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Abstract

Crowdsourcing and human computation enable organizations to accomplish
tasks that are currently not possible for fully automated techniques to com-
plete, or require more flexibility and scalability than traditional employment
relationships can facilitate. In the area of data processing, companies have
benefited from crowd workers on platforms such as Amazon’s Mechanical
Turk or Upwork to complete tasks as varied as content moderation, web con-
tent extraction, entity resolution, and video/audio/image processing. Several
academic researchers from diverse areas ranging from the social sciences to
computer science have embraced crowdsourcing as a research area, result-
ing in algorithms and systems that improve crowd work quality, latency, or
cost. Given the relative nascence of the field, the academic and the practi-
tioner communities have largely operated independently of each other for the
past decade, rarely exchanging techniques and experiences. In this book, we
aim to narrow the gap between academics and practitioners. On the academic
side, we summarize the state of the art in crowd-powered algorithms and
system design tailored to large-scale data processing. On the industry side,
we survey 13 industry users (e.g., Google, Facebook, Microsoft) and 4 mar-
ketplace providers of crowd work (e.g., CrowdFlower, Upwork) to identify
how hundreds of engineers and tens of million dollars are invested in various
crowdsourcing solutions. Through the book, we hope to simultaneously intro-
duce academics to real problems that practitioners encounter every day, and
provide a survey of the state of the art for practitioners to incorporate into
their designs. Through our surveys, we also highlight the fact that crowd-
powered data processing is a large and growing field. Over the next decade,
we believe that most technical organizations will in some way benefit from
crowd work, and hope that this book can help guide the effective adoption of
crowdsourcing across these organizations.

A. Marcus and A. Parameswaran. Crowdsourced Data Management: Industry and Academic
Perspectives. Foundations and Trends R© in Databases, vol. 6, no. 1-2, pp. 1–161, 2013.
DOI: 10.1561/1900000044.
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1
Introduction

We are drowning in information, while starving for wisdom.

— E. O. Wilson

With the advent of the “data deluge” [176], organizations world-wide
have been struggling with designing algorithms and systems to better pro-
cess and analyze the massive quantities of data collected every day. It is es-
timated that 80% of this data is unstructured [205, 196], consisting largely
of images, videos, and raw text. While there have been significant advances
in automated mechanisms for interpreting and extracting information from
unstructured data, algorithms to fully comprehend unstructured data have not
been developed yet. It is widely acknowledged that we are at least several
decades away from this goal [162, 120].

Humans, on the other hand, are able to analyze certain aspects of un-
structured data with relative ease. Humans have an innate understanding of
language, speech, and images; they are able to process, reason about, and
provide solutions to problems faced often in managing and processing un-
structured data. Moreover, the abundance of cheap and reliable internet con-
nectivity throughout the world has given rise to crowdsourcing or crowd work
marketplaces, such as Mechanical Turk [10] and Upwork [17], enabling the
inclusion of human crowd workers in on-demand data processing tasks.

2
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3

In particular, crowdsourcing has been applied in the following large-scale
unstructured data processing applications (among others):

• Content Moderation. Workers in crowdsourcing marketplaces are
often consulted for content moderation of images uploaded on web
sites [5]. That is, humans are asked to determine whether user-uploaded
images are appropriate for viewing by a general audience.

• Web Extraction. Crowd workers also contribute to tasks like informa-
tion extraction from web sites. That is, workers are asked to provide
specific information by looking up web sites and finding, say, phone
numbers or prices at restaurants [91]. Workers can aid machines in
semi-automatic information extraction systems—for instance, compa-
nies like Yahoo! [18] use crowdsourcing to build web extraction wrap-
pers, and to verify extracted information [40, 87, 88, 142, 60].

• Search Relevance. Most companies with a search engine, e.g.,
Bing [11], Google [9], and Yahoo!, include crowd workers in evalu-
ating the performance of their search algorithms [26].

• Entity Resolution. Entity Resolution, or deduplication [78] refers to
the problem of identifying if two textual records refer to the same en-
tity. Groupon and Yahoo! both use crowdsourcing for entity resolu-
tion [105, 104, 34].

• Text Processing. Crowdsourcing is used in spam identification [137],
text classification [30, 172], translation [199], and text editing [36].
Crowdsourcing is also being used commercially for transliteration of
documents [20].

• Video and Image Processing. Crowdsourcing is used in video analy-
sis [53], for image labeling [160, 185], and as a visual aid [39].

Unfortunately, in all of these applications, and overall, crowdsourcing can
be subjective or error-prone; it can be time-consuming (crowd workers take
longer than computers); and it can be relatively costly (human workers need
to be paid). Moreover, these three aspects—accuracy, latency, and cost—are
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4 Introduction

correlated in complex ways, making it difficult to optimize the trade-offs
among them while designing data processing algorithms and systems.

As an example of these tradeoffs, consider content moderation of images.
We can ask one human worker to verify if each image is appropriate, but
they may make mistakes. As a result, we may need to ask multiple humans to
verify each image. However, asking multiple human workers has higher mon-
etary cost, and might incur higher latency. Furthermore, we can ask multiple
human workers to verify each image in parallel, or ask humans in sequence.
The former option can incur lower latency, while the latter might have lower
monetary cost since we can choose to not ask subsequent questions based on
worker agreement on answers to previous ones.

With nearly a decade passing since crowdsourcing marketplaces have be-
come commonplace, academic researchers and industry users alike have ex-
plored various mechanisms for orchestrating large scale data processing work
by assembling human workers in workflows that attempt to optimize the three
aspects described above (accuracy, latency, and cost), while also expand-
ing our understanding of what is actually feasible using human workers. On
the one hand, academic researchers have proposed programming languages,
frameworks, systems, and algorithms, and have prototyped creative solutions
to problems that are just now feasible to solve with the advent of crowd-
sourcing. On the other hand, several companies have been founded whose
core business is to explore the use of crowd work for various “unsolvable”
tasks, and many companies have embraced crowd work as a mechanism for
accomplishing what was previously infeasible or inefficient.

However, progress in academia and industry on how to best leverage
crowd work for large scale data processing has largely proceeded indepen-
dently. It is essential that these two communities work in concert with one-
another. Industrial users and marketplace providers have a lot of wisdom to
share about the problems that are the most crucial to solve, which techniques
work well in practice and which don’t, as well as “best-practice” implementa-
tions of workflows involving crowds. Academia has much to say about how to
leverage large scale data processing in an optimized fashion in many settings.

The primary goal of our book is to bridge the gap between crowdsourc-
ing practitioners and academic crowdsourcing researchers. With this goal in
mind, we will:
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5

• summarize the state of the art in research on crowd-powered algorithms
and systems for data processing, and

• survey industry users and marketplace providers of crowd work to iden-
tify their accomplishments and highlight the unsolved problems they
struggle with.

By describing the state-of-the-art in crowd-powered data processing from
academia, we hope to provide a reference for industry participants to see
if academia have solved their problems, and to articulate the areas that have
the most potential for future research. By engaging industry users and mar-
ketplace vendors, we hope to highlight their chief pain-points and concerns,
identify the status quo, and articulate which areas of future research have
the most potential for impact. Identifying the “tried-and-true” methods that
work well in industry settings that are yet to be formally analyzed in academia
would also be valuable for academics. Furthermore, industry and marketplace
vendors can see if they all face the same challenges, or if other industry or
marketplace participants have solved the problems that they face.

Overall, by connecting the marketplace providers, industry users, and
academia, we hope that these groups are educated about the problems and
solutions that each of them has been working on, in order to facilitate more
transparency, more openness, and also the ability to begin a frank dialog about
the problems and the future of crowdsourcing.

A secondary goal of this book is to argue that crowdsourcing is here to
stay. A common criticism in academia is that crowdsourcing is a fad; that
not too many industry users care about crowdsourcing; and that the recent
interest in crowdsourcing is going to disappear in a few years. Our thesis is
that this is simply not the case. As we will find out in the industry portions of
this book, crowdsourcing is an essential ingredient for any company working
with large datasets. Companies are sometimes not willing to talk about how
much they use crowdsourcing because they are either ashamed about admit-
ting that they rely on crowds instead of sophisticated software or hardware, or
paradoxically because they consider it to be their “secret sauce.” Through our
conversations with industry users, we will highlight the hundreds of employ-
ees and tens of millions of dollars that companies invest into crowd work.

A reader might note that in our coverage of industry users and market-
place providers of crowdsourcing, we do not dedicate attention to an impor-
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6 Introduction

tant third group in crowd work: the crowd workers themselves. We first note
that the study of crowd workers is relatively well-explored, with several sem-
inal and ongoing surveys of different crowds over time [161, 99, 177, 165].
Second, our focus in this study is on the gap between industry and academia,
especially as it relates to large-scale data processing, and we did not view
workers as having a large influence on this gap. Understanding and designing
for crowd workers is of utmost importance for the health and future of crowd
work, but given the existing studies of the crowd and our specific research
aims, it will not be the focus of our attention.

1.1 Chapter Summaries

We have structured the book into the following chapters1:

• Background (Remainder of this chapter). To establish fluency in
crowdsourcing or crowd work, we present the lifecycle of an example
task, touching on terminology we will use throughout the book.

• Related work (Chapter 2). The research literature has over half a
decade of contributions on various aspects of of crowdsourcing, and we
summarize many of the fields and papers that have influenced crowd-
powered data processing.

• Crowd-powered algorithms (Chapter 3). At its core, data process-
ing relies on a set of algorithms to filter, sort, summarize, categorize,
enumerate, and join datasets. In this chapter, we summarize the state of
the art of making these algorithms crowd-powered, and highlight some
core models and considerations for crowd-powered algorithm design.

• Crowd-powered systems (Chapter 4). Some of the earliest contribu-
tions to crowd-powered data processing research were database sys-
tems that integrated the concept of humans to optimize and perform

1As you explore the chapters, keep in mind that crowd-powered data processing is an active
and fast-moving field. As new developments arise, we hope to make updates. If you disagree
with anything in the book, or if you as an industry user or marketplace provider wish to tell
us about how this book compares or contrasts with your experiences with crowd work, please
reach out to us at marcua@marcua.net and adityagp@illinois.edu.
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data processing. We summarize these key systems (CrowdDB, Deco,
and Qurk), and identify their approaches to facilitating declarative data
processing.

• Industry user survey: summary (Chapter 5). To get an industry per-
spective, we survey 13 industry users of crowd work ranging from large
Fortune 500 companies to small single-purpose startups. While we find
both creative and common uses, and best-practices around crowd work,
we also identify several areas for future research and development. In
this chapter, we describe our methodology and participants, and sum-
marize our key findings.

• Survey of industry users: crowd statistics and management (Chap-
ter 6). Some of our participants have invested tens of millions of dollars
into thousands of crowd workers and dozens of full-time employees to
refine their crowd-powered data processing workflows. In this chapter,
we provide summary statistics describing the scope of these operations
and their management.

• Survey of industry users: use cases and prior approaches (Chap-
ter 7). To better understand the benefit of crowd work, we ask partici-
pants what their crowd-powered data processing use cases are. We also
ask them to describe prior approaches, if they existed, to solving these
problems.

• Survey of industry users: task quality, worker incentives, and
workflow decomposition (Chapter 8). We conclude our industry sur-
vey by summarizing various design and implementation decisions that
participants told us about. Specifically, we summarize participants’ ap-
proaches to managing quality, worker incentives, and task decomposi-
tion. One key learning was that the most advanced approaches coming
out of academia do not appear to be making their way into industry.

• Marketplace provider survey (Chapter 9). We survey four of the
largest marketplaces that connect crowd workers and industry users to
understand their view of the market. The four providers differ signifi-
cantly in their methods, scope, and scale, resulting in very different use
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8 Introduction

cases, approaches, and problems. We shed light on the problems facing
marketplace providers, which are not always the same as those facing
industry users.

1.2 Crowdsourcing Background

In this section, we describe the basic concepts underlying crowd work, and
define some common terms we will use throughout the book. We follow this
with a short introduction to crowdsourcing and crowdsourcing marketplaces
using an example task.

1.2.1 Fundamental Concepts

There are many conflicting opinions [153] on how to define crowdsourcing,
and whether crowdsourcing is indeed the same concept as human computa-
tion. We avoid this debate by relying on a paired definition of crowdsourcing
and human computation:

From Luis Von Ahn’s Ph.D. Thesis [182]: “Crowdsourcing (or
Human Computation) is a paradigm that utilizes human process-
ing power to solve problems that computers cannot yet solve.”

We often use crowd work instead of crowdsourcing or human computation,
which also refers to the same concept: using human input to solve problems.

We now describe how we can leverage crowd work. Crowd work typi-
cally operates via crowdsourcing marketplaces, a market-based approach in
which requesters monetarily compensate contributors (or crowds). Alterna-
tively, voluntary or game-based mechanisms provide other motivating fac-
tors that incentivize human input. In this book, we focus primarily on paid
market-based approaches to crowd work.

Crowdsourcing Marketplaces. There are a number of online crowdsourc-
ing marketplaces. The canonical example of a crowdsourcing marketplace
is Amazon’s Mechanical Turk [10] (also referred to as MTurk for short);
other examples include Samasource [14], Upwork [17], Clickworker [2], and
Crowdflower [6]. There are estimated to be over 30 crowdsourcing market-
places, and these marketplaces are growing rapidly. In addition, as we will see
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1.2. Crowdsourcing Background 9

in subsequent sections, many large companies leverage crowdsourcing via in-
ternal crowdsourcing marketplaces, where the scenario is similar, i.e., work-
ers get monetarily compensated for their work, but the workers are employed
in-house or through contractual relationships that companies and workers es-
tablish. Note that these are not strictly crowdsourcing marketplaces in the tra-
ditional sense since these workers have longer-term relationships with com-
panies and are paid a 9–5 wage to work on tasks.

The structure of marketplaces vary, but below, we describe one represen-
tative design that is similar to the design adopted by MTurk. There are two
interfaces for accessing a typical crowdsourcing marketplace. The first is seen
by task requesters, the second is seen by workers.

• The first interface is the one used by the task requesters or task
designers—these are the individuals or teams who have tasks for which
they would like to leverage crowd work. Tasks are typically introduced
with a task definition or description, and often provide a form consist-
ing of text boxes, drop-down menus, or radio buttons to elicit mean-
ingful information from workers. Task designers design suitable tasks,
and they typically specify the monetary reward or compensation asso-
ciated with these tasks to be paid upon completion. Optionally, they
may specify: (a) the assignment, i.e., the number of identical copies of
the same task to be attempted by different individuals independently,
(b) the amount of time allocated for that task before the task “expires,”
or (c) additional criteria (e.g., a spoken language) that individuals who
want to work on these tasks must satisfy.

• The second interface is the one used by crowd workers, or simply work-
ers, to access the entire set of tasks for which they are eligible, and to
complete work on those tasks. Workers can browse the list of available
tasks, pick up tasks that they wish to attempt, and work on them. In
some cases, the matching or assignment to tasks is done automatically.
The same task may be attempted by multiple crowd workers. If so, the
workers work on tasks independently, and each one is compensated on
completion of the task within the specified time limit.

Voluntary or Gaming-based Crowdsourcing. In addition to paid crowd-
sourcing marketplaces, there are other mechanisms by which humans are

Full text available at: http://dx.doi.org/10.1561/1900000044



10 Introduction

Crowd-Powered 
Algorithm / System! Items!

Marketplace!

Tasks! Answers!

Human Workers!

Figure 1.1: Interacting with a Marketplace

incentivized to work on tasks. One such mechanism is to solicit volunteers
to work on tasks for a worthy cause. As an example, volunteers were asked
to help translate tweets during the Haiti earthquake [206], or help identify
galaxies in astronomical images [154, 195]. Yet another mechanism relies on
games [185]. In this mechanism, people play games for fun, without realizing
that the games are, in fact, tasks that need to be solved.

Even though our focus is on crowdsourcing marketplaces, the crowd-
powered algorithms and systems that we talk about can also be used in con-
junction with voluntary or gaming mechanisms, since there is still a limited
budget of human attention that those mechanisms require that can be treated
as analogous to monetary cost in crowdsourcing marketplaces.

1.2.2 Interacting with a Crowdsourcing Marketplace

We now describe how crowd-powered algorithms or systems interact with a
marketplace to create tasks for crowd workers. An informal diagram of the
interaction is shown in Figure 1.1. The algorithms and systems we describe
operate on data items like images, videos, or text, and construct tasks to be
asked to workers. These tasks are generally expressed using HTML markup
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1.2. Crowdsourcing Background 11

Figure 1.2: Filtering Task

for descriptions or examples, and HTML forms for input. Tasks are posted
on the crowdsourcing marketplace using an API specific to the marketplace,
along with worker requirements and payment policies. These tasks are an-
swered by workers independently. Once answers to these tasks are provided
back to the crowd-powered algorithm or system, the algorithm or system may
choose to issue additional tasks once again, or may instead terminate.

Since workers may be concurrently working on different tasks, we can
view the algorithm or system as having workers work on tasks in parallel,
waiting for their responses, then having workers work on additional tasks in
parallel, and so on. However, note that the system can in fact issue new tasks
to the crowdsourcing marketplace before the outstanding ones are complete.

Example Tasks

We show two example tasks, as seen by workers, in Figures 1.2, and 1.3.
Once a crowd worker completes either of these tasks, the worker can submit
their responses to receive compensation for their effort.
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Figure 1.3: Rating Task

The first task consists of a batch of four filtering questions. These ques-
tions check if specific items (in this case, images) satisfy a given filtering
predicate (in this case, whether they do or do not have a watermark). In this
task, notice that only the last image does not have a watermark; while it is
easy to make out the watermark in the first and third images, the watermark
in the second image is much harder to distinguish from the rest of the im-
age, and crowd workers may be more likely to make a mistake on this image
compared to the other images. Thus, ensuring that we get correct answers for
filtering questions on some items may be more difficult than others.

The second task consists of a batch of four rating questions, or questions
requesting ratings for specific items (once again, images) for the predicate
how funny it is. In this task, since humor is subjective, different crowd work-
ers may have different opinions on what constitutes a funny image. Further-
more, some workers may be much more generous than others in providing
high ratings. Thus, given various worker answers, inferring the true rating for
each image is not trivial.
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1.2.3 Terminology

There are several terms we use throughout the book; we collect them here to
serve as an easy reference:

• Crowdsourcing/Human Computation/Crowd Work. Leveraging
human processing power to solve problems that computers cannot yet
solve.

• Marketplace/Platform. The online forum where requesters can post
tasks, and workers can pick up tasks and work on them. We will use
both marketplace and platform to refer to both popular forums such
as Mechanical Turk (see below) or CrowdFlower, as well as in-house
operations where workers work on tasks from 9–5.

• MTurk/Mechanical Turk. One of the popular crowdsourcing market-
places, often used by academics.

• Marketplace Provider. Companies like Mechanical Turk and Crowd-
Flower that provide a marketplace or platform for crowdsourcing.

• Worker/Contributor/Crowd Worker/Human Worker/Contractor.
The human being completing the task at hand.

• Requester/Designer/Developer. The human being or team designing
and developing the task for crowd workers to complete.

• Task definition. The high-level description and implementation of the
task being completed (e.g., Please identify the gender of the person in
each of the following images).

• Task/Item/Unit/Question. A unit of work that a crowd worker must
complete (e.g., Identify the gender of the person in the following image:
(image 1)).

• Interface. This is the view presented to the crowd worker when they
choose to work on a task. This could involve textual descriptions, as
well as forms.

• Answer/Response. The response given by a crowd worker for a task.
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• Assignment. A matching of a worker to a task—this may be done au-
tomatically by the marketplace, or on-demand by the workers, or on-
demand by the requester. Tasks are often assigned redundantly to mul-
tiple workers.

• Microtask. The most popular form of task in traditional crowd work
environments, in which short, relatively precise and often limited re-
sponses are allowed (e.g., multiple choice questions, yes/no questions).

• Macrotask. A task that is higher-level and more freeform, and takes
longer to elicit a response (e.g., Research and write up three pages on
the British banking system).

• Reward/Compensation. The incentive provided to the workers upon
completion of the task.

• Crowd-Powered Algorithm. An algorithm where the unit operations
are performed by crowd workers as an integral component. For exam-
ple, sorting images where crowd workers compare pairs of images.

• Crowd-Powered System. A system or framework that uses crowd
work as an integral component.

• Latency. The time taken by a crowd-powered algorithm or system to
complete.

• Error Rate. The rate at which workers end up answering tasks incor-
rectly. This is typically a number between 0 and 1.

• Worker Quality/Worker Accuracy. One minus the error rate of work-
ers. This is how often workers end up answering tasks correctly.

1.3 Crowdsourcing Best Practices

In as much as there is deep science and research behind effective crowd-
sourced task design, there are also some practices to follow that should
provide good results. Recent work has also cataloged similar best practices
specifically for information retrieval tasks [24]. Here are a few practices to
follow when designing tasks:
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• Decomposition. Break larger tasks down into smaller ones. For exam-
ple, say you wish to find images of cats in a large collection of animal
photos. Avoid asking workers to spend an hour searching for an exam-
ple image of a cat in a stream of photos. Instead, show workers one
image at a time, and ask them whether the photo contains a cat.

• Closed-Ended, Easy to Answer Responses. Opt for well-defined,
closed-ended responses where possible, and pick interactions that make
it as hard to answer a question incorrectly as it is to answer correctly.
Imagine that you wish to identify the key character in a paragraph ex-
cerpted from a book. If you ask workers to fill in the name of the char-
acter in a free response text field, it is easier to leave the field empty
or with unhelpful text than it is to fill in the correct character. Further,
in filling in the correct character, the workers may unwittingly end up
making errors. If you instead create a multiple choice interface where
the characters of the book are pre-populated, selecting the key charac-
ter is as simple as providing an incorrect response.

• Instructions and Examples. Write detailed instructions, and provide
several examples. Most workers appreciate thoughtful step-by-step in-
structions to complete tasks correctly, and find nuanced examples help-
ful so that they can acclimate themselves to how you would complete
various tasks. Providing a list of “do’s” and “don’ts” is also helpful.

• Debug. After you have prototyped a task, have a colleague who is not
familiar with your work complete the task. Watch them complete it and
have them talk you through their understandings and actions to identify
any places for improvement in your interfaces or terminology.

• Pay Fair. Fair pay is as critical in crowd work as it is in any other form
of work. Once you have settled on a task design and implemented it,
find a different colleague that has not seen the task before. Time their
completion of several tasks, and from that, determine how many tasks
per hour you can expect someone to complete. Keep in mind that your
colleagues might have certain subject matter expertise that allow them
to complete tasks faster, and be prepared to correct for poor estimates.
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Based on the expected tasks completed per hour, price your tasks such
that they result in a fair hourly rate. Rates differ by platform and task,
but expect to pay a rate that is higher than the American minimum
wage.

• Respond to Feedback. Either through the platform or through forums
that workers use (e.g., TurkerNation [16]), seek out worker feedback
and respond to it quickly. Expect to iterate on your task design and im-
plementation as you learn from your collaboration with workers [25].

• Manage Quality. Because your instructions might be misleading, and
because workers might make mistakes, you should expect multiple
workers to answer each question/task. If the responses to the task you
have created are closed-ended, send each task assignment to multiple
workers and combine redundant responses. Combine their responses
with simple techniques like majority voting, or more complex ones
that we describe in Section 2.3.2. If instead your task is open-ended
(like typing up free-response text), take multiple workers’ responses
and show them to a different set of workers that can identify the best
responses [36]. Once you have determined which workers tend to ef-
fectively answer questions, provide them with bonuses for their good
work, and offer them future work with you as a reward.

Note that much of this advice applies mostly to microtask-based work, and
won’t all be relevant as tasks become more complex. At a high level, itera-
tively testing your designs and establishing trusted relationships with crowd
workers [165] will improve your experience and theirs, and this advice ap-
plies to any form of crowd work.

1.4 Assumptions in this Book

Crowdsourcing has come to encompass a large corpus of work distribution
mechanisms. For the purposes of this book, we focus primarily on paid
microtask-based crowd work. While our surveys and interviews touch on
other areas of the design space, our primary areas of study for crowd-powerd
data processing systems assume small, well-defined tasks that many workers
have access to on a paid basis through a marketplace provider of crowd work.
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