarlett, “Reliable communication under mismatched de-
coding,” Ph.D. dissertation, University of Cambridge, 2014.

[181] G. Schwartz, “Estimating the dimension of a model,” Ann. Stat.,
vol. 6, 1978, pp. 461–464.

[182] C. E. Shannon, “A mathematical theory of communication,” The
Bell System Technical Journal, vol. 27, no. 3, 1948, pp. 379–423.

[183] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower
bounds to error probability for coding on discrete memoryless
channels. i,” Information and Control, vol. 10, no. 1, 1967, pp. 65–
103.

[184] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower
bounds to error probability for coding on discrete memoryless
channels. ii,” Information and Control, vol. 10, no. 5, 1967,
pp. 522–552.

Full text available at: http://dx.doi.org/10.1561/0100000142



180 References

[185] H. Shimokawa, T. S. Han, and S. Amari, “Error bound of hy-
pothesis testing with data compression,” in Proceedings of 1994
IEEE International Symposium on Information Theory, IEEE,
p. 114, 1994.

[186] N. Shulman, “Communication over an unknown channel via
common broadcasting,” Ph.D. dissertation, Tel-Aviv Univ., Tel-
Aviv, Israel, 2003.

[187] S. Simić, “On a new converse of Jensen’s inequality,” Publications
de l’Institut Mathématique, vol. 85, no. 99, 2009, pp. 107–110.

[188] M. Sion, “On general minimax theorems,” Pacific Journal of
Mathematics, vol. 8, no. 1, 1958, pp. 171–176.

[189] D. Slepian and J. K. Wolf, “Noiseless coding of correlated infor-
mation sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, 1973,
pp. 471–480.

[190] A. Somekh-Baruch and N. Merhav, “Exact random coding expo-
nents for erasure decoding,” IEEE Trans. Inf. Theory, vol. 57,
no. 10, 2011, pp. 6444–6454.

[191] A. Somekh-Baruch, J. Scarlett, and A. Guillén i Fàbregas, “Gen-
eralized random Gilbert–Varshamov codes,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, 2019, pp. 3452–3469.

[192] J. Song, S. Still, R. D. H. Rojas, I. P. Castillo, and M. Mar-
sili, “Optimal work extraction and mutual information in a
generalized Szilárd engine,” Physical Review E., vol. 103, 2021,
p. 052 121.

[193] R. Tamir and N. Merhav, “Error exponents in the bee identifica-
tion problem,” IEEE Trans. Inf. Theory, vol. 67, no. 10, 2021,
pp. 6564–6582.

[194] R. Tamir and N. Merhav, “Trade-offs between error exponents
and excess-rate exponents of typical Slepian–Wolf codes,” En-
tropy, vol. 23, no. 3, 2021, p. 265.

[195] R. Tamir and N. Merhav, “Universal decoding for the typical
random code and for the expurgated code,” IEEE Trans. Inf.
Theory, vol. 68, no. 4, 2021, pp. 2156–2168.

[196] R. Tamir and N. Merhav, “Error exponents of the dirty-paper and
Gel’fand–Pinsker channels,” IEEE Trans. Inf. Theory, vol. 69,
no. 12, 2023, pp. 7479–7498.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 181

[197] R. Tamir, N. Merhav, N. Weinberger, and A. Guillén i Fàbregas,
“Large deviations behavior of the logarithmic error probability of
random codes,” IEEE Trans. Inf. Theory, vol. 66, no. 11, 2020,
pp. 6635–6659.

[198] V. Y. F. Tan, “Asymptotic estimates in information theory with
non-vanishing error probabilities,” Foundations and Trends in
Communications and Information Theory, vol. 11, no. 1-2, 2014,
pp. 1–184.

[199] V. Y. F. Tan and M. Tomamichel, “The third-order term in the
normal approximation for the AWGN channel,” in Proc. 2014
IEEE International Symposium on Information Theory (ISIT
2014), pp. 2077–2081, Honolulu, HI, U.S.A, 2014.

[200] A. Tandon, V. Y. F. Tan, and L. R. Varshney, “The bee-identifi-
cation problem: Bounds on the error exponent,” IEEE Trans-
actions on Communications, vol. 67, no. 11, 2019, pp. 7405–
7416.

[201] A. E. Taylor, General Theory of Functions and Integration.
Courier Corporation, 1985.

[202] A. Tchamkerten, V. Chandar, and G. W. Wornell, “Communi-
cation under strong asynchronism,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, 2009, pp. 4508–4528.

[203] A. Tchamkerten, V. Chandar, and G. W. Wornell, “Asynchronous
communication: Capacity bounds and suboptimality of training,”
IEEE Trans. Inf. Theory, vol. 59, no. 3, 2012, pp. 1227–1255.

[204] S. Tridenski and A. Somekh-Baruch, “The method of types for
the AWGN channel,” arXiv preprint arXiv:2307.13322, 2023.

[205] L. V. Truong, G. Cocco, J. Font-Segura, and A. Guillén i Fàbre-
gas, “Concentration properties of random codes,” IEEE Trans.
Inf. Theory, vol. 69, no. 12, 2023, pp. 7499–7537.

[206] L. V. Truong and A. Guillén i Fàbregas, “Generalized random
Gilbert-Varshamov codes: Typical error exponent and concen-
tration properties,” IEEE Trans. Inf. Theory, 2023.

[207] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge university press, 2005.

Full text available at: http://dx.doi.org/10.1561/0100000142



182 References

[208] E. Tuncel, “Capacity/storage tradeoff in high-dimensional identi-
fication systems,” IEEE Trans. Inf. Theory, vol. 55, no. 5, 2009,
pp. 2097–2106.

[209] G. Ungerboeck, “Channel coding with multilevel/phase signals,”
IEEE Trans. Inf. Theory, vol. 28, no. 1, 1982, pp. 55–67.

[210] A. Vamvatsikos, On the Wagner–Anantharam outer bound and
achievable Gaussian source coding exponents, 2007.

[211] G. Vázquez-Vilar, A. Guillén i Fàbregas, T. Koch, and A. Lancho,
“Saddlepoint approximation of the error probability of binary
hypothesis testing,” in Proc. 2018 IEEE International Sympo-
sium on Information Theory (ISIT 2018), pp. 2306–2310, Vail,
CO, USA, 2018.

[212] A. J. Viterbi and J. K. Omura, Principles of Digital Communi-
cation and Coding. Dover Publications, 2009.

[213] D. Wang, V. Chandar, S.-Y. Chung, and G. W. Wornell, “Er-
ror exponents in asynchronous communication,” in 2011 IEEE
International Symposium on Information Theory Proceedings,
IEEE, pp. 1071–1075, 2011.

[214] M. J. Weinberger, N. Merhav, and M. Feder, “Optimal sequential
probability assignment for individual sequences,” IEEE Trans.
Inf. Theory, vol. 40, no. 2, 1994, pp. 384–396.

[215] N. Weinberger and Y. Kochman, “On the reliability function of
distributed hypothesis testing under optimal detection,” IEEE
Trans. Inf. Theory, vol. 65, no. 8, 2019, pp. 4940–4965.

[216] N. Weinberger and N. Merhav, “Codeword or noise? Exact ran-
dom coding exponents for joint detection and decoding,” IEEE
Trans. Inf. Theory, vol. 60, no. 9, 2014, pp. 5077–5094.

[217] N. Weinberger and N. Merhav, “Optimum tradeoffs between
the error exponent and the excess-rate exponent of variable-rate
Slepian–Wolf coding,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
2015, pp. 2165–2190.

[218] N. Weinberger and N. Merhav, “A large deviations approach
to secure lossy compression,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, 2017, pp. 2533–2559.

Full text available at: http://dx.doi.org/10.1561/0100000142



References 183

[219] N. Weinberger and N. Merhav, “Channel detection in coded
communication,” IEEE Trans. Inf. Theory, vol. 63, no. 10, 2017,
pp. 6364–6392.

[220] N. Weinberger and N. Merhav, “Simplified erasure/list decoding,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, 2017, pp. 4218–4239.

[221] P. Whittle, “Some distributions and moment formulae for the
Markov chain,” J. Roy. Stat. Soc., B, vol. 17, 1955, pp. 235–242.

[222] F. M. J. Willems, T. Kalker, J. Goseling, and J.-P. Linnartz,
“On the capacity of a biometrical identification system,” in IEEE
International Symposium on Information Theory, pp. 82–82,
2003.

[223] J. M. Wozencraft, “List decoding,” Quarterly Progress Report,
vol. 48, 1958, pp. 90–95.

[224] G. Wunder, B. Groß, R. Fritschek, and R. F. Schaefer, “A reverse
Jensen inequality result with application to mutual information
estimation,” in Proc. 2021 IEEE Information Theory Workshop
(ITW 2021), Kanazawa, Japan, 2021.

[225] A. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Trans. Inf.
Theory, vol. 22, no. 1, 1976, pp. 1–10.

[226] A. D. Wyner, “The wire-tap channel,” Bell System Technical
Journal, vol. 54, no. 8, 1975, pp. 1355–1387.

[227] M. H. Yassaee, M. R. Aref, and A. Gohari, “A technique for
deriving one-shot achievability results in network information
theory,” in 2013 IEEE International Symposium on Information
Theory, IEEE, pp. 1287–1291, 2013.

[228] R. C. Yavas, V. Kostina, and M. Effros, “Third-order analysis of
channel coding in the small-to-moderate deviations regime,” in
Proc. 2022 IEEE International Symposium on Inform. Theory
(ISIT 2022), pp. 2309–2314, Espoo, Finland, 2022.

[229] R. Zamir, Lattice Coding for Signals and Networks: A Structured
Coding Approach to Quantization, Modulation, and Multiuser
Information Theory. Cambridge University Press, 2014.

Full text available at: http://dx.doi.org/10.1561/0100000142



184 References

[230] Y. Zhong, F. Alajaji, and L. L. Campbell, “A type covering
lemma and the excess distortion exponent for coding memory-
less Laplacian sources,” in Proc. 23rd Biennial Symposium on
Communications, pp. 100–103, Kingston, ON, Canada, 2006.

[231] Y. Zhong, F. Alajaji, and L. L. Campbell, “Joint source-channel
coding excess distortion exponent for some memoryless conti-
nuous-alphabet systems,” IEEE Trans. Inf. Theory, vol. 55, no. 3,
2009, pp. 1296–1319.

[232] L. Zhou, V. Y. F. Tan, and M. Motani, “Second-order and mod-
erate deviations asymptotics for successive refinement,” IEEE
Trans. Inf. Theory, vol. 63, no. 5, 2017, p. 2921.

Full text available at: http://dx.doi.org/10.1561/0100000142




