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Abstract

One of the most important primitive data types in modern data pro-
cessing is text. Text data are known to have a variety of inconsisten-
cies (e.g., spelling mistakes and representational variations). For that
reason, there exists a large body of literature related to approximate
processing of text. This monograph focuses specifically on the problem
of approximate string matching, where, given a set of strings S and a
query string v, the goal is to find all strings s ∈ S that have a user spec-
ified degree of similarity to v. Set S could be, for example, a corpus of
documents, a set of web pages, or an attribute of a relational table. The
similarity between strings is always defined with respect to a similar-
ity function that is chosen based on the characteristics of the data and
application at hand. This work presents a survey of indexing techniques
and algorithms specifically designed for approximate string matching.
We concentrate on inverted indexes, filtering techniques, and tree data
structures that can be used to evaluate a variety of set based and edit
based similarity functions. We focus on all-match and top-k flavors of
selection and join queries, and discuss the applicability, advantages and
disadvantages of each technique for every query type.
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1

Introduction

Arguably, one of the most important primitive data types in modern
data processing is strings. Short strings comprise the largest percentage
of data in relational database systems, long strings are used to repre-
sent proteins and DNA sequences in biological applications, as well as
HTML and XML documents on the Web. In fact this very monograph
is safely stored in multiple formats (HTML, PDF, TeX, etc.) as a col-
lection of very long strings. Searching through string datasets is a fun-
damental operation in almost every application domain. For example,
in SQL query processing, information retrieval on the Web, genomic
research on DNA sequences, product search in eCommerce applica-
tions, and local business search on online maps. Hence, a plethora of
specialized indexes, algorithms, and techniques have been developed
for searching through strings.

Due to the complexity of collecting, storing and managing strings,
string datasets almost always contain representational inconsistencies,
spelling mistakes, and a variety of other errors. For example, a represen-
tational inconsistency occurs when the query string is ‘Doctors With-
out Borders’ and the data entry is stored as ‘Doctors w/o Borders’. A
spelling mistake occurs when the user mistypes the query as ‘Doctors

1
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2 Introduction

Witout Borders’. Even though exact string and substring processing
have been studied extensively in the past and a variety of efficient string
searching algorithms have been developed, it is clear that approximate
string processing is fundamental for retrieving the most relevant results
for a given query, and ultimately improving user satisfaction.

How many times have we posed a keyword query to our favorite
search engine, only to be confronted by a search engine suggestion for
a spelling mistake? In a sense, correcting spelling mistakes in the query
is not a very hard problem. Most search engines use pre-built dictio-
naries and query logs in order to present users with meaningful sugges-
tions. On the other hand though, even if the query is correct (or the
search engine corrects the query) spelling mistakes and various other
inconsistencies can still exist in the web pages we are searching for,
hindering effective searching. Efficient processing of string similarity as
a primitive operator has become an essential component of many suc-
cessful applications dealing with processing of strings. Applications are
not limited to the realm of information retrieval and selection queries
only. A variety of other applications heavily depend on robust process-
ing of join queries. Such applications include, but are not limited to,
record linkage, entity resolution, data cleaning, data integration, and
text analytics.

The fundamental approximate text processing problem is defined as
follows:

Definition 1.1 (Approximate Text Matching). Given a text T
and a query string v one desires to identify all substrings of T that
have a user specified degree of similarity to v.

Here, the similarity of strings is defined with respect to a particular
similarity function that is chosen based on specific characteristics of
the data and application at hand. There exist a large number of simi-
larity functions specifically designed for strings. All similarity functions
fall under two main categories, set based and edit based. Set based simi-
larity functions (e.g., Jaccard, Cosine) consider strings as sets of tokens
(e.g., q-grams or words), and the similarity is evaluated with respect
to the number, position and importance of common tokens. Edit based
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3

similarity functions (e.g., Edit Distance, Hamming) evaluate the simi-
larity of strings as a function of the total number of edit operations that
are necessary to convert one string into the other. Edit operations can
be insertions, deletions, replacements, and transpositions of characters
or tokens.

Approximate text processing has two flavors, online and offline. In
the online version, the query can be pre-processed but the text can-
not, and the query is answered without using an index. A survey on
existing work for this problem was conducted by Navarro [54]. In the
offline version of the problem the text is pre-processed and the query
is answered using an index. A review of existing work for this problem
was conducted by Chan et al. [16].

Here, we focus on a special case of the fundamental approximate
text processing problem:

Definition 1.2 (Approximate String Matching). Given a set of
strings S and a query string v, one desires to identify all strings s ∈ S
that have a user specified degree of similarity to v.

The approximate string matching problem (which is also referred to as
the approximate dictionary matching problem in related literature) is
inherently simpler than the text matching problem, since the former
relates to retrieving strings that are similar to the query as a whole,
while the latter relates to retrieving strings that contain a substring that
is similar to the query. Clearly, a solution for the text matching problem
will yield a solution for the string matching problem. Nevertheless,
due to the simpler nature of approximate string matching, there is
a variety of specialized algorithms for solving the problem that are
faster, simpler, and with smaller space requirements than well-known
solutions for text matching. The purpose of this work is to provide an
overview of concepts, techniques and algorithms related specifically to
the approximate string matching problem.

To date, the field of approximate string matching has been devel-
oping at a very fast pace. There now exists a gamut of specialized data
structures and algorithms for a variety of string similarity functions
and application domains that can scale to millions of strings and can
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4 Introduction

provide answers at interactive speeds. Previous experience has shown
that for most complex problems there is almost never a one size fits all
solution. Given the importance of strings in a wide array of applica-
tions, it is safe to assume that different application domains will benefit
from specialized solutions.

There are four fundamental primitives that characterize an indexing
solution for approximate string matching:

• The similarity function: As already discussed, there are two
types of similarity functions for strings, set based and edit
based.
• String tokenization: Tokenization is the process of decompos-

ing a string into a set of primitive components, called tokens.
For example, in a particular application a primitive compo-
nent might refer to a word, while in some other application a
primitive component might refer to a whole sentence. There
are two fundamental tokenization schemes, overlapping and
non-overlapping tokenization.
• The query type: There are two fundamental query types,

selections and joins. Selection queries retrieve strings sim-
ilar to a given query string. Join queries retrieve all simi-
lar pairs of strings between two sets of strings. There are
also two flavors of selection and join queries, all-match and
top-k queries. All-match queries retrieve all strings (or pairs
of strings) within a user specified similarity threshold. Top-k
queries retrieve the k most similar strings (or pairs of strings).
• The underlying index structure: There are two fundamental

indexing schemes, inverted indexes and trees. An inverted
index consists of a set of lists, one list per token in the token
universe produced by the tokenization scheme. A tree orga-
nizes strings into a hierarchical structure specifically designed
to answer particular queries.

Every approximate string indexing technique falls within the space
of the above parametrization. Different parameters can be used to
solve a variety of problems, and the right choice of parameters — or
combination thereof — is dependent only on the application at hand.
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This work explains in detail the available choices for each primitive, in
an effort to delineate the application space related to every choice.

For example, consider a relevant document retrieval application that
uses cosine similarity and token frequency/inverse document frequency
weights1 to retrieve the most relevant documents to a keyword query.
The application uses a set based similarity function, implying a word-
based, non-overlapping tokenization for keyword identification, a clear
focus on selection queries, and most probably an underlying inverted
index on keywords. Notice that this particular application is not related
to approximate matching of keywords. A misspelled keyword, either
in the query or the documents, will miss relevant answers. Clearly,
to support approximate matching of keywords, a relevant document
retrieval engine will have to use a combination of primitives.

As another example, consider an application that produces query
completion suggestions interactively, as the user is typing a query in
a text box. Usually, query completion is based on the most popular
queries present in the query logs. A simple way to enable query sugges-
tions based on approximate matching of keywords as the user is typing
(in order to account for spelling mistakes) is to use edit distance to
match what the user has typed so far as an approximate substring of
any string in the query logs. This application setting implies an edit
based similarity, possibly overlapping tokenization for enabling identi-
fication of errors on a per keyword level, focus on selection queries, and
either an inverted index structure built on string signatures tailored for
edit distance, or specialized trie structures.

The monograph is organized into eight sections. In the first four
sections we discuss in detail the fundamental primitives that charac-
terize any approximate string matching indexing technique. Section 2
presents in detail some of the most widely used similarity functions
for strings. Section 3 discusses string tokenization schemes. Section 4
gives a formal definition of the four primitive query types on strings.
Finally, Section 5 discusses the two basic types of data structures used
to answer approximate string matching queries. The next three sections
are dedicated to specialized indexing techniques and algorithms for

1 Token frequency is also referred to as term frequency.
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6 Introduction

approximate string matching. Section 6 discusses set based similarity
algorithms using inverted indexes. Section 7 discusses set based simi-
larity algorithms using filtering algorithms. Finally, Section 8 discusses
edit based similarity algorithms using both inverted indexes and filter-
ing algorithms. Section 9 concludes the monograph.
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