
More Modern B-Tree
Techniques

Full text available at: http://dx.doi.org/10.1561/1900000070

Other titles in Foundations and Trends® in Databases

Algorithmic Aspects of Parallel Data Processing
Paraschos Koutris, Semih Salihoglu and Dan Suciu
ISBN: 978-1-68083-406-2

Data Infrastructure for Medical Research
Thomas Heinis and Anastasia Ailamaki
ISBN: 978-1-68083-348-5

Main Memory Database Systems
Franz Faerber, Alfons Kemper, Per-Ake Larson, Justin Levandoski,
Thomas Neumann and Andrew Pavlo
ISBN: 978-1-68083-324-9

Query Processing on Probabilistic Data: A Survey
Guy Van den Broeck and Dan Suciu
ISBN: 978-1-68083-314-0

Big Graph Analytics Platforms
Da Yan, Yingyi Bu, Yuanyuan Tian and Amol Deshpande
978-1-68083-242-6

Full text available at: http://dx.doi.org/10.1561/1900000070

More Modern B-Tree Techniques

Goetz Graefe
Google Inc.

GoetzG@google.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000070

Foundations and Trends® in Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

G. Graefe. More Modern B-Tree Techniques. Foundations and Trends® in Databases,
vol. 13, no. 3, pp. 169–249, 2024.

ISBN: 978-1-63828-373-7
© 2024 G. Graefe

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000070

Foundations and Trends® in Databases
Volume 13, Issue 3, 2024

Editorial Board

Editor-in-Chief
Joseph M. Hellerstein
University of California at Berkeley
United States

Surajit Chaudhuri
Microsoft Research, Redmond
United States

Editors

Azza Abouzied
NYU-Abu Dhabi

Gustavo Alonso
ETH Zurich

Mike Cafarella
University of Michigan

Alan Fekete
University of Sydney

Ihab Ilyas
University of Waterloo

Andy Pavlo
Carnegie Mellon University

Sunita Sarawagi
IIT Bombay

Full text available at: http://dx.doi.org/10.1561/1900000070

Editorial Scope
Foundations and Trends® in Databases publishes survey and tutorial articles
in the following topics:

• Data Models and Query Lan-
guages

• Query Processing and Optimiza-
tion

• Storage, Access Methods, and
Indexing

• Transaction Management, Con-
currency Control and Recovery

• Deductive Databases

• Parallel and Distributed
Database Systems

• Database Design and Tuning

• Metadata Management

• Object Management

• Trigger Processing and Active
Databases

• Data Mining and OLAP

• Approximate and Interactive
Query Processing

• Data Warehousing

• Adaptive Query Processing

• Data Stream Management

• Search and Query Integration

• XML and Semi-Structured
Data

• Web Services and Middleware

• Data Integration and Exchange

• Private and Secure Data Man-
agement

• Peer-to-Peer, Sensornet and Mo-
bile Data Management

• Scientific and Spatial Data Man-
agement

• Data Brokering and Pub-
lish/Subscribe

• Data Cleaning and Information
Extraction

• Probabilistic Data Management

Information for Librarians

Foundations and Trends® in Databases, 2024, Volume 13, 4 issues. ISSN
paper version 1931-7883. ISSN online version 1931-7891. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000070

Contents

1 Introduction 2

2 Modern B-Tree Techniques 4

3 Tree Structure 11
3.1 In-Page Organization and Compression 11
3.2 Learned Indexes . 14
3.3 Write-Optimized B-Trees, Foster B-Trees 15
3.4 Root-to-Leaf Traversals 19
3.5 Self-Repairing B-Trees . 21
3.6 Deferred Updates and Deferred Index Optimization 24
3.7 Summary of Tree Structure Improvements 26

4 Insertion-Optimized B-Trees 27
4.1 Tradeoffs in Insertion-Optimized B-Trees 30
4.2 Merge Optimizations . 31
4.3 Search Optimizations . 32
4.4 Storage Structures . 35
4.5 Continuous Merging with Staggered Key Ranges 36
4.6 Summary of Insertion-Optimized B-Trees 42

Full text available at: http://dx.doi.org/10.1561/1900000070

5 Query Processing 43
5.1 Grouping and Aggregation During Run Generation 43
5.2 Wide Merging During the Final Merge Step 45
5.3 Index Intersection . 46
5.4 Index Joins . 47
5.5 Prefix Truncation and Offset-Value Coding 48
5.6 Summary of Query Processing 49

6 Concurrency Control 50
6.1 Lock Scopes . 51
6.2 Locking in Multi-Version Storage 52
6.3 Lock Durations . 54
6.4 Lock Acquisition Sequences 56
6.5 Concurrency Control Within Insertion-Optimized B-Trees . 59
6.6 Summary of Concurrency Control 60

7 In-Memory B-Trees 61
7.1 Applications of In-Memory B-Trees 61
7.2 B-Tree Structure in Memory 63
7.3 Low-Level Concurrency Control 66
7.4 High-Level Concurrency Control 68
7.5 Failures and Recovery . 70
7.6 Summary of In-Memory B-Trees 72

8 Summary and Conclusions 73

Acknowledgements 75

References 76

Full text available at: http://dx.doi.org/10.1561/1900000070

More Modern B-Tree Techniques
Goetz Graefe

Google Inc., USA; GoetzG@google.com

ABSTRACT

An earlier survey of modern b-tree techniques is now over
a decade old. Obviously, it lacks descriptions of techniques
invented and published during this time. Just as impor-
tantly, it lacks descriptions of insertion-optimized b-trees in
the forms of log-structured merge-trees and stepped-merge
forests, which seem to have become almost as ubiquitous as
b-trees themselves. This monograph complements the earlier
survey in order to bring the combined contents up-to-date.

Goetz Graefe (2024), “More Modern B-Tree Techniques”, Foundations and Trends®

in Databases: Vol. 13, No. 3, pp 169–249. DOI: 10.1561/1900000070.
©2024 G. Graefe

Full text available at: http://dx.doi.org/10.1561/1900000070

1
Introduction

B-tree indexes have been ubiquitous in databases for decades [11].
Their contribution to efficient database query processing can hardly be
overstated. An earlier survey of modern b-tree techniques [29] has been
widely used for education and reference. Unfortunately, it omits some
of the techniques known then and of course those invented since. This
monograph is intended to complement this earlier survey and to bring
the combined contents more up-to-date.

Section 2 summarizes some of the highlights from this earlier sur-
vey [29]. It is intended as a motivation for reading the earlier survey, not
as a substitute. Section 3 adds new techniques for tree structures. After
a short discussion on in-page formats, a common foundation for further
techniques is a reversal from Blink-trees and from multiple pointers to
each b-tree node. A single pointer to each b-tree node enables write-
optimized b-tree, pointer swizzling in a database buffer pool, foster
b-trees, self-repairing b-trees, and more. This section also discusses de-
ferred updates and deferred index optimization, i.e., it separates delayed
maintenance of index contents and index structure.

2

Full text available at: http://dx.doi.org/10.1561/1900000070

3

Section 4 reviews log-structured merge-forests and stepped-merge
forests, topics omitted from the earlier survey [29]. For those, it pro-
poses new storage structures, even b-trees without branch nodes, which
probably seems like a contradiction, and new algorithms, including a
rather unconventional schedule for merging runs in an external merge
sort or for compacting deltas in a log-structured merge-forest.

Section 5 adds a few new techniques in query processing. This
includes better use of b-trees on storage and in memory. During index
intersection and join, the secondary sort keys enable very efficient merge
algorithms without explicit sorting.

Section 6 focuses on concurrency control. The topics include new
granularities of locking for fewer invocations of the lock manager and for
fewer false conflicts for transactions in serializable transaction isolation
– the new technique is called orthogonal key-value locking. They further
include shorter enforcement periods of locks, both during execution
of the transaction’s application logic and during commit processing –
the new techniques are called deferred lock enforcement and controlled
lock violation. They are not specific to b-trees but the combination of
orthogonal key-value locking, deferred lock enforcement, controlled lock
violation, and multi-version storage promises to eliminate practically
all false conflicts in database concurrency control.

Section 7 covers in-memory b-trees, from thread-private via shared-
but-transient to persistent. Among the core considerations are the
requirements for concurrency control, logging, and recovery. For in-
memory databases and their b-trees, instant reboot combines the tech-
niques of instant restart and instant restore, in effect applying the logic
for a double failure in a traditional database with external storage. The
final Section 8 sums up and concludes.

Full text available at: http://dx.doi.org/10.1561/1900000070

References

[1] S. Agarwal, J. A. Blakeley, T. Casey, K. Delaney, C. A. Galindo-
Legaria, G. Graefe, M. Rys, and M. J. Zwilling, Microsoft SQL
server (Chapter 27), in Database System Concepts, 4th edition.
2001, pp. 969–1006.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weav-
ing relations for cache performance,” VLDB Conference, 2001,
pp. 169–180.

[3] G. Antoshenkov, “Dictionary-based order-preserving string com-
pression,” The VLDB Journal, vol. 6, no. 1, 1997, pp. 26–39.

[4] D. F. Bacon et al., “Spanner: Becoming a SQL system,” ACM
SIGMOD Conference, 2017, pp. 331–343.

[5] R. Bayer and K. Unterauer, “Prefix b-trees,” ACM TODS, vol. 2,
no. 1, 1977, pp. 11–26.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[7] D. Bitton and D. J. DeWitt, “Duplicate record elimination in
large data files,” ACM TODS, vol. 8, no. 2, 1983, pp. 255–265.

[8] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.
McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K.
Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling, “Shoring
up persistent applications,” ACM SIGMOD Conference, 1994,
pp. 383–394.

76

Full text available at: http://dx.doi.org/10.1561/1900000070

References 77

[9] A. Chan, S. Fox, W.-T. K. Lin, A. Nori, and D. R. Ries, “The
implementation of an integrated concurrency control and recovery
scheme,” ACM SIGMOD Conference, 1982, pp. 184–191.

[10] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal
prefetching b-trees: Optimizing both cache and disk performance,”
ACM SIGMOD Conference, 2002, pp. 157–168.

[11] D. Comer, “The ubiquitous b-tree,” ACM Computing Surveys,
vol. 11, no. 2, 1979, pp. 121–137.

[12] W. M. Conner, “Offset value coding,” IBM Technical Disclosure
Bulletin, vol. 20, no. 7, 1977, pp. 2832–2837.

[13] J. C. Corbett et al., “Spanner: Google’s globally distributed
database,” ACM Transactions on Computer Systems, vol. 31,
no. 3, 2013, 8:1–8:22.

[14] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal
navigable key-value store,” ACM SIGMOD Conference, 2017,
pp. 79–94.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” OSDI, 2004, pp. 137–150.

[16] J. Dean and S. Ghemawat, “MapReduce: A flexible data processing
tool,” CACM, vol. 53, no. 1, 2010, pp. 72–77.

[17] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker,
and D. A. Wood, “Implementation techniques for main memory
database systems,” ACM SIGMOD, 1984, pp. 1–8.

[18] T. Do and G. Graefe, “Robust and efficient sorting with offset-
value coding,” ACM TODS, vol. 48, no. 1, 2023, 2:1–2:23.

[19] T. Do, G. Graefe, and J. Naughton, “Efficient sorting, duplicate
removal, grouping, and aggregation,” ACM TODS, vol. 47, no. 4,
2022, 16:1–16:35.

[20] Enterprise system architecture/370, principles of operation. IBM
publication SA22-7200-0, August 1988. CFC “compare and form
codeword” and UPT “update tree” instructions.

[21] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3,
no. 9, 1960, pp. 490–499.

[22] D. Gawlick and D. Kinkade, “Varieties of concurrency control
in IMS/VS fast path,” IEEE Data Engineering Bulletin, vol. 8,
no. 2, 1985, pp. 3–10.

Full text available at: http://dx.doi.org/10.1561/1900000070

78 References

[23] N. Glombiewski, B. Seeger, and G. Graefe, “Waves of misery after
index creation,” BTW Conference, 2019, pp. 77–96.

[24] N. Glombiewski, B. Seeger, and G. Graefe, “Continuous merging:
Avoiding waves of misery in tiered log-structured merge trees,
unpublished,” 2021.

[25] G. Graefe, Sorting and Indexing with Partitioned B-Trees. CIDR,
2003.

[26] G. Graefe, “Write-optimized b-trees,” VLDB Conference, 2004,
pp. 672–683.

[27] G. Graefe, “B-tree indexes, interpolation search, and skew,” Da-
MoN, 2006, p. 5.

[28] G. Graefe, “Efficient columnar storage in b-trees,” SIGMOD
Record, vol. 36, no. 1, 2007, pp. 3–6.

[29] G. Graefe, “Modern b-tree techniques,” Foundations and Trends
in Databases, vol. 3, no. 4, 2011, pp. 203–402.

[30] G. Graefe, “Avoiding index-navigation deadlocks,” in Synthesis
Lectures on Data Management, Morgan & Claypool Publishers,
2019.

[31] G. Graefe, “Deferred lock enforcement,” in Synthesis Lectures on
Data Management, Morgan & Claypool Publishers, 2019.

[32] G. Graefe, “Orthogonal key-value locking,” in Synthesis Lectures
on Data Management, Morgan & Claypool Publishers, Extended
from Goetz Graefe, Hideaki Kimura: Orthogonal Key-Value Lock-
ing, BTW Conference, pp. 237–256.

[33] G. Graefe and T. Do, “Offset-value coding in database query
processing,” EDBT Conference, 2023, pp. 464–470.

[34] G. Graefe, W. Guy, and C. Sauer, “Instant recovery with write-
ahead logging: Page repair, system restart, media restore, and
system failover,” in Synthesis Lectures on Data Management, 2nd
edition, Morgan & Claypool Publishers, 2016, pp. 1–113.

[35] G. Graefe, H. Kimura, and H. A. Kuno, “Foster b-trees,” ACM
ToDS, vol. 37, no. 3, 2012, 17:1–17:29.

[36] G. Graefe and H. A. Kuno, “Fast loads and fast queries,” Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems,
vol. 2, 2010, pp. 31–72.

Full text available at: http://dx.doi.org/10.1561/1900000070

References 79

[37] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incremen-
tally optimized indexes,” EDBT Conference, 2010, pp. 371–381.

[38] G. Graefe and H. A. Kuno, “Definition, detection, and recovery of
single-page failures, a fourth class of database failures,” PVLDB,
vol. 5, no. 7, 2012, pp. 646–655.

[39] G. Graefe, H. A. Kuno, and B. Seeger, “Self-diagnosing and self-
healing indexes,” DBTest, 2012, p. 8.

[40] G. Graefe, M. Lillibridge, H. A. Kuno, J. Tucek, and A. C. Veitch,
“Controlled lock violation,” ACM SIGMOD Conference, 2013,
85–96. Also in Synthesis Lectures on Data Management, Morgan
& Claypool Publishers.

[41] G. Graefe, I. Petrov, T. Ivanov, and V. Marinov, “A hybrid page
layout integrating PAX and NSM,” IDEAS, 2013, pp. 86–95.

[42] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillib-
ridge, and A. C. Veitch, “In-memory performance for big data,”
PVLDB, vol. 8, no. 1, 2014, pp. 37–48.

[43] J. Gray and A. Reuter, Transaction Processing Concepts and
Techniques. Morgan Kaufmann, 1993.

[44] T. Härder, “Observations on optimistic concurrency control schemes,”
Information Systems, vol. 9, no. 2, 1984, pp. 111–120.

[45] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,”
ACM SIGMOD Conference, 2008, pp. 981–992.

[46] B. R. Iyer, “Hardware-assisted sorting in IBM’s DB2 DBMS,” in
COMAD Conference, Hyderabad, 2005.

[47] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and
R. Kanneganti, “Incremental organization for data recording and
warehousing,” VLDB Conference, 1997, pp. 16–25.

[48] J. R. Jordan, J. Banerjee, and R. B. Batman, “Precision locks,”
ACM SIGMOD Conference, 1981, pp. 143–147.

[49] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T.
Kraska, and T. Neumann, “RadixSpline: A single-pass learned
index,” aiDM@SIGMOD, 2020, 5:1–5:5.

[50] T. Kraska, A. Beutel, E. H. Chi, and J. Dean, “The case for
learned index structures,” in ACM SIGMOD Conference, 2018,
pp. 489–504.

Full text available at: http://dx.doi.org/10.1561/1900000070

80 References

[51] H. T. Kung and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM ToDS, vol. 6, no. 2, 1981, pp. 221–
226.

[52] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent
operations on b-trees,” ACM ToDS, vol. 6, no. 4, 1981, pp. 650–
670.

[53] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai, “Efficient search
of multi-dimensional b-trees,” VLDB Conference, 1995, pp. 710–
719.

[54] D. B. Lomet, “Key range locking strategies for improved concur-
rency,” VLDB Conference, 1993, pp. 655–664.

[55] D. B. Lomet, “The evolution of effective b-tree: Page organization
and techniques: A personal account,” ACM SIGMOD Record,
vol. 30, no. 3, 2001, pp. 64–69.

[56] C. Luo and M. J. Carey, “LSM-based storage techniques: A
survey,” The VLDB Journal, vol. 29, no. 1, 2020, pp. 393–418.

[57] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” EuroSys, 2012, pp. 183–196.

[58] C. Mohan, “ARIES/KVL: A key-value locking method for con-
currency control of multiaction transactions operating on b-tree
indexes,” VLDB Conference, 1990, pp. 392–405.

[59] C. Mohan and F. E. Levine, “ARIES/IM: An efficient and high
concurrency index management method using write-ahead log-
ging,” ACM SIGMOD Conf., 1992, pp. 371–380.

[60] T. Neumann, T. Mühlbauer, and A. Kemper, “Fast serializable
multi-version concurrency control for main-memory database sys-
tems,” ACM SIGMOD Conference, 2015, pp. 677–689.

[61] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. B. Lomet,
“AlphaSort: A cache-sensitive parallel external sort,” The VLDB
Journal, vol. 4, no. 4, 1995, pp. 603–627.

[62] P. E. O’Neil, “The SB-tree: An index-sequential structure for
high-performance sequential access,” Acta Informatica, vol. 29,
no. 3, 1992, pp. 241–265.

[63] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (LSM-tree),” Acta Informatica, vol. 33,
no. 4, 1996, pp. 351–385.

Full text available at: http://dx.doi.org/10.1561/1900000070

References 81

[64] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID),” ACM SIGMOD
Conference, 1988, pp. 109–116.

[65] P. V. Sandt, Y. Chronis, and J. M. Patel, “Efficiently searching
in-memory sorted arrays: Revenge of the interpolation search?”
ACM SIGMOD Conference, 2019, pp. 36–53.

[66] C. Sauer, G. Graefe, and T. Härder, “Single-pass restore after a
media failure,” BTW, 2015, pp. 217–236.

[67] R. Sears and R. Ramakrishnan, “bLSM: A general purpose log-
structured merge tree,” ACM SIGMOD Conference, 2012, pp. 217–
228.

[68] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access path selection in a relational database
management system,” ACM SIGMOD Conf., 1979, pp. 23–34.

[69] D. G. Severance and G. M. Lohman, “Differential files: Their appli-
cation to the maintenance of large databases,” ACM Transactions
on Database Systems, vol. 1, no. 3, 1976, pp. 256–267.

[70] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X.
Bao, “Amazon Aurora: Design considerations for high throughput
cloud-native relational databases,” ACM SIGMOD Conference,
2017, pp. 1041–1052.

[71] G. Weikum and G. Vossen, Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. Morgan Kaufmann, 2002.

[72] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber, “Designing a
succinct secondary indexing mechanism by exploiting column
correlations,” ACM SIGMOD Conference, 2019, pp. 1223–1240.

[73] H. Zhang, X. Liu, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, “Order-preserving key compression for in-memory
search trees,” ACM SIGMOD Conference, 2020, pp. 1601–1615.

Full text available at: http://dx.doi.org/10.1561/1900000070

