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Abstract

In the last decade or so we have witnessed a growing interest in process-
ing large data sets on large distributed clusters. The idea was pioneered
by the MapReduce framework, and has been widely adopted by sev-
eral other systems, including PigLatin, Hive, Scope, U-SQL, Dremmel,
Spark and Myria. A large part of the complex data analysis performed
by these systems consists of a sequence of relatively simple query op-
erations, such as joining two or more tables. This survey discusses re-
cent algorithmic developments for distributed data processing. It uses
a theoretical model of parallel processing called the Massively Paral-
lel Computation (MPC) model, which is a simplification of the BSP
model where the only cost is given by the amount of communication
and the number of communication rounds. The survey studies several
algorithms for multi-join queries, for sorting, and for matrix multiplica-
tion, and discusses their relationships and common techniques applied
across the di�erent data processing tasks.

P. Koutris, S. Salihoglu and D. Suciu. Algorithmic Aspects of Parallel Data

Processing. Foundations and Trends R• in Databases, vol. 8, no. 4, pp. 239–370,
2016.
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1
Introduction

In the last decade we have witnessed a huge and growing interest in
processing large data sets on large distributed clusters. This trend be-
gan with the MapReduce framework [31], and has been widely adopted
by several other systems, including PigLatin [69], Hive [83], Scope [24],
Dremmel [65], Spark [91] and Myria [88] to name a few. While the
applications of such systems are diverse (e.g., machine learning, data
analytics), most involve relatively standard data processing tasks, such
as identifying relevant data, cleaning, filtering, joining, grouping, trans-
forming, extracting features, and evaluating results [25, 35].

This has generated great interest in the study of algorithms for
data processing on large distributed clusters. This survey reviews some
of the recent theoretical results on e�cient data processing on large
distributed architectures, as well as some of the relevant classical results
on parallel sorting and parallel matrix multiplication.

The survey begins in Chapter 2 with a review of parallel models
used to analyze algorithms on large distributed clusters. Modern data
analytics run on large, shared-nothing clusters, where the cost of com-
munication during data reshu�ing can dominate the running time. For
example, individual jobs in Cosmos, Microsoft’s distributed file sys-

2
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3

tem, often execute on over 10k nodes [72]. We introduce a very simple
model of parallel computation, called the Massively Parallel Compu-
tation model (MPC) where the cost of a distributed algorithm is mea-
sured in the amount of communication per processor and the number
of communication rounds. This model is a simplification of Valiant’s
Bulk Synchronous Parallel (BSP) model [84], and allows us to separate
the computation cost from the communication cost, and to focus solely
on the latter. In this chapter we introduce the MPC model, then review
several important classical models of parallel computation, and discuss
their connection to the MPC model.

In Chapter 3 we present and analyze two di�erent approaches for
computing in parallel the join of two large relations. Join operations
are the bread and butter of most database processing tasks, and the
support of e�cient join algorithms is a top priority for all major big
data systems. We discuss Parallel Hash join, and Parallel Sort Join.
The preferred algorithm in practice is the Parallel Hash join, because
on most datasets this algorithm is very e�ective and scales up linearly
with the number of processors. However, the Parallel Hash join per-
forms poorly on skewed data, when a large number of records have
the same value of the join attribute and, thus, are hashed to the same
processor. We discuss in detail how to handle skewed data. In contrast,
Parallel Sort join is simpler and less sensitive to skew, but requires
extra communication rounds to do the actual sorting.

Next, we consider multi-join queries, and discuss a variety of hash-
based algorithms in Chapter 4. In the standard architecture of a
database system, a multi-join query is first converted into a query plan,
which is then optimized, and finally the plan is executed. The plan con-
sists of simple operators like join, selection, duplicate elimination, and
each operator creates an intermediate result that, in distributed query
processing, needs to be materialized and re-shu�ed for the next op-
erator. Afrati and Ullman [4] pioneered an alternative approach for
computing a multi-join query on a distributed system, which computes
the query using a single reshu�e operation. Their algorithm, initially
described for the MapReduce system, organizes the processors (which
correspond to reducers in a MapReduce job) in a multidimensional

Full text available at: http://dx.doi.org/10.1561/1900000055



4 Introduction

cube, then partitions each input relation in a sub-cube. The theoretical
aspects of the algorithm have been studied in [17], where the algorithm
was called HyperCube, while extensions to skewed data and to multiple
rounds of communication were further discussed in [18, 57]; these will
be reviewed in this chapter. While these algorithms are appealing be-
cause of their strong theoretical guarantees, modern database systems
compute multi-join queries in traditional ways, by converting the query
into a join plan. We continue the chapter by discussing the theoretical
aspects of join plans, which have a long history in database theory. We
review Yannakakis’ algorithm for computing acyclic queries [90], the
concept of hypertree decomposition [42], and various notions of tree-
width [43, 55], and describe how these have been put together in the
GYM algorithm [3].

In Chapter 5 we discuss a few traditional aspects of parallel sorting
algorithms. Similar to hashing, sorting is a core technique in database
query processing, both in the sequential and in the parallel setting.
Sort-based techniques su�er less than hash-based techniques from skew
in the data. For example, recently Hu, Tao, and Yi [45] have shown how
to use sorting to design a simple join algorithm that is provably optimal
for any input data (reviewed in Chapter 3). In this chapter we review
some fundamental lower bounds for sorting on a distributed system,
and also review three classic parallel sorting algorithms: Batcher’s odd-
even sort [16], Cole’s algorithm [27], and Goodrich’s algorithm [40].

Finally, in Chapter 6 we discuss classic parallel algorithms for ma-
trix multiplication. We focus on multiplication of dense square matri-
ces and adopt the relational view of matrix multiplication as a join
of two tables followed by a group-by-and aggregate computation. Us-
ing techniques similar to those used in proving lower bounds in sort-
ing and multi-join queries, we review the communication and round
lower bounds for matrix multiplication of square and dense matrices.
Then, we review existing algorithms that match these lower bounds.
The chapter ends with a very brief overview of other known results in
linear algebra, such as multiplication of non-square and sparse matri-
ces, or LU and Cholesky matrix factorization.

Table 1.1 summarizes the notations used in the survey.
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5

Table 1.1: Notations Used Throughout the Survey.

Relation Rj

Number of relations ¸

Variable xi

Number of variables k

Query q

Input size IN or N

Output size OUT
Number of processors p

Number of communication rounds r

Load (incoming communication per processor) L

Memory per processor M

Total communication C

Fractional edge cover or edge packing uj

Fractional vertex cover or vertex packing vi

Fractional edge packing number ·ú

Fractional edge covering number flú

Quasi-packing number Âú
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