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ABSTRACT

This survey presents recent progress on using machine learn-
ing techniques to improve query optimizers in database
systems. Centering around a generic paradigm of learned
query optimizers, this survey covers several lines of effort on
rebuilding or aiding important components in query opti-
mizers (i.e., cardinality estimators, cost models, and plan
enumerators) with machine learning. We introduce some
important machine learning tools developed recently, which
are useful for query optimization, and how they are adapted
for sub-tasks of query optimization. This survey is for read-
ers who are already familiar with query optimization and
are eager to understand what machine learning techniques
can be helpful and how to apply them with examples and
necessary details, or for machine learning researchers who
want to expand their research agendas to helping database
systems with machine learning techniques. Some open re-
search challenges are also discussed with the goal of making
learned query optimizers truly applicable in production.
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1
Introduction

1.1 Basics of Query Optimization

Query optimizers play one of the most important roles in database
systems. It aims to select an efficient execution plan for a query written
in a declarative language, e.g., SQL. Traditional cost-based query opti-
mizers (Selinger et al., 1979; Graefe and McKenna, 1993; Graefe, 1995)
find the plan with the minimum estimated cost for the given query.

Let’s start with some notations that will be used throughout this
survey. A relational database D consists of a set of base relations
(tables), {R1, R2, . . . , R|D|}. A query q accesses and manipulates data
in the database via relational operations, e.g., select, project, join, and
aggregate. There are usually a large number of ways to process a query
q, called physical query execution plans (denoted as P ) or plans for
short in the rest of this survey, with different choices of join ordering
(which relations are joined first), join operators (e.g., hash join ▷◁H and
indexed nested loop join ▷◁INL), and access paths (different ways to
retrieve tuples from relations, e.g., index seek IdxSeek and sequential
scan SeqScan). For example, to process the query q = R ▷◁ S ▷◁ T,

P = (IdxSeek(R) ▷◁INL SeqScan(S)) ▷◁H SeqScan(T) (1.1)

2
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1.1. Basics of Query Optimization 3

is a plan which joins relations R and S first with an indexed nested
loop join and then joins the result of R ▷◁ S with T with a hash join.

For a query q, let P(q) be the set of all valid plans. The goal of query
optimization is to select the most “efficient” plan P ∗ from P(q).

A cost model in a cost-based query optimizer (e.g., Selinger et al.,
1979) measures the “efficiency” of a plan in terms of the execution
latency or other user-specified metrics about resource consumption for
the plan to be executed. The cost estimates derived from cost models
are in forms of formulas with cardinalities of sub-queries as variables
as well as some magic constant numbers to approximate the actual
execution latency of the plan. These formulas and magic constant
numbers depend on the algorithmic complexities and implementations
of physical operators (e.g., various join algorithms). The cardinalities of
sub-queries are the sizes of inputs to these physical operators and are
unknown before a query is executed. Thus, their estimates are obtained
with cardinality estimators and fed into the cost model.

A plan enumerator is a cost-based search algorithm that explores
the plan space and aims to find the one with the minimal (estimated)
cost based on, e.g., transformation rules or dynamic programming.

Figure 1.1 (excluding the shaded parts ) gives an overview about
how the three components, cost model, cardinality estimator, and plan
enumerator, work together in a query optimizer.

Figure 1.1: Overview of ( learned ) query optimizers.
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4 Introduction

While an obvious challenge in building a query optimizer is that
the size of P(q) is exponential in the number of relations involved in
q and the number of operator types, more uncertainty comes from
the traditional cost model which depends on cardinality estimates for
sub-queries, and quantitative models for costing query processing op-
erators. Various heuristics and assumptions are essential in deriving
these cardinality/cost estimates. For example, independence between
attributes across relations is assumed and utilized for estimating cardi-
nalities of joins of multiple relations (Tzoumas et al., 2011; Leis et al.,
2015); magic constant numbers are prevalent in cost models, and they
are often calibrated and tuned over years to ensure that the estimated
cost matches the plan’s performance well empirically, under certain
system and hardware configurations though. It has been realized that
such heuristics and assumptions are not always reliable for varying
data distributions (especially on skewed and correlated data) or system
configurations. As a result, cost models may produce significant errors
and the plan generated by the traditional query optimizer may have
poor quality (Doraiswamy et al., 2008; Han et al., 2021).

1.2 Why a Learned Optimizer is Possible

There are a recent line of efforts to assist or rebuild these components
in query optimizers with machine learning models, which are trained on
a specific dataset and “previous experience” collected from executing
queries in the same or historical workloads. Such attempts date back to
2000s, e.g., DB2’s LEarning Optimizer Leo (Stillger et al., 2001).

From the perspective of machine learning and optimization, the
tasks tackled by cardinality estimator and cost model are regression
problems (predicting cardinalities and costs of sub-queries and plans,
respectively) and the one by plan enumerator is a decision-making
problem (finding the best execution plan). With the recent progresses
on deep models (e.g., Mou et al., 2016; Vaswani et al., 2017) and deep
reinforcement learning (e.g., Sutton and Barto, 2018), we have more
powerful tools for these two types of tasks.

For example, an execution plan for a SQL query is a tree structure
representing the join order with each node in the tree specifying a

Full text available at: http://dx.doi.org/10.1561/1900000082



1.3. A Generic Paradigm of Learned Query Optimizers 5

physical operator and its two children specifying the two input relations.
From the perspective of machine learning, it is non-trivial to map
the plans with varying sizes into a regularized feature space while
encoding both the plans’ structural and node-wise information. The tree
convolution network (Mou et al., 2016) and the attention mechanism
(Vaswani et al., 2017) are two tools (though invented for different
purposes) that are able to featurize such complex objects and judiciously
utilize their structural information for the prediction task.

Specifically, two types of distributions are important for selecting
efficient execution plans: i) data distributions over single and multiple
relations (e.g., deciding the join sizes), and ii) joint distribution over
relations and query workloads (e.g., deciding the selectivity of predi-
cates). Traditional query optimizers rely on histograms and samples
to approximate distributions in i) and ii) (refer to, e.g., the survey by
Cormode et al., 2012) for the purposes of cardinality and cost estima-
tion. Machine learning models trained on the targeting datasets and
workloads may serve as their replacements, and indeed, the models need
to be continuously updated when datasets and workloads are dynamic.

1.3 A Generic Paradigm of Learned Query Optimizers

Figure 1.1 illustrates how the three major components (i.e., cost model,
cardinality estimator, and plan enumerator) in a query optimizer can be
replaced or enhanced with machine learning models (the shaded parts ).
Modeling more complex and high-dimensional data-query distributions
and utilizing feedback/statistics from query executions are where the
opportunities lie for these machine-learned counterparts to further im-
prove the performance of query optimizers. To this end, we need to
collect training data for these models, from both the databases and
the execution engine that processes the query workloads, and organize
the training data according to the goals of different models (in learned
cardinality estimator, learned cost model, and learning-based search al-
gorithm). Most previous works on learning to optimize queries do not
rebuild the whole optimizer. Instead, they focus on one or multiple
of these machine-learned counterparts, without a clear separation be-
tween different components (especially in reinforcement learning), and
integrate them into a traditional query optimizer in a holistic way.

Full text available at: http://dx.doi.org/10.1561/1900000082



6 Introduction

From sketches to learned cardinality estimator. For the task of
cardinality estimation for (sub-)queries, there are two types of machine-
learning based approaches, data driven estimator and data-query jointly
driven estimator, both of which can be plugged into traditional cost
models.

The former uses statistical and deep models (e.g., deep autoregres-
sive model) to approximate high-dimensional data distributions over
database attributes and relations. The training and usage of such mod-
els can be analogous to how the traditional sketches (e.g., histograms
and samples) are constructed and used. They are trained on samples
drawn from relations with the goal of minimizing the gap between the
predicted data distribution and the seen distribution. Query workloads
are assumed to be unknown when fitting these models. For a given
query, these models are “invoked” to estimate its cardinality.

The latter trains models for a specific query workload for better
accuracy. Queries are featurized as parts of the inputs to the model,
and the model is trained to minimize the gap between the estimated
cardinalities and the true cardinalities. Indeed, the model needs to be
updated when the distribution of query workload shifts.

From traditional cost model to learned cost model. The cost of
a plan is the sum of costs of all operators in it. For each operator, a
traditional cost model typically takes cardinality estimates of immediate
sub-queries under the operator as the inputs in a formula to estimate
its cost, since they are the numbers of tuples to be processed by this
operator. The concrete form of this formula and the magic constants in it,
depend on the operator’s type and implementation, and are tuned with
years of engineering efforts to ensure that the estimated cost matches
the plan’s performance well empirically. In this sense, traditional cost
models are “human learning” models. It is thus a natural idea to
develop machine learning models with execution statistics (for specific
performance metrics) on different datasets and query workloads as the
training data, to enable finer-grained characterization of various data
distributions and system configurations, thus providing instance-level
optimization of each query. The learned cost model can be plugged into
the traditional cost-based search algorithm to cost (sub-)plans in the
search procedure, and updated when more queries are processed.

Full text available at: http://dx.doi.org/10.1561/1900000082



1.3. A Generic Paradigm of Learned Query Optimizers 7

Learning-based search algorithm. Traditional query optimizers treat
the task of finding the best execution plan as a combinatorial opti-
mization problem. Thus, dynamic programming algorithms as well as
heuristics (e.g., based on transformation rules) are developed to find
the best plan under certain cost models. If we treat query optimization
as a machine learning task, we unlock other possibilities of designing
the search algorithm. For example, we can model it as a multi-armed
bandit problem, where each arm corresponds to a candidate plan and
we want to select the best arm (execution plan) with more and more
observations of their performance. We can also model it as a deep rein-
forcement learning problem, with learned cost models as value networks
to guide the generative search for the best plan. Moreover, since what
we essentially need for query optimization is an oracle that compares
two plans and ranks a set of candidate query plans with respect to
their execution efficiency, we can model the task as a learning-to-rank
problem. These possibilities will be introduced and formalized later in
this survey.

Technical questions. There are some key technical questions to be
resolved in the above paradigm. First, the data-query-workload joint
distribution is complex. We need to carefully featurize data and queries
in such a way that we can effectively model their correlation and the
marginal distributions via, e.g., statistical or deep models. Second, we
need to collect “training data” for these models. Cold start is always a
challenge, especially when we train models to estimate and optimize
the execution latency. Third, learning-based search algorithms need to
be co-designed with the estimation models, so that they have consistent
learning goals; meanwhile, when a search algorithm invokes learned
estimation models with non-trivial inference costs (possibly many times),
it needs to be designed to avoid prohibitive optimization cost.

Other possibilities and tasks. The generic paradigm in Figure 1.1
rules out some other possible ways to find better plans by learning
from experience. For example, one can execute plans on samples of
relations and use such experience to refine cardinality estimates and
thus improve the final execution plans (Krauthgamer et al., 2008; Wu
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8 Introduction

et al., 2016). Even during the processing of a specific query, one can
use early-stage experience (e.g., try different operator types and join
orders on samples from intermediate results) to revise the remaining
execution plan (Kabra and DeWitt, 1998; Markl et al., 2004; Kader
et al., 2009). Detailed discussion about these works is beyond the scope
of this survey, but one can refer to a recent benchmark paper by Zhang
et al. (2023) on such adaptive query processing algorithms.

Worst-case optimal join algorithms (refer to, e.g., Ngo et al., 2018)
are set apart from traditional query processing algorithms with theoret-
ical guarantees on their processing costs. Their practical performance
also depends heavily on the order in which join attributes are processed,
which is not reflected in the definition of worst-case optimality (w.r.t.
worst-case assumptions about the database content) and the formal
analysis by Ngo et al. (2018). Wang et al. (2023b) introduces a query
engine which selects the attribute orders via reinforcement learning.

While the paradigm in Figure 1.1 matters primarily for join ordering,
access path, and operator selection in query optimization, there are other
tasks that can effectively improve the execution performance of a SQL
query. For example, query rewriting is to transform a poorly-written
SQL query into one that executes more efficiently while maintaining
the result set. Approaches for this task are based on, e.g., rules (Begoli
et al., 2018; Wang et al., 2022), program synthesis (Dong et al., 2023),
Monte Carlo tree search with deep estimation models (Zhou et al., 2021;
Zhou et al., 2023), or, more recently, large language models (Liu and
Mozafari, 2024). These query rewriting approaches are orthogonal to
the majority of techniques discussed in this survey.

There are some specific scenarios of query optimization that can
be aided by machine learning but are not covered by this survey. For
example, multi-query optimization aims to select plans for a group of
queries, considering opportunities to reduce the total execution cost by
sharing redundant work to be done by an identical sub-query across plans
of different queries. This problem can be tackled with, e.g., reinforcement
learning by Sioulas and Ailamaki (2021). Parametric query optimization,
addressed by, e.g., Doshi et al. (2023), is to generate a set of candidate
plans for a single query template and decide which plan to use for each
query instance. Learned query optimization for specialized types of data
such as spatial data is also studied in Vu et al. (2021).

Full text available at: http://dx.doi.org/10.1561/1900000082



1.4. Summary of the Survey 9

1.4 Summary of the Survey

In a learned query optimizer, one or multiple core components are
aided or rebuilt with machine learning techniques. Most state-of-the-art
learned query optimizers can be regarded as concrete implementations
of the aforementioned paradigm (Figure 1.1) or its variants. Section 2
will focus on representative techniques for the costing components (car-
dinality estimator and cost model). These two components are closely
related, as in traditional query optimizers, cost models invoke cardi-
nality estimators to cost plans. We will first discuss their relationship
and how estimation error transfer from cardinality estimators to cost
models. We will then introduce, purely data-driven as well as data-query
jointly driven, machine learning techniques for cardinality estimation,
followed by how to train machine learning models to cost plans directly.
Section 3 will focus on plan enumerators. Several new types of search
algorithms, empowered by machine learning models, are proposed re-
cently. Section 3.1 introduces a multi-armed bandit modeling of the plan
enumeration procedure. Section 3.2 introduces how to apply generative
search in reinforcement learning for (bottom-up) plan construction, with
the help of value networks which is adapted from learned cost models.
Section 3.3 introduces a learning-to-rank scheme for plan enumeration
and selection. We will also discuss interesting future research directions
inspired by some more recent efforts in Section 4.

Full text available at: http://dx.doi.org/10.1561/1900000082



References

Akdere, M., U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik.
(2012). “Learning-based Query Performance Modeling and Predic-
tion”. In: IEEE 28th International Conference on Data Engineering
(ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,
2012. IEEE Computer Society. 390–401. doi: 10.1109/ICDE.2012.64.

Anneser, C., N. Tatbul, D. E. Cohen, Z. Xu, P. Pandian, N. Laptev,
and R. Marcus. (2023). “AutoSteer: Learned Query Optimization
for Any SQL Database”. Proc. VLDB Endow. 16(12): 3515–3527.
doi: 10.14778/3611540.3611544.

Atserias, A., M. Grohe, and D. Marx. (2013). “Size Bounds and Query
Plans for Relational Joins”. SIAM J. Comput. 42(4): 1737–1767.
doi: 10.1137/110859440.

Begoli, E., J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire.
(2018). “Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources”. In: Proceed-
ings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
ACM. 221–230. doi: 10.1145/3183713.3190662.

45

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.14778/3611540.3611544
https://doi.org/10.1137/110859440
https://doi.org/10.1145/3183713.3190662


46 References

Cai, W., M. Balazinska, and D. Suciu. (2019). “Pessimistic Cardi-
nality Estimation: Tighter Upper Bounds for Intermediate Join
Cardinalities”. In: Proceedings of the 2019 International Confer-
ence on Management of Data, SIGMOD Conference 2019, Amster-
dam, The Netherlands, June 30 - July 5, 2019. ACM. 18–35. doi:
10.1145/3299869.3319894.

Charikar, M., S. Chaudhuri, R. Motwani, and V. R. Narasayya. (2000).
“Towards Estimation Error Guarantees for Distinct Values”. In:
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, May 15-17, 2000,
Dallas, Texas, USA. ACM. 268–279. doi: 10.1145/335168.335230.

Chen, T., J. Gao, H. Chen, and Y. Tu. (2023a). “LOGER: A Learned
Optimizer towards Generating Efficient and Robust Query Execution
Plans”. Proc. VLDB Endow. 16(7): 1777–1789. url: https://www.
vldb.org/pvldb/vol16/p1777-gao.pdf.

Chen, X., Z. Wang, S. Liu, Y. Li, K. Zeng, B. Ding, J. Zhou, H. Su, and
K. Zheng. (2023b). “BASE: Bridging the Gap between Cost and
Latency for Query Optimization”. Proc. VLDB Endow. 16(8): 1958–
1966. url: https://www.vldb.org/pvldb/vol16/p1958-chen.pdf.

Cormode, G., M. N. Garofalakis, P. J. Haas, and C. Jermaine.
(2012). “Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches”. Found. Trends Databases. 4(1-3): 1–294. doi: 10.1561/
1900000004.

Davitkova, A., D. Gjurovski, and S. Michel. (2022). “LMKG: Learned
Models for Cardinality Estimation in Knowledge Graphs”. In: Pro-
ceedings of the 25th International Conference on Extending Database
Technology, EDBT 2022, Edinburgh, UK, March 29 - April 1, 2022.
OpenProceedings.org. 2:169–2:182. doi: 10.48786/edbt.2022.07.

Dey, A., S. Bhaumik, H. Doraiswamy, and J. R. Haritsa. (2008). “Effi-
ciently approximating query optimizer plan diagrams”. Proc. VLDB
Endow. 1(2): 1325–1336. doi: 10.14778/1454159.1454173.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3299869.3319894
https://doi.org/10.1145/335168.335230
https://www.vldb.org/pvldb/vol16/p1777-gao.pdf
https://www.vldb.org/pvldb/vol16/p1777-gao.pdf
https://www.vldb.org/pvldb/vol16/p1958-chen.pdf
https://doi.org/10.1561/1900000004
https://doi.org/10.1561/1900000004
https://doi.org/10.48786/edbt.2022.07
https://doi.org/10.14778/1454159.1454173


References 47

Ding, B., S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya.
(2019). “AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations”. In: Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM. 1241–
1258. doi: 10.1145/3299869.3324957.

Dong, R., J. Liu, Y. Zhu, C. Yan, B. Mozafari, and X. Wang. (2023).
“SlabCity: Whole-Query Optimization using Program Synthesis”.
Proc. VLDB Endow. 16(11): 3151–3164. doi: 10.14778/3611479.
3611515.

Doraiswamy, H., P. N. Darera, and J. R. Haritsa. (2008). “Identifying
robust plans through plan diagram reduction”. Proc. VLDB Endow.
1(1): 1124–1140. doi: 10.14778/1453856.1453976.

Doshi, L., V. Zhuang, G. Jain, R. Marcus, H. Huang, D. Altinbüken,
E. Brevdo, and C. Fraser. (2023). “Kepler: Robust Learning for
Parametric Query Optimization”. Proc. ACM Manag. Data. 1(1):
109:1–109:25. doi: 10.1145/3588963.

Duggan, J., U. Çetintemel, O. Papaemmanouil, and E. Upfal. (2011).
“Performance prediction for concurrent database workloads”. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011. ACM. 337–348. doi: 10.1145/1989323.1989359.

Durkan, C. and C. Nash. (2019). “Autoregressive Energy Machines”.
In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. Vol. 97. Proceedings of Machine Learning Research. PMLR.
1735–1744. url: http://proceedings.mlr.press/v97/durkan19a.html.

Dutt, A., C. Wang, V. R. Narasayya, and S. Chaudhuri. (2020). “Effi-
ciently Approximating Selectivity Functions using Low Overhead
Regression Models”. Proc. VLDB Endow. 13(11): 2215–2228. url:
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf.

Dutt, A., C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S.
Chaudhuri. (2019). “Selectivity Estimation for Range Predicates
using Lightweight Models”. Proc. VLDB Endow. 12(9): 1044–1057.
doi: 10.14778/3329772.3329780.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3299869.3324957
https://doi.org/10.14778/3611479.3611515
https://doi.org/10.14778/3611479.3611515
https://doi.org/10.14778/1453856.1453976
https://doi.org/10.1145/3588963
https://doi.org/10.1145/1989323.1989359
http://proceedings.mlr.press/v97/durkan19a.html
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.14778/3329772.3329780


48 References

Germain, M., K. Gregor, I. Murray, and H. Larochelle. (2015). “MADE:
Masked Autoencoder for Distribution Estimation”. In: Proceed-
ings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015. Vol. 37. JMLR Work-
shop and Conference Proceedings. JMLR.org. 881–889. url: http:
//proceedings.mlr.press/v37/germain15.html.

Getoor, L., B. Taskar, and D. Koller. (2001). “Selectivity Estimation
using Probabilistic Models”. In: Proceedings of the 2001 ACM SIG-
MOD international conference on Management of data, Santa Bar-
bara, CA, USA, May 21-24, 2001. ACM. 461–472. doi: 10.1145/
375663.375727.

Goodrich, M. T., R. Tamassia, and M. H. Goldwasser. (2013). Data
Structures and Algorithms in Python. Wiley.

Graefe, G. (1995). “The Cascades Framework for Query Optimization”.
IEEE Data Eng. Bull. 18(3): 19–29. url: http://sites.computer.org/
debull/95SEP-CD.pdf.

Graefe, G. and W. J. McKenna. (1993). “The Volcano Optimizer Gen-
erator: Extensibility and Efficient Search”. In: Proceedings of the
Ninth International Conference on Data Engineering, April 19-
23, 1993, Vienna, Austria. IEEE Computer Society. 209–218. doi:
10.1109/ICDE.1993.344061.

Gregor, K., I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. (2014).
“Deep AutoRegressive Networks”. In: Proceedings of the 31th In-
ternational Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014. Vol. 32. JMLR Workshop and Conference
Proceedings. JMLR.org. 1242–1250. url: http://proceedings.mlr.
press/v32/gregor14.html.

Grimmett, G. R. and D. R. Stirzaker. (2001). Probability and Random
Processes. Oxford University Press.

Haas, L. M., M. J. Carey, M. Livny, and A. Shukla. (1997). “Seeking
the Truth About ad hoc Join Costs”. VLDB J. 6(3): 241–256. doi:
10.1007/S007780050043.

Full text available at: http://dx.doi.org/10.1561/1900000082

http://proceedings.mlr.press/v37/germain15.html
http://proceedings.mlr.press/v37/germain15.html
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/375663.375727
http://sites.computer.org/debull/95SEP-CD.pdf
http://sites.computer.org/debull/95SEP-CD.pdf
https://doi.org/10.1109/ICDE.1993.344061
http://proceedings.mlr.press/v32/gregor14.html
http://proceedings.mlr.press/v32/gregor14.html
https://doi.org/10.1007/S007780050043


References 49

Han, Y., Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng, G. Cong,
Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, and B. Cui. (2021).
“Cardinality Estimation in DBMS: A Comprehensive Benchmark
Evaluation”. Proc. VLDB Endow. 15(4): 752–765. doi: 10.14778/
3503585.3503586.

Hayek, R. and O. Shmueli. (2020). “Improved Cardinality Estimation
by Learning Queries Containment Rates”. In: Proceedings of the
23rd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020.
OpenProceedings.org. 157–168. doi: 10.5441/002/edbt.2020.15.

Heimel, M., M. Kiefer, and V. Markl. (2015). “Self-Tuning, GPU-
Accelerated Kernel Density Models for Multidimensional Selec-
tivity Estimation”. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Vic-
toria, Australia, May 31 - June 4, 2015. ACM. 1477–1492. doi:
10.1145/2723372.2749438.

Hertzschuch, A., C. Hartmann, D. Habich, and W. Lehner. (2021).
“Simplicity Done Right for Join Ordering”. In: 11th Conference
on Innovative Data Systems Research, CIDR 2021, Virtual Event,
January 11-15, 2021, Online Proceedings. www.cidrdb.org. url:
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper01.pdf.

Hilprecht, B. and C. Binnig. (2022). “Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction”. Proc. VLDB Endow. 15(11):
2361–2374. url: https : / / www . vldb . org / pvldb / vol15 / p2361 -
hilprecht.pdf.

Hilprecht, B., A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C.
Binnig. (2020). “DeepDB: Learn from Data, not from Queries!” Proc.
VLDB Endow. 13(7): 992–1005. doi: 10.14778/3384345.3384349.

Izenov, Y., A. Datta, F. Rusu, and J. H. Shin. (2021). “COMPASS:
Online Sketch-based Query Optimization for In-Memory Databases”.
In: SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021. ACM. 804–816. doi:
10.1145/3448016.3452840.

Johannes, F. and H. Eyke. (2011). Preference Learning. Springer.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.14778/3503585.3503586
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.5441/002/edbt.2020.15
https://doi.org/10.1145/2723372.2749438
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper01.pdf
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/3448016.3452840


50 References

Jung, J., H. Hu, J. Arulraj, T. Kim, and W. Kang. (2019). “APOLLO:
Automatic Detection and Diagnosis of Performance Regressions in
Database Systems”. Proc. VLDB Endow. 13(1): 57–70. doi: 10.
14778/3357377.3357382.

Kabra, N. and D. J. DeWitt. (1998). “Efficient Mid-Query Re-Optimi-
zation of Sub-Optimal Query Execution Plans”. In: SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on Manage-
ment of Data, June 2-4, 1998, Seattle, Washington, USA. ACM
Press. 106–117. doi: 10.1145/276304.276315.

Kader, R. A., P. A. Boncz, S. Manegold, and M. van Keulen. (2009).
“ROX: run-time optimization of XQueries”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2,
2009. ACM. 615–626. doi: 10.1145/1559845.1559910.

Kang, J. K. Z., Gaurav, S. Y. Tan, F. Cheng, S. Sun, and B. He. (2021).
“Efficient Deep Learning Pipelines for Accurate Cost Estimations
Over Large Scale Query Workload”. In: SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June
20-25, 2021. Ed. by G. Li, Z. Li, S. Idreos, and D. Srivastava. ACM.
1014–1022. doi: 10.1145/3448016.3457546.

Kiefer, M., M. Heimel, S. Breß, and V. Markl. (2017). “Estimating Join
Selectivities using Bandwidth-Optimized Kernel Density Models”.
Proc. VLDB Endow. 10(13): 2085–2096. doi: 10.14778/3151106.
3151112.

Kim, K., J. Jung, I. Seo, W. Han, K. Choi, and J. Chong. (2022).
“Learned Cardinality Estimation: An In-depth Study”. In: SIGMOD
’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022. ACM. 1214–1227. doi: 10.1145/
3514221.3526154.

Kipf, A., T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper.
(2019). “Learned Cardinalities: Estimating Correlated Joins with
Deep Learning”. In: 9th Biennial Conference on Innovative Data
Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings. www.cidrdb.org. url: http://cidrdb.org/
cidr2019/papers/p101-kipf-cidr19.pdf.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.14778/3357377.3357382
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1145/276304.276315
https://doi.org/10.1145/1559845.1559910
https://doi.org/10.1145/3448016.3457546
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1145/3514221.3526154
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf


References 51

Krauthgamer, R., A. Mehta, V. Raman, and A. Rudra. (2008). “Greedy
List Intersection”. In: Proceedings of the 24th International Confer-
ence on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún,
Mexico. IEEE Computer Society. 1033–1042. doi: 10.1109/ICDE.
2008.4497512.

Krishnan, S., Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica.
(2018). “Learning to Optimize Join Queries With Deep Reinforce-
ment Learning”. CoRR. abs/1808.03196. arXiv: 1808.03196. url:
http://arxiv.org/abs/1808.03196.

Kwon, S., W. Jung, and K. Shim. (2022). “Cardinality Estimation of
Approximate Substring Queries using Deep Learning”. Proc. VLDB
Endow. 15(11): 3145–3157. url: https://www.vldb.org/pvldb/
vol15/p3145-jung.pdf.

Lan, H., Z. Bao, and Y. Peng. (2021). “A Survey on Advancing the
DBMS Query Optimizer: Cardinality Estimation, Cost Model, and
Plan Enumeration”. Data Sci. Eng. 6(1): 86–101. doi: 10.1007/
S41019-020-00149-7.

Leis, V., A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T.
Neumann. (2015). “How Good Are Query Optimizers, Really?” Proc.
VLDB Endow. 9(3): 204–215. doi: 10.14778/2850583.2850594.

Leis, V., B. Radke, A. Gubichev, A. Kemper, and T. Neumann. (2017).
“Cardinality Estimation Done Right: Index-Based Join Sampling”.
In: 8th Biennial Conference on Innovative Data Systems Research,
CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online
Proceedings. www.cidrdb.org. url: http://cidrdb.org/cidr2017/
papers/p9-leis-cidr17.pdf.

Li, F., B. Wu, K. Yi, and Z. Zhao. (2016). “Wander Join: Online Aggre-
gation via Random Walks”. In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016. ACM. 615–629.
doi: 10.1145/2882903.2915235.

Li, P., W. Wei, R. Zhu, B. Ding, J. Zhou, and H. Lu. (2023). “ALECE:
An Attention-based Learned Cardinality Estimator for SPJ Queries
on Dynamic Workloads”. Proc. VLDB Endow. 17(2): 197–210. url:
https://www.vldb.org/pvldb/vol17/p197-li.pdf.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1109/ICDE.2008.4497512
https://doi.org/10.1109/ICDE.2008.4497512
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://www.vldb.org/pvldb/vol15/p3145-jung.pdf
https://www.vldb.org/pvldb/vol15/p3145-jung.pdf
https://doi.org/10.1007/S41019-020-00149-7
https://doi.org/10.1007/S41019-020-00149-7
https://doi.org/10.14778/2850583.2850594
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://doi.org/10.1145/2882903.2915235
https://www.vldb.org/pvldb/vol17/p197-li.pdf


52 References

Li, Y., L. Wang, S. Wang, Y. Sun, and Z. Peng. (2022). “A Resource-
Aware Deep Cost Model for Big Data Query Processing”. In: 38th
IEEE International Conference on Data Engineering, ICDE 2022,
Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE. 885–897. doi:
10.1109/ICDE53745.2022.00071.

Lipton, R. J., J. F. Naughton, and D. A. Schneider. (1990). “Practical
Selectivity Estimation through Adaptive Sampling”. In: Proceedings
of the 1990 ACM SIGMOD International Conference on Manage-
ment of Data, Atlantic City, NJ, USA, May 23-25, 1990. ACM
Press. 1–11. doi: 10.1145/93597.93611.

Liu, H., M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. (2015). “Cardi-
nality estimation using neural networks”. In: Proceedings of 25th
Annual International Conference on Computer Science and Soft-
ware Engineering, CASCON 2015, Markham, Ontario, Canada, 2-4
November, 2015. IBM / ACM. 53–59. url: http://dl.acm.org/
citation.cfm?id=2886453.

Liu, J., W. Dong, D. Li, and Q. Zhou. (2021a). “Fauce: Fast and Accurate
Deep Ensembles with Uncertainty for Cardinality Estimation”. Proc.
VLDB Endow. 14(11): 1950–1963. doi: 10.14778/3476249.3476254.

Liu, J. and B. Mozafari. (2024). “Query Rewriting via Large Language
Models”. CoRR. abs/2403.09060. doi: 10.48550/ARXIV.2403.09060.
arXiv: 2403.09060.

Liu, Q., Y. Shen, and L. Chen. (2021b). “LHist: Towards Learning
Multi-dimensional Histogram for Massive Spatial Data”. In: 37th
IEEE International Conference on Data Engineering, ICDE 2021,
Chania, Greece, April 19-22, 2021. IEEE. 1188–1199. doi: 10.1109/
ICDE51399.2021.00107.

Liu, S., X. Chen, Y. Zhao, J. Chen, R. Zhou, and K. Zheng. (2022).
“Efficient Learning with Pseudo Labels for Query Cost Estimation”.
In: Proceedings of the 31st ACM International Conference on In-
formation & Knowledge Management, Atlanta, GA, USA, October
17-21, 2022. Ed. by M. A. Hasan and L. Xiong. ACM. 1309–1318.
doi: 10.1145/3511808.3557305.

Liu, T.-Y. (2009). “Learning to Rank for Information Retrieval”. Foun-
dations and Trends in Information Retrieval. 3(3): 225–331.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1109/ICDE53745.2022.00071
https://doi.org/10.1145/93597.93611
http://dl.acm.org/citation.cfm?id=2886453
http://dl.acm.org/citation.cfm?id=2886453
https://doi.org/10.14778/3476249.3476254
https://doi.org/10.48550/ARXIV.2403.09060
https://arxiv.org/abs/2403.09060
https://doi.org/10.1109/ICDE51399.2021.00107
https://doi.org/10.1109/ICDE51399.2021.00107
https://doi.org/10.1145/3511808.3557305


References 53

Loeliger, H. (2004). “An introduction to factor graphs”. IEEE Signal
Process. Mag. 21(1): 28–41. doi: 10.1109/MSP.2004.1267047.

Lu, Y., S. Kandula, A. C. König, and S. Chaudhuri. (2021). “Pre-
training Summarization Models of Structured Datasets for Car-
dinality Estimation”. Proc. VLDB Endow. 15(3): 414–426. doi:
10.14778/3494124.3494127.

Malik, T., R. C. Burns, and N. V. Chawla. (2007). “A Black-Box Ap-
proach to Query Cardinality Estimation”. In: Third Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2007, Asilomar,
CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org.
56–67. url: http://cidrdb.org/cidr2007/papers/cidr07p06.pdf.

Marcus, R., P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska.
(2021). “Bao: Making Learned Query Optimization Practical”. In:
SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021. ACM. 1275–1288. doi:
10.1145/3448016.3452838.

Marcus, R. and O. Papaemmanouil. (2018). “Deep Reinforcement Learn-
ing for Join Order Enumeration”. In: Proceedings of the First Inter-
national Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, aiDM@SIGMOD 2018, Houston, TX, USA,
June 10, 2018. ACM. 3:1–3:4. doi: 10.1145/3211954.3211957.

Marcus, R. C., P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. (2019). “Neo: A Learned Query
Optimizer”. Proc. VLDB Endow. 12(11): 1705–1718. doi: 10.14778/
3342263.3342644.

Marcus, R. C. and O. Papaemmanouil. (2019). “Plan-Structured Deep
Neural Network Models for Query Performance Prediction”. Proc.
VLDB Endow. 12(11): 1733–1746. doi: 10.14778/3342263.3342646.

Markl, V., V. Raman, D. E. Simmen, G. M. Lohman, and H. Pira-
hesh. (2004). “Robust Query Processing through Progressive Op-
timization”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France, June 13-18,
2004. ACM. 659–670. doi: 10.1145/1007568.1007642.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1109/MSP.2004.1267047
https://doi.org/10.14778/3494124.3494127
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.1145/1007568.1007642


54 References

Meng, Z., P. Wu, G. Cong, R. Zhu, and S. Ma. (2022). “Unsupervised
Selectivity Estimation by Integrating Gaussian Mixture Models and
an Autoregressive Model”. In: Proceedings of the 25th International
Conference on Extending Database Technology, EDBT 2022, Edin-
burgh, UK, March 29 - April 1, 2022. OpenProceedings.org. 2:247–
2:259. doi: 10.48786/edbt.2022.13.

Moerkotte, G. and T. Neumann. (2008). “Dynamic programming strikes
back”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008. ACM. 539–552. doi: 10.1145/1376616.
1376672.

Moerkotte, G., T. Neumann, and G. Steidl. (2009). “Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors”.
Proc. VLDB Endow. 2(1): 982–993. doi: 10.14778/1687627.1687738.

Mou, L., G. Li, L. Zhang, T. Wang, and Z. Jin. (2016). “Convolutional
Neural Networks over Tree Structures for Programming Language
Processing”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.
AAAI Press. 1287–1293. doi: 10.1609/AAAI.V30I1.10139.

Negi, P., M. Interlandi, R. Marcus, M. Alizadeh, T. Kraska, M. Friedman,
and A. Jindal. (2021a). “Steering Query Optimizers: A Practical
Take on Big Data Workloads”. In: SIGMOD. 2557–2569.

Negi, P., M. Interlandi, R. Marcus, M. Alizadeh, T. Kraska, M. T.
Friedman, and A. Jindal. (2021b). “Steering Query Optimizers: A
Practical Take on Big Data Workloads”. In: SIGMOD ’21: Interna-
tional Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. ACM. 2557–2569. doi: 10.1145/3448016.3457568.

Negi, P., R. C. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M.
Alizadeh. (2021c). “Flow-Loss: Learning Cardinality Estimates That
Matter”. Proc. VLDB Endow. 14(11): 2019–2032. doi: 10.14778/
3476249.3476259.

Negi, P., Z. Wu, A. Kipf, N. Tatbul, R. Marcus, S. Madden, T. Kraska,
and M. Alizadeh. (2023). “Robust Query Driven Cardinality Estima-
tion under Changing Workloads”. Proc. VLDB Endow. 16(6): 1520–
1533. url: https://www.vldb.org/pvldb/vol16/p1520-negi.pdf.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.48786/edbt.2022.13
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.1609/AAAI.V30I1.10139
https://doi.org/10.1145/3448016.3457568
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://www.vldb.org/pvldb/vol16/p1520-negi.pdf


References 55

Ngo, H. Q., E. Porat, C. Ré, and A. Rudra. (2018). “Worst-case Optimal
Join Algorithms”. J. ACM. 65(3): 16:1–16:40. doi: 10.1145/3180143.

Ortiz, J., M. Balazinska, J. Gehrke, and S. S. Keerthi. (2018). “Learning
State Representations for Query Optimization with Deep Reinforce-
ment Learning”. In: Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, DEEM@SIGMOD
2018, Houston, TX, USA, June 15, 2018. ACM. 4:1–4:4. doi: 10.
1145/3209889.3209890.

Osband, I. and B. V. Roy. (2015). “Bootstrapped Thompson Sampling
and Deep Exploration”. CoRR. abs/1507.00300. arXiv: 1507.00300.
url: http://arxiv.org/abs/1507.00300.

Park, Y., S. Zhong, and B. Mozafari. (2020). “QuickSel: Quick Selec-
tivity Learning with Mixture Models”. In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Con-
ference 2020, online conference [Portland, OR, USA], June 14-19,
2020. ACM. 1017–1033. doi: 10.1145/3318464.3389727.

Poon, H. and P. M. Domingos. (2011). “Sum-Product Networks: A
New Deep Architecture”. In: UAI 2011, Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, Barce-
lona, Spain, July 14-17, 2011. AUAI Press. 337–346.

Poosala, V. and Y. E. Ioannidis. (1997). “Selectivity Estimation With-
out the Attribute Value Independence Assumption”. In: VLDB’97,
Proceedings of 23rd International Conference on Very Large Data
Bases, August 25-29, 1997, Athens, Greece. Morgan Kaufmann. 486–
495. url: http://www.vldb.org/conf/1997/P486.PDF.

Selinger, P. G., M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. (1979). “Access Path Selection in a Relational Database
Management System”. In: Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, Boston, Mas-
sachusetts, USA, May 30 - June 1. ACM. 23–34. doi: 10.1145/
582095.582099.

Shetiya, S., S. Thirumuruganathan, N. Koudas, and G. Das. (2020).
“Astrid: Accurate Selectivity Estimation for String Predicates using
Deep Learning”. Proc. VLDB Endow. 14(4): 471–484. doi: 10.14778/
3436905.3436907.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3180143
https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/3209889.3209890
https://arxiv.org/abs/1507.00300
http://arxiv.org/abs/1507.00300
https://doi.org/10.1145/3318464.3389727
http://www.vldb.org/conf/1997/P486.PDF
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.14778/3436905.3436907
https://doi.org/10.14778/3436905.3436907


56 References

Siddiqui, T., A. Jindal, S. Qiao, H. Patel, and W. Le. (2020). “Cost
Models for Big Data Query Processing: Learning, Retrofitting, and
Our Findings”. In: Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. ACM. 99–113.
doi: 10.1145/3318464.3380584.

Sioulas, P. and A. Ailamaki. (2021). “Scalable Multi-Query Execution
using Reinforcement Learning”. In: SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June
20-25, 2021. ACM. 1651–1663. doi: 10.1145/3448016.3452799.

Sonoda, S. and N. Murata. (2017). “Neural Network with Unbounded
Activation Functions is Universal Approximator”. Applied and Com-
putational Harmonic Analysis. 43(2): 233–268.

Stillger, M., G. M. Lohman, V. Markl, and M. Kandil. (2001). “LEO -
DB2’s LEarning Optimizer”. In: VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy. Morgan Kaufmann. 19–28. url: http:
//www.vldb.org/conf/2001/P019.pdf.

Sun, J. and G. Li. (2019). “An End-to-End Learning-based Cost Estima-
tor”. Proc. VLDB Endow. 13(3): 307–319. doi: 10.14778/3368289.
3368296.

Sutton, R. S. and A. G. Barto. (2018). Reinforcement Learning. The
MIT Press.

Tai, K. S., R. Socher, and C. D. Manning. (2015). “Improved Semantic
Representations From Tree-Structured Long Short-Term Memory
Networks”. In: Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers. The Association for Computer
Linguistics. 1556–1566. doi: 10.3115/V1/P15-1150.

Thompson, W. R. (1933). “On the Likelihood that One Unknown Prob-
ability Exceeds Another in View of the Evidence of Two Samples”.
Biometrika. 25: 285–294.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3448016.3452799
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/conf/2001/P019.pdf
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.3115/V1/P15-1150


References 57

Tzoumas, K., A. Deshpande, and C. S. Jensen. (2011). “Lightweight
Graphical Models for Selectivity Estimation Without Independence
Assumptions”. Proc. VLDB Endow. 4(11): 852–863. url: http :
//www.vldb.org/pvldb/vol4/p852-tzoumas.pdf.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. (2017). “Attention is All you Need”. In:
Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA. 5998–6008. url: https://proceedings.
neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Vu, T., A. Belussi, S. Migliorini, and A. Eldawy. (2021). “A Learned
Query Optimizer for Spatial Join”. In: SIGSPATIAL ’21: 29th
International Conference on Advances in Geographic Information
Systems, Virtual Event / Beijing, China, November 2-5, 2021. ACM.
458–467. doi: 10.1145/3474717.3484217.

Wang, F., X. Yan, M. L. Yiu, S. LI, Z. Mao, and B. Tang. (2023a).
“Speeding Up End-to-end Query Execution via Learning-based Pro-
gressive Cardinality Estimation”. Proc. ACM Manag. Data. 1(1):
28:1–28:25. doi: 10.1145/3588708.

Wang, J., C. Chai, J. Liu, and G. Li. (2021a). “FACE: A Normalizing
Flow based Cardinality Estimator”. Proc. VLDB Endow. 15(1):
72–84. doi: 10.14778/3485450.3485458.

Wang, J., I. Trummer, A. Kara, and D. Olteanu. (2023b). “ADOPT:
Adaptively Optimizing Attribute Orders for Worst-Case Optimal
Join Algorithms via Reinforcement Learning”. Proc. VLDB Endow.
16(11): 2805–2817. doi: 10.14778/3611479.3611489.

Wang, X., C. Qu, W. Wu, J. Wang, and Q. Zhou. (2021b). “Are We
Ready For Learned Cardinality Estimation?” Proc. VLDB Endow.
14(9): 1640–1654. doi: 10.14778/3461535.3461552.

Wang, Z., Z. Zhou, Y. Yang, H. Ding, G. Hu, D. Ding, C. Tang, H. Chen,
and J. Li. (2022). “WeTune: Automatic Discovery and Verification of
Query Rewrite Rules”. In: SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022.
ACM. 94–107. doi: 10.1145/3514221.3526125.

Watkins, C. (1989). “Learning From Delayed Rewards”. May.

Full text available at: http://dx.doi.org/10.1561/1900000082

http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3474717.3484217
https://doi.org/10.1145/3588708
https://doi.org/10.14778/3485450.3485458
https://doi.org/10.14778/3611479.3611489
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3514221.3526125


58 References

Weng, L., R. Zhu, D. Wu, B. Ding, B. Zheng, and J. Zhou. (2024).
“Eraser: Eliminating Performance Regression on Learned Query
Optimizer”. Proc. VLDB Endow. 17(5): 926–938.

Woltmann, L., J. Thiessat, C. Hartmann, D. Habich, and W. Lehner.
(2023). “FASTgres: Making Learned Query Optimizer Hinting Ef-
fective”. Proc. VLDB Endow. 16(11): 3310–3322. doi: 10.14778/
3611479.3611528.

Wu, C., A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao.
(2018). “Towards a Learning Optimizer for Shared Clouds”. Proc.
VLDB Endow. 12(3): 210–222. doi: 10.14778/3291264.3291267.

Wu, P. and G. Cong. (2021). “A Unified Deep Model of Learning from
both Data and Queries for Cardinality Estimation”. In: SIGMOD
’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. ACM. 2009–2022. doi: 10.1145/3448016.
3452830.

Wu, R., B. Ding, X. Chu, Z. Wei, X. Dai, T. Guan, and J. Zhou. (2021).
“Learning to be a Statistician: Learned Estimator for Number of
Distinct Values”. Proc. VLDB Endow. 15(2): 272–284. doi: 10 .
14778/3489496.3489508.

Wu, W., J. F. Naughton, and H. Singh. (2016). “Sampling-Based Query
Re-Optimization”. In: Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. ACM. 1721–1736.
doi: 10.1145/2882903.2882914.

Wu, Z., P. Negi, M. Alizadeh, T. Kraska, and S. Madden. (2023).
“FactorJoin: A New Cardinality Estimation Framework for Join
Queries”. Proc. ACM Manag. Data. 1(1): 41:1–41:27. doi: 10.1145/
3588721.

Wu, Z. and A. Shaikhha. (2020). “BayesCard: A Unified Bayesian
Framework for Cardinality Estimation”. CoRR. abs/2012.14743.
arXiv: 2012.14743. url: https://arxiv.org/abs/2012.14743.

Yan, S., B. Ding, W. Guo, J. Zhou, Z. Wei, X. Jiang, and S. Xu. (2021).
“FlashP: An Analytical Pipeline for Real-time Forecasting of Time-
Series Relational Data”. Proc. VLDB Endow. 14(5): 721–729. doi:
10.14778/3446095.3446096.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.14778/3611479.3611528
https://doi.org/10.14778/3611479.3611528
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.14778/3489496.3489508
https://doi.org/10.14778/3489496.3489508
https://doi.org/10.1145/2882903.2882914
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3588721
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2012.14743
https://doi.org/10.14778/3446095.3446096


References 59

Yang, Z., W. Chiang, S. Luan, G. Mittal, M. Luo, and I. Stoica. (2022).
“Balsa: Learning a Query Optimizer Without Expert Demonstra-
tions”. In: SIGMOD ’22: International Conference on Manage-
ment of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Ed. by
Z. G. Ives, A. Bonifati, and A. E. Abbadi. ACM. 931–944. doi:
10.1145/3514221.3517885.

Yang, Z., A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and
I. Stoica. (2020). “NeuroCard: One Cardinality Estimator for All
Tables”. Proc. VLDB Endow. 14(1): 61–73. doi: 10.14778/3421424.
3421432.

Yang, Z., E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica. (2019). “Deep Unsuper-
vised Cardinality Estimation”. Proc. VLDB Endow. 13(3): 279–292.
doi: 10.14778/3368289.3368294.

Yu, X., G. Li, C. Chai, and N. Tang. (2020). “Reinforcement Learning
with Tree-LSTM for Join Order Selection”. In: 36th IEEE Interna-
tional Conference on Data Engineering, ICDE 2020, Dallas, TX,
USA, April 20-24, 2020. IEEE. 1297–1308. doi: 10.1109/ICDE48307.
2020.00116.

Yuan, H., G. Li, L. Feng, J. Sun, and Y. Han. (2020). “Automatic View
Generation with Deep Learning and Reinforcement Learning”. In:
36th IEEE International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020. IEEE. 1501–1512. doi:
10.1109/ICDE48307.2020.00133.

Zhang, W., M. Interlandi, P. Mineiro, S. Qiao, N. Ghazanfari, K. Lie,
M. T. Friedman, R. Hosn, H. Patel, and A. Jindal. (2022). “Deploying
a Steered Query Optimizer in Production at Microsoft”. In: SIGMOD
’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022. ACM. 2299–2311. doi: 10.1145/
3514221.3526052.

Zhang, Y., Y. Chronis, J. M. Patel, and T. Rekatsinas. (2023). “Simple
Adaptive Query Processing vs. Learned Query Optimizers: Observa-
tions and Analysis”. Proc. VLDB Endow. 16(11): 2962–2975. doi:
10.14778/3611479.3611501.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00133
https://doi.org/10.1145/3514221.3526052
https://doi.org/10.1145/3514221.3526052
https://doi.org/10.14778/3611479.3611501


60 References

Zhao, K., J. X. Yu, Z. He, R. Li, and H. Zhang. (2022a). “Lightweight
and Accurate Cardinality Estimation by Neural Network Gaussian
Process”. In: SIGMOD ’22: International Conference on Manage-
ment of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM.
973–987. doi: 10.1145/3514221.3526156.

Zhao, Y., G. Cong, J. Shi, and C. Miao. (2022b). “QueryFormer: A Tree
Transformer Model for Query Plan Representation”. Proc. VLDB
Endow. 15(8): 1658–1670. url: https://www.vldb.org/pvldb/vol15/
p1658-zhao.pdf.

Zhao, Z., R. Christensen, F. Li, X. Hu, and K. Yi. (2018). “Random
Sampling over Joins Revisited”. In: Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. ACM. 1525–1539. doi:
10.1145/3183713.3183739.

Zhou, J., N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib.
(2012). “SCOPE: parallel databases meet MapReduce”. VLDB J.
21(5): 611–636. doi: 10.1007/S00778-012-0280-Z.

Zhou, X., G. Li, C. Chai, and J. Feng. (2021). “A Learned Query Rewrite
System using Monte Carlo Tree Search”. Proc. VLDB Endow. 15(1):
46–58. doi: 10.14778/3485450.3485456.

Zhou, X., G. Li, J. Wu, J. Liu, Z. Sun, and X. Zhang. (2023). “A Learned
Query Rewrite System”. Proc. VLDB Endow. 16(12): 4110–4113.
doi: 10.14778/3611540.3611633.

Zhou, X., J. Sun, G. Li, and J. Feng. (2020). “Query Performance
Prediction for Concurrent Queries using Graph Embedding”. Proc.
VLDB Endow. 13(9): 1416–1428. doi: 10.14778/3397230.3397238.

Zhu, R., W. Chen, B. Ding, X. Chen, A. Pfadler, Z. Wu, and J. Zhou.
(2023). “Lero: A Learning-to-Rank Query Optimizer”. Proc. VLDB
Endow. 16(6): 1466–1479. url: https://www.vldb.org/pvldb/vol16/
p1466-zhu.pdf.

Zhu, R., L. Weng, W. Wei, D. Wu, J. Peng, Y. Wang, B. Ding, D. Lian,
B. Zheng, and J. Zhou. (2024). “PilotScope: Steering Databases with
Machine Learning Drivers”. Proc. VLDB Endow. 17(5): 980–993.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.1145/3514221.3526156
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1007/S00778-012-0280-Z
https://doi.org/10.14778/3485450.3485456
https://doi.org/10.14778/3611540.3611633
https://doi.org/10.14778/3397230.3397238
https://www.vldb.org/pvldb/vol16/p1466-zhu.pdf
https://www.vldb.org/pvldb/vol16/p1466-zhu.pdf


References 61

Zhu, R., Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and
B. Cui. (2021). “FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation”. Proc. VLDB Endow. 14(9): 1489–1502.
doi: 10.14778/3461535.3461539.

Full text available at: http://dx.doi.org/10.1561/1900000082

https://doi.org/10.14778/3461535.3461539



