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ABSTRACT 

Current wireless networks are designed to optimize spectral 
efficiency for human users, who typically require sustained 
connections for high-data-rate applications like file trans-
fers and video streaming. However, these networks are in-
creasingly inadequate for the emerging era of machine-type 
communications (MTC). With a vast number of devices 
exhibiting sporadic traffic patterns consisting of short pack-
ets, the grant-based multiple access procedures utilized by 
existing networks lead to significant delays and inefficiencies. 
To address this issue the unsourced random access (URA) 
paradigm has been proposed. This paradigm assumes the 
devices to share a common encoder thus simplifying the re-
ception process by eliminating the identification procedure. 
The URA paradigm not only addresses the computational 
challenges but it also considers the random access (RA) as a 
coding problem, i.e., takes into account both medium access 
protocols and physical layer effects. In this monograph we 
provide a comprehensive overview of the URA problem in 
noisy channels, with the main task being to explain the 
major ideas rather than to list all existing solutions. 
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Acronyms 

3GPP Third-Generation Partnership Project 
5G NR Fifth-generation New Radio 
ACK Acknowledgment 
AMP Approximate message passing 
AoA Angle-of-arrival 
ARQ Automatic Repeat reQuest 
ASR Approximate support recovery 
AWGN Additive white Gaussian noise 
BAC Binary adder channel 
BCH Bose-Chaudhuri-Hocquenghem 
BP Belief propagation 
BPSK Binary phase-shift keying 
BS Base station 
CCS Coded compressed sensing 
CDMA Code division multiple-access 
CNOP Check-node operation 
CRC Cyclic redundancy check 
CRDSA Contention resolution diversity slotted ALOHA 
CS Compressed sensing 
CSI Channel state information 
CSMA Carrier-sense multiple-access 
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CSMA/CA Carrier-sense multiple-access with collision avoid-
ance 

CSS Chirp spread spectrum 
DBPSK Differential binary phase-shift keying 
DE Density evolution 
DFT Discrete Fourier transform 
DSSS Direct-sequence spread spectrum 
FAR False alarm rate 
FBL Finite blocklength 
FCFS First-come, first-serve 
FDMA Frequency division multiple-access 
FFT Fast Fourier transform 
FT Fourier transform 
G-URA URA over Gaussian MAC 
GMAC Gaussian MAC 
IDMA Interleave division multiple-access 
IoT Internet of Things 
IRSA Irregular repetition slotted ALOHA 
IRSA-B Basic IRSA protocol 
IRSA-F IRSA with per-frame preambles 
IRSA-S IRSA with per-slot preambles 
JSC Joint successive cancellation 
LDPC Low-density parity check 
LDS Low-density signature 
LLR Log-likelihood ratio 
LMMSE Linear MMSE 
LPWAN Low-power wide area network 
MAC Multiple-access channel 
MF Matched filter 
MIMO Multiple input, multiple output 
ML Maximum likelihood 
MMSE Minimum mean squared error 
MMV Multiple measurement vector 
MPA Message passing algorithm 
MSE Mean squared error 
MTC Machine-type communications 
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MUD Multi-user detector 
NNLS Non-negative least squares 
ODMA On-off division multiple access 
OFDM Orthogonal frequency-division multiplexing 
OMP Orthogonal matching pursuit 
PAN Personal-area network 
PEXIT Protograph extrinsic information transfer 
PO Physical uplink shared channel occasion 
PUPE Per-user probability of error 
PUSCH Physical uplink shared channel 
QoS Quality of service 
QPSK Quadrature phase-shift keying 
RA Random access 
RACH Random access channel 
RCB Random coding bound 
RFID Radio-frequency identification 
RIP Restricted isometry property 
RM Reed-Muller 
RS Reed-Solomon 
RSMA Rate-splitting multiple-access 
SA Slotted ALOHA 
SC Successive cancellation 
SCL Successive cancellation list 
SCMA Sparse-coded multiple-access 
SF Spreading factor 
SIC Successive interference cancellation 
SINR Signal-to-interference-plus-noise ratio 
SoIC Soft SIC 
SPARCs Sparse regression codes 
SPC Single-parity-check 
TDMA Time-division multiple-access 
TIN Treat interference as noise 
TIN-SIC TIN followed by SIC 
UE User equipment 
URA Unsourced random access 
VNOP Variable-node operation 
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Notation 

Throughout the monograph we use the following notations and abbrevi-
ations: 

x, X deterministic scalar value 
x deterministic column-vector 
X deterministic matrix 
In n × n identity matrix 
diag diagonal matrix 
∥x∥2 Euclidean norm of vector x 
supp (x) support of vector x 
wt (x) the number of nonzero components in vector x 
N set of natural numbers 
C set of complex numbers 
Fq finite field with q elements 
X set 
X sequence of sets 

disjoint union 
[n] [n] = {1, . . . , n}, where n ∈ N 
aI aI = (ai1 , . . . , ais ), where a = (a1, . . . , an) and I = 

{i1, . . . , is} ⊆ [n] with i1 < . . . < is 
AI AI = (ai1 , . . . , ais ), where A = (a1, . . . , an) and I = 

{i1, . . . , is} ⊆ [n] with i1 < . . . < is 
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CN (0, In) circularly symmetric complex standard normal distri-
bution 

Bern(p) Bernoulli distribution with parameter p 
Unif([Q]) uniform distribution on [Q] 
x, X random scalar value 
x random column-vector 
X random matrix 
E event 
Ec complementary event to E 
1E indicator of the event E 
Pr [E] probability of the event E 
E expectation operator 
H(x) entropy of discrete random variable x 
I(x, y) mutual information of random variables x and y 
h(p) h(p) = −p log2(p) − (1 − p) log2(1 − p), 0 ≤ p ≤ 1, 

where h(1) = h(0) = 0 
τ(x) binary phase-shift keying (BPSK) modulation τ (x) = 

(1 − 2x) 
√ 
P 

w.l.o.g. “without loss of generality” 
r.v. “random variable” 
i.i.d. “independent identically distributed” 
p.m.f. “probability mass function” 
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1 
Massive Machine-type Communications 

Machine-type communications (MTC) dramatically change traffic pat-
terns. Instead of focusing on peak data rates and low latencies, massive 
connectivity becomes a key requirement. The MTC concept involves 
a massive number of autonomous devices and sensors being connected 
to a gateway: a node (or a set of nodes) responsible for data collection. 
MTC is a crucial component of the Internet of Things (IoT) paradigm, 
which defines the infrastructure and scenarios for interconnecting devices 
rather than humans. IoT encompasses various tasks, including monitor-
ing, remote and automated control, data collection, and data-related 
services. MTC is a communication technology specifically designed to 
support this paradigm, enabling connectivity for a vast number of de-
vices. In this monograph, we focus on the communication aspects and 
use the terms IoT and MTC interchangeably. 

IoT applications encompass a wide range of use cases, including: 

• Environmental and health monitoring. 

• Smart homes, cities, and industries. 

• Road traffic monitoring and tracking to improve efficiency and 
safety. 

7 
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8 Massive Machine-type Communications 

Typical MTC transmissions involve short measurement reports 
generated either regularly or sporadically, resulting in additional re-
quirements. 

1. Improved battery life is essential. Wiring a large number of devices 
to the electricity grid would require expensive cabling, making it 
preferable for these devices to be autonomous. Moreover, monitor-
ing the battery status of thousands (or even millions) of devices 
may also be prohibitively costly. Therefore, the battery lifetime 
must match the device lifetime (approximately 10 years). As a re-
sult, energy-efficient solutions must utilize simple radio-frequency 
devices with low-complexity signal processing algorithms. 

2. There is a need for improved coverage. Many sensors may be 
located in so-called deep indoor environments (e.g., building base-
ments), leading to significant signal loss between the transmitter 
and receiver. 

3. Low cost is a critical factor. The challenge of low cost is twofold: 

• since IoT devices generate only small amounts of data, sub-
scription fees should be much lower compared to those for 
ordinary smartphones, minimizing operational expenses; 

• the massive deployment of IoT devices necessitates a low 
cost per device, reducing capital expenses. 

According to Ericsson’s forecast [1], the number of cellular IoT 
devices (see Figure 1.1) is expected to reach 6.1 billion by 2029, while 
the total number of connected devices across all IoT technologies is 
projected to reach approximately 39 billion. Currently, the IoT industry 
exhibits a compound annual growth rate of approximately 16%. Given 
this rapid growth, standardization plays a crucial role in ensuring 
sustainable IoT development. 

1.1 Internet of Things Standardization 

There are various standards for IoT, each fulfilling different requirements 
specified above. We distinguish three main branches of IoT technologies: 
short-range, wide-area, and cellular. 
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9 1.1. Internet of Things Standardization 

0 
1 
2 
3 
4 
5 
6 
7 

Broadband IoT and Critical IoT (4G/5G) 
Massive IoT (NB-IoT/Cat-M) 
Legacy (2G/3G) 

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 

Figure 1.1: Predicted number of worldwide IoT cellular subscriptions (billions) in 
accordance with Ericsson mobility report [1] (Nov. 2023). 

Short-range IoT encompasses a variety of technologies, includ-
ing radio-frequency identification (RFID) and personal-area networks 
(PANs) such as Bluetooth and Zigbee. These technologies typically 
operate in unlicensed spectrum and within a very short range. Massive 
connectivity in this case is limited by the small coverage area (on the 
order of several meters) of the corresponding radio devices [2]. 

In contrast, wide-area technologies have the potential to connect 
millions of autonomous devices to a single base station (BS). In this 
short overview, we focus on Sigfox and LoRa technologies, which are 
described in Section 1.1.2. 

1.1.1 Short-range IoT 

Short-range, or PAN, provides a communication environment for vari-
ous IoT applications, such as communication between wearable devices, 
short-range location tags, home controllers, and more. A typical net-
work consists of at most a few dozen devices, making communication 
between them relatively simple in terms of channel access. The low 
communication range is beneficial for energy efficiency and security. 

An extreme example of energy efficiency (particularly regarding re-
mote device battery life) is RFID technology, where the energy required 
to transmit data is induced by an interrogation pulse from a nearby 
reader device. The short communication range also prevents signals 

Full text available at: http://dx.doi.org/10.1561/0100000145



10 Massive Machine-type Communications 

from being detected over large distances between the transmitter and 
receiver, which significantly simplifies security protocols. 

Due to the absence of massive connectivity issues and the wide 
variety of PAN technologies, we will not consider them in the remainder 
of this monograph. 

1.1.2 Wide-area IoT 

To fulfill the requirements described above, several solutions are com-
monly employed in wide-area IoT systems – low-power wide area net-
works (LPWANs). To improve system range, narrowband signals are 
typically utilized. Since thermal noise power is proportional to the 
processed bandwidth, narrowband signals can tolerate a greater link 
loss for the same transmitter power and hence enable coverage of a 
wider area. Additionally, due to the extended communication distances, 
narrowband signals benefit from the reduced frequency selectivity of 
the wireless channel. Consequently, there is no need for complex multi-
carrier modulations or high-complexity signal processing algorithms at 
the transmitter. 

To simplify remote devices, wide-area IoT communication systems 
often have limited or even completely absent downlink functionality. 
This limitation reduces the ability to coordinate transmitting devices 
and typically eliminates the possibility of employing Automatic Repeat 
reQuest (ARQ) mechanisms. Additionally, the use of ARQ in scenarios 
involving sporadic data transmission by a massive number of devices 
can overwhelm the control channel. 

To address this issue, transmissions can be repeated multiple times, 
potentially at different frequencies, to exploit both frequency and time 
diversity, assuming the retransmission delay exceeds the channel coher-
ence time. Further transmitter simplifications often include the use of 
constant-envelope modulation formats, which do not require expensive 
or power-inefficient signal amplifiers. 

At the receiver, additional solutions are applied to enhance per-
formance. The simplest way to increase diversity is through multiple 
receptions. When multiple nodes collect the transmitted data, many can 
detect, demodulate, and decode the message, thereby enhancing spatial 
diversity. 

Full text available at: http://dx.doi.org/10.1561/0100000145



11 1.1. Internet of Things Standardization 

These typical solutions are implemented in Sigfox and LoRa, the 
most popular wide-area IoT technologies, which are described below. 
Both approaches rely on distributed resource coordination mechanisms1 

based on ALOHA and carrier-sense multiple-access with collision avoid-
ance (CSMA/CA), rather than the centralized coordination employed 
in cellular systems. 

Sigfox – An Ultra-narrowband IoT Technology 

The main feature of Sigfox is its extremely narrow transmission band-
width of just 100 Hz. This narrow bandwidth significantly reduces in-
band thermal noise to very low levels (approximately −154 dBm), which 
is a key enabler of its long-range communication. Downlink functional-
ity is extremely limited, with a complete absence of synchronization, 
coordination, and ARQ mechanisms. 

To send a packet, a device selects a transmission frequency within 
a 192 kHz band and transmits the packet, followed by two replicas at 
different randomly selected frequencies to enhance diversity. Multiple 
reception is achieved by deploying multiple BSs, which continuously 
scan the entire 192 kHz bandwidth to detect uplink messages. 

The transmitted packets are exceptionally short. Each packet con-
sists of: 

• a 4-byte preamble, 

• a 2-byte frame-synchronization sequence, 

• a 4-byte device identifier, 

• a payload of up to 12 bytes, 

• a variable-length hash code for packet authentication within the 
Sigfox network, and 

• a 2-byte cyclic redundancy check (CRC). 

1These mechanisms are often referred to as medium access control (MAC). In 
this monograph, however, we interpret the abbreviation MAC as multiple-access 
channel. 
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12 Massive Machine-type Communications 

Uplink packets are typically modulated using differential binary phase-
shift keying (DBPSK). Differential modulation is chosen to allow for 
non-coherent detection. The combination of simple modulation and 
coding, along with a very low sampling rate, results in a highly cost-
effective solution. Additionally, the high link budget enables a reduction 
in transmit power, thereby fulfilling battery efficiency requirements with 
ease. 

Downlink messages (if configured) are triggered by a transmitting 
device in the form of a callback. The BS’s response has a fixed delay 
and is transmitted at the reception frequency of the request plus a 
predefined frequency shift. The payload size for a downlink message is 
fixed at 8 bytes. 

LoRa 

The LoRa (Long Range) protocol is another IoT alternative. Similar to 
the previously described ultra-narrowband solutions, this communica-
tion standard assumes a BS and end devices connected to it, managed by 
a simple medium access protocol. LoRa supports wider communication 
bandwidths (125 or 500 kHz) based on the chirp spread spectrum (CSS) 
technique, which utilizes linear frequency modulation. 

Let B denote the total transmission bandwidth at a carrier frequency 
fc, and let T represent the symbol duration. The instantaneous frequency 
f(t), t ∈ [0, T ], of the CSS signal changes linearly with a rate of 
B/T , wrapping around when it reaches the edges of the transmitted 
bandwidth:   

B B B 
f(t) = fc − + t + i mod B, 2 T M 

where i ∈ [M ] is the transmitted message index, and the transmission 
rate is log2 M bits per symbol. Different values of M correspond to 
different spreading factor (SF) values [3]. 

Different SFs are supported by LoRa, and signals corresponding to 
different SFs are almost orthogonal [3]. This property reduces interfer
ence between transmissions with different SFs, thereby improving the 
communication range. The medium access mechanism also allows for 
downlink transmissions. The LoRa standard supports three different 
classes of devices. 

-
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13 1.1. Internet of Things Standardization 

Devices of the first class (A) behave similarly to Sigfox: they send 
data as it becomes available, and downlink messages can be sent during 
receive windows, whose timings are configurable. After an uplink trans-
mission, the device waits for the start of a downlink message within two 
receive windows. If no downlink message is detected, the device enters 
sleep mode. For this type of device, the sender spends most of its time 
in sleep mode, enabling long battery life. Class-A functionality is basic 
and must be supported by all devices. 

Devices of the second class (B) extend the downlink functionality 
by opening periodic receive windows (or ping slots). To manage this 
functionality, periodic beacons are sent by the network to maintain 
synchronization. 

Finally, devices of the third class (C) enhance the capabilities of 
Class-A devices by keeping the receive windows open unless transmitting 
an uplink message. As a result, Class-C devices can receive downlink 
messages almost any time, offering very low latency for downlink trans-
missions. 

Typical use cases for Class-A devices include sensors that periodically 
report measurements or send data triggered by an alarm event. Class-B 
devices are useful for applications requiring measurements on request, 
while Class-C devices are ideal for remote control mechanisms powered 
by a continuous power source. 

1.1.3 Cellular IoT 

Cellular systems are highly attractive for massive deployments due to 
their wide coverage, straightforward subscription procedures, operation 
over licensed spectrum with effective interference management, and 
robust security protocols. 

However, cellular systems employ centralized coordination algo-
rithms (as opposed to distributed CSMA/CA), which are better suited 
for high data rates among a fixed and relatively small number of active 
users within the coverage area of a single BS. 

Cellular networks did not support machine-type devices prior to 
Third-Generation Partnership Project (3GPP) Release 12. Earlier re-
leases assumed that any device connecting to the BS would support the 
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14 Massive Machine-type Communications 

full bandwidth of 20 MHz. This large bandwidth requirement was not 
suitable for achieving the long battery life needed by IoT devices. 

Different Device Types 

The 3GPP standards define various categories of devices based on their 
capabilities. These categories are represented by numbers, where higher 
numbers indicate devices that support higher peak uplink and downlink 
rates, a greater number of supported antennas, and so on. However, 
these categories primarily pertain to devices operated by humans, while 
the requirements for IoT devices can differ significantly. 

3GPP Release 13 introduced the Cat-M category (with “M” denoting 
MTC). This user equipment category was the first narrowband device 
type, supporting a bandwidth of 6 resource blocks (1.08 MHz). This 
new device type required novel approach to control channel design. 

Further optimization for MTC devices was achieved in Release 13 
with the introduction of the NB (narrowband) device category. Devices 
in this category reduced the total supported bandwidth to 200 kHz. 
Additionally, optimizations enabled narrowband transmissions with 
bandwidths reduced to a single subcarrier, referred to as single-tone 
transmission. The subcarrier bandwidth for these transmissions is either 
15 kHz or 3.75 kHz. 

The Fifth-generation New Radio (5G NR) standard introduced 
broadband IoT, allowing sensing devices to transmit larger amounts of 
data. In Release 17, the RedCap (Reduced Capabilities) network type 
was introduced. The RedCap standard aims to support all industrial 
applications by enabling broadband communication services for machine-
type devices. This standard assumes the utilization of up to 20 MHz 
bandwidth in the frequency range below 6 GHz. 

Random access Procedures in Cellular Systems 

To initiate a connection with a cellular network, each device must 
proceed with random access (RA) procedure. The introduction of IoT 
devices and their massive deployments could overload the control chan-
nel. To address this issue, a new RA procedure should be developed, 
aiming to reduce the overall communication overhead. 
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As specified in 3GPP TS 138.321, the original RA procedure follows 
a four-way handshake, as illustrated in Figure 1.2. This handshake 
consists of the following phases: 

1. RA through preamble transmission to identify users. 

2. Resource allocation provided by the BS. 

3. Data transmission using orthogonal resources assigned to the 
identified users. 

4. Final acknowledgment (ACK). 

UE BS UE BS 

tim
e

tim
e 

Preamble 

Resource
allocation 

Data 

ACK 

Preamble + Data 

ACK 

Figure 1.2: Four-step RA (left) and two-step RA procedures specified in 3GPP TS 
138.321. A time diagram corresponds to message exchange between user equipment 
(UE) and base station (BS). 

The described above procedure separates the RA phase from data 
transmission. Starting with 3GPP Release 16, this procedure was simpli-
fied, requiring only a two-way handshake. In this updated procedure, the 
preamble transmission also announces the resources to be used for data 
transmission, which follows immediately. Users select preambles from 
a predefined orthogonal set. Data is then transmitted during specified 
positions of the physical uplink shared channel occasion (PO)s. If the BS 
successfully receives the data, it sends an acknowledgment. Otherwise, 
the traditional four-way handshake is performed. This transmission 
scheme is depicted in Figure 1.3 (see the detailed description in [4]). 
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preamble data 

user 1 

user 2 

user 3 

user 4 

· · · 

· · · 

· · · 

· · · 

· · ·PO 1 PO 2 PO 3 PO 4 PO 5 PO N 
↓ ↓ ↓ ↓ ↓ ↓ ↓ 

RACH slot N PUSCH occasions (POs) 

Figure 1.3: Two-step RA procedure with data transmission. 

1.2 Challenges for the Next-generation Cellular Systems 

The key challenge for the next generation of radio-access networks is 
managing the massive number of infrequently communicating sensors. 
Current solutions are inadequate due to their reliance on centralized 
resource allocation, which orthogonalizes access for different users. For 
MTC, this approach is unacceptable as it results in significant control-
layer overhead and latency. Therefore, a new communication solution is 
required. 

As evidence, we will first demonstrate the performance of the two-
step RA procedure presented above. Following the exposition in [4], 
we reproduce several numerical results from the referenced manuscript. 
The objective of the numerical setup is to highlight the significant gap 
between the energy efficiency of the two-step RA procedure and the 
achievable energy efficiency in a massive RA scenario (see Theorem 4.1). 
Energy efficiency is defined as the minimum energy required to transmit 
a single information bit (or energy per bit) under certain quality of 
service (QoS) constraints. The exact definition of energy efficiency will 
be provided in Section 3. 

The technical details of this numerical experiment are as follows. The 
preamble dictionary consists of 64 Zadoff-Chu sequences with varying 
lengths. For short preambles, the length is 139, while for long preambles, 
it is 839. Each preamble corresponds to a PO. Within a PO, data is 
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transmitted using low-density parity check (LDPC) codes as specified in 
5G NR standards. The additive white Gaussian noise (AWGN) channel 
model is considered, and reference signals are not required in this setup. 
The system parameters outlined in Table 1.1, and the energy efficiency 
as a function of the number of simultaneously active users is presented 
in Figure 1.4. 

Table 1.1: Simulation parameters for numerical comparison presented in Figure 1.4 

Parameter Value 
Preamble length 

Error-correcting code 
Modulation 

Decoding algorithm 
Pilot configuration 
Number of POs 

Overall frame length 

2 × 139 (A1 configuration) 
(500, 100) LDPC (5G NR base graph 2) 
Quadrature phase-shift keying (QPSK) 

TIN / TIN-SIC 
Pilot-free 
64 

16278 channel uses 

Current schemes that are part of existing standards exhibit signifi-
cantly lower energy efficiency compared to theoretical bounds. Moreover, 
the two-step RA procedure proposed by 3GPP remains optional. The 
lack of energy-efficient schemes has motivated many researchers to 
extensively study this new massive MTC scenario. 

In this monograph, we outline the core ideas behind these theoretical 
bounds and provide a brief overview of the challenges in designing low-
complexity schemes. We demonstrate that some of these schemes closely 
approach the achievability bounds. 

In our introductory example in Figure 1.4, we considered the simple 
case of a Gaussian channel. However, real wireless channels are affected 
by multipath propagation, which introduces additional random effects 
during signal transmission. In the subsequent sections, we address 
various challenges posed by real propagation environments. 
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Figure 1.4: Energy efficiency of the proposed 2-step RA procedure in 5G NR versus 
achievability bound on energy efficiency [5]. AWGN channel model, reference signals 
are not considered [4]. 

1.3 Monograph Organization 

The monograph is organized as follows: 

• Section 2 explores MAC problems and their formulations, empha-
sizing the differences between classical MAC scenarios and the 
unsourced random access (URA) setup. 

• Section 3 defines the URA problem and introduces per-user prob-
ability of error (PUPE), the primary measure of the system’s 
operational quality. It also revisits the definition of energy effi-
ciency (see (3.3)) previously discussed in Figure 1.4. Additionally, 
this section establishes a connection between the URA problem 
and the well-known compressed sensing (CS) problem. 

• Section 4 investigates the fundamental limits of energy efficiency 
under PUPE constraints in the Gaussian channel. 
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• Section 5 focuses on low-complexity schemes for the Gaussian
channel.

• Section 6 examines more realistic channels with fading effects,
specifically the quasi-static Rayleigh fading channel. It covers
scenarios where the BS is equipped with either a single antenna
or multiple antennas.

• Section 7 concludes the monograph by highlighting the remaining
challenges and open problems.
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