
Extensible Query Optimizers
in Practice

Full text available at: http://dx.doi.org/10.1561/1900000077

Other titles in Foundations and Trends® in Databases

Modern Techniques For Querying Graph-structured Databases
Amine Mhedhbi, Amol Deshpande and Semih Salihoğlu
ISBN: 978-1-63828-424-6

More Modern B-Tree Techniques
Goetz Graefe
ISBN: 978-1-63828-372-0

Consensus in Data Management: From Distributed Commit to Blockchain
Faisal Nawab and Mohammad Sadoghi
ISBN: 978-1-63828-160-3

Multidimensional Array Data Management
Florin Rusu
ISBN: 978-1-63828-148-1

Modern Datalog Engines
Bas Ketsman and Paraschos Koutris
ISBN: 978-1-63828-042-2

Natural Language Interfaces to Data
Abdul Quamar, Vasilis Efthymiou, Chuan Lei and Fatma Özcan
ISBN: 978-1-63828-028-6

Full text available at: http://dx.doi.org/10.1561/1900000077

Extensible Query Optimizers in
Practice

Bailu Ding
Microsoft Corporation
badin@microsoft.com

Vivek Narasayya
Microsoft Corporation

viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Corporation

surajitc@microsoft.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000077

Foundations and Trends® in Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

B. Ding et al.. Extensible Query Optimizers in Practice. Foundations and Trends® in
Databases, vol. 14, no. 3-4, pp. 186–402, 2024.

ISBN: 978-1-63828-453-6
© 2024 B. Ding et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000077

Foundations and Trends® in Databases
Volume 14, Issue 3-4, 2024

Editorial Board

Editor-in-Chief
Joseph M. Hellerstein
University of California at Berkeley

Surajit Chaudhuri
Microsoft Research, Redmond

Editors

Azza Abouzied
NYU-Abu Dhabi

Gustavo Alonso
ETH Zurich

Mike Cafarella
University of Michigan

Alan Fekete
University of Sydney

Ihab Ilyas
University of Waterloo

Sanjay Krishnan
University of Chicago

FeiFei Li
Alibaba Group

Sunita Sarawagi
IIT Bombay

Jun Yang
Duke University

Full text available at: http://dx.doi.org/10.1561/1900000077

Editorial Scope
Foundations and Trends® in Databases publishes survey and tutorial articles
in the following topics:

• Data Models and Query Lan-
guages

• Query Processing and Optimiza-
tion

• Storage, Access Methods, and
Indexing

• Transaction Management, Con-
currency Control and Recovery

• Deductive Databases
• Parallel and Distributed

Database Systems
• Database Design and Tuning
• Metadata Management
• Object Management
• Trigger Processing and Active

Databases
• Data Mining and OLAP
• Approximate and Interactive

Query Processing

• Data Warehousing
• Adaptive Query Processing
• Data Stream Management
• Search and Query Integration
• XML and Semi-Structured Data
• Web Services and Middleware
• Data Integration and Exchange
• Private and Secure Data Man-

agement
• Peer-to-Peer, Sensornet and Mo-

bile Data Management
• Scientific and Spatial Data Man-

agement
• Data Brokering and Pub-

lish/Subscribe
• Data Cleaning and Information

Extraction
• Probabilistic Data Management

Information for Librarians

Foundations and Trends® in Databases, 2024, Volume 14, 4 issues. ISSN
paper version 1931-7883. ISSN online version 1931-7891. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000077

Contents

1 Introduction 2
1.1 Key Challenges in Query Optimization 5
1.2 System R Query Optimizer 7
1.3 Need for Extensible Query Optimizer Architecture 10
1.4 Outline . 12
1.5 Suggested Reading . 13

2 Extensible Optimizers 14
2.1 Basic Concepts . 15
2.2 Volcano . 19
2.3 Cascades . 31
2.4 Techniques to Improve Search Efficiency 44
2.5 Example of Extensibility in Microsoft SQL Server 47
2.6 Parallel and Distributed Query Processing 49
2.7 Suggested Reading . 60

3 Other Extensible Optimizers in the Industry 61
3.1 Starburst . 62
3.2 Orca . 66
3.3 Calcite . 67
3.4 Catalyst . 69
3.5 PostgreSQL . 71
3.6 Suggested Reading . 73

Full text available at: http://dx.doi.org/10.1561/1900000077

4 Key Transformations 74
4.1 Access Path Transformations 76
4.2 Inner Join Transformations 80
4.3 Outer Join Transformations 86
4.4 Group-by and Join . 91
4.5 Decorrelation . 100
4.6 Other Important Transformation Rules 113
4.7 Suggested Reading . 129

5 Cost Estimation 131
5.1 Cost Estimation Overview 132
5.2 Cost Model . 133
5.3 Statistics . 136
5.4 Cardinality Estimation . 148
5.5 Case Study: Cost Estimation in Microsoft SQL Server . . . 156
5.6 Suggested Reading . 162

6 Plan Management 163
6.1 Plan Caching and Invalidation 163
6.2 Improving Sub-optimal Plans with Execution Feedback . . 165
6.3 Influencing Plan Choice Using Hints 171
6.4 Optimizing Parameterized Queries 175
6.5 Suggested Reading . 178

7 Open Problems 180
7.1 Robust Query Processing 180
7.2 Query Result Caching . 182
7.3 Feedback-driven Statistics 183
7.4 Leveraging Machine Learning for Query Optimization . . . 184
7.5 Other Research Topics in Query Optimization 186
7.6 The Big Questions . 186

Acknowledgements 189

Appendix 190

References 194

Full text available at: http://dx.doi.org/10.1561/1900000077

Extensible Query Optimizers in
Practice
Bailu Ding, Vivek Narasayya and Surajit Chaudhuri

Microsoft Corporation, USA; badin@microsoft.com,
viveknar@microsoft.com, surajitc@microsoft.com

ABSTRACT

The performance of a query crucially depends on the ability
of the query optimizer to choose a good execution plan from
a large space of alternatives. With the discovery of algebraic
transformation rules and the emergence of new application-
specific contexts, extensibility has become a key requirement
for query optimizers. This monograph describes extensible
query optimizers in detail, focusing on the Volcano/Cascades
framework used by several database systems including Mi-
crosoft SQL Server. We explain the need for extensible query
optimizer architectures and how the optimizer navigates the
search space efficiently. We then discuss several important
transformations that are commonly used in practice. We
describe cost estimation, an essential component that the
optimizer relies upon to quantitatively compare alternative
plans in the search space. We discuss how database systems
manage plans over their lifetime as data and workloads
change. We conclude with a few open challenges.

Bailu Ding, Vivek Narasayya and Surajit Chaudhuri (2024), “Extensible Query
Optimizers in Practice”, Foundations and Trends® in Databases: Vol. 14, No. 3-4,
pp 186–402. DOI: 10.1561/1900000077.
©2024 B. Ding et al.

Full text available at: http://dx.doi.org/10.1561/1900000077

1
Introduction

SQL [134] is a high-level declarative language for querying relational
data. It is the de-facto standard query language for relational data
and is supported by all major relational database management systems
(RDBMSs) and increasingly also by the Big Data Systems. SQL al-
lows declarative specification of queries over relational data involving
selections, joins, group-by, aggregation, and nested sub-queries, which
are important for a wide variety of decision support queries including
business intelligence scenarios in enterprises [31].

Consider the example Query 1 shown below.

Query 1
SELECT *
FROM R, S, T
WHERE R.a = S.b AND S.c = T.d AND T.e = 10

Figure 1.1 shows the major steps in the workflow of processing a
SQL query in a RDBMS. The three stages of query processing are
explained below.

Parsing and validation The parsing and validation step converts the
input SQL query into an internal representation. This step ensures that

2

Full text available at: http://dx.doi.org/10.1561/1900000077

3

Parsing and
Validation

Query
Optimization

Query
Execution

SQL Query Query Results

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select
(T.e=10)

T

Logical Query Tree

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select
(T.e=10)

T

Logical Query Tree Execution Plan

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek
(R.Ia)

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek
(R.Ia)

Figure 1.1: Workflow of query processing

the query adheres to the SQL syntax and only contains references to
existing database objects, e.g., tables and columns. The output of this
step is a logical query tree, an algebraic representation of the query
in the form of a tree of logical relational operators (e.g,. Select, Join).
For example, Figure 1.1 shows the output logical query tree of Query 1
after the parsing and validation step.

Query optimization The query optimizer takes a logical query tree
as the input, and is responsible for generating an efficient execution
plan that is either interpreted or compiled by the query execution
engine. An execution plan (also referred to as plan) is a tree of physical
operators, with edges representing the data flow between the operators.
For example, Figure 1.1 shows the output execution plan of Query 1
after the query optimization step. For a given query, the number of
different execution plans that may be used to answer the query may
grow exponentially with the number of tables referenced in the query,
and different execution plans can vary widely in terms of efficiency.
Therefore, the performance of a query crucially depends on the ability
of the optimizer to choose a good execution plan from a large space of
alternatives. An overview of query optimization in RDBMSs is available
in [28].

Query execution The query execution engine takes the plan from the
query optimizer and executes the plan to produce the query results. The
query execution engine implements a set of physical operators, which
are building blocks for executing SQL query plans. A physical operator

Full text available at: http://dx.doi.org/10.1561/1900000077

4 Introduction

takes one or more sets of data records as its input, referred to as rows,
and outputs a set of rows. Examples of physical operators include Table
Scan, Index Scan, Index Seek (see Appendix), Hash Join, Nested Loops
Join, Merge Join, and Sort. For descriptions of algorithms used for
various physical operators, we refer the reader to [77].

Query execution in a majority of relational database systems follows
the iterator model, where each physical operator implements the Open,
GetNext, and Close methods. Every iterator contains record of its state
with information such as the size and the location of the hash table.
In Open, the operator initializes its state and prepares for processing.
When GetNext is called, the operator produces the next output row
or indicates that there are no more rows, i.e., end of processing. We
observe that to produce an output row a non-leaf operator in the plan
needs to call GetNext on its child operator(s). For example, consider the
execution plan shown in Figure 1.1. The Nested Loops Join operator
calls GetNext on the Hash Join operator, which in turn calls GetNext
on Table Scan(S) operator. When an operator completes producing its
output rows (i.e., indicates that there are no more rows), the parent
calls Close on it to allow the operator to clean up its state. The above
approach of specifying operators through the iterator model makes it
convenient to add new operators to the execution engine. Since each
operator is an iterator from which rows are ‘pulled’, this model of
execution is also referred to as a pull model. We refer the reader to [79]
for a complete description of the pull model of query execution.

The iterator model as described above incurs high overhead of
function invocations with each GetNext call processing a single row at
a time, resulting in poor performance on modern CPUs. Vectorization
enables batching so that a single GetNext call for a physical operator
produces results for a batch of rows and leverages the SIMD instructions
of modern CPUs [19]. Together with columnar representation [188],
vectorization sharply increases the efficiency of query execution engines
for decision support queries. In addition, code generation is a technique
that generates efficient code from the query execution plan in a language
such as C [152], which is then compiled and executed, or directly
generates efficient machine code using a compiler framework such as
LLVM [114]. The tradeoffs in vectorization and compilation are discussed
in [107].

Full text available at: http://dx.doi.org/10.1561/1900000077

1.1. Key Challenges in Query Optimization 5

1.1 Key Challenges in Query Optimization

To choose an efficient plan among many alternative execution plans, a
query optimizer must determine the search space of plans it will explore,
compare the relative efficiency of the plans with cost estimation, and
navigate the search space with an efficient search algorithm to find an
execution plan that has very low (ideally lowest) cost of execution among
its choices. We now briefly describe these facets of a query optimizer.

Search space The search space consists of alternative equivalent execu-
tion plans of the query, which can be large for complex queries. First, a
given algebraic representation of a query can potentially be transformed
into many other equivalent representations. These equivalences arise
from properties of relational algebra, e.g., Join(Join(R, S), T) ⇐⇒
Join(Join(S, T), R) since the Join operator is commutative and asso-
ciative [63]. Figure 1.2 shows four different but equivalent algebraic
representations of the same query.

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

(a) Logical plan L1

Join
S.b=R.a

S R

Select Select

Join
S.c = T.d

Select

T

(b) Logical plan L2

Join
S.c = T.d

S T

Select Select

Join
S.b = R.a

Select

R

(c) Logical plan L3

Join
(Cartesian Product)

R T

Select Select

Join
R.a = S.b and

S.c = T.d

Select

S

(d) Logical plan L4

Figure 1.2: Semantically equivalent logical query trees

Second, for a given logical operator there are many different imple-
mentations of that logical operator. Hence, for a given logical query
tree, there are potentially many different possible execution plans. For
example, in Figure 1.3, for the logical query tree in Figure 1.3a, we
show three out of many possible execution plans in Figure 1.3b-1.3d.
Although the three plans have the same order in which joins are eval-
uated, they vary in the specific physical operators used to implement
the logical operators. For example, the Select operator in Figure 1.3a
can be implemented using Table Scan, Index Scan, or Index Seek; and
the Join operator can be implemented using Nested Loops Join, Hash

Full text available at: http://dx.doi.org/10.1561/1900000077

6 Introduction

Join
S.c = T.d

S T

Select Select

Join
S.b = R.a

Select

R

(a) Logical plan L

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek
(R.Ia)

Hash Join
S.c = T.d

Table Scan
(S)

Index Scan
(T.Id)

Nested Loops Join
S.b = R.a

Index Seek
(R.Ia)

(b) Execution plan P1

Nested Loops Join
S.c = T.d

Index Scan
(S.Ib)

Index Seek
(T.Id)

Merge Join
S.b = R.a

Index Scan
(R.Ia)

(c) Execution plan P2

Hash Join
S.c = T.d

Table Scan
(S)

Table Scan
(T)

Hash Join
S.b = R.a

Table Scan
(R)

Hash Join
S.c = T.d

Table Scan
(S)

Table Scan
(T)

Hash Join
S.b = R.a

Table Scan
(R)

(d) Execution plan P3

Figure 1.3: Different execution plans for a given logical query tree

Join, or Merge Join. The Nested Loops Join in Figure 1.3b may be the
most efficient among the three when the join size (i.e., number of rows
produced by the join) of the join between S and T is small and an index
Ia is available on the join column R.a. The plan in Figure 1.3c with the
Merge Join may be a good choice when an index Ib is available on S.b

and an index Ia is available on R.a, i.e., the indexes provide the sort
order required by the Merge Join. In contrast, the plan in Figure 1.3d
with the two Hash Join operators may be the plan of choice when the
size of the join between S and T is large. Thus, unless the optimizer
considers each of these plans in its search space and compares their
resource usage and expected relative performance, it may not produce
a good plan.

Cost estimation The efficiency of different execution plans for the
same query, measured by their elapsed time or resources consumed
(e.g., CPU, memory, I/O), can vary significantly, as the example in
Figure 1.3 shows. The difference in elapsed time between a good and
a poor execution plan for complex queries on large databases can be
several orders of magnitudes. Therefore, to pick a good execution plan
for a query from the space of execution plans as noted above, most
query optimizers leverage a cost model that estimates the work done by
query execution plans with sufficient fidelity so that relative comparisons
of the execution plans are accurate. Specifically, a physical operator
must estimate the work done by the algorithm used to implement that
operator, and this estimation requires the sizes and other statistical
characteristics of the input relation(s) to that operator as well as those
of its output. Finally, even though the cost has at least three dimensions

Full text available at: http://dx.doi.org/10.1561/1900000077

1.2. System R Query Optimizer 7

(CPU, memory, I/O), the cost model combines these multi-dimensional
costs in a single number for the convenience of comparing any two plans.

Search algorithm In principle, one could exhaustively enumerate every
alternative execution plan in the search space and invoke cost estimation
to determine the cost of each plan in order to find the plan with the
lowest estimated cost. As some of the alternative execution plans
can share common logical or physical operator trees, e.g., Select(S) in
L1-L4 of Figure 1.2 or Table Scan(S) in P1 and P3 of Figure 1.3, the
enumeration needs to be done carefully to avoid duplicate explorations.
Even so, the exhaustive enumeration can still be too costly in practice.
Thus, a good query optimizer will try to reduce the cost of enumeration
without compromising significantly the quality of the chosen execution
plan.

In summary, a good optimizer is one which: (a) considers a suffi-
ciently large search space of promising plans, (b) models the cost of
execution plans sufficiently accurately to distinguish between plans with
significantly different costs, and (c) provides a search algorithm that
efficiently finds a plan with low cost.

1.2 System R Query Optimizer

The System R project from IBM Research did pioneering work on
query optimization [178]. We briefly review how the System R query
optimizer addressed the key challenges mentioned in Section 1.1. The
techniques developed in this project have had significant impact on all
query optimizers that followed, including extensible query optimizers.

Search space The System R query optimizer’s cost-based plan selec-
tion technique focused on the Select-Project-Join (SPJ) class of queries.
The physical operators for implementing a Select operation included
Table Scan and Index Scan. For Join, System R provided two physical op-
erators, Nested Loops Join and Merge Join (which requires both inputs
to be sorted on the respective join columns). In the example of Query 1,
as Figure 1.2 and Figure 1.3 illustrate, there are several logical query

Full text available at: http://dx.doi.org/10.1561/1900000077

8 Introduction

trees and execution plans for this SPJ queries. This arises because join is
associative and commutative, and there are multiple options of physical
operators for Scan and Join operations. The space of logical query trees
explored by System R for SPJ queries included the space of linear
sequence of binary Join operations, e.g., Join(Join(Join(R, S), T), U).
Figure 1.4a shows an example logical query tree of a linear sequence
of Join operations whereas the logical query tree in Figure 1.4b, i.e., a
bushy plan, is not in the search space of System R. The optimizer also
offered techniques to improve the efficiency of nested queries based on
program analysis but these optimizations were not cost-based.

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U
Join

R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U

(a) Linear plan

Join
R.a=S.b

R S

Select Select

Join
S.c = T.d

Select

T

Join
T.e = U.f

Select

U

(b) Bushy plan

Figure 1.4: Linear sequence of joins vs. bushy join

Cost model The cost model of System R used formulas to estimate the
CPU and I/O costs for each operator in execution plans. Unlike today’s
optimizers, it did not incorporate the cost of memory. The System R
optimizer maintained a set of statistics on base tables and indexes, e.g.,
number of rows (cardinality) and data pages in the table, number of
pages in the index, number of distinct values in each column. System R
provided a set of formulas to compute the selectivity of a single selection
or join predicate. The selectivity of a WHERE clause containing a
conjunction of selection predicates was computed by multiplying the
selectivity of all predicates, i.e., assuming the predicates are independent.
Thus, the cardinality of the output size of a join was estimated by taking
the product of the cardinalities of the two input relations and multiplying
it with the selectivity of all predicates. The cost model formulas, together
with statistical information on base tables and indexes, enabled the

Full text available at: http://dx.doi.org/10.1561/1900000077

1.2. System R Query Optimizer 9

System R optimizer to perform estimation of CPU and I/O costs of
execution plans.

Search algorithm The search algorithm of the System R optimizer
used dynamic programming to find the “best” join order, and is based on
the assumption that the cost model satisfies the principle of optimality.
In other words, it assumes that, in the search space of linear sequence
of joins, the optimal plan for a join of n relations can be found by
extending the optimal plan of a sub-expression of n− 1 joins with an
additional join. For example, the optimal plan PRST of joining relations
R, S, and T can be found from joining R with PST , joining S with PRT ,
and joining T with PRS , where PST , PRT , and PRS are the optimal plans
for joining S, T , joining R, T , and joining R, S respectively. In contrast
to the naive approach that enumerates O(n!) plans by enumerating all
permutations of the join ordering, the dynamic programming approach
enumerates O(n2n−1) plans, and is therefore significantly faster, even
though the time complexity is still exponential in the number of joins.

A second important aspect of System R’s search algorithm was
its consideration of interesting orders. Consider a query Q that joins
three tables R, S, and T , with join predicates R.a = S.a and S.a = T.a.
Suppose the cost of joining R and S with Nested Loops Join using an
Index Seek on S is smaller than the cost of using Merge Join. In this case,
when considering plans for joining R, S, and T , the optimizer would
prune out the plan where R and S are joined using Merge Join. However,
if Merge Join is used to join R and S, then the result of the join is sorted
on column a, which may significantly reduce the cost of the join with T

if Merge Join is used. Therefore, pruning a plan that joins R and S with
a Merge Join can result in a sub-optimal plan for the query. The fact
that the output rows of an operator are ordered, i.e., the operator has
an interesting order, may lower the cost of parent or ancestor operators
in the plan. To accommodate this violation of the principle of optimality
due to interesting orders while retaining the benefits of using dynamic
programming, the search algorithm considered the interesting order
for every expression it enumerates. For a join expression, plans were
compared in cost if and only if they had the same interesting order, and
an optimal plan was kept for each distinct interesting order.

Full text available at: http://dx.doi.org/10.1561/1900000077

10 Introduction

1.3 Need for Extensible Query Optimizer Architecture

The important concepts introduced by System R, including the use of
data statistics and a cost model to determine an execution plan, the
dynamic programming based search for join ordering, and the need to
consider interesting orders, have been adopted by virtually all widely
used query optimizers. However, the framework could not be flexibly
and efficiently extended to additional algebraic equivalences in relational
algebra and new constructs in database systems in a cost-based manner,
which can potentially miss out opportunities to find cheaper query
plans. As relational databases and SQL became important for decision
support queries, the transformations for these additional algebraic
equivalences became valuable for generating an efficient execution plan.
Examples of such transformations include pushing down a group-by
below a join to reduce the cost of the join, optimization of outer joins
that are not associative nor commutative, and decorrelation of nested
queries. In addition, new constructs were introduced to database systems
to improve query execution performance. For example, materialized
views [43, 84], which precompute and store the results of a query sub-
expression, and thereby could dramatically reduce the cost of executing
the query, became important for OLAP and other analytical workloads.
Furthermore, the optimizer also needed to support new logical and
physical operators that were introduced to efficiently execute SQL
queries, e.g., Apply [69].

Fortunately, as the practical needs of a SQL query optimizer ex-
panded, the research on extensible database systems that was ongoing
at that time yielded architectural alternatives to extending the archi-
tecture of System R. Extensible database systems were envisioned as
systems that can be used to customize a database system to the needs
of an application. Specifically, Exodus [26] and later Volcano [79], which
were designed to support user-specified operators for query execution,
emerged in that context. Given the need to support custom opera-
tors, providing a framework for extensible query optimization became
a necessity. Thus, extensibility of the optimizer was a design feature
in Volcano from the very beginning as it was initially envisioned as
an “experimental vehicle for multitude of purposes” [79]. They allowed

Full text available at: http://dx.doi.org/10.1561/1900000077

1.3. Need for Extensible Query Optimizer Architecture 11

system designers to “plug-in” new rules, drawing inspiration from rules
in expert systems (production systems), and thereby extend the capa-
bilities of the optimizer. Later, the extensible optimizer frameworks
of Volcano/Cascades [80, 82] and Starburst [123, 165] focused on SQL
query optimization as a key application, which fulfilled a pressing need
for a new architecture for SQL query optimization.

For most of this monograph, we will focus on extensible optimizers
based on Volcano/Cascades. These extensible optimization frameworks
center around the concept of rules. A logical transformation rule repre-
sents an equivalence in the SQL language (or its algebraic representa-
tion). For example, the equivalences implied by join commutativity and
associativity noted earlier can be expressed using rules. Similarly, a rule
may define the conditions under which pushing down a group-by opera-
tion below a join preserves equivalence. Applying logical transformation
rules to a query tree results in an equivalent alternative query tree.
An implementation rule defines the mapping from a logical operator
(e.g., Join) to a physical operator (e.g., Hash Join). Implementation
rules are needed to generate execution plans for the query. A judicious
choice of a sequence of applications of rules can potentially transform
the query tree into one that executes much faster. It should be noted
that in this architecture, new operators, logical transformations, and
implementation rules can be incorporated without having to modify the
search algorithm of the optimizer each time. Last but not the least, it is
important to note that transformations do not necessarily reduce cost,
and therefore the search algorithm must choose among the alternatives
in a cost-based manner.

SQL is a declarative query language. This allows the query optimizers
to create efficient execution plans for SQL queries that leverage logical
transformations that preserve semantic equivalence and also judiciously
choose the most efficient implementation for the logical operators. The
holy grail of query optimization is to produce the most efficient execution
plan that preserves semantic equivalence but is independent of how the
query is expressed syntactically by the users or the applications. The
extensible query optimizers make this goal achievable by applying rules,
chosen from a rich set of transformations, to the query tree successively
in a judicious sequence driven by a cost-based search algorithm.

Full text available at: http://dx.doi.org/10.1561/1900000077

12 Introduction

1.4 Outline

In this monograph, we focus on the technology of extensible query
optimizers and use Microsoft SQL Server for illustration of the key
concepts. In comparison to the overview article on query optimization
by one of the authors [28], this monograph provides a detailed descrip-
tion of extensible optimizer frameworks as well as several additional
transformation rules that are commonly used in practice. The exten-
sibility framework and rules are explained in depth using pseduocode
and examples.

The rest of the monograph is organized as follows:
Section 2: We review the extensible optimizer frameworks of Vol-

cano [82] and its successor, the Cascades framework [80], that have been
influential. We describe the search algorithms and key data structures
needed in both frameworks, as well as additional techniques to improve
the efficiency of query optimization. We illustrate how Microsoft SQL
Server’s query optimizer leverages the Cascades framework with a few
examples. Finally, we describe how the optimizer handles parallel and
distributed query processing.

Section 3: We present a brief review of other extensible query
optimizers, including Starburst used in IBM DB2, Orca used in Green-
plum DB, Calcite used in Apache Hive, and Catalyst used in Spark
SQL. Although PostgreSQL’s query optimizer does not possess the
extensibility capabilities of frameworks such as Volcano and Cascades,
given its popularity, we include a short overview of its query optimizer.

Section 4: An extensible optimizer draws its effectiveness from the
rules it leverages. In this section, we review some of the key logical
transformations and implementation rules relevant for access paths to
base tables, inner and outer joins, group-by, aggregation, and decorrela-
tion of nested queries. We touch upon a few selected “advanced” rules,
e.g., for optimizing star and snowflake queries which are common in
data warehouses, sideways information passing, user-defined functions
(UDFs), and materialized views.

Section 5: An optimizer framework critically depends on the cost
model and cardinality estimation. In this section, we provide an overview
of cost modeling and cardinality estimation with a focus on industrial

Full text available at: http://dx.doi.org/10.1561/1900000077

1.5. Suggested Reading 13

practices. We discuss the statistical summaries used by the optimizer
such as histograms and how they are used for complex queries. In addi-
tion, we discuss recent adoption of sampling and sketches in database
systems. Finally, we illustrate these concepts and techniques using
Microsoft SQL Server.

Section 6: Most articles on query optimization omit discussions
on managing plans generated by the optimizer over the lifetime of
the database. These aspects of plan management can critically impact
overall workload performance. We discuss a few important challenges
in this context: (a) plan caching and invalidation (b) improving sub-
optimal plans with execution feedback (c) query hints, which allow users
to influence the plan that is chosen by the optimizer (d) optimizing
parameterized queries.

Section 7: While this monograph is centered on extensible query
optimizers in practice, we use this section to mention some of the open
problems and a few of research directions that are being pursued.

Errata and updates: We will provide corrections and updates to
this monograph at the following URL [59]. We encourage readers who
discover errors in this monograph to report them to the authors via
email.

1.5 Suggested Reading

Citation numbers below correspond to numbers in the References section.
[178] P. G. Selinger et al., “Access Path Selection in a Relational
Database Management System,” in Proceedings of the 1979 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’79, pp. 23–34, Boston, Massachusetts: Association for Computing Ma-
chinery, 1979. doi: 10.1145/582095.582099
[77] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys (CSUR), vol. 25, no. 2, 1993, pp. 73–169
[28] S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” in Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 34–43,
1998

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/582095.582099

Appendix

Full text available at: http://dx.doi.org/10.1561/1900000077

A
Access Methods

We provide a brief overview of how the query execution engine in
relational databases can access data stored in the base tables. The data
in base tables can be physically organized using different persistent (i.e.,
on-disk) data structures. Some of the most commonly used structures
are heaps, B-trees indexes [14], and columnstore indexes [189]. We use
the examples of heaps and B+-tree indexes to introduce the important
physical operators.1 We note that there are other aspects of access
methods on base tables that are not discussed below, e.g., partitioning,
but are also relevant for query optimization.

Heap and B+-tree index A heap is an unordered collection of all
records in the table. Each record (row) has a DBMS generated row id,
and stores values for each column in the table. Rows are organized into
pages and stored on disk. B+-trees are n-ary tree based data structures
that organize the data ordered by the key columns of the index. Further,
a B+-tree index can either be a clustered index or non-clustered index.
In a clustered index, the leaf pages of the index contain the entire record

1In contrast to a B-tree, in a B+-tree, leaf pages contain a pointer to the next
leaf page in index order, thereby enabling more efficient scans of a range of values.

191

Full text available at: http://dx.doi.org/10.1561/1900000077

192 Access Methods

(i.e., values of all columns of the table), whereas in a non-clustered index,
the leaf pages only contain the key columns and the record id. Besides
key columns, a non-clustered index may optionally contain additional
include columns. In this case, each row in the leaf page of the index
contains the key columns as well as the include columns. Observe that
the B+-tree supports search (i.e., lookups or range scans) only over the
key columns, and not the include columns. In contrast to heaps, B+-
Tree indexes can greatly speed up the retrieval of the data, especially
when only a selective subset of the data is needed to answer the query.

We use the same example table and query from Section 4.1 to
describe the physical operators for accessing data in heaps and B+-tree
indexes. Consider a table S(id, a, b, c) with four columns, where id is
the primary key of table S. Consider the following query Q1:
SELECT S.a, S.b
FROM S
WHERE S.a > 10 AND S.b = 20

Table Scan Since the rows of a heap are unordered, a heap provides no
ability to lookup any individual record. Thus, the only physical operator
allowed on a heap is the Table Scan operator. Table Scan takes a table
as an argument and returns all rows from the table. In our example,
Table Scan of S returns all rows in S. Observe that when the table is
large, the Table Scan operator can be expensive since it needs to fetch
all pages of S from storage, including rows and columns that are not
needed to answer the query.

Index Seek and Key Lookup When the query contains an equality
predicate on any prefix of the key columns in the index, the Index Seek
operator can be used to retrieve all rows satisfying the predicate. For
example, consider a B+-tree index Ib built on table S with b as the
key column. Then for Q1, instead of scanning the full table, invoking
Index Seek (Ib, S.b = 20) will find and retrieve row ids of all rows in
the table satisfying the predicate. A special case of Index Seek is a
Key Lookup operator which is used when the index is defined on a
primary key or unique column of the table. In a Key Lookup, either
0 or 1 record is returned, whereas in an Index Seek, 0 or more rows

Full text available at: http://dx.doi.org/10.1561/1900000077

193

can be returned. Note that an invocation of the Index Seek operator
performs a random I/O to access the data page containing the matching
records. While an Index Seek is often used for identifying rows satisfying
a selection predicates (e.g., S.b = 10), it can also be combined with a
Nested Loops Join operator to efficiently support a join between two
relations. Specifically, for each row from the outer relation, a Nested
Loops Join operator can use an Index Seek on the inner side relation of
the join if the key column of the index is the join column.

Index Scan When the query contains a range predicate, a B+-tree in-
dex enables efficient range scans using the Index Scan operator. Consider
a B+-tree index Ia built on table S with a as the key column. Since the
predicate S.a > 10 needs to retrieve a range of values, invoking Index
Scan (Ia, S.a > 10) will retrieve row ids of all rows satisfying the range
predicate on column a. We observe that for the Index Scan operators
the predicate is an optional argument. If no predicate is specified, Index
Scan returns all rows from the leaf pages of the index. Unlike Table
Scan where the rows returned are unordered, these rows from Index
Scan will appear in the order of the key columns of the index. Thus,
the usefulness of Index Scan goes beyond its ability to retrieve rows
since it can benefit other operators such as Merge Join and Stream
Aggregate, which require their inputs to be sorted. B+-tree indexes
containing include columns can be very effective in answering a query
when all columns required to answer the query are available in the
index, whether as part of key or include columns. For example, consider
an index Ia(b) where the key column is a, and the include column is
b. Observe that the query Q1 can be answered using an Index Scan
Ia(b) with S.a > 10 followed by a Filter operator that can apply the
predicate S.b = 20. Since the column b is available in the index, we can
avoid a Key Lookup into the clustered index to obtain column b.

Full text available at: http://dx.doi.org/10.1561/1900000077

References

[1] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. Row-stores: How Different are They Really?” In Proceed-
ings of the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08, pp. 967–980, Vancou-
ver, Canada: Association for Computing Machinery, 2008. doi:
10.1145/1376616.1376712.

[2] A. Aboulnaga and S. Chaudhuri, “Self-Tuning Histograms: Build-
ing Histograms without Looking at Data,” in Proceedings of the
1999 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’99, pp. 181–192, Philadelphia, Pennsyl-
vania, USA: Association for Computing Machinery, 1999. doi:
10.1145/304182.304198.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and
K. Yi, “Mergeable Summaries,” ACM Transactions on Database
Systems (TODS), vol. 38, no. 4, 2013, pp. 1–28.

[4] J. Aguilar-Saborit, R. Ramakrishnan, K. Srinivasan, K. Bock-
srocker, I. Alagiannis, M. Sankara, M. Shafiei, J. Blakeley, G.
Dasarathy, S. Dash, et al., “POLARIS: the Distributed SQL
Engine in Azure Synapse,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, 2020, pp. 3204–3216.

194

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/304182.304198

References 195

[5] M. X. et al., “Adaptive and Robust Query Execution for Lake-
houses at Scale,” Proceedings of the VLDB Endowment, vol. 17,
2024.

[6] Amazon, AWS: COUNT function, 2024. url: https://docs.aws.
amazon.com/redshift/latest/dg/r_COUNT.html.

[7] G. Antoshenkov, “Dynamic Query Optimization in Rdb/VMS,”
in Proceedings of IEEE 9th International Conference on Data
Engineering, IEEE, pp. 538–547, 1993.

[8] P. M. Aoki, “Implementation of Extended Indexes in POST-
GRES,” in ACM SIGIR Forum, ACM New York, NY, USA,
vol. 25, pp. 2–9, 1991.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al., “Spark
SQL: Relational Data Processing in Spark,” in Proceedings of the
2015 ACM SIGMOD international conference on management
of data, pp. 1383–1394, 2015.

[10] N. Armenatzoglou, S. Basu, N. Bhanoori, M. Cai, N. Chainani,
K. Chinta, V. Govindaraju, T. J. Green, M. Gupta, S. Hillig, et
al., “Amazon Redshift Re-invented,” in Proceedings of the 2022
International Conference on Management of Data, pp. 2205–
2217, 2022.

[11] A. Atserias, M. Grohe, and D. Marx, “Size Bounds and Query
Plans for Relational Joins,” in Proceedings of the 2008 49th
Annual IEEE Symposium on Foundations of Computer Science,
pp. 739–748, 2008.

[12] R. Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pp. 261–272,
2000.

[13] B. Babcock and S. Chaudhuri, “Towards a Robust Query Op-
timizer: A Principled and Practical Approach,” in Proceedings
of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’05, pp. 119–130, Baltimore,
Maryland: Association for Computing Machinery, 2005. doi:
10.1145/1066157.1066172.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://doi.org/10.1145/1066157.1066172

196 References

[14] R. Bayer and E. McCreight, “Organization and Maintenance
of Large Ordered Indices,” in Proceedings of the 1970 ACM
SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control, pp. 107–141, 1970.

[15] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D.
Lemire, “Apache Calcite: A Foundational Framework for Opti-
mized Query Processing over Heterogeneous Data Sources,” in
Proceedings of the 2018 International Conference on Management
of Data, pp. 221–230, 2018.

[16] S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor, M. Zait,
and C.-C. Lin, “Enhanced Subquery Optimizations in Oracle,”
Proc. VLDB Endow., vol. 2, no. 2, Aug. 2009, pp. 1366–1377.
doi: 10.14778/1687553.1687563.

[17] P. A. Bernstein and D.-M. W. Chiu, “Using Semi-Joins to Solve
Relational Queries,” J. ACM, vol. 28, no. 1, Jan. 1981, pp. 25–40.
doi: 10.1145/322234.322238.

[18] P. Bizarro, N. Bruno, and D. J. DeWitt, “Progressive Parametric
Query Optimization,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 4, 2009, pp. 582–594. doi: 10.
1109/TKDE.2008.160.

[19] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
Pipelining Query Execution.,” in Cidr, vol. 5, pp. 225–237, 2005.

[20] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, and
C. Fraser, “Smooth Scan: Statistics-oblivious Access Paths,” in
2015 IEEE 31st International Conference on Data Engineering,
IEEE, pp. 315–326, 2015.

[21] N. Bruno and S. Chaudhuri, “Exploiting Statistics on Query Ex-
pressions for Optimization,” in Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data, pp. 263–
274, 2002.

[22] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: A Multi-
dimensional Workload-Aware Histogram,” in Proceedings of the
2001 ACM SIGMOD international conference on Management
of data, pp. 211–222, 2001.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.14778/1687553.1687563
https://doi.org/10.1145/322234.322238
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1109/TKDE.2008.160

References 197

[23] N. Bruno, S. Chaudhuri, and R. Ramamurthy, “Power Hints
for Query Optimization,” in 2009 IEEE 25th International Con-
ference on Data Engineering, pp. 469–480, 2009. doi: 10.1109/
ICDE.2009.68.

[24] N. Bruno, C. Galindo-Legaria, M. Joshi, E. Calvo Vargas, K.
Mahapatra, S. Ravindran, G. Chen, E. Cervantes Juárez, and
B. Sezgin, “Unified Query Optimization in the Fabric Data
Warehouse,” in Companion of the 2024 International Conference
on Management of Data, pp. 18–30, 2024.

[25] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and Batch Processing in
a Single Engine,” The Bulletin of the Technical Committee on
Data Engineering, vol. 38, no. 4, 2015.

[26] M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E.
Richardson, D. T. Schuh, E. J. Shekita, and S. L. Vandenberg,
“The EXODUS Extensible DBMS project: An Overview,” 1988.

[27] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya,
“Towards Estimation Error Guarantees for Distinct Values,” in
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 268–279, 2000.

[28] S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” in Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems,
pp. 34–43, 1998.

[29] S. Chaudhuri, “Query Optimizers: Time to Rethink the Con-
tract?” In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 961–968, 2009.

[30] S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of Block-
level Sampling in Statistics Estimation,” in Proceedings of the
2004 ACM SIGMOD international conference on Management
of data, pp. 287–298, 2004.

[31] S. Chaudhuri, U. Dayal, and V. Narasayya, “An Overview of
Business Intelligence Technology,” Communications of the ACM,
vol. 54, no. 8, 2011, pp. 88–98.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1109/ICDE.2009.68
https://doi.org/10.1109/ICDE.2009.68

198 References

[32] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim,
“Optimizing Queries with Materialized Views,” in Proceedings
of the Eleventh International Conference on Data Engineering,
IEEE, pp. 190–200, 1995.

[33] S. Chaudhuri, H. Lee, and V. R. Narasayya, “Variance aware
Optimization of Parameterized Queries,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management
of data, pp. 531–542, 2010.

[34] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random Sam-
pling for Histogram Construction: How Much is Enough?” ACM
SIGMOD Record, vol. 27, no. 2, 1998, pp. 436–447.

[35] S. Chaudhuri, R. Motwani, and V. Narasayya, “On Random
Sampling over Joins,” ACM SIGMOD Record, vol. 28, no. 2,
1999, pp. 263–274.

[36] S. Chaudhuri and V. Narasayya, “Automating Statistics Manage-
ment for Query Optimizers,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 1, 2001, pp. 7–20.

[37] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “A Pay-
as-You-Go Framework for Query Execution Feedback,” Proc.
VLDB Endow., vol. 1, no. 1, Aug. 2008, pp. 1141–1152. doi:
10.14778/1453856.1453977.

[38] S. Chaudhuri and K. Shim, “Including Group-By in Query Opti-
mization,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB ’94, pp. 354–366, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994.

[39] S. Chaudhuri and K. Shim, “Optimization of Queries with User-
defined Predicates,” ACM Transactions on Database Systems
(TODS), vol. 24, no. 2, 1999, pp. 177–228.

[40] C. M. Chen and N. Roussopoulos, “Adaptive Selectivity Es-
timation using Query Feedback,” in Proceedings of the 1994
ACM SIGMOD international conference on Management of data,
pp. 161–172, 1994.

[41] T. Chen and C. Guestrin, “Xgboost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pp. 785–794,
2016.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.14778/1453856.1453977

References 199

[42] A. Cheung, A. Solar-Lezama, and S. Madden, “Optimizing
database-backed applications with query synthesis,” ACM SIG-
PLAN Notices, vol. 48, no. 6, 2013, pp. 3–14.

[43] R. Chirkova, J. Yang, et al., “Materialized Views,” Foundations
and Trends® in Databases, vol. 4, no. 4, 2011, pp. 295–405.

[44] F. Chu, J. Y. Halpern, and P. Seshadri, “Least Expected Cost
Query Optimization: An Exercise in Utility,” in Proceedings of
the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 138–147, 1999.

[45] R. L. Cole and G. Graefe, “Optimization of Dynamic Query
Evaluation Plans,” in Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
’94, pp. 150–160, Minneapolis, Minnesota, USA: Association for
Computing Machinery, 1994. doi: 10.1145/191839.191872.

[46] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al.,
“Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches,” Foundations and Trends® in Databases, vol. 4, no. 1–
3, 2011, pp. 1–294.

[47] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: the Count-Min Sketch and its Applications,” Journal
of Algorithms, vol. 55, no. 1, 2005, pp. 58–75.

[48] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: the Count-Min Sketch and its Applications,” Journal
of Algorithms, vol. 55, no. 1, 2005, pp. 58–75.

[49] H. D., P. N. Darera, and J. R. Haritsa, “On the Production of
Anorexic Plan Diagrams,” in Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, ser. VLDB ’07,
pp. 1081–1092, Vienna, Austria: VLDB Endowment, 2007.

[50] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang,
et al., “The Snowflake Elastic Data Warehouse,” in Proceedings
of the 2016 International Conference on Management of Data,
pp. 215–226, 2016.

[51] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan,
et al., “Semantic Data Caching and Replacement,” in VLDB,
vol. 96, pp. 330–341, 1996.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/191839.191872

200 References

[52] U. Dayal, “Of Nests and Trees: A Unified Approach to Process-
ing Queries That Contain Nested Subqueries, Aggregates, and
Quantifiers,” in Proceedings of the 13th International Conference
on Very Large Data Bases, ser. VLDB ’87, pp. 197–208, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987.

[53] K. Delaney, Inside Microsoft SQL Server 2005: Query Tuning
and Optimization. Microsoft Press, 2007.

[54] A. Deshpande, Z. Ives, and V. Raman, “Adaptive Query Pro-
cessing,” Foundations and Trends® in Databases, vol. 1, no. 1,
2007, pp. 1–140. doi: 10.1561/1900000001.

[55] D. J. DeWitt and R. Ramamurthy, “Buffer Pool Aware Query
Optimization,” in Proceedings of the 2005 CIDR Conference,
pp. 961–968, 2009.

[56] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An Evalu-
ation of Non-Equijoin Algorithms,” in Proceedings of the 17th
International Conference on Very Large Data Bases, ser. VLDB
’91, pp. 443–452, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1991.

[57] B. Ding, S. Chaudhuri, J. Gehrke, and V. Narasayya, “DSB: A
Decision Support Benchmark for Workload-Driven and Tradi-
tional Database Systems,” Proc. VLDB Endow., vol. 14, no. 13,
Sep. 2021, pp. 3376–3388. doi: 10.14778/3484224.3484234.

[58] B. Ding, S. Chaudhuri, and V. Narasayya, “Bitvector-Aware
Query Optimization for Decision Support Queries,” in Proceed-
ings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20, pp. 2011–2026, Port-
land, OR, USA: Association for Computing Machinery, 2020.
doi: 10.1145/3318464.3389769.

[59] B. Ding, V. Narasayya, and C. Surajit, Errata and Updates
to the Foundations and Trends in Databases article: Extensible
Query Optimizers in Practice, 2024. url: https://www.microsoft.
com/en-us/research/project/extensible-query-optimizers- in-
practice-errata-and-updates/.

[60] W. Du, R. Krishnamurthy, and M.-C. Shan, “Query Optimiza-
tion in a Heterogeneous DBMS,” in VLDB, vol. 92, pp. 277–291,
1992.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1561/1900000001
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.1145/3318464.3389769
https://www.microsoft.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/
https://www.microsoft.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/
https://www.microsoft.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/

References 201

[61] A. Dutt, V. Narasayya, and S. Chaudhuri, “Leveraging Re-
Costing for Online Optimization of Parameterized Queries with
Guarantees,” in Proceedings of the 2017 ACM International Con-
ference on Management of Data, ser. SIGMOD ’17, pp. 1539–
1554, Chicago, Illinois, USA: Association for Computing Machin-
ery, 2017. doi: 10.1145/3035918.3064040.

[62] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi,
“Execution Strategies for SQL Subqueries,” in Proceedings of the
2007 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’07, pp. 993–1004, Beijing, China: Asso-
ciation for Computing Machinery, 2007. doi: 10.1145/1247480.
1247598.

[63] R. Fagin, “Normal Forms and Relational Database Operators,” in
Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’79, pp. 153–160, Boston,
Massachusetts: Association for Computing Machinery, 1979. doi:
10.1145/582095.582120.

[64] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyper-
loglog: the Analysis of a Near-Optimal Cardinality Estimation
Algorithm,” in Discrete Mathematics and Theoretical Computer
Science, Discrete Mathematics and Theoretical Computer Sci-
ence, pp. 137–156, 2007.

[65] P. Flajolet and G. N. Martin, “Probabilistic Counting Algorithms
for Data Base Applications,” Journal of computer and system
sciences, vol. 31, no. 2, 1985, pp. 182–209.

[66] M. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann,
“Adopting Worst-case Optimal Joins in Relational Database
Systems,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
2020, pp. 1891–1904.

[67] M. Freitag and T. Neumann, “Every Row Counts: Combining
Sketches and Sampling for Accurate Group-by Result Estimates,”
ratio, vol. 1, 2019, pp. 1–39.

[68] C. Galindo-Legaria and A. Rosenthal, “How to Extend a Con-
ventional Optimizer to Handle One- and Two-sided Outerjoin,”
in [1992] Eighth International Conference on Data Engineering,
pp. 402–409, 1992. doi: 10.1109/ICDE.1992.213169.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/3035918.3064040
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/582095.582120
https://doi.org/10.1109/ICDE.1992.213169

202 References

[69] C. Galindo-Legaria and M. Joshi, “Orthogonal Optimization of
Subqueries and Aggregation,” SIGMOD ’01, 2001, pp. 571–581.
doi: 10.1145/375663.375748.

[70] C. Galindo-Legaria and A. Rosenthal, “Outerjoin Simplification
and Reordering for Query Optimization,” ACM Trans. Database
Syst., vol. 22, no. 1, Mar. 1997, pp. 43–74. doi: 10.1145/244810.
244812.

[71] C. A. Galindo-Legaria, M. M. Joshi, F. Waas, and M.-C. Wu,
“Statistics on Views,” in Proceedings 2003 VLDB Conference,
Elsevier, pp. 952–962, 2003.

[72] C. A. Galindo-Legaria, T. Grabs, S. Gukal, S. Herbert, A. Surna,
S. Wang, W. Yu, P. Zabback, and S. Zhang, “Optimizing Star
Join Queries for Data Warehousing in Microsoft SQL Server,” in
2008 IEEE 24th International Conference on Data Engineering,
pp. 1190–1199, 2008. doi: 10.1109/ICDE.2008.4497528.

[73] S. Ganguly, “Design and Analysis of Parametric Query Opti-
mization Algorithms,” in VLDB, vol. 98, pp. 228–238, 1998.

[74] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental
Maintenance of Approximate Histograms,” in VLDB, vol. 97,
pp. 466–475, 1997.

[75] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental
Maintenance of Approximate Histograms,” ACM Transactions
on Database Systems (TODS), vol. 27, no. 3, 2002, pp. 261–298.

[76] J. Goldstein and P.-Å. Larson, “Optimizing Queries using Mate-
rialized Views: a Practical, Scalable Solution,” ACM SIGMOD
Record, vol. 30, no. 2, 2001, pp. 331–342.

[77] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys (CSUR), vol. 25, no. 2, 1993, pp. 73–
169.

[78] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Comput. Surv., vol. 25, no. 2, Jun. 1993, pp. 73–169. doi:
10.1145/152610.152611.

[79] G. Graefe, “Volcano - An Extensible and Parallel Query Eval-
uation System,” IEEE Transactions on Knowledge and Data
Engineering, vol. 6, no. 1, 1994, pp. 120–135.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/244810.244812
https://doi.org/10.1145/244810.244812
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.1145/152610.152611

References 203

[80] G. Graefe, “The Cascades Framework for Query Optimization,”
IEEE Data Eng. Bull., vol. 18, no. 3, 1995, pp. 19–29.

[81] G. Graefe, “New Algorithms for Join and Grouping Opera-
tions,” Computer Science-Research and Development, vol. 27,
2012, pp. 3–27.

[82] G. Graefe and W. McKenna, “The Volcano Optimizer Genera-
tor,” Colorado Univ at Boulder Dept of Computer Science, Tech.
Rep., 1991.

[83] G. Graefe and W. J. McKenna, “The Volcano Optimizer Gener-
ator: Extensibility and Efficient Search,” in Proceedings of IEEE
9th international conference on data engineering, pp. 209–218,
1993.

[84] A. Gupta and I. S. Mumick, Materialized Views: Techniques,
Implementations, and Applications. MIT press, 1999.

[85] A. Gupta, I. S. Mumick, et al., “Maintenance of Materialized
Views: Problems, Techniques, and Applications,” IEEE Data
Eng. Bull., vol. 18, no. 2, 1995, pp. 3–18.

[86] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh,
“Extensible Query Processing in Starburst,” in Proceedings of the
1989 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’89, pp. 377–388, Portland, Oregon, USA:
Association for Computing Machinery, 1989. doi: 10.1145/67544.
66962.

[87] A. Y. Halevy, “Answering Queries using Views: A Survey,” The
VLDB Journal, vol. 10, 2001, pp. 270–294.

[88] J. Haritsa, “Robust query processing: A survey,” Foundations
and Trends® in Databases, vol. 15, no. 1, 2024, pp. 1–114. url:
https://nowpublishers.com/article/Details/DBS-089.

[89] J. R. Haritsa, “Robust Query Processing: Mission Possible,” in
2019 IEEE 35th International Conference on Data Engineering
(ICDE), IEEE, pp. 2072–2075, 2019.

[90] H. Harmouch and F. Naumann, “Cardinality Estimation: An
Experimental Survey,” Proceedings of the VLDB Endowment,
vol. 11, no. 4, 2017, pp. 499–512.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/67544.66962
https://doi.org/10.1145/67544.66962
https://nowpublishers.com/article/Details/DBS-089

204 References

[91] J. M. Hellerstein and M. Stonebraker, “Predicate Migration:
Optimizing Queries with Expensive Predicates,” in Proceedings
of the 1993 ACM SIGMOD international conference on Manage-
ment of data, pp. 267–276, 1993.

[92] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in Practice: Al-
gorithmic Engineering of a state of the art Cardinality Estimation
Algorithm,” in Proceedings of the 16th International Conference
on Extending Database Technology, pp. 683–692, 2013.

[93] E. Hewitt, Cassandra: the Definitive Guide. O’Reilly Media, Inc.,
2010.

[94] B. Hilprecht and C. Binnig, “Zero-shot Cost Models for
Out-of-the-box Learned Cost Prediction,” arXiv preprint
arXiv:2201.00561, 2022.

[95] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting,
and C. Binnig, “Deepdb: Learn from Data, not from Queries!”
arXiv preprint arXiv:1909.00607, 2019.

[96] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A
Catalog of Stream Processing Optimizations,” ACM Computing
Surveys (CSUR), vol. 46, no. 4, 2014, pp. 1–34.

[97] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major
Technical Advancements in Apache Hive,” in Proceedings of the
2014 ACM SIGMOD international conference on Management
of data, pp. 1235–1246, 2014.

[98] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization
for Linear and Piecewise Linear Cost Functions,” in VLDB’02:
Proceedings of the 28th International Conference on Very Large
Databases, Elsevier, pp. 167–178, 2002.

[99] IBM, DB2 for z/OS: Histogram statistics, 2024. url: https :
//www.ibm.com/docs/en/db2- for-zos/12?topic=statistics-
histogram.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram
https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram
https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram

References 205

[100] Y. E. Ioannidis and Y. Kang, “Randomized Algorithms for
Optimizing Large Join Queries,” in Proceedings of the 1990
ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’90, pp. 312–321, Atlantic City, New Jer-
sey, USA: Association for Computing Machinery, 1990. doi:
10.1145/93597.98740.

[101] Y. Ioannidis, “The History of Histograms (abridged),” in Pro-
ceedings 2003 VLDB Conference, Elsevier, pp. 19–30, 2003.

[102] Y. E. Ioannidis and S. Christodoulakis, “On the Propagation of
Errors in the Size of Join Results,” in Proceedings of the 1991
ACM SIGMOD International Conference on Management of
data, pp. 268–277, 1991.

[103] Y. E. Ioannidis and V. Poosala, “Balancing Histogram Optimality
and Practicality for Query Result Size Estimation,” Acm Sigmod
Record, vol. 24, no. 2, 1995, pp. 233–244.

[104] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin, “COMPASS: Online
Sketch-based Query Optimization for In-memory Databases,” in
Proceedings of the 2021 International Conference on Management
of Data, pp. 804–816, 2021.

[105] N. Kabra and D. J. DeWitt, “Efficient Mid-query Re-
optimization of Sub-optimal Query Execution Plans,” in Pro-
ceedings of the 1998 ACM SIGMOD international conference on
Management of data, pp. 106–117, 1998.

[106] S. Kandula, L. Orr, and S. Chaudhuri, “Pushing data-induced
predicates through joins in big-data clusters,” Proceedings of the
VLDB Endowment, vol. 13, no. 3, 2019, pp. 252–265.

[107] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P.
Boncz, “Everything you always wanted to know about Compiled
and Vectorized Queries but were afraid to ask,” Proceedings of
the VLDB Endowment, vol. 11, no. 13, 2018, pp. 2209–2222.

[108] K. Kim, J. Jung, I. Seo, W.-S. Han, K. Choi, and J. Chong,
“Learned Cardinality Estimation: An In-Depth Study,” in Pro-
ceedings of the 2022 International Conference on Management
of Data, ser. SIGMOD ’22, pp. 1214–1227, Philadelphia, PA,
USA: Association for Computing Machinery, 2022. doi: 10.1145/
3514221.3526154.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/93597.98740
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1145/3514221.3526154

206 References

[109] W. Kim, “On Optimizing an SQL-like Nested Query,” ACM
Trans. Database Syst., vol. 7, no. 3, Sep. 1982, pp. 443–469. doi:
10.1145/319732.319745.

[110] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Plan-
ning,” in European conference on machine learning, Springer,
pp. 282–293, 2006.

[111] R. P. Kooi, The Optimization of Queries in Relational Databases.
Case Western Reserve University, 1980.

[112] P. Krishnan, J. S. Vitter, and B. Iyer, “Estimating Alphanumeric
Selectivity in the Presence of Wildcards,” in Proceedings of the
1996 ACM SIGMOD international conference on Management
of data, pp. 282–293, 1996.

[113] P.-Å. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price,
S. Rangarajan, A. Surna, and Q. Zhou, “SQL Server Column
Store Indexes,” in Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data, ser. SIGMOD
’11, pp. 1177–1184, Athens, Greece: Association for Computing
Machinery, 2011. doi: 10.1145/1989323.1989448.

[114] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in International
symposium on code generation and optimization, 2004. CGO
2004., IEEE, pp. 75–86, 2004.

[115] A. W. Lee and M. Zait, “Closing the Query Processing Loop in
Oracle 11g,” Proceedings of the VLDB Endowment, vol. 1, no. 2,
2008, pp. 1368–1378.

[116] K. Lee, A. Dutt, V. Narasayya, and S. Chaudhuri, “Analyzing
the Impact of Cardinality Estimation on Execution Plans in
Microsoft SQL Server,” Proceedings of the VLDB Endowment,
vol. 16, no. 11, 2023, pp. 2871–2883.

[117] M. K. Lee, J. C. Freytag, and G. M. Lohman, “Implementing
an Interpreter for Functional Rules in a Query Optimizer.,” in
VLDB, pp. 218–229, 1988.

[118] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann, “How Good Are Query Optimizers, Really?” Proc.
VLDB Endow., vol. 9, no. 3, Nov. 2015, pp. 204–215. doi: 10.
14778/2850583.2850594.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/319732.319745
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594

References 207

[119] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kem-
per, and T. Neumann, “Query Optimization Through the Look-
ing Glass, and What We Found Running the Join Order Bench-
mark,” The VLDB Journal, vol. 27, 2018, pp. 643–668.

[120] W. Lemahieu, S. vanden Broucke, and B. Baesens, Principles of
Database Management: the Practical Guide to Storing, Managing
and Analyzing Big and Small Data. Cambridge University Press,
2018.

[121] B. Li, Y. Lu, and S. Kandula, “Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts,” in
Proceedings of the 2022 International Conference on Management
of Data, pp. 1920–1933, 2022.

[122] G. Lohman, Is Query Optimization a "Solved" Problem? 2014.
url: https://wp.sigmod.org/?p=1075.

[123] G. M. Lohman, “Grammar-like Functional Rules for Represent-
ing Query Optimization Alternatives,” ACM SIGMOD Record,
vol. 17, no. 3, 1988, pp. 18–27.

[124] Y. Lu, S. Kandula, A. C. König, and S. Chaudhuri, “Pre-training
Summarization Models of Structured Datasets for Cardinality
Estimation,” Proceedings of the VLDB Endowment, vol. 15, no. 3,
2021, pp. 414–426.

[125] L. F. Mackert and G. M. Lohman, “R* Optimizer Validation and
Performance Evaluation for Local Queries,” in Proceedings of the
1986 ACM SIGMOD international conference on Management
of data, pp. 84–95, 1986.

[126] L. F. Mackert and G. M. Lohman, “R* optimizer validation and
performance evaluation for local queries,” in Proceedings of the
1986 ACM SIGMOD international conference on Management
of data, pp. 84–95, 1986.

[127] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T.
Kraska, “Bao: Making Learned Query Optimization Practical,”
in Proceedings of the 2021 International Conference on Man-
agement of Data, ser. SIGMOD ’21, pp. 1275–1288, Virtual
Event, China: Association for Computing Machinery, 2021. doi:
10.1145/3448016.3452838.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://wp.sigmod.org/?p=1075
https://doi.org/10.1145/3448016.3452838

208 References

[128] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A Learned Query
Optimizer,” arXiv preprint arXiv:1904.03711, 2019.

[129] R. Marcus and O. Papaemmanouil, “Plan-structured Deep Neu-
ral Network Models for Query Performance Prediction,” arXiv
preprint arXiv:1902.00132, 2019.

[130] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh,
and M. Cilimdzic, “Robust Query Processing through Progres-
sive Optimization,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 659–670,
2004.

[131] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based His-
tograms for Selectivity Estimation,” in Proceedings of the 1998
ACM SIGMOD international conference on Management of data,
pp. 448–459, 1998.

[132] W. J. McKenna, Efficient Search in Extensible Database Query
Optimization: The Volcano Optimizer Generator. University of
Colorado at Boulder, 1993.

[133] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, T. Vassilakis, H. Ahmadi, D. Delorey, S. Min, et
al., “Dremel: A Decade of Interactive SQL Analysis at Web
Scale,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
2020, pp. 3461–3472.

[134] J. Melton and A. R. Simon, SQL: 1999: Understanding Relational
Language Components. Elsevier, 2001.

[135] Microsoft, Adaptive Joins in Microsoft SQL Server, 2017. url:
https://learn.microsoft.com/en-us/sql/relational-databases/
performance/intelligent- query- processing- details?view=sql-
server-ver16.

[136] Microsoft, Intro to Query Execution Bitmap Filters, 2019. url:
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-
to-query-execution-bitmap-filters/ba-p/383175.

[137] Microsoft, Optimizing Your Query Plans with the SQL Server
2014 Cardinality Estimator, 2021. url: https://learn.microsoft.
com / en - us / previous - versions / dn673537(v = msdn . 10)
?redirectedfrom=MSDN.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN

References 209

[138] Microsoft, Parameter Sensitive Plan optimization in Microsoft
SQL Server, 2022. url: https://learn.microsoft.com/en-us/sql/
relational-databases/performance/parameter- sensitive-plan-
optimization?view=sql-server-ver16.

[139] Microsoft, Cardinality Estimation (SQL Server), 2023. url:
https://learn.microsoft.com/en-us/sql/relational-databases/
performance / cardinality - estimation - sql - server ? view = sql -
server-ver16.

[140] Microsoft, Hints (Transact-SQL) - Query, 2023. url: https :
//learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-
sql-query?view=sql-server-ver16.

[141] Microsoft, Microsoft SQL Server Query Store, 2023. url: https:
/ / learn . microsoft . com / en - us / sql / relational - databases /
performance/monitoring - performance - by - using - the - query -
store?view=sql-server-ver16.

[142] Microsoft, Microsoft SQL Server Query Store, 2024. url: https:
/ / learn . microsoft . com / en - us / sql / relational - databases /
performance/monitoring - performance - by - using - the - query -
store?view=sql-server-ver16.

[143] Microsoft, Microsoft SQL server: Approximate Count Distinct,
2024. url: https : // learn .microsoft . com/en - us/ sql/ t - sql/
functions/approx-count-distinct-transact-sql?view=sql-server-
ver16.

[144] Microsoft, Microsoft SQL Server: Memory grant feedback, 2024.
url: https : / / learn . microsoft . com / en - us / sql / relational -
databases/performance/intelligent-query-processing-memory-
grant-feedback?view=sql-server-ver16.

[145] Microsoft, Microsoft SQL Server: Query Processing Architec-
ture Guide, 2024. url: https://learn.microsoft .com/en- us/
sql/relational-databases/query-processing-architecture-guide?
view=sql-server-ver16.

[146] Microsoft, Statistics: Microsoft SQL Server, 2024. url: https://
learn.microsoft.com/en-us/sql/relational-databases/statistics/
statistics?view=sql-server-ver16.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16

210 References

[147] Microsoft, Automatic Plan Correction in Microsoft SQL Server.
url: https : / / learn . microsoft . com / en - us / sql / relational -
databases / automatic - tuning / automatic - tuning ? view = sql -
server-ver16.

[148] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakr-
ishnan, “Magic is Relevant,” in Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data,
ser. SIGMOD ’90, pp. 247–258, Atlantic City, New Jersey, USA:
Association for Computing Machinery, 1990. doi: 10.1145/93597.
98734.

[149] R. O. Nambiar and M. Poess, “The Making of TPC-DS,” in
Proceedings of the 32nd International Conference on Very Large
Data Bases, ser. VLDB ’06, pp. 1049–1058, Seoul, Korea: VLDB
Endowment, 2006.

[150] V. Narasayya and S. Chaudhuri, “Cloud Data Services: Work-
loads, Architectures and Multi-Tenancy,” Foundations and
Trends® in Databases, vol. 10, no. 1, 2021, pp. 1–107. doi:
10.1561/1900000060.

[151] P. Negi, Z. Wu, A. Kipf, N. Tatbul, R. Marcus, S. Madden, T.
Kraska, and M. Alizadeh, “Robust Query Driven Cardinality Es-
timation under Changing Workloads,” Proceedings of the VLDB
Endowment, vol. 16, no. 6, 2023, pp. 1520–1533.

[152] T. Neumann, “Efficiently Compiling Efficient Query Plans for
Modern Hardware,” Proceedings of the VLDB Endowment, vol. 4,
no. 9, 2011, pp. 539–550.

[153] T. Neumann and A. Kemper, Unnesting Arbitrary Queries, 2015.
[154] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case Optimal

Join Algorithms,” Journal of the ACM (JACM), vol. 65, no. 3,
2018, pp. 1–40.

[155] F. Olken, “Random Sampling from Databases,” Ph.D. disserta-
tion, Citeseer, 1993.

[156] Oracle, Oracle Dynamic Sampling, 2020. url: https://blogs.
oracle.com/optimizer/post/dynamic-sampling-and-its-impact-
on-the-optimizer.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://doi.org/10.1145/93597.98734
https://doi.org/10.1145/93597.98734
https://doi.org/10.1561/1900000060
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer

References 211

[157] Oracle, Oracle Automatic Workload Repository, 2023. url: https:
//docs.oracle.com/en/database/oracle/oracle-database/23/
tgdba/awr-report-ui.html.

[158] Oracle, Oracle Result Set Caching, 2024. url: https://docs.oracle.
com/en/database/oracle/oracle-database/19/jjdbc/statement-
and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-
994C-C1D5B143FC4F.

[159] Oracle, Oracle SQL Tuning Guide: Histograms, 2024. url: https:
//docs.oracle.com/en/database/oracle/oracle-database/19/
tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-
1443D9AD9B64.

[160] Oracle, Statistics Best Practices: Oracle, 2024. url: https://
www.oracle.com/docs/tech/database/technical-brief-bp-for-
stats-gather-19c.pdf.

[161] Oracle, The Optimizer In Oracle Database 19c, 2024. url: https:
//www.oracle.com/technetwork/database/bi-datawarehousing/
twp-optimizer-with-oracledb-19c-5324206.pdf.

[162] Oracle, SQL Plan Management in Oracle database. url: https:
//docs.oracle.com/en-us/iaas/database-management/doc/use-
spm-manage-sql-execution-plans.html.

[163] A. Pellenkoft, C. A. Galindo-Legaria, and M. L. Kersten, “The
Complexity of Transformation-Based Join Enumeration,” in Pro-
ceedings of the 23rd International Conference on Very Large
Data Bases, pp. 306–315, 1997.

[164] G. Piatetsky-Shapiro and C. Connell, “Accurate Estimation of
the Number of Tuples Satisfying a Condition,” ACM Sigmod
Record, vol. 14, no. 2, 1984, pp. 256–276.

[165] H. Pirahesh, T. Leung, and W. Hasan, “A Rule Engine for Query
Transformation in Starburst and IBM DB2 C/S DBMS,” in
Proceedings 13th International Conference on Data Engineering,
pp. 391–400, 1997. doi: 10.1109/ICDE.1997.581945.

[166] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/Rule
based Query Rewrite Optimization in Starburst,” ACM Sigmod
Record, vol. 21, no. 2, 1992, pp. 39–48.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://doi.org/10.1109/ICDE.1997.581945

212 References

[167] M. Poess and C. Floyd, “New TPC Benchmarks for Decision
Support and Web Commerce,” SIGMOD Rec., vol. 29, no. 4,
Dec. 2000, pp. 64–71. doi: 10.1145/369275.369291.

[168] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita,
“Improved Histograms for Selectivity Estimation of Range Pred-
icates,” ACM Sigmod Record, vol. 25, no. 2, 1996, pp. 294–305.

[169] Postgres Query Optimizer, 2023. url: https ://github .com/
postgres/postgres/tree/master/src/backend/optimizer.

[170] PostgreSQL pg_stats, 2024. url: https://www.postgresql.org/
docs/current/view-pg-stats.html.

[171] PostgreSQL: Genetic Algorithms, 2024. url: https : / / www .
postgresql.org/docs/current/geqo-pg-intro.html.

[172] K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C.
Galindo-Legaria, and C. Cunningham, “Froid: Optimization of
Imperative Programs in a Relational Database,” Proc. VLDB
Endow., vol. 11, no. 4, Dec. 2017, pp. 432–444. doi: 10.1145/
3186728.3164140.

[173] N. Reddy and J. R. Haritsa, “Analyzing Plan Diagrams of
Database Query Optimizers,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, ser. VLDB ’05,
pp. 1228–1239, Trondheim, Norway: VLDB Endowment, 2005.

[174] A. van Renen, D. Horn, P. Pfeil, K. Vaidya, W. Dong, M.
Narayanaswamy, Z. Liu, G. Saxena, A. Kipf, and T. Kraska,
“Why TPC is not enough: An Analysis of the Amazon Redshift
fleet,” Proceedings of the VLDB Endowment, vol. 17, no. 11,
2024, pp. 3694–3706.

[175] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and
extensible algorithms for multi query optimization,” in Proceed-
ings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 249–260, 2000.

[176] SAP, CREATE STATISTICS Statement in SAP Hana,
2024. url: https : / / help . sap . com / docs / SAP _
HANA _ PLATFORM / 4fe29514fd584807ac9f2a04f6754767 /
20d5252d7519101493f5e662a6cda4d4.html.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/369275.369291
https://github.com/postgres/postgres/tree/master/src/backend/optimizer
https://github.com/postgres/postgres/tree/master/src/backend/optimizer
https://www.postgresql.org/docs/current/view-pg-stats.html
https://www.postgresql.org/docs/current/view-pg-stats.html
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://doi.org/10.1145/3186728.3164140
https://doi.org/10.1145/3186728.3164140
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html

References 213

[177] T. Schmidt, A. Kipf, D. Horn, G. Saxena, and T. Kraska, “Pred-
icate caching: Query-driven Secondary Indexing for Cloud Data
Warehouses,” 2024.

[178] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access Path Selection in a Relational Database
Management System,” in Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
’79, pp. 23–34, Boston, Massachusetts: Association for Computing
Machinery, 1979. doi: 10.1145/582095.582099.

[179] T. K. Sellis, “Multiple-query Optimization,” ACM Transactions
on Database Systems (TODS), vol. 13, no. 1, 1988, pp. 23–52.

[180] P. Seshadri, H. Pirahesh, and T. Leung, “Complex Query Decor-
relation,” in Proceedings of the Twelfth International Conference
on Data Engineering, pp. 450–458, 1996. doi: 10.1109/ICDE.
1996.492194.

[181] S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung, M. Elhe-
mali, A. Halverson, E. Robinson, M. S. Subramanian, D. DeWitt,
and C. Galindo-Legaria, “Query Optimization in Microsoft SQL
Server PDW,” in Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, pp. 767–776,
2012.

[182] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le, “Cost
Models for Big Data Query Processing: Learning, Retrofitting,
and our Findings,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 99–113,
2020.

[183] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu,
E. Shen, G. C. Caragea, C. Garcia-Alvarado, F. Rahman, M.
Petropoulos, et al., “Orca: a Modular Query Optimizer Architec-
ture for Big Data,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp. 337–348,
2014.

[184] SQLShack, SQL Server Trivial Execution Plans, 2021. url: https:
//www.sqlshack.com/sql-server-trivial-execution-plans/.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/582095.582099
https://doi.org/10.1109/ICDE.1996.492194
https://doi.org/10.1109/ICDE.1996.492194
https://www.sqlshack.com/sql-server-trivial-execution-plans/
https://www.sqlshack.com/sql-server-trivial-execution-plans/

214 References

[185] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and
Randomized Optimization for the Join Ordering Problem,” The
VLDB journal, vol. 6, 1997, pp. 191–208.

[186] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “LEO
- DB2’s LEarning Optimizer,” in Proceedings of the 27th In-
ternational Conference on Very Large Data Bases, ser. VLDB
’01, pp. 19–28, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001.

[187] M. Stonebraker and L. A. Rowe, “The Design of Postgres,” ACM
Sigmod Record, vol. 15, no. 2, 1986, pp. 340–355.

[188] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al., “C-
store: a Column-oriented DBMS,” in Proceedings of the 31st
International Conference on Very Large Data Bases, ser. VLDB
’05, Trondheim, Norway: VLDB Endowment, 2005.

[189] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al., “C-
store: a Column-oriented DBMS,” in Making Databases Work:
the Pragmatic Wisdom of Michael Stonebraker, 2018, pp. 491–
518.

[190] Substrait, 2024. url: https://github.com/substrait-io/substrait.
[191] J. Sun and G. Li, “An End-to-end Learning-based Cost Estima-

tor,” arXiv preprint arXiv:1906.02560, 2019.
[192] N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic Multi-

dimensional Histograms,” in Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data, pp. 428–
439, 2002.

[193] I. Trummer, J. Wang, Z. Wei, D. Maram, S. Moseley, S. Jo, J.
Antonakakis, and A. Rayabhari, “Skinnerdb: Regret-bounded
Query Evaluation via Reinforcement Learning,” ACM Transac-
tions on Database Systems (TODS), vol. 46, no. 3, 2021, pp. 1–
45.

[194] K. Vaidya, A. Dutt, V. Narasayya, and S. Chaudhuri, “Lever-
aging Query Logs and Machine Learning for Parametric Query
Optimization,” Proc. VLDB Endow., vol. 15, no. 3, Nov. 2021,
pp. 401–413. doi: 10.14778/3494124.3494126.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://github.com/substrait-io/substrait
https://doi.org/10.14778/3494124.3494126

References 215

[195] F. M. Waas and J. M. Hellerstein, “Parallelizing Extensible
Query Optimizers,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
’09, pp. 871–878, Providence, Rhode Island, USA: Association
for Computing Machinery, 2009. doi: 10.1145/1559845.1559938.

[196] X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou, “Are We
Ready for Learned Cardinality Estimation?” Proc. VLDB En-
dow., vol. 14, no. 9, May 2021, pp. 1640–1654. doi: 10.14778/
3461535.3461552.

[197] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F.
Naughton, “Predicting Query Execution Time: are Optimizer
Cost Models Really Unusable?” In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), IEEE, pp. 1081–1092,
2013.

[198] W. P. Yan and P.-Å. Larson, “Eager Aggregation and Lazy
Aggregation,” in Proceedings of the 21th International Conference
on Very Large Data Bases, ser. VLDB ’95, pp. 345–357, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995.

[199] J. Yang, S. Wu, D. Zhang, J. Dai, F. Li, and G. Chen, “Rethinking
Learned Cost Models: Why Start from Scratch?” Proceedings of
the ACM on Management of Data, vol. 1, no. 4, 2023, pp. 1–27.

[200] Z. Yang, W.-L. Chiang, S. Luan, G. Mittal, M. Luo, and I. Stoica,
“Balsa: Learning a Query Optimizer Without Expert Demonstra-
tions,” in Proceedings of the 2022 International Conference on
Management of Data, ser. SIGMOD ’22, pp. 931–944, Philadel-
phia, PA, USA: Association for Computing Machinery, 2022. doi:
10.1145/3514221.3517885.

[201] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen,
and I. Stoica, “NeuroCard: One Cardinality Estimator for all
Tables,” arXiv preprint arXiv:2006.08109, 2020.

[202] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen,
P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica,
“Deep Unsupervised Cardinality Estimation,” arXiv preprint
arXiv:1905.04278, 2019.

[203] M. Yannakakis, “Algorithms for Acyclic Database Schemes,” in
VLDB, vol. 81, pp. 82–94, 1981.

Full text available at: http://dx.doi.org/10.1561/1900000077

https://doi.org/10.1145/1559845.1559938
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3514221.3517885

216 References

[204] Y. Zhao, G. Cong, J. Shi, and C. Miao, “Queryformer: A Tree
Transformer Model for Query Plan Representation,” Proceedings
of the VLDB Endowment, vol. 15, no. 8, 2022, pp. 1658–1670.

[205] J. Zhu, N. Potti, S. Saurabh, and J. M. Patel, “Looking ahead
makes Query Plans Robust: Making the initial case with In-
memory Star Schema Data Warehouse Workloads,” Proceedings
of the VLDB Endowment, vol. 10, no. 8, 2017, pp. 889–900.

[206] R. Zhu, W. Chen, B. Ding, X. Chen, A. Pfadler, Z. Wu, and J.
Zhou, “Lero: A Learning-to-rank Query Optimizer,” Proceedings
of the VLDB Endowment, vol. 16, no. 6, 2023, pp. 1466–1479.

[207] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou,
and B. Cui, “FLAT: Fast, Lightweight and Accurate Method for
Cardinality Estimation,” arXiv preprint arXiv:2011.09022, 2020.

Full text available at: http://dx.doi.org/10.1561/1900000077

