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ABSTRACT

The performance of a query crucially depends on the ability
of the query optimizer to choose a good execution plan from
a large space of alternatives. With the discovery of algebraic
transformation rules and the emergence of new application-
specific contexts, extensibility has become a key requirement
for query optimizers. This monograph describes extensible
query optimizers in detail, focusing on the Volcano/Cascades
framework used by several database systems including Mi-
crosoft SQL Server. We explain the need for extensible query
optimizer architectures and how the optimizer navigates the
search space efficiently. We then discuss several important
transformations that are commonly used in practice. We
describe cost estimation, an essential component that the
optimizer relies upon to quantitatively compare alternative
plans in the search space. We discuss how database systems
manage plans over their lifetime as data and workloads
change. We conclude with a few open challenges.
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1
Introduction

SQL [134] is a high-level declarative language for querying relational
data. It is the de-facto standard query language for relational data
and is supported by all major relational database management systems
(RDBMSs) and increasingly also by the Big Data Systems. SQL al-
lows declarative specification of queries over relational data involving
selections, joins, group-by, aggregation, and nested sub-queries, which
are important for a wide variety of decision support queries including
business intelligence scenarios in enterprises [31].

Consider the example Query 1 shown below.

Query 1
SELECT *
FROM R, S, T
WHERE R.a = S.b AND S.c = T.d AND T.e = 10

Figure 1.1 shows the major steps in the workflow of processing a
SQL query in a RDBMS. The three stages of query processing are
explained below.

Parsing and validation The parsing and validation step converts the
input SQL query into an internal representation. This step ensures that

2
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Index Scan 
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek 
(R.Ia)

Figure 1.1: Workflow of query processing

the query adheres to the SQL syntax and only contains references to
existing database objects, e.g., tables and columns. The output of this
step is a logical query tree, an algebraic representation of the query
in the form of a tree of logical relational operators (e.g,. Select, Join).
For example, Figure 1.1 shows the output logical query tree of Query 1
after the parsing and validation step.

Query optimization The query optimizer takes a logical query tree
as the input, and is responsible for generating an efficient execution
plan that is either interpreted or compiled by the query execution
engine. An execution plan (also referred to as plan) is a tree of physical
operators, with edges representing the data flow between the operators.
For example, Figure 1.1 shows the output execution plan of Query 1
after the query optimization step. For a given query, the number of
different execution plans that may be used to answer the query may
grow exponentially with the number of tables referenced in the query,
and different execution plans can vary widely in terms of efficiency.
Therefore, the performance of a query crucially depends on the ability
of the optimizer to choose a good execution plan from a large space of
alternatives. An overview of query optimization in RDBMSs is available
in [28].

Query execution The query execution engine takes the plan from the
query optimizer and executes the plan to produce the query results. The
query execution engine implements a set of physical operators, which
are building blocks for executing SQL query plans. A physical operator

Full text available at: http://dx.doi.org/10.1561/1900000077



4 Introduction

takes one or more sets of data records as its input, referred to as rows,
and outputs a set of rows. Examples of physical operators include Table
Scan, Index Scan, Index Seek (see Appendix), Hash Join, Nested Loops
Join, Merge Join, and Sort. For descriptions of algorithms used for
various physical operators, we refer the reader to [77].

Query execution in a majority of relational database systems follows
the iterator model, where each physical operator implements the Open,
GetNext, and Close methods. Every iterator contains record of its state
with information such as the size and the location of the hash table.
In Open, the operator initializes its state and prepares for processing.
When GetNext is called, the operator produces the next output row
or indicates that there are no more rows, i.e., end of processing. We
observe that to produce an output row a non-leaf operator in the plan
needs to call GetNext on its child operator(s). For example, consider the
execution plan shown in Figure 1.1. The Nested Loops Join operator
calls GetNext on the Hash Join operator, which in turn calls GetNext
on Table Scan(S) operator. When an operator completes producing its
output rows (i.e., indicates that there are no more rows), the parent
calls Close on it to allow the operator to clean up its state. The above
approach of specifying operators through the iterator model makes it
convenient to add new operators to the execution engine. Since each
operator is an iterator from which rows are ‘pulled’, this model of
execution is also referred to as a pull model. We refer the reader to [79]
for a complete description of the pull model of query execution.

The iterator model as described above incurs high overhead of
function invocations with each GetNext call processing a single row at
a time, resulting in poor performance on modern CPUs. Vectorization
enables batching so that a single GetNext call for a physical operator
produces results for a batch of rows and leverages the SIMD instructions
of modern CPUs [19]. Together with columnar representation [188],
vectorization sharply increases the efficiency of query execution engines
for decision support queries. In addition, code generation is a technique
that generates efficient code from the query execution plan in a language
such as C [152], which is then compiled and executed, or directly
generates efficient machine code using a compiler framework such as
LLVM [114]. The tradeoffs in vectorization and compilation are discussed
in [107].
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1.1. Key Challenges in Query Optimization 5

1.1 Key Challenges in Query Optimization

To choose an efficient plan among many alternative execution plans, a
query optimizer must determine the search space of plans it will explore,
compare the relative efficiency of the plans with cost estimation, and
navigate the search space with an efficient search algorithm to find an
execution plan that has very low (ideally lowest) cost of execution among
its choices. We now briefly describe these facets of a query optimizer.

Search space The search space consists of alternative equivalent execu-
tion plans of the query, which can be large for complex queries. First, a
given algebraic representation of a query can potentially be transformed
into many other equivalent representations. These equivalences arise
from properties of relational algebra, e.g., Join(Join(R, S), T ) ⇐⇒
Join(Join(S, T ), R) since the Join operator is commutative and asso-
ciative [63]. Figure 1.2 shows four different but equivalent algebraic
representations of the same query.

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

(a) Logical plan L1

Join
S.b=R.a

S R

Select Select

Join
S.c = T.d

Select

T

(b) Logical plan L2

Join
S.c = T.d

S T

Select Select

Join
S.b = R.a

Select

R

(c) Logical plan L3

Join
(Cartesian Product)

R T

Select Select

Join
R.a = S.b and 

S.c = T.d

Select

S

(d) Logical plan L4

Figure 1.2: Semantically equivalent logical query trees

Second, for a given logical operator there are many different imple-
mentations of that logical operator. Hence, for a given logical query
tree, there are potentially many different possible execution plans. For
example, in Figure 1.3, for the logical query tree in Figure 1.3a, we
show three out of many possible execution plans in Figure 1.3b-1.3d.
Although the three plans have the same order in which joins are eval-
uated, they vary in the specific physical operators used to implement
the logical operators. For example, the Select operator in Figure 1.3a
can be implemented using Table Scan, Index Scan, or Index Seek; and
the Join operator can be implemented using Nested Loops Join, Hash
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6 Introduction

Join
S.c = T.d

S T

Select Select

Join
S.b = R.a

Select

R

(a) Logical plan L

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan 
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek 
(R.Ia)

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan 
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek 
(R.Ia)

(b) Execution plan P1

Nested Loops Join
S.c = T.d

Index  Scan
(S.Ib)

Index Seek 
(T.Id)

Merge Join
S.b = R.a

Index Scan 
(R.Ia)

(c) Execution plan P2

Hash Join
S.c = T.d

Table Scan
(S)

Table Scan 
(T)

Hash Join
S.b = R.a

Table Scan 
(R)

Hash Join
S.c = T.d

Table Scan
(S)

Table Scan 
(T)

Hash Join
S.b = R.a

Table Scan 
(R)

(d) Execution plan P3

Figure 1.3: Different execution plans for a given logical query tree

Join, or Merge Join. The Nested Loops Join in Figure 1.3b may be the
most efficient among the three when the join size (i.e., number of rows
produced by the join) of the join between S and T is small and an index
Ia is available on the join column R.a. The plan in Figure 1.3c with the
Merge Join may be a good choice when an index Ib is available on S.b

and an index Ia is available on R.a, i.e., the indexes provide the sort
order required by the Merge Join. In contrast, the plan in Figure 1.3d
with the two Hash Join operators may be the plan of choice when the
size of the join between S and T is large. Thus, unless the optimizer
considers each of these plans in its search space and compares their
resource usage and expected relative performance, it may not produce
a good plan.

Cost estimation The efficiency of different execution plans for the
same query, measured by their elapsed time or resources consumed
(e.g., CPU, memory, I/O), can vary significantly, as the example in
Figure 1.3 shows. The difference in elapsed time between a good and
a poor execution plan for complex queries on large databases can be
several orders of magnitudes. Therefore, to pick a good execution plan
for a query from the space of execution plans as noted above, most
query optimizers leverage a cost model that estimates the work done by
query execution plans with sufficient fidelity so that relative comparisons
of the execution plans are accurate. Specifically, a physical operator
must estimate the work done by the algorithm used to implement that
operator, and this estimation requires the sizes and other statistical
characteristics of the input relation(s) to that operator as well as those
of its output. Finally, even though the cost has at least three dimensions
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1.2. System R Query Optimizer 7

(CPU, memory, I/O), the cost model combines these multi-dimensional
costs in a single number for the convenience of comparing any two plans.

Search algorithm In principle, one could exhaustively enumerate every
alternative execution plan in the search space and invoke cost estimation
to determine the cost of each plan in order to find the plan with the
lowest estimated cost. As some of the alternative execution plans
can share common logical or physical operator trees, e.g., Select(S) in
L1-L4 of Figure 1.2 or Table Scan(S) in P1 and P3 of Figure 1.3, the
enumeration needs to be done carefully to avoid duplicate explorations.
Even so, the exhaustive enumeration can still be too costly in practice.
Thus, a good query optimizer will try to reduce the cost of enumeration
without compromising significantly the quality of the chosen execution
plan.

In summary, a good optimizer is one which: (a) considers a suffi-
ciently large search space of promising plans, (b) models the cost of
execution plans sufficiently accurately to distinguish between plans with
significantly different costs, and (c) provides a search algorithm that
efficiently finds a plan with low cost.

1.2 System R Query Optimizer

The System R project from IBM Research did pioneering work on
query optimization [178]. We briefly review how the System R query
optimizer addressed the key challenges mentioned in Section 1.1. The
techniques developed in this project have had significant impact on all
query optimizers that followed, including extensible query optimizers.

Search space The System R query optimizer’s cost-based plan selec-
tion technique focused on the Select-Project-Join (SPJ) class of queries.
The physical operators for implementing a Select operation included
Table Scan and Index Scan. For Join, System R provided two physical op-
erators, Nested Loops Join and Merge Join (which requires both inputs
to be sorted on the respective join columns). In the example of Query 1,
as Figure 1.2 and Figure 1.3 illustrate, there are several logical query
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8 Introduction

trees and execution plans for this SPJ queries. This arises because join is
associative and commutative, and there are multiple options of physical
operators for Scan and Join operations. The space of logical query trees
explored by System R for SPJ queries included the space of linear
sequence of binary Join operations, e.g., Join(Join(Join(R, S), T ), U).
Figure 1.4a shows an example logical query tree of a linear sequence
of Join operations whereas the logical query tree in Figure 1.4b, i.e., a
bushy plan, is not in the search space of System R. The optimizer also
offered techniques to improve the efficiency of nested queries based on
program analysis but these optimizations were not cost-based.

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U
Join

R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U

(a) Linear plan

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U

(b) Bushy plan

Figure 1.4: Linear sequence of joins vs. bushy join

Cost model The cost model of System R used formulas to estimate the
CPU and I/O costs for each operator in execution plans. Unlike today’s
optimizers, it did not incorporate the cost of memory. The System R
optimizer maintained a set of statistics on base tables and indexes, e.g.,
number of rows (cardinality) and data pages in the table, number of
pages in the index, number of distinct values in each column. System R
provided a set of formulas to compute the selectivity of a single selection
or join predicate. The selectivity of a WHERE clause containing a
conjunction of selection predicates was computed by multiplying the
selectivity of all predicates, i.e., assuming the predicates are independent.
Thus, the cardinality of the output size of a join was estimated by taking
the product of the cardinalities of the two input relations and multiplying
it with the selectivity of all predicates. The cost model formulas, together
with statistical information on base tables and indexes, enabled the

Full text available at: http://dx.doi.org/10.1561/1900000077



1.2. System R Query Optimizer 9

System R optimizer to perform estimation of CPU and I/O costs of
execution plans.

Search algorithm The search algorithm of the System R optimizer
used dynamic programming to find the “best” join order, and is based on
the assumption that the cost model satisfies the principle of optimality.
In other words, it assumes that, in the search space of linear sequence
of joins, the optimal plan for a join of n relations can be found by
extending the optimal plan of a sub-expression of n− 1 joins with an
additional join. For example, the optimal plan PRST of joining relations
R, S, and T can be found from joining R with PST , joining S with PRT ,
and joining T with PRS , where PST , PRT , and PRS are the optimal plans
for joining S, T , joining R, T , and joining R, S respectively. In contrast
to the naive approach that enumerates O(n!) plans by enumerating all
permutations of the join ordering, the dynamic programming approach
enumerates O(n2n−1) plans, and is therefore significantly faster, even
though the time complexity is still exponential in the number of joins.

A second important aspect of System R’s search algorithm was
its consideration of interesting orders. Consider a query Q that joins
three tables R, S, and T , with join predicates R.a = S.a and S.a = T.a.
Suppose the cost of joining R and S with Nested Loops Join using an
Index Seek on S is smaller than the cost of using Merge Join. In this case,
when considering plans for joining R, S, and T , the optimizer would
prune out the plan where R and S are joined using Merge Join. However,
if Merge Join is used to join R and S, then the result of the join is sorted
on column a, which may significantly reduce the cost of the join with T

if Merge Join is used. Therefore, pruning a plan that joins R and S with
a Merge Join can result in a sub-optimal plan for the query. The fact
that the output rows of an operator are ordered, i.e., the operator has
an interesting order, may lower the cost of parent or ancestor operators
in the plan. To accommodate this violation of the principle of optimality
due to interesting orders while retaining the benefits of using dynamic
programming, the search algorithm considered the interesting order
for every expression it enumerates. For a join expression, plans were
compared in cost if and only if they had the same interesting order, and
an optimal plan was kept for each distinct interesting order.
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10 Introduction

1.3 Need for Extensible Query Optimizer Architecture

The important concepts introduced by System R, including the use of
data statistics and a cost model to determine an execution plan, the
dynamic programming based search for join ordering, and the need to
consider interesting orders, have been adopted by virtually all widely
used query optimizers. However, the framework could not be flexibly
and efficiently extended to additional algebraic equivalences in relational
algebra and new constructs in database systems in a cost-based manner,
which can potentially miss out opportunities to find cheaper query
plans. As relational databases and SQL became important for decision
support queries, the transformations for these additional algebraic
equivalences became valuable for generating an efficient execution plan.
Examples of such transformations include pushing down a group-by
below a join to reduce the cost of the join, optimization of outer joins
that are not associative nor commutative, and decorrelation of nested
queries. In addition, new constructs were introduced to database systems
to improve query execution performance. For example, materialized
views [43, 84], which precompute and store the results of a query sub-
expression, and thereby could dramatically reduce the cost of executing
the query, became important for OLAP and other analytical workloads.
Furthermore, the optimizer also needed to support new logical and
physical operators that were introduced to efficiently execute SQL
queries, e.g., Apply [69].

Fortunately, as the practical needs of a SQL query optimizer ex-
panded, the research on extensible database systems that was ongoing
at that time yielded architectural alternatives to extending the archi-
tecture of System R. Extensible database systems were envisioned as
systems that can be used to customize a database system to the needs
of an application. Specifically, Exodus [26] and later Volcano [79], which
were designed to support user-specified operators for query execution,
emerged in that context. Given the need to support custom opera-
tors, providing a framework for extensible query optimization became
a necessity. Thus, extensibility of the optimizer was a design feature
in Volcano from the very beginning as it was initially envisioned as
an “experimental vehicle for multitude of purposes” [79]. They allowed
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system designers to “plug-in” new rules, drawing inspiration from rules
in expert systems (production systems), and thereby extend the capa-
bilities of the optimizer. Later, the extensible optimizer frameworks
of Volcano/Cascades [80, 82] and Starburst [123, 165] focused on SQL
query optimization as a key application, which fulfilled a pressing need
for a new architecture for SQL query optimization.

For most of this monograph, we will focus on extensible optimizers
based on Volcano/Cascades. These extensible optimization frameworks
center around the concept of rules. A logical transformation rule repre-
sents an equivalence in the SQL language (or its algebraic representa-
tion). For example, the equivalences implied by join commutativity and
associativity noted earlier can be expressed using rules. Similarly, a rule
may define the conditions under which pushing down a group-by opera-
tion below a join preserves equivalence. Applying logical transformation
rules to a query tree results in an equivalent alternative query tree.
An implementation rule defines the mapping from a logical operator
(e.g., Join) to a physical operator (e.g., Hash Join). Implementation
rules are needed to generate execution plans for the query. A judicious
choice of a sequence of applications of rules can potentially transform
the query tree into one that executes much faster. It should be noted
that in this architecture, new operators, logical transformations, and
implementation rules can be incorporated without having to modify the
search algorithm of the optimizer each time. Last but not the least, it is
important to note that transformations do not necessarily reduce cost,
and therefore the search algorithm must choose among the alternatives
in a cost-based manner.

SQL is a declarative query language. This allows the query optimizers
to create efficient execution plans for SQL queries that leverage logical
transformations that preserve semantic equivalence and also judiciously
choose the most efficient implementation for the logical operators. The
holy grail of query optimization is to produce the most efficient execution
plan that preserves semantic equivalence but is independent of how the
query is expressed syntactically by the users or the applications. The
extensible query optimizers make this goal achievable by applying rules,
chosen from a rich set of transformations, to the query tree successively
in a judicious sequence driven by a cost-based search algorithm.
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12 Introduction

1.4 Outline

In this monograph, we focus on the technology of extensible query
optimizers and use Microsoft SQL Server for illustration of the key
concepts. In comparison to the overview article on query optimization
by one of the authors [28], this monograph provides a detailed descrip-
tion of extensible optimizer frameworks as well as several additional
transformation rules that are commonly used in practice. The exten-
sibility framework and rules are explained in depth using pseduocode
and examples.

The rest of the monograph is organized as follows:
Section 2: We review the extensible optimizer frameworks of Vol-

cano [82] and its successor, the Cascades framework [80], that have been
influential. We describe the search algorithms and key data structures
needed in both frameworks, as well as additional techniques to improve
the efficiency of query optimization. We illustrate how Microsoft SQL
Server’s query optimizer leverages the Cascades framework with a few
examples. Finally, we describe how the optimizer handles parallel and
distributed query processing.

Section 3: We present a brief review of other extensible query
optimizers, including Starburst used in IBM DB2, Orca used in Green-
plum DB, Calcite used in Apache Hive, and Catalyst used in Spark
SQL. Although PostgreSQL’s query optimizer does not possess the
extensibility capabilities of frameworks such as Volcano and Cascades,
given its popularity, we include a short overview of its query optimizer.

Section 4: An extensible optimizer draws its effectiveness from the
rules it leverages. In this section, we review some of the key logical
transformations and implementation rules relevant for access paths to
base tables, inner and outer joins, group-by, aggregation, and decorrela-
tion of nested queries. We touch upon a few selected “advanced” rules,
e.g., for optimizing star and snowflake queries which are common in
data warehouses, sideways information passing, user-defined functions
(UDFs), and materialized views.

Section 5: An optimizer framework critically depends on the cost
model and cardinality estimation. In this section, we provide an overview
of cost modeling and cardinality estimation with a focus on industrial
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practices. We discuss the statistical summaries used by the optimizer
such as histograms and how they are used for complex queries. In addi-
tion, we discuss recent adoption of sampling and sketches in database
systems. Finally, we illustrate these concepts and techniques using
Microsoft SQL Server.

Section 6: Most articles on query optimization omit discussions
on managing plans generated by the optimizer over the lifetime of
the database. These aspects of plan management can critically impact
overall workload performance. We discuss a few important challenges
in this context: (a) plan caching and invalidation (b) improving sub-
optimal plans with execution feedback (c) query hints, which allow users
to influence the plan that is chosen by the optimizer (d) optimizing
parameterized queries.

Section 7: While this monograph is centered on extensible query
optimizers in practice, we use this section to mention some of the open
problems and a few of research directions that are being pursued.

Errata and updates: We will provide corrections and updates to
this monograph at the following URL [59]. We encourage readers who
discover errors in this monograph to report them to the authors via
email.

1.5 Suggested Reading

Citation numbers below correspond to numbers in the References section.
[178] P. G. Selinger et al., “Access Path Selection in a Relational
Database Management System,” in Proceedings of the 1979 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’79, pp. 23–34, Boston, Massachusetts: Association for Computing Ma-
chinery, 1979. doi: 10.1145/582095.582099
[77] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys (CSUR), vol. 25, no. 2, 1993, pp. 73–169
[28] S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” in Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 34–43,
1998
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A
Access Methods

We provide a brief overview of how the query execution engine in
relational databases can access data stored in the base tables. The data
in base tables can be physically organized using different persistent (i.e.,
on-disk) data structures. Some of the most commonly used structures
are heaps, B-trees indexes [14], and columnstore indexes [189]. We use
the examples of heaps and B+-tree indexes to introduce the important
physical operators.1 We note that there are other aspects of access
methods on base tables that are not discussed below, e.g., partitioning,
but are also relevant for query optimization.

Heap and B+-tree index A heap is an unordered collection of all
records in the table. Each record (row) has a DBMS generated row id,
and stores values for each column in the table. Rows are organized into
pages and stored on disk. B+-trees are n-ary tree based data structures
that organize the data ordered by the key columns of the index. Further,
a B+-tree index can either be a clustered index or non-clustered index.
In a clustered index, the leaf pages of the index contain the entire record

1In contrast to a B-tree, in a B+-tree, leaf pages contain a pointer to the next
leaf page in index order, thereby enabling more efficient scans of a range of values.
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(i.e., values of all columns of the table), whereas in a non-clustered index,
the leaf pages only contain the key columns and the record id. Besides
key columns, a non-clustered index may optionally contain additional
include columns. In this case, each row in the leaf page of the index
contains the key columns as well as the include columns. Observe that
the B+-tree supports search (i.e., lookups or range scans) only over the
key columns, and not the include columns. In contrast to heaps, B+-
Tree indexes can greatly speed up the retrieval of the data, especially
when only a selective subset of the data is needed to answer the query.

We use the same example table and query from Section 4.1 to
describe the physical operators for accessing data in heaps and B+-tree
indexes. Consider a table S(id, a, b, c) with four columns, where id is
the primary key of table S. Consider the following query Q1:
SELECT S.a, S.b
FROM S
WHERE S.a > 10 AND S.b = 20

Table Scan Since the rows of a heap are unordered, a heap provides no
ability to lookup any individual record. Thus, the only physical operator
allowed on a heap is the Table Scan operator. Table Scan takes a table
as an argument and returns all rows from the table. In our example,
Table Scan of S returns all rows in S. Observe that when the table is
large, the Table Scan operator can be expensive since it needs to fetch
all pages of S from storage, including rows and columns that are not
needed to answer the query.

Index Seek and Key Lookup When the query contains an equality
predicate on any prefix of the key columns in the index, the Index Seek
operator can be used to retrieve all rows satisfying the predicate. For
example, consider a B+-tree index Ib built on table S with b as the
key column. Then for Q1, instead of scanning the full table, invoking
Index Seek (Ib, S.b = 20) will find and retrieve row ids of all rows in
the table satisfying the predicate. A special case of Index Seek is a
Key Lookup operator which is used when the index is defined on a
primary key or unique column of the table. In a Key Lookup, either
0 or 1 record is returned, whereas in an Index Seek, 0 or more rows
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can be returned. Note that an invocation of the Index Seek operator
performs a random I/O to access the data page containing the matching
records. While an Index Seek is often used for identifying rows satisfying
a selection predicates (e.g., S.b = 10), it can also be combined with a
Nested Loops Join operator to efficiently support a join between two
relations. Specifically, for each row from the outer relation, a Nested
Loops Join operator can use an Index Seek on the inner side relation of
the join if the key column of the index is the join column.

Index Scan When the query contains a range predicate, a B+-tree in-
dex enables efficient range scans using the Index Scan operator. Consider
a B+-tree index Ia built on table S with a as the key column. Since the
predicate S.a > 10 needs to retrieve a range of values, invoking Index
Scan (Ia, S.a > 10) will retrieve row ids of all rows satisfying the range
predicate on column a. We observe that for the Index Scan operators
the predicate is an optional argument. If no predicate is specified, Index
Scan returns all rows from the leaf pages of the index. Unlike Table
Scan where the rows returned are unordered, these rows from Index
Scan will appear in the order of the key columns of the index. Thus,
the usefulness of Index Scan goes beyond its ability to retrieve rows
since it can benefit other operators such as Merge Join and Stream
Aggregate, which require their inputs to be sorted. B+-tree indexes
containing include columns can be very effective in answering a query
when all columns required to answer the query are available in the
index, whether as part of key or include columns. For example, consider
an index Ia(b) where the key column is a, and the include column is
b. Observe that the query Q1 can be answered using an Index Scan
Ia(b) with S.a > 10 followed by a Filter operator that can apply the
predicate S.b = 20. Since the column b is available in the index, we can
avoid a Key Lookup into the clustered index to obtain column b.
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