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ABSTRACT

Enterprises are moving their business critical workloads to
public clouds at an accelerating pace. Cloud data services
for Online Transaction Processing (OLTP), Data Analytics
and NoSQL are essential building blocks for enterprise ap-
plications. Multi-tenancy is a crucial tenet for cloud data
service providers that allows sharing of data center resources
across tenants, thereby reducing cost. In this article we re-
view architectures of today’s cloud data services and iden-
tify trends and challenges that arise in multi-tenant cloud
data services. We survey techniques that have been devel-
oped for enabling elasticity, providing SLAs, ensuring perfor-
mance isolation and reducing cost. We review the emerging
paradigm of serverless databases and point out opportunities
and challenges. We identify open research problems in the
fast-changing landscape of cloud data services.

Vivek Narasayya and Surajit Chaudhuri (2021), “Cloud Data Services: Workloads,
Architectures and Multi-Tenancy”, Foundations and Trends® in Databases: Vol. 10,
No. 1, pp 1–107. DOI: 10.1561/1900000060.
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1
Introduction

The worldwide public cloud database services market is large and grow-
ing rapidly. The wave of cloud adoption is being driven by digital
transformation projects within enterprises that are migrating their
applications to the cloud. According to one market study (MarketRe-
search, 2019), the cloud database services market is estimated to grow
from around USD 12 billion in 2020 to around USD 24.8 billion in
2025. Furthermore, according to a Gartner report in 2019 titled "The
Future of the DBMS Market is Cloud" (Gartner DBMS Future, 2019),
a large percentage (around 68%) of the growth of the overall database
market in 2018 came from cloud databases. This report also estimates
that by 2022 around 75% of all databases will be deployed or migrated
to a cloud platform. Major cloud vendors worldwide that offer public
cloud database services include Amazon Web Services (AWS), Microsoft
Azure, Google Cloud Platform, Alibaba Cloud, and IBM Cloud.

1.1 Workloads

Cloud database services have been developed to meet the diverse needs
of enterprise applications. An overview of the classes of database ser-
vices available in the cloud are shown in Figure 1.1. Relational online

2
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1.1. Workloads 3

Figure 1.1: Cloud database services

transaction processing (OLTP) services enable enterprises to run their
operational workloads spanning multiple industries including ATMs and
electronic transfers in banking, reservation systems for airlines, shopping
carts and sales in retail, and inventory control in manufacturing. OLTP
services are characterized by ability to provide data consistency, high
throughput, and high concurrency. Examples of cloud data services
geared predominantly towards OLTP workloads are Amazon RDS and
Amazon Aurora (Verbitski et al., 2017), Azure SQL Database and
Azure SQL Hyperscale (Antonopoulos et al., 2019), and Google Cloud
SQL and Google Cloud Spanner (Bacon et al., 2017).

While SQL remains a popular language and is widely used, a class
of NoSQL cloud data services have also gained popularity in the last
decade. These services cater to applications that need to primarily store
and query unstructured data using non-relational data models such
as key-value, document, and graph. Examples of such NoSQL cloud
data services include Google BigTable (Chang et al., 2008), Amazon
Dynamo DB (DeCandia et al., 2007), Azure Cosmos DB (A Technical
Overview of Azure Cosmos DB, 2020), MongoDB Atlas (MongoDB
Atlas, 2020) and Apache Cassandra.

Data analytic workloads enable enterprises to derive actionable in-
sights from their data (Chaudhuri et al., 2011). Extract-Transform-Load
(ETL) services enable transforming data from operational and external
sources to prepare for use by analytic services. The industry is seeing

Full text available at: http://dx.doi.org/10.1561/1900000060



4 Introduction

a convergence of data warehousing and Big Data platforms towards a
data lake architecture, where data is stored on low cost blob storage
service in formats optimized for analytic query processing. This data is
analyzed with elastic compute nodes using different query processing
engines. All major cloud vendors now support the data lake architec-
ture. Services such as AWS Redshift (AWS Redshift, 2020), Azure
Synapse (Azure SQL Data Warehouse, 2020), Google BigQuery (Google
BigQuery, 2020) and Snowflake (Dageville et al., 2016) support rela-
tional data warehousing workloads in the cloud. Enterprises also use
Big Data services such as Spark (Zaharia et al., 2010), which uses the
MapReduce paradigm popularized by the Big Data compute engine
Hadoop (Apache Hadoop, 2020)). Spark is used for diverse workloads
such as ETL jobs that prepare data for analysis, and for data analytics
using and statistical and machine learning. Finally, there are several
other cloud data services such as online analytic processing (OLAP)
that supports ad-hoc interactive analysis over multi-dimensional data,
and analytics over streaming data that enables near real-time decision
making.

1.2 Manageability

In the on-premises setting, the customer, typically an enterprise, is
responsible for provisioning and managing the entire stack of both
hardware and software needed to run their database. The stack includes
server machines, storage, networking, virtualization technology such
as virtual machines (VMs) and containers, operating system, database
management system (DBMS) and data. Although, the cost of hardware
alone in on-premises is perceived to be cheaper than in the cloud, the
total cost of ownership taking into account the manageability costs
often make the cloud more attractive for enterprises.

Cloud database services offer improved manageability compared to
on-premises databases. One option for customers is to provision a VM
in the cloud, with a pre-installed image of the DBMS and run their
workload in the VM. Durability of data stored in cloud storage services
is guaranteed. This takes away the burden of managing hardware, VMs,
and storage. Cloud providers are increasingly offering more managed
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1.3. Multi-Tenancy 5

versions of cloud database services. These manageability enhancements
include patching and upgrades of the operating system and DBMS, en-
suring high availability and disaster recovery of the database, automated
backups, and point-in-time recovery and some facets of performance
tuning.

Software-as-a-service vendors such as Salesforce and Microsoft Dy-
namics, that build their ERP and CRM applications on top of cloud
database services, further elevate the degree of manageability provided
to customers. In such SaaS applications, customers have no access to
the underlying databases. While SaaS providers heavily rely on cloud
database providers for manageability, they ultimately bear the responsi-
bility of managing databases including any aspects not supported by the
cloud database. For example, the SaaS provider is typically responsible
for all aspects of performance monitoring and tuning.

Finally, a more recent trend aims to bring the benefits of improved
manageability of the cloud platforms to on-premise databases. Platforms
such as Amazon RDS for VMWare and Azure Stack allow enterprises
to run database instances and storage in an on-premises environment,
but manage administrative tasks such as provisioning, software instal-
lation, patching, backup and monitoring using the same control plane
technology used in the public cloud platform.

1.3 Multi-Tenancy

In on-premises databases the customer owns all hardware resources
in their enterprise data center, and hence the databases . In contrast,
public clouds are multi-tenant. Multi-tenancy is crucial since dedicating
hardware for each tenant is simply not cost effective. In a multi-tenant
cloud data service multiple databases, potentially from different cus-
tomers (a.k.a. tenants), share computing resources of the cloud provider
including CPU, memory and disk resources of a machine and the data
center network.

Cloud providers virtualize the available physical resources of a
machine such as CPU, memory, disk I/O, network I/O, and local
storage into logical units (e.g. VMs, containers). Each tenant’s database
executes within such a logical unit of virtualization. This provides two
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6 Introduction

major benefits to the tenant and the cloud provider. First, virtualization
typically offers a certain degree of security and performance isolation
between tenants. For instance, virtualization technology may enforce
resource governance mechanisms to reduce impact of a noisy neighbor
on the performance of a tenant. Second, virtualization of resources is
the key to enabling multi-tenancy since multiple databases can now be
consolidated onto a single machine (node) while still ensuring security
and performance isolation. Consolidation is crucial for enabling cloud
providers to lower the cost of providing the service, in particular by
reducing the capital expenditure (CapEx), since increased consolidation
means they need to purchase fewer servers to serve the same number of
databases. Thus, multi-tenancy, is a core tenet of cloud databases, and
indeed cloud computing.

For a cloud database provider, a fundamental design choice is deter-
mining what virtualization technology to use so as to suitably balance
security, performance and cost considerations. In practice, they employ
a variety of technology ranging from VMs, containers, operating system
processes, logical containers within a DBMS process, to even sharing
tables within a single database. The choice, in turn, has a big impact
on the quality of service, how resources are managed and the cost of
running the service.

1.4 Consumption models

The most widely used consumption model in the cloud are provisioned
databases. At the time the database is created, the tenant specifies a
fixed set of resources that is promised to the database. The tenant pays
for the fixed set of resources whether or not they use them. Such a
consumption model is attractive for enterprises workloads since they
offer the assurance that resources are always available.

More recently, cloud providers have started to offer serverless data-
bases, which offer a different consumption model. Tenants no longer need
to provision resources ahead of time. Rather, the cloud provider acquires
and releases resources in response to demands of the database workload,
and tenants only pay for resources that their workloads actually use.
To enable good performance for serverless databases at low cost, cloud
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1.5. Scope and outline of this article 7

providers need to develop resource management techniques that are
elastic and efficient.

1.5 Scope and outline of this article

Today’s data center architectures, multi-tenancy and novel consumption
models bring new requirements that do not exist, or are not as important,
in on-premise database systems. These requirements have led to new
technical challenges and significant changes in the software architecture
of databases.

1. Quality of Service and Pricing: Customers of cloud database ser-
vices may have varying needs of quality of service for performance,
availability and cost. There are different kinds of service-level
objectives (SLOs) that cloud service providers strive to achieve.
For some services, providers guarantee an SLA for availability or
performance. Similarly, there are different models of pricing of
database services. These SLAs and pricing depends on several
factors including multi-tenancy.

2. Resource management: Multi-tenancy requires that the resources
in a datacenter be managed so as to ensure that each tenant
achieves the performance and availability SLOs despite sharing
resources with other tenants. This gives rise to technical challenges
in managing clusters of machines, performance isolation, resource
estimation, resource scheduling, and placement and migration of
databases within a cluster of machines.

3. Cost: The success of cloud data services crucially depends on
cost of goods sold (COGS) for the cloud provider and the total
cost of ownership (TCO) for the tenant. As a consequence, sev-
eral techniques have been developed such as resource harvesting
and resource overcommitting, which reduces capital expenditure
(CapEx), service intelligence, which reduced operating expenditure
(OpEx), and auto-tuning functionality, which reduces resource
consumption and TCO for tenants.
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8 Introduction

4. Security: Multi-tenancy in cloud database gives rise to challenges
in security such as preventing malicious tenants or system and
database administrators from gaining access to data.

This article focuses on state-of-the-art public cloud data services
for Relational OLTP, Relational and Big Data Analytics, and NoSQL
workloads. In Chapter 2, we review these workloads, and discuss the
architectures of modern cloud data services, drawing contrast among
services across multiple cloud providers and academic research where
appropriate. In Chapter 3 we provide the background of different models
of multi-tenancy that have been adopted by cloud databases. Chapter 4
focuses on the quality of service guarantees offered in commercial cloud
data services and novel proposals from the research literature. We
also discuss pricing options and the opportunities that they enable. In
Chapter 5 we discuss the challenges and solutions for the key issues
in resource management: cluster management, performance isolation,
resource scheduling, and resource estimation. In Chapter 6 we review
techniques for reducing cost for customers and providers of cloud data
services through techniques such as overcommit, resource harvesting
and auto-tuning. In Chapter 7, we review the emerging paradigm of
serverless databases, which aim to raise the level of abstraction for
provisioning and elasticity in the cloud along with pay-per-use billing.

We have made an attempt to discuss techniques developed both in
industry as well as academic research. In each chapter of this article, we
conclude with our observations and a set of open technical challenges
on that topic. In Chapter 8 we conclude with a discussion of open issues
that go beyond the specific topics discussed in individual chapters. We
note that although security in cloud data services is an important topic
in its own right, it is beyond the scope of this article.
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