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ABSTRACT

Differential privacy is a promising approach to formalizing
privacy—that is, for writing down what privacy means as a
mathematical equation. This book is provides overview of
differential privacy techniques for answering database-style
queries. Within this area, we describe useful algorithms and
their applications, and systems and tools that implement
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1
Introduction

Differential privacy is a promising approach to formalizing privacy—that
is, for writing down what privacy means as a mathematical equation.
The definition of differential privacy acts as a bridge between societal
notions of privacy and the mathematical properties of privacy-preserving
algorithms—we can prove that a specific algorithm satisfies differential
privacy, and then argue separately that the definition is a “good” ap-
proximation of society’s informal notions of privacy. Differential privacy
has been successful because it seems to serve particularly well in this
role—it is the best mathematical model of privacy that we know of.

This book is intended to serve as an overview of the state-of-the-
art in techniques for differential privacy. We focus in particular on
techniques for answering database-style queries, on useful algorithms
and their applications, and on systems and tools that implement them.
While we do describe the formal properties of the techniques we cover,
our focus is not on theoretical results.

What is privacy? In this book, we use the term privacy to refer to
situations in which an adversary is not able to learn too much about
any one individual. When the adversary learns too much about an

2

Full text available at: http://dx.doi.org/10.1561/1900000066



3

individual, we say that privacy has been lost. One trivial solution for
privacy is to prevent the adversary from learning anything—but this
approach makes it pointless to collect and analyze data in the first
place.

The techniques we explore in this book are ones that allow the
adversary to learn properties of the population while hiding information
specific to individuals. Such techniques allow us to learn useful informa-
tion from sensitive data, while at the same time protecting the privacy
of the individuals who contributed it.

What is privacy not? Privacy properties are often conflated with
security properties. Though they are related, they are distinct in im-
portant ways. Common security properties include confidentiality (that
an adversary learns nothing about the secret data) and integrity (that
an adversary is not capable of corrupting the system’s output).

Privacy-preserving algorithms do not necessarily satisfy either of
these properties. Differentially private algorithms intentionally reveal
some information to the adversary; the goal of differential privacy is to
control what can be learned from that information.

Similarly, techniques for enforcing security properties do not neces-
sarily ensure privacy. In particular, most techniques for security control
who can view the data—not what information they can learn from
it. Encrypting a dataset, for example, provides “all-or-nothing” access
to its information—those without the key learn nothing, while those
with the key learn everything, including information specific to indi-
viduals. Encryption, by itself, is not capable of making the distinction
described above between properties of the population and properties of
individuals.

However, security techniques can complement privacy techniques
in important ways. In particular, such techniques allow us to target
alternative threat models for differentially private algorithms. For ex-
ample, many systems for differential privacy collect raw sensitive data
on a central server, and assume the server will not be compromised.
If the server is hacked, however, then the guarantee of differential pri-
vacy may be violated. Encrypting this data may help ensure that only
differentially private results are ever made public—even if the server
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4 Introduction

holding the data is compromised. Complementing differential privacy
thus allows us to adjust the threat model to protect against a stronger
adversary than before. We discuss combining differential privacy with
security techniques in Chapter 9.

Why differential privacy? Differential privacy is the latest in a series
of approaches for building privacy-preserving algorithms. The most
common technique for releasing data while preserving privacy is de-
identification (sometimes called anonymization), which involves remov-
ing identifying information from the data. De-identification appeals
to our intuitions about privacy, but numerous results suggest that re-
identification attacks on de-identified data are often possible (Sweeney,
2000; Dinur and Nissim, 2003).

More rigorous techniques, like k-Anonymity (Sweeney, 2002) and
ℓ-Diversity (Machanavajjhala et al., 2007), were developed to address
this shortcoming by quantifying the “uniqueness” of an individual
within a dataset. However, even these techniques are not compositional—
releasing a single k-Anonymized dataset might provide strong privacy
protection, but releasing two such datasets may enable an adversary to
re-identify individuals in the data.

Differential privacy is attractive because in addition to closely ap-
proximating our informal notions of privacy, it is compositional. Compo-
sitionality means that if two data releases individually provide certain
levels of differential privacy, then we can bound the cumulative privacy
loss of both releases. Differential privacy is the first rigorous approach
to privacy with this important property.

What does differential privacy protect? The goal of differential pri-
vacy is to make the following promise: if you participate in a differentially
private analysis of data, you will not suffer any additional harm as
a result. Roughly speaking, the mathematical definition of differential
privacy achieves this goal by requiring that the outcome of any differen-
tially private analysis is the same whether or not you participate (this
notion is formalized in Chapter 2).

Importantly, this guarantee does not necessarily prevent an adversary
from learning details about an individual—particularly when those
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details could have been learned without the individual’s participation
in the analysis. For example, if a differentially private study concludes
that all people over age 50 enjoy playing tennis, then an adversary may
infer that a specific 52-year-old enjoys the sport. Differential privacy
does not prevent this situation, because it is possible whether or not
the specific 52-year-old participates in the study.

What are the limits of differential privacy? A clear tension tension
exists between revealing information about a dataset and protecting
the privacy of its individuals—revealing too many properties of the
data with too much accuracy must necessarily violate privacy. This
idea—now often called the database reconstruction theorem—imposes
upper bounds on what it is possible to learn before privacy is violated
(Dinur and Nissim, 2003). Navigating this tension is a key part of
designing differentially private algorithms, which typically have the
goal of releasing the most accurate possible statistics while preserving
privacy.

Why use differential privacy in database systems? Today’s informa-
tion systems collect and process vast amounts of data, and the majority
of it flows into databases (relational or otherwise). These database sys-
tems are specifically designed to collect, store, and query data, and have
been optimized for that task. If we would like to enable an analysis of
sensitive data with differential privacy, it is logical to develop techniques
that work for database systems, because that’s where the private data
is.

However, integrating differentially private techniques with database
systems presents significant challenges—many of which are discussed
later in this book. In particular, a primary goal of most database systems
is to abstract away execution details, so that analysts may focus on
the semantics of the queries they write instead of worrying about how
they will be executed. But satisfying differential privacy requires careful
control over the details of how a query is executed, which sometimes
breaks this abstraction.

The techniques covered in this book represent significant progress
towards building differentially private database systems. They differ in
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6 Introduction

terms of their capabilities and the interfaces they present to the analyst,
and none matches perfectly with the traditional abstractions used in
relational databases. Indeed, significant challenges remain in achieving
that goal—we discuss these in Chapter 10—and we may never get all
the way there. On the other hand, the approaches described in this book
have already resulted in useful, deployable systems, and we hope they
will pave the way towards increasing adoption of differential privacy in
practice.

Summary & Additional resources. This book focuses on techniques,
algorithms, and systems for answering database-style queries with differ-
ential privacy. This area is just one part of the larger field of research in
differential privacy. For an introduction to the theoretical foundations
of differential privacy, we refer the reader to the excellent reference by
Dwork & Roth (Dwork, Roth, et al., 2014). We provide additional ref-
erences to more detailed descriptions of smaller sub-areas of differential
privacy throughout this book.

The rest of the book is organized into three parts. The first part de-
fines our setting and provides background: Chapter 2 describes the basics
of differential privacy, and Chapter 3 describes databases and queries.
Section 3.6 summarizes the specific techniques covered in the book. The
second part—Chapters 4, 5, 6, and 7—describes specific techniques,
categorized by application area. The third part describes progress and
challenges in building differentially-private systems: Chapter 8 describes
frameworks for building such systems, Chapter 9 describes the use
of security techniques to support privacy, and Chapter 10 discusses
implementation issues and open challenges.
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