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ABSTRACT

Twenty Questions originated as a parlor game between two 
players. The game starts from a player named an oracle, 
who privately thinks of a secret. The other player, called the 
questioner, tries to guess the secret by querying the oracle 
with at most twenty questions having Yes/No answers. Early 
versions of the game can be traced to ancient Greece and 
ancient Rome. Motivated by the Hungarian version of this 
game, in the middle of the twentieth century, Rényi 
formulated the game as a mathematical problem of guessing 
an integer from a finite set, where the oracle could lie either 
randomly to each question or lie to a finite number of 
questions. The mathematical study of Twenty Questions is 
motivated by current applications in many domains: 
communications; ma-chine learning; and computer vision.

The game with an oracle who is allowed a fixed number 
of lies was also studied by Ulam and Berlekamp and is 
known as the Rényi-Ulam-Berlekamp game. In contrast, the 
setting where the oracle lies randomly is less understood. 
In this monograph, we summarize recent advances in the
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4, pp 394–604. DOI: 10.1561/0100000144.
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information theoretical analysis of Twenty Questions with
random error. In particular, focusing on the practical ap-
plication of sensor network target localization, we study a
query-dependent channel to model oracle’s noisy response
behavior, such as providing a wrong answer or declining to
answer a question. We concentrate on non-adaptive query
procedures where all questions are designed prior to posing
questions. We cover settings relevant to estimating a single
target, a single moving target, and multiple targets over
the unit cube of a finite dimension. We also consider adap-
tive querying for a single target to illustrate the benefit of
adaptivity. In adaptive querying, each question is designed
sequentially using responses to all previous questions. All
of our theoretical results are illustrated using numerical
examples.

Finally, we discuss future research directions. These include
geometry constraints for query sets, low-complexity query
procedures, connections to group testing, and practical ap-
plications in machine learning and communications.
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1
Introduction

1.1 What is Twenty Questions?

1.1.1 Origin

The modern version of the Twenty Questions game was proposed in
the mid twentieth century as a parlor game between two players. The
game starts with one player, the oracle, who privately thinks of a secret,
which could be, for example, an object, a location, or the answer to a
question that is unknown to the other player, the questioner. The task
of the questioner, is to figure out the secret by posing a sequence of at
most twenty questions to the oracle. In the parlor game, the players are
assumed to be honest and lying is prohibited.

A query procedure consists of a policy to formulate questions and a
decision rule to estimate the secret using the sequence of answers of the
oracle. A query procedure can be either adaptive or non-adaptive. In an
adaptive query procedure, the questioner designs the current question
based on oracle’s responses to all previous questions. In a non-adaptive
query procedure, the questioner designs each question independently
of other questions and responses. Consider the example of guessing an
integer that takes values in {1, . . . , 8}. Assume that the secret chosen

3
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4 Introduction

by the oracle is 3. A classical adaptive query procedure is bisection. In
bisection, the first question could be “Is the number no greater than 4?”
Given the correct answer “yes” from the oracle, the questioner knows
that the secret must be in {1, . . . , 4} and poses the next question as
“Is the number no greater than 2?” Again, given the correct answer
“no”, the questioner knows that the secret is either 3 or 4 and poses
the final question “Is the number 3?”. Given the answer “yes” from
the oracle, the questioner has successfully estimated the secret. The
above bisection procedure successively shrinks the search region using
the entire sequence of answers from the oracle.

A non-adaptive query procedure, called the dyadic procedure, also
finds the correct answer to this simple game in three steps. To formulate
the non-adaptive query procedure, the questioner converts the set of
decimal integers {1, . . . , 8} into binary form as {000, . . . , 111}, where 000
corresponds to 1 and 111 corresponds to 8. Subsequently, the questioner
poses three questions at once: the first question is whether the first bit
is one, the second question is whether the second bit is one and the
third question is whether the third bit is one. In other words, the first
question asks whether the secret is in {5, 6, 7, 8}, the second question
asks whether the secret is in {3, 4, 7, 8} and the third question asks
whether the secret is in {2, 4, 6, 8}. When the secret is 3, the answers
of the oracle would be “no, yes, no”, which corresponds to the binary
number 010 and thus the decimal number 3. The dyadic procedure
achieves the same performance as the bisection adaptive procedure.
The above example generalizes to guessing any integer in a finite range.
In particular, if the secret is an integer with M possible values, the
Twenty Questions game requires only ⌈log2M⌉ questions to determine
the secret when either dyadic or bisection query procedure is used.

1.1.2 History

Games similar to Twenty Questions existed in ancient times, which
may have influenced the rediscovery of the parlor game in the twentieth
century. In ancient Greece, the philosopher Plato (4th century BCE)
described a similar game called “Erotema”. In his treatise The Phaedra,
in the form of a dialog, Plato wrote that: “The art of question-asking,

Full text available at: http://dx.doi.org/10.1561/0100000144



1.1. What is Twenty Questions? 5

which is what I call Erotema, is a powerful thing, Phaedrus. It is the
midwife of the soul. Just as a midwife brings a child to birth in the
body, so the questioner brings to birth ideas in the soul.” The game
of Erotema was presented as a powerful tool for understanding the
nature of rhetoric and for improving one’s own rhetorical skills. Plato
explained that rhetoric is a form of persuasion, and that the best way
to persuade someone is to ask them a series of questions that will lead
them to the desired conclusion. In this sense, Erotema corresponds to
adaptive query procedures and goes beyond the parlor game of Twenty
Questions by providing a model for teaching and learning.

In ancient Rome, riddles were popular and were described in the
works of several Roman poets and playrights. A compound riddle is a
form where several independent questions are given in the riddle that
jointly narrow down the answer. Publius Ovidius Naso (43 BCE to 17
AD), or simply Ovid, was a prolific Roman poet who wrote compound
riddles. Ovid’s riddles are thought-provoking, and often combine two
or more different concepts into one entity. For example, in one riddle,
Ovid asks: “What is that which is born of water, yet lives on land?”
“What is that which has no mouth, yet speaks?” “What is that which
has no feet, yet walks?” The answer to the riddle is a boat. As observed,
each question specifies a certain property and successive questions are
not dependent. Thus, compound riddles are analogous to non-adaptive
query procedures of the Twenty Questions game described above.

In [79, Page 13], Rényi reported the following legendary story of
Bar Kochba (135 BC), who played a trick similar to Twenty Questions:
“In 135 BC, the Jews started a war of independence against Romans
under the leadership of Bar Kochba. The Romans, in superior numbers,
laid siege to a fortress which was defended historically by Bar Kochba
at the head of a small garrison. It is also said that Bar Kochba sent
out a scout to the Roman camp who was captured and tortured, having
his tongue cut out. He escaped from captivity and reported back to Bar
Kochba, but being unable to talk, he could not tell in words what he
had seen. Bar Kochba accordingly asked him questions which he could
answer by nodding or shaking his head. Thus he acquired from his mute
scout the information he needed to defend the fortress.”

Full text available at: http://dx.doi.org/10.1561/0100000144



6 Introduction

1.1.3 Rényi’s Two Formulations

The story of Bar Kochba led to the Hungarian version game of Twenty
Questions named the Bar-Kochba game. Inspired by the game, Rényi [77]
pioneered the study of Twenty Questions with errors, which assumes
that the secret is a random variable taking values in a finite set of
integers, the questioner poses yes or no questions, and the oracle can
lie and give incorrect answers randomly to each question with a certain
probability. In particular, Rényi wrote that “Two players are playing
the game, let us call them A and B. A thinks of something and B must
guess it. B can ask questions which can be answered by yes or no and
he must find out what A had thought from the answers. It is better to
suppose that a given percentage of the answers are wrong (because A
misunderstands the questions or does not know certain facts.”

Subsequently, in [79, Page 53], Rényi reformulated the problem so
that the oracle lies up to a fixed number of questions and pointed out the
connection between the Twenty Questions problem and channel coding
by writing the following paragraph: “I tried, when thinking about what
I heard today, to make a connection between information transmission
through a channel and our game. I made up the following version, which
I called ‘Bar-Kochba with lies’. Assume that the number of questions
which can be asked to figure out the “something” being thought of is
fixed and the one who answers is allowed to lie a certain number of
times. The questioner, of course, doesn’t know which answer is true and
which is not. Moreover the one answering is not required to lie as many
times as is allowed. ”

1.2 Scope, Previous Work and Significance of This Monograph

1.2.1 Scope of This Monograph

The Twenty Questions problem with a fixed number of lies was also
studied by Berlekamp [11] as a quiet-question-noisy-answer game and
subsequently popularized by Ulam in his autobiography [98]. The Twenty
Questions problem with a fixed number of lies is therefore called the
Rényi-Berlekamp-Ulam game. Over the past six decades, the Rényi-
Berlekamp-Ulam game has been well studied under various assumptions
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1.2. Scope, Previous Work and Significance of This Monograph 7

on the type of the questions, the error patterns and the search space [1],
[2], [30], [33], [37], [38], [39], [57], [60], [61], [68]. Many of these ad-
vancements have borrowed ideas from coding theory and have been
comprehensively summarized in surveys and monographs, e.g., [23], [32],
[70].

In contrast, the original version of Twenty Questions with random
error, proposed by Rényi in [77], has been less studied, e.g., in [69].
In 2012, roughly 50 years after the introduction of the problem, the
Twenty Questions problem with random error was revived by Jedynak
et al. [51] and subsequently generalized to many different settings [17],
[18], [21], [54], [76], [94], [95], [99] in the past decade. These analyses
have borrowed tools from Shannon theory [86] as contrasted to the
coding theory based analyses used in the case of fixed number of errors.

These previous studies on Twenty Questions with random error have
limitations, which include the use of an indirect estimation accuracy
measure, the posterior entropy for estimation accuracy [76], [94], [95],
and the assumption that number of questions is unbounded [17], [18],
[21], [54]. These assumptions facilitated the application of Shannon
theory. This monograph overcomes these limitations by borrowing tools
from non-asymptotic and second-order asymptotic analyses for channel
coding [73], [88], [92]. This allows us to obtain theoretical benchmarks
for query procedures with finitely many questions under the direct
accuracy measure of absolute error. We develop this theory for four
different settings, unifying and integrating the work reported in [89],
[107], [108], [109], [112], [113], [114].

1.2.2 Previous Work and Significance of This Monograph

Below we summarize previous work that sets the context for this mono-
graph. Jedynak et al. [51] studied the problem of Twenty Questions
with random error introduced by Rényi [77]. In [51], it was assumed
that the secret is a continuous random variable taking values in the
unit interval. The posterior entropy of the questioner’s estimate of
the random variable was proposed as the performance criterion, and
optimal adaptive and non-adaptive query procedures were shown to
achieve identical performance. The results of Jedynak et al. have been
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8 Introduction

generalized in several directions, including a collaborative setting [94]
with multiple oracles, a distributed setting [95] with multiple question-
ers and a multiple target setting with more than one secret random
variable [76].

However, the posterior entropy is an indirect measure of estimation
accuracy, which leads to the dilemma that smaller entropy does not guar-
antee more accurate estimation [20]. To solve this problem, the square
error or the absolute error criterion have been adopted as alternatives
to posterior entropy. In particular, Variani [99] proposed a non-adaptive
query procedure that ensured sub-exponential decay of the mean square
error (MSE) with respect to the number of questions. The result of [99]
was refined by Chung et al., who used superposition coding to construct
a non-adaptive query procedure that ensures exponential decay of MSE.
All above studies assumed that the random noise is independent of each
question. In this case, the Twenty Questions game with random error is
essentially a channel coding problem and the theoretical results of both
problems are closely related.

Inspired by practical noise accumulation phenomena in sensor net-
works, Chiu and Javidi [17] proposed the query-dependent noise model,
where the random noise depends on each question though a function
of its size, and analyzed the achievable performance of an adaptive
query procedure. Subsequently, under the same noise model, for the
first time ever in the studies of Twenty Questions with random error,
Kaspi et al. [54] demonstrated the benefit of adaptivity by showing
that adaptive query procedures yields superior performance over op-
timal non-adaptive query procedures. Furthermore, Kaspi et al. also
studied a multiple target setting [53] and a moving target setting [54,
Theorem 3], where the secret is the position of a target that changes
linearly with a certain speed. For non-adaptive query procedures, they
studied the asymptotic limit of − log δ∗(n, ε)/n, where n is the number
of questions, ε ∈ (0, 1) is the probability of estimating the target vari-
able incorrectly and δ∗(n, ε) denotes the estimation accuracy using n
questions subject to the error probability constraint ε. Such results are
known as first-order asymptotics, since they only account for the first
dominant term in the asymptotic expansion of the estimation accuracy,
i.e., − log δ∗(n, ε) = nC + o(n) for some constant C, when n→∞ and
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1.2. Scope, Previous Work and Significance of This Monograph 9

ε → 0. Analogously, for adaptive query procedures, they studied the
first dominant term for the asymptotic limit of − log δ∗

a(l, ε)/l, where
l is the average number of questions of an adaptive query procedure,
ε ∈ (0, 1) is the probability of estimating the target variable incorrectly,
and δ∗(l, ε) denotes the estimation accuracy of an optimal adaptive
query procedure with average number of questions no greater than l

subject to the error probability constraint ε. Thus, all above-mentioned
existing results are only asymptotically optimal when the number of
questions is unbounded.

The critical practical question that forms the basis for this mono-
graph is: what is the theoretical performance of optimal query procedures
under query-dependent random noise and a direct accuracy measure
when the number of questions is finite? This problem is of interest since
any practical search problem must be completed in finite time, requiring
a finite number n of questions. To achieve this goal, we need to bound
the estimation accuracy δ∗(n, ε) for non-adaptive query procedures with
finite n ∈ N and bound δ∗

a(l, ε) for adaptive query procedures with
finite l ∈ R+. In recent studies [109], [110], [111], we obtained such non-
asymptotic bounds and second-order asymptotic approximations when
one searches for a target in a finite dimensional unit cube of dimension
d ∈ N and the corresponding theoretical accuracy benchmarks were de-
noted as δ∗(n, d, ε) for non-adaptive query procedures and δ∗

a(l, d, ε) for
adaptive query procedures. In particular, the second-order asymptotic
result demonstrates that −d log δ∗(n, d, ε) = nC +

√
nL+O(logn) for

non-adaptive query procedures and −d log δ∗
a(l, d, ε) ≥ lC

1−ε + O(logn)
for adaptive query procedures, where C is a function of the channel that
models the noisy response behavior of the oracle and L is a function of
both the channel and ε.

These second-order asymptotic results refine the first-order asymp-
totic studies in several aspects. Firstly, the second-order asymptotic
result provides a tight approximation to the non-asymptotic limits
δ∗(n, d, ε) for finite n and δ∗

a(l, d, ε) for finite l. Secondly, for non-adaptive
query procedures, the second-order asymptotic result brings the new
insights that there exists phase transition: asymptotically the estimation
error probability tends to either zero or one depending on whether or not
the target accuracy exponent − log δ∗(n,d,ε)

d is greater than the theoretical
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10 Introduction

benchmark C
d . Thirdly, the second-order asymptotic result reveals the

benefit of adaptivity even for query-independent channels. To illustrate,
in Figure 1.1, we plot the first and second-order asymptotic approx-
imations to estimation accuracy for an optimal non-adaptive query
procedure over a Bernoulli noise channel and compare the results with
the non-asymptotic simulated performance of an optimal query proce-
dure in Algorithm 1 of Section 2. As observed, second-order asymptotics
provides a good approximation to the non-asymptotic performance of
optimal query procedures.

30 35 40 45 50 55 60 65 70

0

0.05

0.1

0.15

Figure 1.1: The second-order asymptotic analysis (red dot dashed) of a non-adaptive
query procedure (Algorithm 1 in Section 2) is significantly better than the first-order
analysis (blue dashed) in capturing estimation accuracy (red squares).

Subsequently, in a series of recent studies [89], [108], [112], [113], [114],
these theoretical benchmarks for non-adaptive querying of a single target
were generalized to a moving target and to multiple targets, following
the same framework of non-asymptotic and second-order asymptotic
analyses. When specialized to moving target search, the impact of
maximal speed on the estimation accuracy is demonstrated. When
specialized to multiple target search, the impact of the number of targets
on estimation accuracy is demonstrated. Table 1.1 summarizes the
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1.2. Scope, Previous Work and Significance of This Monograph 11

Settings First-order asymptotics Second-order asymptotics
Non-Adaptive Single Target limε→0− log δ∗(n, 1, ε) = nC + o(n) −d log δ∗(n, d, ε) = nC +

√
nVεΦ−1(ε) +O(log n)

[54, Theorem 1] for Bernoulli Noise Section 2 for arbitrary discrete and Gaussian noise
Adaptive Single Target limε→0− log δ∗

a(l, 1, ε) ≥ lC0 + o(n) −d log δ∗
a(l, d, ε) ≥ lC

1−ε +O(logn)
[17] for Bernoulli noise, [59] for Gaussian noise Section 3 for arbitrary discrete and Gaussian noise

Non-Adaptive Moving Target limε→0−k log δ∗(n, 1, ε) = nC + o(n) −2d log δ∗(n, d, ε) = nC +
√
nVεΦ−1(ε) +O(log n)

[54, Theorem 3] for Bernoulli noise Section 4 for arbitrary discrete and Gaussian noise
Non-Adaptive Multiple Targets limε→0− log δ∗(n, 1, ε) = nC(k) + o(n) −kd log δ∗(n, d, ε) = nC(k) +

√
nV(k, ε)Φ−1(ε) +O(log n)

[53] for Bernoulli noise Section 5 for arbitrary discrete and Gaussian noise

Table 1.1: Summary of theoretical benchmarks in this monograph

theoretical benchmarks for the four settings studied in this monograph,
and compares to prior results for the case of one-dimensional single
target search. In the table, C will be defined in (2.15), Vε will be defined
in (2.16), C(k) will be defined in (5.10) and V(k, ε) will be defined
in (5.11). Furthermore, Bernoulli noise refers to the query-dependent
BSC channel in Definition 1.1, Gaussian noise refers to the query-
dependent AWGN channel in Definition 1.4 while arbitrary discrete
noise refers to any query-dependent channel defined in Section 1.4.3. The
second-order asymptotic results developed here refined the existing first-
order asymptotic results by providing approximations to performance
of optimal tests with finitely many questions and an arbitrary error
probability and generalizing the results from one-dimensional search
with Bernoulli noise to finite-dimensional search with arbitrary discrete
noise and with Gaussian noise. This monograph therefore demonstrates
the impact of multi-dimension, moving targets and multiple targets
on the theoretical benchmarks of optimal query procedures for Twenty
Questions with random error.

In summary, this monograph provides a self-contained in-depth treat-
ment of non-asymptotic and second-order asymptotic analyses of Twenty
Questions with random error. The concluding section discusses future
research directions, including opportunities for researches in information
theory, communications, computer vision and machine learning. To our
best knowledge, this monograph is the first to summarize advances
for Twenty Questions with random error and finitely many questions,
which complements the existing surveys of Twenty Questions with a
fixed number of errors treated in [23], [32], [70] and provides several
new or extended applications.
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1.3 Practical Motivations of Twenty Questions

The study of Twenty Questions with random error has been motivated
by several timely applications, including: fault-tolerant communication
(channel coding) [17], [21], [54], target localization using sensor net-
works [94], [95], object tracking using cameras or satellite remote sensing
networks [45], [90], face localization in images [76], and beam alignment
in mmWave multiple antenna communication [19], [80]. We discuss these
motivating applications below and defective elements detection in an
intelligent reflecting surface [106].

1.3.1 Channel Coding

As shown in Figure 1.2, the task of point-to-point channel coding is to
transmit a message reliably over a channel. For channel coding, random
error means that the transmission of each bit of a message can be
erroneous with a certain probability, governed by a transition matrix
named the channel matrix induced by the channel. As commented by
Rényi [78] and used in a sequence of other follow-up studies [21], [54],
[99], non-adaptive querying for Twenty Questions with random error
corresponds to channel coding [86] while adaptive querying corresponds
to variable length channel coding with feedback [50]. In both cases, the
questioner is equivalent to the encoder and the decoder while noisy
response behavior of the oracle is modeled by the channel. Furthermore,
the secret to be guessed is the transmitted message while the formulation
of questions and the estimation procedure based on noisy answers
correspond to the encoder and the decoder, respectively.

Message Encoder +

Noise Sequence

Decoder Message Estimate

Figure 1.2: Channel coding interpretation of Twenty Questions. The goal is to
transmit the message reliably over a channel to protect message symbols from noisy
corruption via the encoder and decoder. The message corresponds to the target
random variable, the noise corrupts the oracle’s true answers and the encoder and
decoder correspond to the query procedure.
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1.3. Practical Motivations of Twenty Questions 13

For Twenty questions with random error, we prove its relationship
with channel coding in Section 1.5 by showing that the theoretical limit
of Twenty Questions with random error is bounded by the corresponding
theoretical limit of channel coding. Thus, when one designs a query
procedure for Twenty Questions with random error, the procedure can
be modified to yield a code for channel coding and vice versa. The
theoretical formulation summarized in this monograph builds on the
connection between Twenty Questions and channel coding.

1.3.2 Target Localization

As shown in Figure 1.3, when one uses a sensor network to locate a
stationary target, spatial coverage of the sensor network corresponds
to the valid search space and the location of the target corresponds to
the secret. Estimating the target location can be thus transformed as a
Twenty Questions problem with random error, where error is associated
with sensor measurement noise, a question corresponds to a subset of
sensors to be queried and the noisy response of the oracle corresponds
to the sensor measurements. The decision rule in Twenty Questions
corresponds to the estimation function for target localization. Thus, the
problem of stationary target localization with a sensor network can be
mapped to the problem of Twenty Questions with random noise. This
framework easily generalizes to multiple targets.

1.3.3 Object Tracking

As shown in Figure 1.4, when one tracks a moving target with unknown
location and speed using either cameras or satellites, the task can be
mapped to design of a query procedure for Twenty Questions with
noise. Unlike target localization in Section 1.3.2, the target location
changes over time and the goal is to estimate the target trajectory. Thus,
in this case, the secret corresponds to the unknown target trajectory
and all other parts remain unchanged relative to object localization
in Section 1.3.2. As we shall show in Section 4, tracking a moving
target is theoretically equivalent to locating a stationary target in a
two-dimensional space.
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Figure 1.3: Locating a target (automobile, car) in space from sensor measurements.
The search space is divided into equal-sized sub-regions and a target detection sensor
is placed in each sub-region. At each time, the questioner chooses a subset of sensors
and asks whether a target exists in the covering sub-regions (in green) of selected
sensors.

Figure 1.4: Localization of a moving target consists of a sequence of questions over
time. The search space is divided into equal-sized sub-regions and a sensor is placed
in each sub-region. At each time, the questioner chooses a set of sensors and asks
whether a target currently lies in the covering sub-regions of selected sensors, which
are denoted in green at each time point.

1.3.4 Face Localization

As shown in Figure 1.5, when one localizes a face in an image, one
can first separate the whole image into equal-sized sub-regions, chooses
a certain set of sub-regions and checks whether a face exists in the
chosen sub-regions using a face detector. The task of localizing a face
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Figure 1.5: Face localization in an image. The image is separated into equal-sized
sub-regions. At each time point, the questioner chooses a set of sub-regions and asks
whether portraits of face exist in the chosen regions (denoted in green).

in an image corresponds to Twenty Questions with noise. Specifically,
the search region is the whole image, the secret is the sub-regions that
contain the face, the question corresponds to the chosen sub-regions
and the oracle’s response corresponds to the output of a certain face
detector that could result in incorrect detection. Thus, we can modify
query procedures for Twenty Questions with noise to design algorithms
to localize faces in an image, with the help of face detectors.

1.3.5 Beam alignment

Beamforming is a critical technology that mitigates interference and
improves signal coverage for multi-antenna communication. Beam align-
ment is the first step for beamforming, which finds critical applications
in massive antenna communication in millimeter wave communications.
As shown in the left part of Figure 1.6, in the uplink communication
system, the task of beam alignment is to locate the angles of arrival of
radio waves at the antenna. As illustrated in the right part of Figure
1.6, beam alignment corresponds to Twenty Questions with random
noise, where the search region is the three-dimensional space centered
at the base station and is divided into equal-sized sub-regions of angles.
Here the search directions are unit vectors on the surface of a sphere.
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Figure 1.6: Beam direction detection in the uplink of a wireless communication
system. To provide high-quality communication, the base station needs to estimate
the angle of arrival of each device, which is known as beam alignment (left figure).
The right figure illustrates of analogy between twenty questions with error and beam
alignment, where the black dot denotes the base station and the stars denote the
angles of arrived waves sent by user devices. Here each question is a possible set of
sub-regions (red circles) in the beam direction space that contains radio waves.

The secret is the sub-regions that contain the true directions of arrived
waves, the question is whether any wave exists in the chosen sub-regions.

1.3.6 Defective Element Detection in IRS

Intelligent reflecting surface (IRS) is a key technology for 6G communi-
cations, which has significantly improved the performance of wireless
communications [62], [101]. As shown in the left part of Figure 1.7,
in an IRS-assisted communication system, the transmitter improves
the communication performance via the help of IRS by constructing
an additional transmission link. However, the reflecting elements in
IRS are susceptible to defection and could not generate the desired
phase shifts [106]. To fix the problem, one needs to localize all defec-
tive elements. As illustrated in the right part of Figure 1.7, defective
element detection in IRS is related to Twenty Questions with random
error. The search region is all possible combinations of elements in an
IRS, the secret is the defective elements denoted in gray, each question
asks whether any defective element exists in a particular chosen sub-
region and oracle’s noisy response corresponds to potentially incorrect
detection due to noise in the transmission channel.
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1.4. Twenty Questions with Random Error 17

Figure 1.7: Defective element detection in an IRS-assisted communication system.
To ensure performance improvement, the reflecting elements in an IRS should work
properly and generates desired phase shifts as required (left figure). However, these
elements are susceptible to failure and lead to poor performance. To solve this
problem, query procedures for twenty questions can be used and the right figure
illustrates of analogy between twenty questions with error and defective element
detection in IRS, where the gray region denotes the defective elements. Here each
question corresponds to a possible combination of the reflecting elements that can
contain defective ones. See the squares with contours different colors for the query
sets of t-th question.

1.4 Twenty Questions with Random Error

In this section, we present Rényi’s formulation of Twenty Questions
with random error for a continuous secret random variable, present
the definition of the noise model that characterizes the noisy response
behavior of the oracle, clarify the differences between adaptive and
non-adaptive query procedures and define the theoretical limits.

1.4.1 Notation

Random variables and their realizations are denoted by upper case
variables (e.g., X) and lower case variables (e.g., x), respectively. Sets
are denoted in calligraphic font (e.g., X ). We use Xn := (X1, . . . , Xn)
to denote a random vector with n components. We use Φ(·) and Φ−1(·)
to denote the cumulative distribution function (cdf) of the standard
Gaussian and its inverse function, respectively. We use R, R+ and N to
denote the sets of real numbers, positive real numbers and integers re-
spectively. Given any two integers (m,n) ∈ N2, we use [m : n] to denote
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the set of integers {m,m+1, . . . , n} and use [m] to denote [1 : m]. Given
any (m,n) ∈ N2, m ≤ n, for any m by n matrix a = {ai,j}i∈[m],j∈[n],
the infinity norm is defined as ∥a∥∞ := maxi∈[m],j∈[n] |ai,j |. The set of
all probability mass functions on a finite set X is denoted as P(X )
and the set of all conditional probability distributions from X to Y is
denoted as P(Y|X ). Furthermore, we use F(S) to denote the set of all
probability density functions on a continuous set S. All logarithms are
base e. Finally, we use 1(x ∈ S) to denote the indicator function that a
variable x is contained in a set S.

1.4.2 Problem Formulation

Let S ∈ [0, 1] be a continuous scalar random variable with arbitrary
probability density function (pdf) PS . As shown in Figure 1.8, in Twenty
Questions with random error, a questioner aims to accurately estimate
the secret random variable S by posing a sequence of questions to an
oracle knowing S, where for each t ∈ [n], the questioner asks whether
the secret S lies in a certain query set At ⊆ [0, 1]. After receiving the
query set At, the oracle gives the binary answer Xt = 1(S ∈ At) but
it is corrupted by noise through a channel with a transition matrix
PAt

Y |X , yielding noisy responses Yt. If a total of n questions are posed
by the questioner, based on the sequence of noisy responses Y n from
the oracle, the questioner uses a decision rule g : Yn → [0, 1] to obtain
an estimate Ŝ of the target variable S. When the pdf PS is chosen so
that the search space [0, 1] is quantized into a number of equal-sized
regions, the above problem reduces to Twenty Questions estimation
for a discrete secret random variable with bounded range, originally
studied in the Rényi-Berlekamp-Ulam game.

A query procedure for Twenty Questions with random error con-
sists of the query sets An = (A1, . . . ,An) ⊆ [0, 1]n and a decision rule
g : Yn → [0, 1]. The procedures can be classified into two categories:
non-adaptive and adaptive. In non-adaptive querying, the questioner
needs to determine the number of questions n and design all the query
sets An simultaneously. In contrast, in adaptive querying, the ques-
tions are designed sequentially and the number of questions is a vari-
able. Specifically, when designing the t-th query set At, the questioner
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S ∈ [0, 1] Oracle

Questions

At

True Answer
Xt Channel

Yt Questioner

Question Generator

Ŝ ∈ [0, 1]

Figure 1.8: Block diagram for the problem of Twenty Questions with random error
for estimation of a scalar variable S taking values in the unit interval [0, 1]. The
questioner generates an estimate Ŝ by posing a sequence of questions to the oracle,
who responses with true answer but the true answer is received with error by the
questioner due to noise in the channel.

A1 A2 An

S Oracle

X1 X2 Xn

Channel

Y1 Y2 Yn

Questioner

Ŝ

At

S Oracle

Xt

Noisy Channel

Yt

Y1, . . . , Yt−1
A1, . . . ,At−1

Questioner

Stop

Ŝ

(a) Non-adaptive (b) Adaptive

Figure 1.9: Illustration of query procedures for Twenty Questions with random
error. In the non-adaptive case (a), a secret random variable S is known to the
oracle who responds to a sequence of questions with query sets A1, . . . , An and
provides binary responses X1, . . . , Xn, respectively. These responses are corrupted by
a channel that outputs Y1, . . . , Yn, which are subsequently used by the questioner to
produce an estimate Ŝ. In the adaptive case (b), the questions are posed sequentially
and the questioner needs to determine a stopping time, specifying when to stop the
query procedure.

can use previous questions and the noisy responses from the oracle,
i.e., {(A1, Y1), . . . , (At−1, Yt−1)}. Furthermore, the questioner needs to
choose a potentially stochastic stopping criterion to determine when to
stop asking questions. We illustrate the difference between non-adaptive
and adaptive query procedures in Figure 1.9.
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1.4.3 Query-Dependent Channel

The noisy response behavior of the oracle is modeled by a query-
dependent channel having the transition probability PA

Y |X , where A
is a query set, X is the oracle’s response and Y is the noisy response
received by the questioner. In this subsection, we present the definition
and examples of PA

Y |X in [111]. Such a channel can arise in settings
where certain responses of the oracle are received with higher corruption
than others.

Given any question with a query set A, the correct answer is X =
1(S ∈ A) and the potentially erroneous response Y from the oracle is the
output of passing X over the channel PA

Y |X , which is assumed a function
of the query set. Specifically, given any A ⊆ [0, 1], let |A| =

∫
t∈A dt be

its size. Assume that the query-dependent channel PA
Y |X depends on the

query set A only through its size |A|. In this case, PA
Y |X is equivalent to

a channel with state P q
Y |X [40, Chapter 7], where the state q is a function

of the query set size, i.e., q = f(|A|), and we assume that f : [0, 1]→ R+
is a bounded Lipschitz continuous function with parameter K.

Four types of query-dependent channels are analyzed in this mono-
graph. The first type is discrete with symmetric Bernoulli noise.

Definition 1.1. Given any A ⊆ [0, 1], the channel PA
Y |X is said to be

a query-dependent Binary Symmetric Channel (BSC) with parameter
ζ ∈ (0, 1] if X = Y = {0, 1} and for any (x, y) ∈ X × Y,

PA
Y |X(y|x) = (ζf(|A|))1(y ̸=x)(1− ζf(|A|))1(y=x). (1.1)

Note that the output of a query-dependent BSC with parameter ζ is
the input flipped with probability ζf(|A|). The channel models an error
pattern corresponding to a lying oracle, where the oracle lies randomly
to each question. The channel was introduced in [111] and generalizes
the query-dependent Bernoulli noise model in [54], where ζ = 1 and
f(|A|) = |A|.

The second type is discrete with asymmetric Bernoulli noise.
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Definition 1.2. Given any A ⊆ [0, 1], the channel PA
Y |X is said to be a

query-dependent Z-channel with parameter ζ ∈ [0, 1] if X = Y = {0, 1}
and for any (x, y) ∈ X × Y,

PA
Y |X(y|x) = (1− ζf(|A|))1(y=x=1)(ζf(|A|))1(y=0,x=1)

× (0)1(y=1,x=0). (1.2)

The binary output bit of a query-dependent Z-channel is flipped
with probability ζ|A| only if the input is x = 1. The channel models
the half-lie error pattern of the oracle [37], where the oracle randomly
lies to each question only if the correct answer to the question is yes.

The third type is discrete with erasure noise.

Definition 1.3. Given any A ⊆ [0, 1], the channel PA
Y |X is said to be

a query-dependent Binary Erasure Channel (BEC) with parameter
τ ∈ [0, 1] if X = {0, 1}, Y = {0, 1, e} and for any (x, y) ∈ X × Y,

PA
Y |X(y|x) = (1− τf(|A|))1(y=x)(f(|A|))1(y=e) (1.3)

The binary output bit of a query-dependent BEC with parameter τ
is erased with probability τf(|A|). The channel models the error pattern
of the oracle, where the oracle randomly refuses to answer the question,
corresponding to an erasure “e”.

The fourth type is continuous with Gaussian noise.

Definition 1.4. Given any A ⊆ [0, 1], the channel PA
Y |X is said to be a

query-dependent AWGN channel with parameter σ ∈ R+ if X = {−1, 1},
Y = R and for any (x, y) ∈ X × Y,

PA
Y |X(y|x) = 1√

2π(f(|A|)σ)2 exp
(
− (y − x)2

2(f(|A|)σ)2

)
. (1.4)

The output of a query-dependent AWGN channel with parameter σ
corrupts the correct answer with a random Gaussian noise with mean
zero and variance σf(|A|). The channel models the error pattern of
the oracle in practical applications such as localizing targets using a
sensor network, where the correct answers provided by each sensor is
corrupted by additive Gaussian noise during the transmission process.
This definition first appeared in [59].
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For the special case where f(A) equals a constant, the above defi-
nitions of a query-dependent channel reduces to a query-independent
channel that was used many early studies of Twenty Questions with
random error, e.g., [21], [51], [69], [77], [99]. In this case, regardless of the
question, the oracle has the same error pattern. In Section 1.5, we show
that for the query-independent channel, the theoretical benchmarks
of optimal non-adaptive and adaptive query procedures for Twenty
Questions with random error are bounded by theoretical benchmarks
of channel coding and variable-length channel coding with feedback,
respectively.

1.4.4 Theoretical Benchmarks for Non-Adaptive Query Procedures

A non-adaptive query procedure is formally defined as follows.

Definition 1.5. Given any (n, δ, ε) ∈ N × R+ × [0, 1], an (n, δ, ε)-non-
adaptive query procedure consists of

• n questions with query sets (A1, . . . ,An) ∈ [0, 1]n

• an estimator g : Yn → [0, 1]

such that the probability that the estimation error exceeds δ after n
questions satisfies

Pe(n, δ) := sup
PS∈F([0,1])

Pr
{
|Ŝ − S| > δ

}
≤ ε, (1.5)

where Ŝ = g(Y n) is the estimate and δ is called a resolution parameter.

Note that the probability in (1.5) is calculated with respect to
distributions of the secret random variable S and the channel output
Y n since Ŝ = g(Y n). Inspired by the definition of the excess-distortion
probability for the rate-distortion problem [10], [56], [115], we call
the probability on the left hand side of (1.5) the excess-resolution
probability.

Definition 1.5 differs from the original setting of Rényi [77]. Specifi-
cally, Rényi considered a discrete secret random variable S that takes
values in a finite set of integers. Definition 1.5 specializes to the setting
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of Rényi by restricting the set F([0, 1]) to probability mass functions
with uniform quantization of [0, 1].

Motivated by practical scenarios where the number n of questions
are limited, one is interested in the following non-asymptotic theoretical
benchmark on the estimation error:

δ∗(n, ε) := inf{δ : ∃ an (n, δ, ε)−non−adaptive−procedure}. (1.6)

Note that δ∗(n, ε) denotes the best resolution one can achieve with
probability at least 1− ε using any non-adaptive query procedure with
n questions. In other words, it is the resolution of optimal non-adaptive
query procedures tolerating an excess-resolution probability of ε ∈ [0, 1].
Dual to (1.6), one can also study the sample complexity by deriving
the minimal number of questions required to achieve resolution δ with
probability at least 1− ε, i.e.,

n∗(δ, ε) := inf{n : ∃ an (n, δ, ε)−non−adaptive−procedure}. (1.7)

It follows that for any (δ, ε) ∈ R+ × [0, 1],

n∗(δ, ε) = inf{n : δ∗(n, ε) ≤ δ}. (1.8)

This motivates us to study δ∗(n, ε) as a theoretical benchmark.

1.4.5 Theoretical Benchmarks for Adaptive Query Procedures

An adaptive query procedure is formally defined as follows.

Definition 1.6. Given any (l, δ, ε) ∈ R2
+ × [0, 1], an (l, δ, ε)-adaptive

query procedure consists of

• a sequence of questions where for each t ∈ N, the design of the
query set At ⊆ [0, 1] depends on previous query sets {Aj}j∈[t−1]
and noisy responses Y t−1 from the oracle

• a sequence of decoding functions gt : Yt → [0, 1] for each t ∈ N

• a random stopping time τ whose distribution depends on noisy
responses {Yt}t∈N
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such that the average number of questions satisfies

sup
PS∈F([0,1])

E[τ ] ≤ l, (1.9)

and analogously to the non-adaptive query procedure, the excess-
resolution probability satisfies

Pe,a(l, δ) := sup
PS∈F([0,1])

Pr{|Ŝ − S| > δ} ≤ ε. (1.10)

Similar to the theoretical benchmark in (1.6) for non-adaptive query-
ing, given any (l, ε) ∈ R+×[0, 1), the theoretical benchmark for adaptive
querying is defined as follows:

δ∗
a(l, ε) := inf{δ ∈ R+ : ∃ an (l, δ, ε)−adaptive query procedure}.

(1.11)

Thus, δ∗
a(l, ε) is the minimal achievable resolution of an optimal adaptive

query procedure, tolerating an excess-resolution probability of at most ε.
Correspondingly, the sample complexity of adaptive querying is defined
as

l∗(δ, ε) := inf{l ∈ R+ : ∃ an (l, δ, ε)−adaptive query procedure}.
(1.12)

1.5 Relationship with Channel Coding

As pointed out by Rényi [78] and rediscovered in [21], [54], non-adaptive
querying for Twenty Questions with random error is closely related to
channel coding [86] and adaptive querying is closely related to variable-
length channel coding with feedback (VLF) [50]. In this section, for
the query-independent channel, we formally present this relationship
by showing that the non-asymptotic theoretical benchmarks defined in
(1.6) and (1.11) for non-adaptive and adaptive query procedures are
bounded by non-asymptotic theoretical benchmarks for channel coding
and VLF, respectively.

1.5.1 Channel Coding and Non-Adaptive Querying

Channel coding is a classical problem in information theory, proposed
and studied by Shannon [86]. The goal of channel coding is to transmit
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a message W reliably over a memoryless channel defined by a transition
matrix PY |X where X ∈ X is known as the channel input and Y ∈ Y is
known as the channel output.

Formally, a code that specifies the encoding and decoding operations
of a source with M values for channel coding is defined as follows.

Definition 1.7. Given any (n,M, ε) ∈ N2 × [0, 1], an (n,M, ε)-code for
the channel coding problem consists of

• an encoder e : [M ]→ X n

• a decoder ϕ : Yn → [M ] such that

P(n)
e := sup

PW ∈P([M ])
Pr{W ̸= ϕ(Y n)} ≤ ε. (1.13)

Note that in (1.13), the error probability is calculated with respect
to the distributions of the message W and the channel output Y n,
which induced by the channel PY |X and a channel input distribution
PX . In traditional channel coding, one often considers a uniformly
distributed message W . However, in (1.13), we consider an arbitrary
message distribution. Allowing nonuniform message distribution enables
us to relate the theoretical benchmarks for non-adaptive query pro-
cedures for Twenty Questions with random error and channel coding
through (1.5).

Given (n, ε) ∈ N× [0, 1], the non-asymptotic theoretical benchmark
for channel coding is defined as

M∗(n, ε) := sup{M : ∃ an (n,M, ε)−code}. (1.14)

Note that M∗(n, ε) is the maximal number of messages that can be
transmitted over n channel uses such that regardless of the message
distribution, the average error probability is no greater than ε. When
the message W is distributed uniformly over the set [M ], M∗

unif(n, ε)
is defined similarly to maximal number of messages of any code with
average error probability bounded by ε.

In the next theorem, the theoretical benchmark δ∗(n, ε) in (1.6)
for optimal non-adaptive query procedures is related to the theoretical
benchmarks M∗(n, ε) and M∗

unif(n, ε) of channel coding. In this theorem,
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the channel input takes values in the binary input alphabet, i.e., X =
{0, 1}.

Theorem 1.1. The following claims hold for non-adaptive query proce-
dures of Twenty Questions with random error for a query-independent
channel.

1. For any (n,M, ε) ∈ N2 × [0, 1], any (n,M, ε)-code for channel
coding specifies an (n, 1

M , ε)-non-adaptive query procedure for
Twenty Questions with random error using n questions, achieving
excess-resolution probability no greater than ε with respect to the
resolution δ = 1

M .

2. For any (n, δ, ε) ∈ N×R+× [0, 1], any (n, δ, ε)-non-adaptive query
procedure for Twenty Questions with random error specifies an
(n, ⌈β

δ ⌉, ε+2β)-code for channel coding for any β ∈ (0, 1−ε
2 ), which

ensures that the average error probability of the channel code is
no greater than ε+ 2β when blocklength is n and the number of
messages to be transmitted is M = ⌈β

δ ⌉.

3. Given any (n, ε) ∈ N× [0, 1], for any β ∈ (0, 1−ε
2 ),

logM∗(n, ε) ≤ − log δ∗(n, ε) ≤ logM∗
unif(n, ε+ 2β)− log β.

(1.15)

The proof of Theorem 1.1 is given in Section 1.6.
Claim 1 is proved by showing that a non-adaptive query procedure

per Definition 1.5 for Twenty Questions with random error can be
constructed using a channel code per Definition 1.7 with proper quan-
tization of the secret random variable S. The intuition is that we can
partition the unit interval [0, 1] into equal size sub-intervals and treat
the index of the sub-interval where the secret random variable S lies in
as the message to be transmitted over the channel. Claim 2 is proved by
showing that a channel code can be constructed from a non-adaptive
query procedure for Twenty Questions, when the random secret random
variable is specialized to be uniformly distributed. The parameter β
appears since the quantization interval for Claim 2 differs from that of
Claim 1. Claim 3 follows directly Claims 1 and 2, and gives a bound
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on the minimal achievable resolution of an optimal non-adaptive query
procedure in terms of the maximal message size of an optimal channel
code.

The result in (1.15) allows one to approximate the performance of
an optimal non-adaptive query procedure with a finite number n of
questions using theoretical benchmarks for finite blocklength channel
coding [49], [72], assuming that the noisy response of the oracle does
not the depend on questions.

1.5.2 Variable-Length Channel Coding with Feedback and Adaptive
Querying

Compared with channel coding per Definition 1.7, in VLF, the encoder
can transmit codewords whose lengths can vary for each message. For
VLF, the decoder needs to determine the stopping time at which point
it will make an estimate of the transmitted message. A formal definition
of a code for VLF [74] is as follows.

Definition 1.8. Given any (l,M, ε) ∈ R+ × N× [0, 1], an (l,M, ε)-code
for VLF consists of

• a sequence of encoders en : [M ]× Yn−1 → X for each n ∈ N

• a sequence of decoders ϕn : Yn → [M ] for each n ∈ N

• a random stopping time τ as a function of the channel outputs
{Y1, Y2, . . .} such that

sup
PW ∈P([M ])

E[τ ] ≤ l (1.16)

and

P(τ)
e := sup

PW ∈P([M ])
Pr{W ̸= ϕ(Y τ )} ≤ ε. (1.17)

Analogous to M∗(n, ε) in (1.14), for any (l, ε) ∈ R+ × [0, 1], the
non-asymptotic theoretical benchmark on the maximal message size for
VLF is defined as

M∗
f (l, ε) := sup{M : ∃ an (l,M, ε)−code}. (1.18)
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Furthermore, let M∗
f,unif(n, ε) denote the theoretical benchmark on the

maximal message size when the message W is uniformly distributed.
Analogous to Theorem 1.1, we have the following theorem, which

relates optimal codes for VLF to the theoretical benchmarks for optimal
adaptive query procedures for Twenty Questions with random error.

Theorem 1.2. The following claims hold for adaptive query procedures
of Twenty Questions with random error for a query-independent channel.

1. For any (l,M, ε) ∈ R+ × N × [0, 1], any (l,M, ε)-code for VLF
specifies an (l, 1

M , ε)-adaptive query procedure for Twenty Ques-
tions with random error, where the average number of questions is
no more than l, the resolution is δ = 1

M and the excess-resolution
probability is no greater than ε.

2. For any (l, δ, ε) ∈ R2
+× [0, 1], any (l, δ, ε)-adaptive query procedure

for Twenty Questions with random error specifies an (l, ⌈β
δ ⌉, ε+2β)-

code for VLF for any β ∈ (0, 1−ε
2 ), where the average blocklength

is upper bounded by l, the message size is M = ⌈β
δ ⌉ and the

average error probability is no greater than ε+ 2β.

3. Given any (l, ε) ∈ R+ × [0, 1], for any β ∈ (0, 1−ε
2 ),

logM∗
f (l, ε) ≤ − log δ∗

a(n, ε) ≤ logM∗
f,unif(l, ε+ 2β)− log β.

(1.19)

The proof of Theorem 1.2 parallels that of Theorem 1.1 and is thus
omitted. The remarks of Theorem 1.1 also apply here.

Theorems 1.1 and 1.2 together provide the key link between chan-
nel coding and Twenty Questions with random error. However, both
theorems only hold for the restrictive case where the noisy response
behavior of the oracle does not depend on the questions.

In many practical applications such as target localization using a
sensor network, the noisy response behavior of the oracle may depend on
the questions. This could be due to a “lying oracle” or through variations
in noise power when questions involve different sensors [17]. For this
case discussed in Section 1.4.3, the theoretical benchmarks for Twenty
Questions with random error are more complicated and no corresponding
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finite blocklength results for channel coding or VLF currently exist. In
the following four sections of this monograph, we present recent advances
on this query-dependent channel case for four different settings of Twenty
Questions with random error by generalizing the intuition conveyed
in Theorems 1.1 and 1.2 towards practical applications mentioned in
Section 1.3. In particular, we consider a multi-dimensional secret random
variable, which corresponds to a real-valued target in three-dimensional
space; we consider a time varying secret random variable, which models
the trajectory of a moving target, e.g., changing face locations in a video;
we consider multiple secret random variables, which models multiple
objects to be located or multiple beams to be aligned.

1.6 Proof of Relationship with Channel Coding

In this technical section, we formally prove Theorem 1.1, where the
noisy response behavior of the oracle does not depend on the questions.

1.6.1 Construct a Non-adaptive Query Procedure Using a Channel
Code

Claim 1 and the first inequality of Claim 3 of Theorem 1.1 are implied
by the following lemma.

Lemma 1.3. For any (n,M, ε) ∈ N2 × [0, 1], given any (n,M, ε)-code
for channel coding per Definition 1.7, we can construct an (n, 1

M , ε)-
non-adaptive query procedure per Definition 1.5. It follows that, for
any (n, ε) ∈ N× [0, 1],

− log δ∗(n, ε) ≥ logM∗(n, ε). (1.20)

Proof. Fix any (n,M, ε)-code with encoding function e and decoding
function ϕ. For each m ∈ [M ], let Xn(m) := e(m) be the channel input
(codeword) corresponding to message m and let C := {Xn(m)}m∈[M ]
be the collection of all codewords. In the following, we construct a non-
adaptive query procedure using the (n,M, ε)-code for channel coding.

We first partition the unit interval S := [0, 1] into M equal-sized
sub-intervals {Sm}j∈[M ], each with length 1

M . Given any s ∈ [0, 1], define
the following quantization function
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q(s) := ⌈sM⌉, (1.21)

which is exactly the index of the sub-interval in which s lies.
For each t ∈ [n], the t-th query set is designed as follows:

At :=
⋃

m∈[M ]:Xt(m)=1
Sm, (1.22)

where Xt(m) denotes the t-th element of the m-th codeword Xn(m).
Thus, the t-th question is whether the secret random variable S lies
in the union of sub-intervals with indices of the codewords whose t-
th element are one. Hence, for each t ∈ [n], the t-th element of each
codeword is an indicator function for whether a particular sub-interval
is queried in the t-th question, with one being affirmative and zero being
negative.

Fix any s ∈ S and w ∈ [M ] such that q(s) = w. For each t ∈ [n],
using the query procedure in (1.22), the correct response Zt from the
oracle is

Zt = 1{s ∈ At} (1.23)

= 1
{
s ∈

⋃
j∈[M ]:Xt(j)=1

Sj

}
(1.24)

=
{

1 if Xt(w) = 1,
0 otherwise. (1.25)

Thus, the correct response is Zn = Xn(q(s)), i.e., the q(s)-th codeword
is the true answer the n questions. We provide an illustration through
an example in Figure 1.10.

The oracle’s correct responses Zn are corrupted by random noise
in the channel, yielding noisy response Y n that are provided to the
questioner. Given Y n, the questioner uses the channel decoder ϕ to
produce an estimate Ŝ of s by first decoding q(s) as Ŵ = ϕ(Y n) and
then declaring the mean value in Ŵ -th sub-interval as the final estimate,
i.e.,

Ŝ = g(Y n) = ϕ(Y n)
2M = 2Ŵ − 1

2M . (1.26)
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0 0.25 0.5 0.75 1S

S1 S2 S3 S4

Xn(4)
Xn(3)
Xn(2)
Xn(1)

1 1 1 0 1 0
1 0 1 0 1 1
0 1 1 1 0 1
1 0 0 1 1 0

Figure 1.10: Illustration of question design and correct responses when s = 0.4,
M = 4 and n = 6. The top figure shows that the unit interval [0, 1] is partitioned
into M = 4 equal size sub-intervals: S1 = [0, 0.25), S2 = [0.25, 0.5), S3 = [0.5, 0.75)
and S4 = [0.75, 1]. Since s = 0.4, the quantized value is thus q(s) = 2 and s lies
in the second sub-interval S2. The bottom figure shows encoder matrix for M = 4
codewords (Xn(1), . . . , Xn(4)), each of which have n = 6 components. According
to question design in (1.22), the first question is whether s lies in the union of
sub-intervals with indices m ∈ [M ] such that X1(m) = 1, i.e., the union of the
first, third and the fourth sub-intervals. The correct response to the first question is
negative, i.e., Z1 = 0 = X1(2). Continuing this process of querying the oracle, the
correct responses Zn is Xn(2), corresponding to the codeword with index q(s) = 2.

For any s ∈ S, it is easy to verify that the estimate Ŝ is within 1
M of

s if Ŵ = q(s). Thus, it follows from the definition of an (n,M, ε)-code
in Definition 1.7 that

sup
PS

Pr
{
|g(Y n)− S| > 1

M

}
≤ sup

PS

Pr{q(S) ̸= ϕ(Y n)} (1.27)

= sup
PW

Pr{W ̸= ϕ(Y n)} (1.28)

≤ ε, (1.29)

Therefore, we have constructed an (n, 1
M , ε)-non-adaptive query pro-

cedure per Definition 1.5 using an (n,M, ε)-code for channel coding
per Definition 1.7. Thus, using (1.6) and (1.14), it follows that for any
(n, ε) ∈ N× [0, 1],

− log δ∗(n, ε) ≥ logM∗(n, ε). (1.30)

The proofs for Claim 1 and the first inequality in Claim 3 of Theorem
1.1 is now completed.
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1.6.2 Construct a Channel Code Using a Non-adaptive Query Pro-
cedure

Claim 2 and the second inequality in Claim 3 of Theorem 1.1 are implied
by the following lemma.

Lemma 1.4. For any (n, δ, ε) ∈ N× R+ × [0, 1], given an (n, δ, ε)-non-
adaptive query procedure for Twenty Questions with random error, for
any β ∈ (0, 1−ε

2 ), we can construct an (n, ⌈β
δ ⌉, ε+ 2β)-code for channel

coding for a uniformly distributed message W . Therefore, given any
(n, ε) ∈ N× [0, 1], for any β ∈ (0, 1−ε

2 ),

− log δ∗(n, ε) ≤ logM∗
unif(n, ε+ 2β)− log β. (1.31)

Proof. Given any ε ∈ [0, 1], let β ∈ (0, 1−ε
2 ) ⊆ (0, 0.5) be arbitrary.

Partition the unit interval S = [0, 1] interval into M̃ := ⌈β
δ ⌉ equal-sized

sub-intervals, each with length 1
M̃

. For any s ∈ S, define the following
quantization function

qβ(s) := ⌈sM̃⌉. (1.32)

Let P u
S be the uniform distribution over S. For any (n, δ, ε)-non-

adaptive query procedure with query sets {At}t∈[n] and a decoder
g : Yn → S, it follows that

ε ≥ sup
PS∈F(S)

Pr{|S − Ŝ| > δ} ≥ Pr
P U

S

{|S − Ŝ| > δ}. (1.33)

In the following, we show how to construct the encoding function e
and the decoding function ϕ for channel coding using the above (n, δ, ε)-
non-adaptive query procedure. The encoding function e : [M̃ ]→ {0, 1}n
is constructed such that for each w ∈ [M̃ ], e(w) is the correct response
to question {At}t∈[n] when the secret variable is s = 2w−1

2M̃
, i.e.,

e(w) = (Z1, . . . , Zn) (1.34)

=
(

1
{2w − 1

2M̃
∈ A1

}
, . . . , 1

{2w − 1
2M̃

∈ An

})
. (1.35)

Given noisy responses Y n, the channel decoding function ϕ : Yn → [M̃ ]
is constructed as follows:

ϕ(Y n) := qβ(g(Y n)). (1.36)

Full text available at: http://dx.doi.org/10.1561/0100000144



1.6. Proof of Relationship with Channel Coding 33

We next bound the error probability of the constructed channel code.
For simplicity, let Ŝ = g(Y n), W̃ = qβ(S) and ˆ̃W = ϕ(Y n). When the
secret random variable S is uniformly distributed over S, the induced
random variable W̃ is uniformly distributed over [M̃ ]. It follows that

Pr{W ̸= g(Y n)}
= Pr{Ŵ ̸= W, |Ŝ − S| > δ}+ Pr{W ̸= Ŵ , |Ŝ − S| ≤ δ} (1.37)
≤ Pr{|Ŝ − S| > δ}+ Pr{Ŵ ̸= W, |Ŝ − S| ≤ δ} (1.38)
≤ ε+ Pr{W ̸= Ŵ , |Ŝ − S| ≤ δ} (1.39)

≤ ε+ 2δ
M̃

(1.40)

≤ ε+ 2β, (1.41)

where (1.39) follows from (1.33), (1.40) follows since i) the events Ŵ ≠
W and |S− Ŝ| ≤ δ occur simultaneously only when S is within δ to the
boundaries (left and right) of the sub-interval with indices W = qβ(S),
ii) S is uniformly distributed over S = [0, 1] and thus iii) the probability
of the event {Ŵ ≠ W, |S − Ŝ| ≤ δ} is upper bounded by 2δ

M̃
, and (1.41)

follows from the definition of M̃ . A figure illustrating (1.40) is provided
in Figure 1.11.

... ...
β(k − 2)δ β(k − 1)δ βkδ β(k + 1)δ

Figure 1.11: Figure illustration of (1.40). Let δ = 1
600 and β = 6. Thus, we

partition the unit interval S into M̃ = 100 sub-intervals each with length βδ = 1
100 .

In the figure, we plot three consecutive sub-intervals with indices (k − 1, k, k + 1)
for some k ∈ [2 : M̃ − 1]. Note that the k-th interval starts from β(k − 1)δ and
end at βkδ and contains β smaller intervals, each of length δ. Suppose S lies in
k-th sub-interval. One can find Ŝ in adjacent sub-interval such that |Ŝ − S| ≤ δ
and qβ(Ŝ) = Ŵ ≠ W = qβ(S) only if S are with δ = 1

100 of the boundaries in k-th
sub-interval, denoted by shaded color.

Using (1.41), we conclude that an (n, M̃, ε+2β)-code for the channel
coding with uniformly distributed message W can be constructed from
an (n, δ, ε)-non-adaptive query procedure for Twenty Questions with
random error. Thus, given any (n, ε), for any β ∈ (0, 1−ε

2 ),
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logM∗
unif(n, ε+ 2β) ≥ log

⌈
β

δ∗(n, ε)

⌉
≥ − log δ∗(n, ε) + log β. (1.42)

1.7 Basic Definitions and Mathematical Tools

The main tools that we use are the method of types [28] to bound
the performance loss of transforming a query-dependent channel to a
particular query-independent channel and the Berry-Esseen theorem to
derive approximations to non-asymptotic theoretical benchmarks. Some
of the mathematical background is provided below.

1.7.1 Basic Definitions

Given any distribution PX ∈ P(X ) defined on a finite alphabet X , the
entropy is defined as

H(X) = H(PX) := −
∑

x∈supp(PX)
PX(x) logPX(x). (1.43)

Note that the notation H(X) is used in classical textbook [27] and the
notation H(PX) is often used to clarify the dependence of the entropy
on the distribution [29]. We use both notations for the entropy and
other information theoretical quantities interchangeably. Analogously,
given a joint probability mass function (PMF) PXY ∈ P(X ×Y) defined
on a finite alphabet X × Y, the joint entropy is defined as

H(X,Y ) = H(PXY ) = −
∑

(x,y)∈supp(PXY )
PXY (x, y) logPXY (x, y),

(1.44)

and the conditional entropy of X given Y is defined as

H(X|Y ) = H(PX|Y |PY )

= −
∑

(x,y)∈supp(PXY )
PXY (x, y) logPX|Y (x|y), (1.45)

where (PX|Y , PY ) are the induced conditional and marginal distributions
of PXY . Furthermore, the mutual information that measures dependence
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of two random variables (X,Y ) with joint distribution PXY is defined
as

I(X;Y ) = I(PX , PX|Y ) = H(PX)−H(PX|Y |PY ). (1.46)

Note that mutual information I(X;Y ) is symmetric so that I(X;Y ) =
I(Y ;X). Similar to the definition of entropy, we use I(X;Y ) and the dis-
tribution dependent version I(PX , PX|Y ) interchangeably. Analogously,
given the joint distribution PXY Z of three random variables (X,Y, Z)
defined on a finite alphabet X × Y × Z, define the conditional mutual
information I(X;Y |Z) as

I(X;Y |Z) = I(PX|Z , PX|Y Z |PZ) (1.47)
= H(PX|Z |PZ)−H(PX|Y Z |PY Z), (1.48)

where all distributions are induced by the joint distribution PXY Z .

1.7.2 Method of Types

Since we focus on binary input discrete memoryless channel as described
in Section 1.4.3, the method of types plays a critical role in the anal-
yses in subsequent sections of this monograph. We recall some of the
machinery here, see also [28], [27, Chapter 11] and [29, Chapter 2]).
Fix a finite alphabet X and an integer n ∈ N. Given a length-n binary
sequence xn ∈ X n, the empirical distribution (type) T̂xn is defined such
that for each a ∈ X ,

T̂xn(a) = 1
n

∑
t∈[n]

1{xt = a}. (1.49)

The set of types formed from length-n sequences that take values in X
is denoted by Pn(X ). Given a type P ∈ Pn(X ), the set of all sequences
xn such that T̂xn = P forms the type class, which is denoted by T n

P .
For any n ∈ N, the number of types satisfies

|Pn(X )| ≤ (n+ 1)|X |. (1.50)

For any type P ∈ Pn(X ), the size of the type class T n
P satisfies

(n+ 1)−|X | exp(nH(PX)) ≤ |T n
PX
| ≤ exp(nH(PX)). (1.51)
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For any sequence xn that is generated i.i.d. from a distribution PX ∈
P(X ), its probability satisfies

Pn
X(xn) = exp

(
− n(D(T̂xn∥PX) +H(T̂xn))

)
. (1.52)

Thus, for any type Q ∈ Pn(X ), the probability of the type class T n
Q

satisfies

(n+ 1)−|X | ≤
Pn

X(T n
Q )

exp(−nD(Q∥PX)) ≤ 1. (1.53)

Fix another finite alphabet Y. Given any two sequences (xn, yn) ∈
X n × Yn, the joint empirical distribution (type) T̂xnyn is defined such
that for any (a, b) ∈ X × Y,

T̂xnyn(a, b) = 1
n

∑
t∈[n]

1{(xt, yt) = (a, b)}. (1.54)

Given any xn ∈ X n and conditional distribution V ∈ P(Y|X ), the set of
all sequences yn ∈ Yn such that T̂xnyn = T̂xn × V forms the conditional
type class, which is denoted by TV (xn). Fix any P ∈ Pn(X ). The set of
all conditional distributions V ∈ P(Y|X ) such that the set TV (xn) is
not empty for some xn ∈ T n

P forms the set of conditional types given
the marginal type P , which is denoted by Vn(Y;P ).

1.7.3 Mathematical Tools

In the proof of theoretical results of the monograph, we use a sequence
of concentration inequalities [31]: the weak law of large numbers, the
Markov inequality and the Berry-Esseen theorem. In this subsection,
we recall these mathematical tools.

Let Xn = (X1, . . . , Xn) be a collection of n i.i.d. random variables
with zero mean and variance σ2 and let the normalized sum of these n
random variables be

Sn := 1
n

∑
t∈[n]

Xt. (1.55)

We first recall the weak law of large numbers, which states that the
normalized sum Sn converges in probability to its mean.
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Theorem 1.5 (The Weak Law of Large Numbers). For any positive real
number δ ∈ R+,

lim
n→∞

Pr{Sn > δ} = 0. (1.56)

In the proofs of many theorems, the Markov inequality is used.

Theorem 1.6 (The Markov Inequality). For any non-negative real number
θ ∈ R+ and any positive real number t,

Pr{Sn > t} ≤ E[exp(θSn)]
exp(tθ) . (1.57)

The Berry-Esseen Theorem for i.i.d. random variables [12], [41] will
be used to derive theoretical benchmarks.

Theorem 1.7 (The Berry-Esseen Theorem). Assume that the third abso-
lute moment of X1 is finite, i.e., T := E|X1|3 <∞. For each n ∈ N,

sup
t∈R

∣∣∣∣∣∣Pr

Sn < t

√
σ2

n

− Φ(t)

∣∣∣∣∣∣ ≤ T

σ3√n
, (1.58)

where Φ(t) is the standard Gaussian cumulative distribution function
evaluated at a real number t ∈ R.

To tackle certain problems, we need to consider independent but not
identically distributed (i.n.i.d.) random variables. LetXn = (X1, . . . , Xn)
be a sequence of random variables, where for each m ∈ [n], the ran-
dom variable Xt has zero mean, variance σ2

m := E[X2
m] > 0 and finite

third-absolute moment Tm := E[|Xm|3]. Define the average variance
and third-absolute moment as follows:

σ2 := 1
n

∑
m∈[n]

σ2
m, (1.59)

T := 1
n

∑
m∈[n]

Tm. (1.60)

The Berry-Esseen theorem for i.n.i.d. random variables is as follows.

Theorem 1.8. For each n ∈ N,

sup
t∈R

∣∣∣∣∣∣Pr

Sn < t

√
σ2

n

− Φ(t)

∣∣∣∣∣∣ ≤ 6T
σ3√n

. (1.61)

Full text available at: http://dx.doi.org/10.1561/0100000144



38 Introduction

1.8 Definitions of Symbols

In this section, we summarize the definitions of various symbols used
throughout the monograph. We use [0, 1]d to denote the unit cube of
dimension d and use S ∈ [0, 1]d to denote a d-dimensional target. When
there are k ∈ N targets, we use Sk = (S1, . . . ,Sk) ∈ ([0, 1]d)k to denote
the collection of k targets. For moving targets, we use v to denote
the collection of velocities over different dimensions. For non-adaptive
query procedures, we use n to denote the number of questions and for
adaptive query procedures, we use l to denote the upper bound on the
average number of questions. For both query procedures, we use δ ∈ R+
to denote the desired resolution (absolute error) in each dimension
and ε ∈ (0, 1) to denote the excess-resolution probability where the
estimate of any dimension has resolution greater than δ. As a result, for
non-adaptive query procedures, the theoretical benchmark is usually
denoted as δ∗(n, d, ε), which corresponds to the minimal achievable
absolute estimation error in any dimension when n questions are used
and when an excess-resolution probability ε is tolerated. Analogously,
for adaptive query procedures, we use δ∗

a(l, d, ε). In all our proposed
query procedures, we use M to denote the number of quantization levels
in each dimension, use A ∈ (0, 1) to denote the query set, use Xn to
denote the binary vector to construct query sets, use Y n to denote the
noisy response of the oracle and use Ŝi to denote the estimate of the
target S in the i-th dimension.

1.9 Organization for the Rest of the Monograph

Section 2 focuses on non-adaptive querying for a single target. We con-
sider a multiple-dimensional target under the query-dependent channel,
present characterizations of the performance of optimal non-adaptive
querying, discuss the significance of these results beyond previous results
and illustrate these theoretical results via numerical examples. Finally,
we provide an accessible proof sketch. A major practical implication
is that, when searching for a target in a multidimensional region, it
is optimal to search in all dimensions simultaneously while it is only
asymptotically optimal to search over each dimension separately. Section
2 draws on and synthesizes [54], [109], [111].
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Section 3 focuses on adaptive querying for a single target. We formu-
late the problem, introduce two adaptive query procedures, present the
achievability performance of both adaptive query procedures, demon-
strate the benefit of using adaptive query procedures over their non-
adaptive counterparts, and compare the performance of both for different
settings, numerically and analytically. We show that in general, neither
of the two adaptive query procedures is superior to the other one for
all cases. Furthermore, we demonstrate that there is a cost associated
with the superior performance of adaptive querying: high complexity
in making decisions and the need for the perfect knowledge of the
query-dependent channel transition probability matrix. Thus, although
adaptive querying yields better performance, non-adaptive querying is
often more practical due to the above two properties since it can be
applied in a parallel and channel-agnostic manner. Section 3 draws on
and synthesizes [17], [18], [110].

Section 4 focuses on non-adaptive querying for a moving target. Mo-
tivated by practical applications where the target moves, e.g., searching
for a missing airplane or searching for a face in a video, we propose
a piecewise linear constant velocity, characterize the performance of
an optimal query procedure, and illustrate the results via numerical
examples. A major practical implication is that although it is intuitively
true that the performance of searching for a moving target is equivalent
to searching for a stationary target in a two dimensional region, the
searching complexity in the former scenario is much higher. Section 4
draws on and synthesizes [54], [112], [114].

Section 5 focuses on non-adaptive querying for multiple targets. This
setting is motivated by practical applications, e.g, searching for multiple
faces in an image or searching for multiple missing targets with a sensor
network. We formulate the multi-target search problem, present the
results with discussions and illustrate the results via numerical examples.
A practical implication is that searching for multiple targets is equivalent
to transmitting an unknown number of messages over a random access
channel [104]. Section 5 draws on and synthesizes [108], [113]

Finally, Section 6 discusses future research directions that might be
worthwhile to pursue.
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