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Abstract

Many studies in econometric theory are supplemented by Monte Carlo
simulation investigations. These illustrate the properties of alterna-
tive inference techniques when applied to samples drawn from mostly
entirely synthetic data generating processes. They should provide
information on how techniques, which may be sound asymptotically,
perform in finite samples and then unveil the effects of model charac-
teristics too complex to analyze analytically. Also the interpretation of
applied studies should often benefit when supplemented by a dedicated
simulation study, based on a design inspired by the postulated actual
empirical data generating process, which would come close to boot-
strapping. This review presents and illustrates the fundamentals of con-
ceiving and executing such simulation studies, especially synthetic but
also more dedicated, focussing on controlling their accuracy, increasing
their efficiency, recognizing their limitations, presenting their results in
a coherent and palatable way, and on the appropriate interpretation of
their actual findings, especially when the simulation study is used to
rank the qualities of alternative inference techniques.
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Preface and Overview

Since many decades much of the research in econometric theory is sup-
ported or illustrated by Monte Carlo simulation studies. Often the
design of such studies follows particular patterns that have become
traditional. Performing Monte Carlo studies is usually not taught as
such in graduate schools. As a novice one is simply expected to imitate
and extend relevant earlier studies published in the recent literature.
Many scholars seem to think that setting up a Monte Carlo study is
basically too self-evident to bother much about; apparently, it can be
done without requiring a manual, because that does not seem avail-
able. Therefore, we try to present and illustrate the fundamentals of
executing such studies here, pointing to opportunities not often utilized
in current practice, especially regarding designing their general setup,
controlling their accuracy, recognizing their shortcomings, presenting
their results in a coherent and palatable way, and with respect to an
appropriate and unprejudiced interpretation of their actual findings.

Monte Carlo simulation (abbreviated as MCS from now on) pro-
duces from random experiments rather straight-forward statistical
inference on the properties of often very complex statistical inference
techniques. So, it has an intrinsic recursive nature, because it employs

1
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2 Preface and Overview

statistical methods to explore statistical methods. Here, we will focus in
particular on exploring the properties of classic econometric inference
techniques by simulation. The major issues concerning these techniques
are concisely characterized in Appendix A. In practice, they are usu-
ally applied to observational (i.e., non-experimental) data, employing
methods and making probabilistic assumptions in a situation of high
uncertainty regarding the appropriate model specification. Hence, in
this context MCS examines complex techniques of statistics by rather
simple techniques of statistics, aiming to produce knowledge on how to
handle non-experimental data by experimentation.

At first sight such an approach may seem to be built on very
weak methodological grounds, if not just being impossible. Indeed, its
inherent circularity and apparent incompatibilities may easily lead to
confusion. Reasons for that being that concepts such as sample and its
sample size, estimators and their precision, test statistics and their sig-
nificance levels, confidence regions and their coverage probabilities, and
so on, play a role at two different levels, namely that of the economet-
ric technique under investigation and that of the simulation inference
produced on its properties. Therefore, we shall find it useful to develop
a notation in which we carefully distinguish between the economet-
ric issues under study and the statistical inference methods employed
in MCS to interpret the simulation experiments. Such a distinction is
nonstandard in the literature, but we think it is illuminating and cer-
tainly useful from a pedagogic point of view. For similar reasons we
find it also highly instructive to use EViews programs for illustrations.
Not because we appreciate the EViews programming language as such
very much, but because it will prove to be most clarifying and conve-
nient that in the computer sessions to follow we will as a rule have two
data workfiles. One regarding samples to which the econometric tech-
niques under study are applied, and one with usually a much larger
sample size concerning the executed simulation experiments. To the
latter we may immediately (or at a later stage, and step by step) apply
any descriptive or inferential statistical techniques from the standard
EViews menu deemed useful for interpreting the simulation findings.

In the first three sections the focus is on the basic tools of MCS,
which are generating and transforming random numbers such as may
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Preface and Overview 3

arise in econometric analysis, and next assessing their moments, prob-
ability distributions and their quantiles numerically. We discuss and
illustrate their use to produce MCS inference on the qualities of various
specific econometric inference techniques, and to control the accuracy
of the MCS results. Especially regarding the accuracy of MCS results
we produce some findings that are seldom employed in practice. But
also regarding some more familiar results we think that by carefully
distinguishing in our notation between the statistical inference tech-
niques under study and the statistical inference techniques employed
to interpret the simulation experiments, we illuminate various aspects
that are easily confused or overlooked otherwise. At the same time, by
illustrating MCS to various of the standard tools of econometric infer-
ence, one may acquire a deeper and more tangible understanding of
often rather abstract aspects of econometric theory. Not only does it
illustrate the relevance and accuracy (and often the inaccuracy, thus
limited relevance) of asymptotic theory and of the approximations it
suggests. It will also help to sharpen the understanding of basic con-
cepts such as bias and inconsistency, standard deviation and standard
error, variance and mean squared error, the standard deviation of stan-
dard errors, nominal and actual significance levels, test size and power,
and to appreciate how crucial (or occasionally trifling) the validity of
particular standard assumptions (such as exogeneity, linearity, normal-
ity, independence, homoskedasticity) may be. Both producers and con-
sumers of MCS results may appreciate the easy-to-use rules of thumb
provided on the relationship between accuracy of the various obtained
MCS results such as bias, median, RMSE, rejection probability, and
the chosen number of replications or the Monte Carlo sample size.

After treating the basic tools of MCS, the focus of Section 4 is
on the crucial elements of analyzing the properties of asymptotic test
procedures by MCS. This involves verifying the extent of control over
the type I error probability, establishing the test size, essential aspects
of size correction when making power comparisons between compet-
ing test procedures. In Section 5 the focus is on various more general
aspects of MCS, such as its history, possibilities to increase its efficiency
and effectivity, whether synthetic random exogenous variables should
be kept fixed over all the experiments or be treated as genuinely random
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4 Preface and Overview

and thus redrawn every replication. Here we also pay some attention
to what we call a dedicated MCS study. Finally, it tries to provide a
list of all methodological aspects that do affect MCS. We pay atten-
tion especially to those which are relevant when simulation results are
used to rate various alternative econometric techniques. Most of these
aspects receive very little attention in the majority of the currently pub-
lished simulation studies. We list ten general methodological rules and
aspirations, or rather commandments, to be followed when designing
and executing Monte Carlo studies in econometrics when its purpose
is an impartial validation of alternative inference techniques. Next we
address the adverse effects sinning against these rules has.

The simulation techniques that we discuss in the first five sections
are often addressed as naive or classic Monte Carlo methods. How-
ever, simulation can also be used not just for assessing the qualities
of inference techniques, but also directly for obtaining inference in
practice from empirical data. Various advanced inference techniques
have been developed which incorporate simulation techniques. An
early example of this is Monte Carlo testing, which corresponds to
the (much later developed) parametric bootstrap technique. In the
final Section 6 such techniques are highlighted, and a few examples
of (semi-)parametric bootstrap techniques are given. This section also
demonstrates that the bootstrap is not an alternative to MCS but just
another practical — though usually asymptotic, and therefore proba-
bly inaccurate — inference technique, which uses simulation to produce
econometric inference. If one wants to analyze the actual performance
of bootstrap inference this can again be done by MCS, as we illus-
trate. Other advanced uses of simulation, such as in indirect inference
or estimation by simulated moments methods or MCMC (Markov chain
Monte Carlo) methods will not be covered here.

At the end of each section exercises are provided which allow the
reader to immerse in performing and interpreting MCS studies. The
material has been used extensively in courses for undergaduate and
graduate students. The various sections contain illustrations which
throw light on what uses can be made from MCS to discover the
finite sample properties of a broad range of alternative econometric
methods with a focus on the rather basic models and techniques. Just
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Preface and Overview 5

occasionally, we pay attention (by giving references) to how to con-
dense the often rather extensive reporting on simulation findings by
employing graphical 2D and 3D methods, which can even be extended
to 4D by using animation. This, however, requires other software than
provided by the EViews package.

Although Monte Carlo is practiced now for more than a cen-
tury and started in fact long before computers were available by
manually drawing repeatedly independent samples from a given popu-
lation, there are no many texts that explain and thoroughly illustrate
MCS and its foundations in detail for econometricians. In that respect
we should however name at least the following relatively few excep-
tions. The relevant underlying theory for examining isolated inference
techniques (estimators and test procedures) can be found in Hendry
(1984, Section 16 of Handbook of Econometrics, Vol. II). Sections on
Monte Carlo simulation can also be found in the econometrics text-
books by Davidson and MacKinnon (1993, Section 21), Hendry (1995,
Section 3, Section 6), Hendry and Nielsen (2007, Section 16), and
intermingled with bootstrap applications throughout most sections of
Davidson and MacKinnon (2004). An initial study in Monte Carlo
methodology, focussing on issues that are relevant when alternative
inference methods are compared by Monte Carlo methods, is Kiviet
(2007), which is extended here. A recent introduction to the basics of
Monte Carlo methods, focussing in particular on random number gen-
eration, is Doornik (2006), published in a volume in which Davidson
and MacKinnon (2006) provide an introduction for econometricians to
the bootstrap. Further relatively recent introductions to the bootstrap
are Horowitz (2003), Johnson (2001), and MacKinnon (2002, 2006).
There are many more advanced bootstrap papers in the econometrics
literature, see for instance Brown and Newey (2002). For other infer-
ence methods which involve simulation (i.e., where simulation is not
just used to analyze the quality of inference but to help to produce
inference), which are not covered here, such as Method of Simulated
Moments, Indirect Inference, Markov Chain Monte Carlo, Gibbs Sam-
pling, Simulated Annealing etc. see, for instance, Fishman (2006) and
Gourieroux and Monfort (1996) and the overview in Greene (2012).

Full text available at: http://dx.doi.org/10.1561/0800000011



Acronyms and Symbols Used

AR(p) autoregressive process of order p
ARX(p) regression model with exogenous regressors X and lagged

dependent variables up to order p
BSS bootstrap simulation

CDF cumulative distribution function
CLT central limit theorem
DGP data generating process

E expectation
ECDF empirical cumulative distribution function
EPDF empirical probability distribution function

ε relative precision
IQR interquartile range
GLS generalized least-squares

GMM generalized method of moments
IID identically and independently distributed
IV instrumental variables
κ kurtosis

LIE law of iterated expectations

7
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8 Acronyms and Symbols Used

LLN law of large numbers
λ skewness

MCS Monte Carlo simulation
MD median
ML maximum likelihood

MSE mean squared error
NIID normal and IID
NLS nonlinear least-squares
OLS ordinary least-squares
PDF probability density function
PMC pivotal Monte Carlo (test)

RMSE root mean squared error
SD standard deviation
SE standard error
τ absolute tolerance

TSLS two-stage least-squares
UIID uniform and IID

Var variance
VSE variance of the squared error
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1

Introduction to Classic
Monte Carlo Simulation

1.1 Main Purposes and Means

Computers have the facility to generate seemingly independent
drawings from well-known discrete and continuous distributions, such
as Bernoulli, binomial, uniform, normal, Student, etc. using a so-called
pseudo random number generator. By transforming these random num-
bers it is also possible to obtain drawings from the distribution of
complicated functions of such standard distributions, and thus for
any econometric estimator of a parameter vector, and for its variance
estimator and for related test statistics. The analytic assessment of
the actual cumulative distribution functions, densities, quantiles or
moments of these estimators and test statistics is usually intractable,
because mostly they are highly nonlinear functions of the random
disturbances, the often random regressor and instrumental variables
and the model parameters. By using the computer to draw a large
IID (identically and independently distributed) sample from such a
complicated distribution, we can use this Monte Carlo sample to
estimate its moments numerically, provided these exist, whereas a his-
togram of this sample establishes the empirical probability distribu-
tion. Likewise, the empirical counterparts of the cumulative distribution

9

Full text available at: http://dx.doi.org/10.1561/0800000011



10 Introduction to Classic Monte Carlo Simulation

function (CDF), and if this exists the probability density function
(PDF) can be assessed, and quantiles of the unknown distribution can
be found by inverting the CDF. Of course, such Monte Carlo estima-
tors of characteristics of an unknown distribution do entail estimation
errors themselves. So, in order to be able to judge their inaccuracies,
Monte Carlo results should — like all statistical inference — always be
supplemented by appropriate corresponding standard errors, confidence
regions, etc.

In this introductory section, we will not yet practice Monte Carlo
simulation properly, but just illustrate the generation of random vari-
ables on a computer by EViews, and employ this to illustrate various
basic aspects of the LLN (Law of Large Numbers) and the CLT (Central
Limit Theorem), which jointly do not only form the backbone of asymp-
totic theory on econometric inference, but — as we shall soon find
out — also of the interpretation and the control of the actual accuracy
of MCS (Monte Carlo simulation) findings.

1.2 Generating Pseudo Random Numbers

A digital computer cannot really generate genuinely random numbers
nor throw dices. Though, it can generate series of so-called pseudo ran-
dom numbers in the (0, 1) interval by applying a deterministic algo-
rithm to an initial positive integer number called the seed. If one knows
this seed and the algorithm all drawings are perfectly predictable, but
if not, they have the appearance of IID drawings from the uniform dis-
tribution over the 0-1 interval. If one just knows the seed but not the
algorithm one cannot predict the series, but by using the algorithm with
the same seed again one can reproduce the same pseudo random series
whenever desired. This comes in handy when one wants to compare
alternative methods under equal circumstances.

The algorithm for producing random numbers is usually of the fol-
lowing simple type. Let z0 > 0 be the positive integer seed, then pseudo
IID U(0,1) drawings (η1,η2, ...) follow from the iterative scheme

zi = (ψzi−1 + α) ÷ m
ηi = zi/m,

}
i = 1,2, . . . (1.1)

Full text available at: http://dx.doi.org/10.1561/0800000011



1.2 Generating Pseudo Random Numbers 11

where integer m is called the modulus, ψ is the multiplier, and α the
increment. The operation ÷ (often denoted as mod) means here that zi
equals the remainder of dividing ψzi−1 + α by m. In at most m steps
the series of values zi and thus ηi will repeat itself. Hence, m should
be large, preferably as large as the largest integer on the computer,
say 231 − 1. The choice of the value of ψ is crucial for the quality of
the series too, but α is less relevant and is often set at zero. Testing
the adequacy of random number generators is an art of its own. We
will simply trust the default versions available in the computer package
that we use.

The CDF of ηi ∼ U(0,1) is

FU (η) ≡ Pr(ηi ≤ η) =


0, η < 0
η, 0 ≤ η ≤ 1
1, η > 1.

(1.2)

By appropriately transforming IID drawings ηi ∼ U(0,1) one can obtain
IID drawings ζi from any other type of distribution D with strictly
increasing CDF given by FD(ζ), with ζ ∈ R. Consider ζi = F−1

D (ηi).
This yields FD(ζi) = ηi ∼ U(0,1). So

Pr(ζi ≤ ζ) = Pr(FD(ζi) ≤ FD(ζ)) = Pr(ηi ≤ FD(ζ)) = FD(ζ) (1.3)

indeed. Hence, generating ζi = F−1
D (ηi) yields a series of IID pseudo ran-

dom drawings of ζi, i = 1,2, . . . . This does not work out well when dis-
tribution D has a CDF that has no closed form for its inverse, as is the
case for the (standard) Normal distribution. However, relatively simple
alternative transformation techniques are available for that situation,
see for instance Fishman (2006).

1.2.1 Drawings from U(0,1)

We shall now use EViews1 to illustrate the above and interpret some
realizations of series of generated random drawings. At the same time

1 Check the EViews reference guide to find out about any particulars on the random number
generator that your version of EViews uses. All results to follow were obtained by EViews 7.

Earlier versions use a different random number generator and therefore do not yield results
fully similar to those presented here.
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12 Introduction to Classic Monte Carlo Simulation

we shall learn how to use the programming facilities of EViews. Con-
sider the following EViews program:

’mcs11.prg: Drawings from U(0,1)

!n=1000

workfile f:\MCS\mcs11.wf1 u 1 !n

rndseed 9876543210

genr eta=rnd

The first line of this program2 (and all programs to follow) starts
with the character “ ’ ” meaning that it just contains a comment and
(without any computational consequences) exhibits the name (with
extension prg) and purpose of the program. Names of integer or real
variables have to be preceded by the character “!”. By !n we identify
sample size. In the third line we identify a new workfile and its location
(map or folder); for clarity we give this workfile (which has extension
wf1) the same name as the program. The parameter “u” indicates that
the observations are “undated” (not associated with a particular year
or quarter) and next it is indicated that their range will run form 1
to !n. In the fourth line we provide a specific but arbitrary integer
seed value for the random number generator, and in the final line a
variable eta is generated of n IID drawings from U(0,1). After running
this program in an EViews session one can manipulate and analyze
the data series eta stored in the workfile as one wishes, either by using
standard EViews commands or by running another program operating
on this workfile.

Figure 1.1 presents the histograms, as produced by EViews,
obtained from running program mcs11 first for n = 1,000 and next for
n = 1,000,000. Both these histograms establish empirical probability
density functions of the U(0,1) distribution. Both deviate from the rect-
angular actual population PDF, and obviously and visibly the one with
larger n is more accurate. The value of mean is calculated according to

η̄n ≡
1
n

n∑
i=1

ηi. (1.4)

2 All programs are available in a zipped file mcs.zip. These programmes suppose that you

have access to a drive f:\ with folder MCS. Of course, the path f:\MCS\ can be changed
in whatever is more convenient.
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1.2 Generating Pseudo Random Numbers 13

Fig. 1.1 Drawings from U(0,1) for n = 1,000 and n = 1,000,000.

For both sample sizes these are pretty close to E(η) = 0.5. The reason
is that, when the ηi establish a series of U(0,1) drawings indeed, the
sample average η̄n is an unbiased estimator of E(η), because

E(η̄n) = E
1
n

n∑
i=1

ηi =
1
n

n∑
i=1

E(ηi) =
n

n
E(η) = 0.5. (1.5)

Of course, the actual deviation of mean from 0.5 is associated with
its standard deviation. We find

Var(η̄n) = Var

(
1
n

n∑
i=1

ηi

)
=

1
n2

Var

(
n∑
i=1

ηi

)

=
1
n2

n∑
i=1

Var(ηi) =
1
n

Var(η) =
1

12n
, (1.6)

where the third equality follows from the independence of the drawings,
yielding Cov(ηi,ηj) = 0 for i 6= j, and the final one from using general
results on the U(a,b) distribution. Regarding its first four centered
moments we have µc1 ≡ E[η − E(η)] = 0, µc2 ≡ σ2

η ≡ E[η − E(η)]2 =
(b − a)2/12, µc3 ≡ E[η − E(η)]3 = 0, and µc4 ≡ E[η − E(η)]4 =
(b − a)4/80, respectively. Since

√
Var(η̄n) = (12n)−1/2 = 0.0091 and

0.00029, for n = 1,000 and n = 1,000,000 respectively, we can under-
stand why the Mean value is much closer to 0.5 in the larger sample.
Note, however, that there will be values of the seed for which the
sample mean for n = 1,000 is closer to 0.5, because it is not the
deviation itself that will be larger at n = 1,000 than at n = 1,000,000,
but for a smaller sample size the probability is larger that the
deviation will be larger than a particular value. For similar reasons it
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14 Introduction to Classic Monte Carlo Simulation

is understandable that the estimate of the median is more accurate for
the larger n.

The value of Std. Dev. (which is actually what we would usually
call the standard error, because it is the estimated standard deviation)
mentioned next to the histograms is obtained as the square root of

σ̂2
η ≡

1
n − 1

n∑
i=1

(ηi − η̄n)2. (1.7)

Both estimates are pretty close to the standard deviation of the
U(0,1) distribution, which is

√
1/12 = 0.2887. This is again no sur-

prise, because

E(σ̂2
η) = σ2

η = Var(η) = 1/12. (1.8)

Note that the definitions of skewness and kurtosis are µc3/(µ
c
2)3/2 and

µc4/(µ
c
2)2 respectively, so the population values for the U(0,1) distri-

bution are 0 and 144/80 = 1.8000, respectively. Again we find that
the estimates obtained from the two samples are pretty close to their
population values, and they are closer for the larger sample size. The
improvements with n are due to the fact that the corresponding esti-
mators do have a variance of order O(n−1).

1.2.2 Drawings from N(0,1)

Next we adapt the program as follows:

’mcs12.prg Drawings from N(0,1)

!n=1000

workfile f:\MCS\mcs12.wf1 u 1 !n

rndseed 9876543210

genr zeta=nrnd

This yields for n = 1,000,1,000,000 the histograms of Figure 1.2.
The results on these samples of N(0,1) drawings can be analyzed in
a similar way as we did for U(0,1).3 Here, however, we have µ1 = 0,
µ2 = 1,µ3 = 0, and µ4 = 3.

3 Note that (0,1) indicates the domain for the uniform distribution, whereas it refers to

expectation and variance in case of the normal.
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1.3 LLN and Classic Simple Regression 15

Fig. 1.2 Drawings from N(0,1) for n = 1,000 and n = 1,000,000.

Note that the phenomenon that the values of mean converge to
zero for increasing values of n illustrate the simplest form of the LLN
(law of large numbers). Since both ηi and ζi are IID and have finite
moments the sample average converges to the population mean (expec-
tation). The same holds for the uncentered sample averages of powers
of ηi and ζi which explains, upon invoking Slutsky’s theorem, the con-
vergence of their nonlinear transformations Std. Dev., Skewness and
Kurtosis. See Appendix B for more details on the various tools (the
notation O(n−1), LLN, CLT, Slutsky) for asymptotic analysis.

1.3 LLN and Classic Simple Regression

Both in MCS and in econometrics the LLN plays a central role. There-
fore, to understand its properties better, we will now provide some
illustrations on the workings of the LLN in the context of a very simple
regression model (and also on its limitations in Exercise 9). We consider
the model with just one single exogenous regressor and start with the
case where the observations are IID, and not necessarily normal. For
i = 1, . . . ,n the DGP (data generating process) is

yi = βxi + ui, xi ∼ IID(µx,σ2
x), ui | x1, . . . ,xn ∼ IID(0,σ2

u),

(1.9)

where µx,σ
2
x, and σ2

u are all finite. A well-known asymptotic (for
n→∞) result in econometric theory is that in this model, due
to the LLN, plimn−1

∑n
i=1x

2
i = limn−1

∑n
i=1E(x2

i ) = σ2
x + µ2

x and
plimn−1

∑n
i=1xiui = limn−1

∑n
i=1E(xiui) = 0, since by the LIE (Law

of Iterated Expectations) E(xiui) = E[E(xiui | xi)] = E[xiE(ui | xi)] =
E(0) = 0. Employing Slutsky, we now find consistency for the OLS
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16 Introduction to Classic Monte Carlo Simulation

estimator, because

plim β̂ = plim
∑n

i=1xiyi∑n
i=1x

2
i

= β +
plimn−1

∑n
i=1xiui

plimn−1
∑n

i=1x
2
i

= β +
0

σ2
x + µ2

x

= β. (1.10)

Of course, on a computer we cannot fully mimic the situation n→∞,
but the analytic phenomena just discussed are nevertheless convinc-
ingly (especially when you increase the value of nmax) illustrated by
the following program.

’mcs13.prg: LLN in simple IID regression

!nmax=1000

workfile f:\MCS\mcs13.wf1 u 1 !nmax

!beta=0.5

!mux=1

!sigx=2

!sigu=0.2

rndseed 9876543210

genr x=!mux + !sigx*(rnd - 0.5)/@sqrt(1/12)

genr u=!sigu*(rnd - 0.5)/@sqrt(1/12)

genr y=!beta*x + u

stom(x,vecx)

stom(y,vecy)

matrix (!nmax,3) results

!sumxy=0

!sumxx=0

for !n=1 to !nmax

!sumxy=!sumxy+vecx(!n)*vecy(!n)

!sumxx=!sumxx+vecx(!n)^2

results(!n,1)=!sumxy/!n

results(!n,2)=!sumxx/!n

results(!n,3)=!sumxy/!sumxx

next

results.write f:\MCS\mcs13results.txt

read f:\MCS\mcs13results.txt sxx sxy b
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1.3 LLN and Classic Simple Regression 17

In this program we chose β = 0.5, xi ∼ IID(1,22), ui ∼ IID(0,0.22)
and both xi and ui are uniformly distributed and mutually indepen-
dent. By the command “stom” we transform a generated series into
a vector, which then enables to program expressions involving its
individual elements. This allows to calculate both n−1

∑n
i=1x

2
i and

n−1
∑n

i=1xiyi for n = 1, . . . ,1000, and also their ratio. The results are
stored in a matrix called results, which has nmax rows and 3 columns.
In the two final lines of the program this 1,000 × 3 matrix is first writ-
ten to a text file and from this the three columns are added as variables
to the workfile mcs13.wf1 under the names sxy, sxx and b. These can
then easily be analyzed further by EViews.

Figure 1.3 presents the graphs of sxy, sxx, and b as obtained
for two different integer seed values. For small values of n the
random nature of the three depicted statistics is apparent from
the diagram, but they gradually converge for increasing n (see
Exercise 6), and ultimately for n→∞, irrespective of the value
of rndseed used, they assume their deterministic population values
which are σ2

x + µ2
x = 5, plimn−1

∑n
i=1xiyi = βplimn−1

∑n
i=1x

2
i = 2.5,

and β = 0.5 respectively. In fact, due to the correlation between sxy
and sxx we note that the convergence of their ratio is much faster than
that of sxy and sxx individually.

The LLN does not require that the observations in the regres-
sion are IID; they only have to be asymptotically uncorrelated. We
will now verify the effects of first-order serial correlation in both the

Fig. 1.3 IID data; second moments (uncentered) and β̂ for n = 1, . . . ,1,000.
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18 Introduction to Classic Monte Carlo Simulation

regressor xi and the disturbances ui. Because EViews generates vari-
ables recursively, in program msc14.prg variables x∗i ∼ IID(0,σ2

x) and
u∗i ∼ IID(0,σ2

u) are actually generated first (but already stored in xi
and ui) for i = 1, . . . ,nmax and then the program calculates u1 = u∗1
and (for i > 1) ui = ρuui−1 + (1 − ρ2

u)1/2u∗i and similarly for xi, to
which finally µx is added.

’mcs14.prg: LLN in simple non-IID regression

!nmax=1000

workfile f:\MCS\mcs14.wf1 u 1 !nmax

!beta=0.5

!mux=1

!sigx=2

!rhox=0.8

!rrhox=@sqrt(1-!rhox^2)

!sigu=0.2

!rhou=0.4

!rrhou=@sqrt(1-!rhou^2)

rndseed 9876543210

genr x=!sigx*(rnd - 0.5)/@sqrt(1/12)

genr u=!sigu*(rnd - 0.5)/@sqrt(1/12)

smpl 2 !nmax

genr x=!rhox*x(-1)+!rrhox*x

genr u=!rhou*u(-1)+!rrhou*u

smpl 1 !nmax

genr x=!mux + x

genr y=!beta*x + u

stom(x,vecx)

stom(y,vecy)

matrix (!nmax,3) results

!sumxy=0

!sumxx=0

for !n=1 to !nmax

!sumxy=!sumxy+vecx(!n)*vecy(!n)

!sumxx=!sumxx+vecx(!n)^2

results(!n,1)=!sumxy/!n
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1.3 LLN and Classic Simple Regression 19

Fig. 1.4 Non-IID data; second moments (uncentered) and β̂ for n = 1, . . . ,1,000.

results(!n,2)=!sumxx/!n

results(!n,3)=!sumxy/!sumxx

next

results.write f:\MCS\mcs14results.txt

read f:\MCS\mcs14results.txt sxx sxy b

Figure 1.4 illustrates that OLS is also consistent in a model where
either the observations of the regressors or those of the disturbances
(or both) are serially correlated, but more and more uncorrelated at
greater distance, provided that regressors and disturbances are contem-
poraneously uncorrelated. One can derive

Var

(
1
n

n∑
i=1

xiui

)
= E

(
1
n

n∑
i=1

xiui

)2

=
1
n2
E

(
n∑
i=1

xiui

)2

=
σ2
xσ

2
u

n

(
1 + ρxρu
1 − ρxρu

− 2
ρxρu
n

1 − (ρxρu)n

(1 − ρxρu)2

)
,

from which it follows that the convergence for the numerator, although
of the same rate in n, is nevertheless slower for positive ρx and ρu than
in the IID case, where ρx = ρu = 0. This is clearly illustrated by the
diagrams.

In both programs mcs13.prg and mcs14.prg the regressor variable
is strongly exogenous, because E(ui | x1, . . . ,xn) = 0 ∀i, and the dis-
turbances are homoskedastic. Note that in establishing the consistency
of OLS we only used E(ui | xi) = 0. So, neither serial correlation nor
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20 Introduction to Classic Monte Carlo Simulation

heteroskedasticity of the disturbances would spoil this result. Also
weak exogeneity or predeterminedness of the regressors, where E(ui |
x1, . . . ,xi) = 0, still yields consistency of OLS.

1.4 CLT and Simple Sample Averages

The conclusions that we will draw on the basis of MCS studies will rely
heavily, as far as their accuracy is concerned, on a very straight-forward
application of the simplest version of the Central Limit Theorem. In
MCS we will often approximate the sample average of IID observations
generated from a usually unknown distribution by the normal distribu-
tion. In fact, we will standardize the sample average and approximate
the outcome with the standard normal distribution. This approxima-
tion is perfect when it concerns a sample of NIID observations or when
the sample is infinitely large, but it will involve approximation errors
when the sample observations have a nonnormal distribution and the
sample size is finite. In the illustration to follow we will examine the
quality of the approximation for a few different nonnormal distributions
and for various finite sample sizes.

Program mcs15.prg calculates sample averages from a sample of
size n for five different IID variables. These variables are (i = 1, . . . ,n):
zi ∼ N(0,1), vi ∼ N(µv,σ2

v), ui ∼ U(a,b), xi ∼ χ2(2) and wi, where the
latter is a mixture of independent χ2(1) and χ2(2) variables. The gen-
eration of samples of size n of these variables, and the calculation
of the sample averages is replicated R times. Running the program
results in two workfiles. Every replication workfile mcs15.wf1 contains
the n observations on the five variables, and after termination of the
program these are their realizations in the final replication. Workfile
mcs15res.wf1 contains variables of R observations. These are the gen-
erated sample averages and also their rescaled versions, in deviation
from their expectation and divided by the standard deviation of the
sample average. Of course, the latter equals the standard deviation of
the individual elements divided by

√
n (prove this yourself!). The CLT

implies that for n→∞ the rescaled expressions should be indistin-
guishable from drawings from the N(0,1) distribution. By the program
we will examine how close we get to that when n is 10, 100, or 1,000.
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1.4 CLT and Simple Sample Averages 21

In fact, we run the program first for n = 1, not because we expect the
CLT to have much to say then, but because this is a straight-forward
way to obtain the histograms of R drawings from the distributions of
the five different random variables from this program.

’mcs15.prg: Sample averages and the CLT
!n=10
workfile f:\MCS\mcs15.wf1 u 1 !n
!muv=1
!sigv=3
!a=5
!b=15
rndseed 9876543210
!R=10000
matrix (!R,5) simres
for !rep=1 to !R

genr z=nrnd
genr v=!muv + !sigv*z
genr u=!a + (!b-!a)*rnd
genr x=@rchisq(2)
genr p=rnd>0.75
genr w=p*(x+3) - (1-p)*(z^2+2)
simres(!rep,1)=@mean(z)
simres(!rep,2)=@mean(v)
simres(!rep,3)=@mean(u)
simres(!rep,4)=@mean(x)
simres(!rep,5)=@mean(w)

next
simres.write f:\MCS\mcs15res.txt
workfile f:\MCS\mcs15res.wf1 u 1 !R
read f:\MCS\mcs15res.txt meanz meanv meanu meanx meanw
genr rescaledmeanz=@sqrt(!n)* meanz
genr rescaledmeanv=@sqrt(!n)*(meanv - !muv)/!sigv
genr rescaledmeanu=@sqrt(!n)*(meanu - (!a + !b)/2)/((!b - !a)/@sqrt(12))
genr rescaledmeanx=@sqrt(!n)*(meanx - 2)/2
genr rescaledmeanw=@sqrt(!n)*(meanw + 1)/@sqrt(14.5)

In Figure 1.5 histograms are shown of 10,000 drawings from v ∼
N(1,32), u ∼ U(5,15), x ∼ χ2(2) and w, where the latter two are non-
symmetric and the last one is clearly bimodal. Note that u has thin tails
(low kurtosis), that x is skew to the right and has very high kurtosis,
whereas w also has positive skewness and kurtosis larger than for the
normal distribution. The Jarque–Bera test notes indeed that the latter
three distributions are seriously nonnormal.
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22 Introduction to Classic Monte Carlo Simulation

Fig. 1.5 Histograms of 10,000 drawings of v,u,x, and w.

Fig. 1.6 Distribution of rescaled sample averages for n = 10.

In Figure 1.6, n = 10 and histograms of the rescaled sample averages
are presented. From the histograms of 10,000 drawings it is obvious
that even at n = 10 these sample averages already started to converge
toward the normal. This is self-evident for rescaledmeanv, because these
are drawings from the standard normal distribution for any n. The
symmetry of the uniform distribution implies that rescaledmeanu has
skewness very close to zero for any n, and at n = 10 the kurtosis is
already such that the normality hypothesis, although actually invalid,
is not rejected at the 1% level. Also for the sample averages of the x
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1.4 CLT and Simple Sample Averages 23

and w distributions the skewness and the kurtosis are already much
closer to zero and three respectively, although still such that normality
is strongly rejected by the Jarque–Bera test.

Figure 1.7 contains results for n = 100 and shows that averaging
has completely removed the underlying nature of the uniform drawings
and of the bimodality of the wi drawings, but the skew nature of the
xi and wi distributions is still emerging from the averages of samples
of this size.

Continuing this and taking n = 1,000 it is shown in Figure 1.8 that
the sample averages are again closer to normal. These illustrations

Fig. 1.7 Distribution of rescaled sample averages for n = 100.

Fig. 1.8 Distribution of rescaled sample averages for n = 1,000.
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clearly demonstrate that both the degree of nonnormality of the
underlying random variables and the size of the sample over which the
average is taken jointly determine the accuracy of the normal approx-
imation. Seriously nonnormal distributions are shown to have sample
averages that are distributed closely to (although possibly still signif-
icantly different from) normal when the sample is as large as 1,000.
In fact, when it comes to the accuracy of the MCS inferences to be
developed in the following sections, it will be argued that it does not
matter that much whether or not the distribution of a sample average
as such is very accurately approximated by the normal distribution,
but only whether its tail probabilities and thus its quantiles in the tail
areas conform closely to those of the normal. We will examine that in
more detail later, and also other aspects that determine the accuracy
of MCS inference.

In most of the simulated above results, we obtained information on
relatively simple statistics for which many of their typical properties,
especially their moments, can be derived analytically. So, the simula-
tion results merely serve as a specific numerical illustration of already
fully understood more general characteristics. This will also be the case
in the more involved MCS illustrations on particular parametrizations
of the standard normal linear regression model in the next section. The
distribution of their relevant statistics can be derived analytically, so
there is no genuine need for simulating them other than illustration.
However, such results help to appreciate that MCS results lack general-
ity, are nonanalytical but numerical, and are random as well. Therefore,
they are both very specific and involve inaccuracies, and only after fully
understanding the nature and magnitude of these inaccuracies we will
move on and apply MCS in a range of situations where the true under-
lying properties of estimators and tests are mostly unknown and the
estimated numerical results from MCS establish, next to their analytic
asymptotic approximations, our only guidebook.

Exercises

1. Consider (1.8). Prove E(σ̂2
η) = Var(η). Also, from FU (η) in

(1.2), find the density of U(0,1) and derive Var(η) = 1/12.
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1.4 CLT and Simple Sample Averages 25

2. Explain the high values of the Jarque–Bera statistics (consult
the EViews Help facility for more details on this test) in
Figure 1.1 and argue why these lead to low p-values. Gen-
eral warning: Never mistake the p-value of a test statistic as
expressing the probability that the null hypothesis is true,
because it simply expresses the probability (according to
its asymptotic null distribution) that the test statistic may
assume a value as extreme as it did (hence, supposing that
the null hypothesis is true).

3. Consider the estimator σ̂2
η of (1.7) where ηi ∼ UIID(0,1).

Derive Var(σ̂2
η) and show that it is O(n−1).

4. Explain the moderate values of the Jarque–Bera statistics in
Figure 1.2 and their corresponding high p-values.

5. Run similar programs as mcs11.prg and mcs12.prg with dif-
ferent values of seed and similar (and also larger) values of n
and explain your findings.

6. Run programs mcs13.prg and mcs14.prg for n = 100,000
upon changing rndseed and possibly also choosing differ-
ent values for the parameters µx, σx, and σu. Compare the
sample equivalents of µx, σx, and σu with their population
values. Also interpret the correlogram of the u and x series.

7. Run program mcs15.prg for n = 1,000 to replicate the
results of Figure 1.7. Consider the histogram of variable
meanw. Derive analytically that E(w) = −1 and Var(w) =
14.5. Explain why the histograms of meanw and rescaled-
meanw show similar values for skewness and kurtosis. Give
command genr rejw=abs(rescaledmeanw)>1.96 in the com-
mand window of EViews and examine the histogram of vari-
able rejw. Note that, although the distribution of rescaled-
meanw does not correspond to the standard normal in all
aspects, the probability that a drawing is larger in absolute
value than the 2.5% quantile of the standard normal does
not seem to differ much from 5%.

8. In Figure 1.8 normality of rescaledmeanu is not rejected.
What will be the effect on this finding from running the
program for n = 1,000 with a much larger value of R? And
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the same question for any R but a much larger value of n?
Try and explain.

9. Run program mcs16.prg (given below) and choose various
different rndseed values while keeping the number of degrees
of freedom v fixed and examine the histogram of the gener-
ated series of random variables for v = 3,2,1. Note that for
a random variable following the Student(v) distribution only
the moments up to v − 1 exist. Its higher-order moments are
defined by an integral which is infinite, because the tails of
its density function are relatively fat. So, for v = 3 the skew-
ness and kurtosis estimates do not converge (the LLN does
not apply!). Irrespective of the value of n they yield different
outcomes when rndseed is changed. For v = 2 the same hap-
pens with the standard deviation estimate, and for v = 1 (this
is the Cauchy distribution) also the sample average has no
deterministic population equivalent. Note, however, that the
median does converge to zero for n large, irrespective of the
values of v and of rndseed.

’mcs16.prg Drawings from Student(v)

!n=10000

workfile f:\MCS\mcs16.wf1 u 1 !n

rndseed 9876543210

!v=3

genr studentv=@rtdist(!v)
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