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ABSTRACT

We argue that frequentist hypothesis testing – the dominant
statistical evaluation paradigm in empirical research – is
fundamentally unsuited for analysis of the non-experimental
data prevalent in economics and other social sciences. Fre-
quentist tests comprise incompatible repeated sampling
frameworks that do not obey the Likelihood Principle (LP).
For probabilistic inference, methods that are guided by the
LP, that do not rely on repeated sampling, and that focus
on model comparison instead of testing (e.g., subjectivist
Bayesian methods) are better suited for passively observed
social science data and are better able to accommodate the
huge model uncertainty and highly approximative nature
of structural models in the social sciences. In addition to

∗We thank Esben Høg, Søren Johansen, Jan P. de Ruiter, Dick Startz, Eric-Jan
Wagenmakers, Allan Würtz, and an anonymous referee for useful comments on an
earlier version of this work.
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formal probabilistic inference, informal model evaluation
along relevant substantive and practical dimensions should
play a leading role. We sketch the ideas of an alternative
paradigm containing these elements.

Keywords: Frequentist versus Bayesian analysis; observational social
science data; super-populations; Haavelmo’s framework; misspecified
models; formal statistical versus informal model evaluation.
JEL Codes: B23, B41, C11, C12, C18, C52.
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1
Introduction

The presumed replication crisis in many empirical sciences has revital-
ized methodology discussions and led to renewed emphasis on model
construction and evaluation, the proper conduct of statistical analysis,
and the pros and cons of different statistical methodologies (e.g., Ioan-
nidis, 2005; Nuzzo, 2014; Benjamin et al., 2018; Amrhein et al., 2019;
Wasserstein et al., 2019; McShane et al., 2019). To highlight the im-
portance of these issues, The American Statistical Association recently
took the unprecedented step of issuing an official statement addressing
the widespread misunderstandings and misuse of statistical inference in
empirical research (Wasserstein and Lazar, 2016). In this monograph
we offer new perspectives on these discussions with emphasis on the
special problems and challenges facing social scientists.

Empirical analyses in the social sciences are typically based on non-
experimental, passively observed data samples that are not directly
repeatable in the same way as in randomized controlled experiments
– the “gold standard” of traditional statistics. Nonetheless, statistical
analysis of observational social science data most often takes place
within the classical frequentist statistical paradigm that builds on the
“principle of repeated sampling” where “statistical procedures are to be

3
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4 Introduction

assessed by their behaviour in hypothetical repetitions under the same
conditions” and where “measures of uncertainty are to be interpreted
as hypothetical frequencies in long run repetitions” (Cox and Hinkley,
1974, p. 45).

In many cases empirical social science researchers apply the clas-
sical estimation and test procedures on their observational data un-
critically and with no discussion of possible inadequacies. In the few
instances where the distinction between the underlying repeated sam-
pling/controlled experiments framework in frequentist theory and the
actual observational data is noted and discussed, the analysis is typically
justified by reference to “super-populations,” or to the work of Haavelmo
(1944) who argued that frequentist likelihood and Neyman-Pearson pro-
cedures are applicable also for non-experimental social science data.

Another fundamental problem for social scientists is that since social
and behavioral relationships are extremely complex and notoriously
unstable, models of social and economic behavior must be highly stylized
and built on many simplifying and “unrealistic” assumptions. This
implies that when we take our models to the data, they do not fit well
into the classical statistical paradigm where deviations between model
and data reflect pure random error. The methodology of testing (and
rejecting) statistical hypotheses can be considered natural within the
traditional Popperian falsificasionist paradigm, but the problem with
applying this paradigm in the social sciences is that our models by
construction are false to an extent that it is relatively easy to reject
them. This does not mean, however, that the models may not contain
important elements of truth. The statistician George Box’s famous
bonmot “All models are wrong, but some are useful” is particularly
relevant for models of human behavior in sociology, psychology, political
science, management and economics. Another way to put this is: “It is
not easy to construct an interesting economic theory which cannot be
rejected out of hand” (Keuzenkamp, 2000, p. 9).

In addition, it has become clear that the uncertainty surrounding
statements and predictions from our empirical models is much higher
than what can be measured from the traditional standard errors and
confidence intervals of the estimated parameters in these models. As an
example, to our knowledge not a single econometric model – published

Full text available at: http://dx.doi.org/10.1561/0800000048
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before 2008 – predicted the financial crisis in 2008–2009 and the subse-
quent worldwide recession and economic turmoil. The few economists
who were able to foresee (parts of) what was coming (e.g., Shiller, 2005,
preface and ch. 2), did not use sophisticated statistical or econometric
models but simple descriptive analyses and basic common sense.1 There
is a real uncertainty associated with our formal empirical models that
is much larger than what we usually acknowledge, and such model un-
certainty does not fit easily into the traditional statistical/econometric
framework.

In this monograph we discuss the conceptual and interpretational
problems of classical frequentist tests in the context of observational
non-experimental data, and the justifications, if any, social scientists
typically have advanced for the suitability of frequentist tests on such
data (Sections 2 and 3). The basic question is: does it make sense
to apply frequentist testing procedures, that fundamentally build on
repeated sampling, on social science data that are fundamentally non-
repeatable? We compare the frequentist testing framework with the
Bayesian framework of testing statistical hypotheses and comparing
models based on Bayes factors. In contrast to the frequentist framework,
the Bayesian framework does not rely on repeated sampling but in-
stead follows the so-called “Likelihood Principle” (LP). It is well-known
among statisticians – but not among social scientists – that frequentist
testing procedures conflict with the LP according to which likelihood
functions that are proportional to each other should lead to the same
statistical inference (Berger and Wolpert, 1988). The LP implies that
a model’s likelihood function contains all relevant information from a
given sample about the model parameters. Frequentist tests do not obey
this principle because they involve tail area probabilities of hypothetical
data that are not part of the likelihood function (e.g., the classical
p-value measures the probability of the observed data or more extreme

1Another more recent example is the complete surprise to everyone – including
econometric inflation forecasters – of the spike in worldwide inflation starting in 2021
and continuing during 2022.

Full text available at: http://dx.doi.org/10.1561/0800000048



6 Introduction

data under the null hypothesis, cf. Section 2.1).2 Not obeying the LP
has profound implications for the proper conduct of frequentist tests,
implications that are most often not recognized by empirical social
scientists. In theory, frequentist tests require a pre-specified and fixed
sampling plan to an extent that is close to meaningless, at least when
dealing with observational social science data (Berger and Wolpert,
1988; Wagenmakers, 2007). Methods that obey the LP are more flexible
in this respect because they do not rely on the exact sampling plan, but
only on the likelihood function.3

Others before us have discussed these issues. The problems with
frequentist tests are well-described in the statistics literature, and the
special challenges facing social scientists working with non-experimental
data are also well-known. For example, the fundamental problem of
model uncertainty is the underlying motivation for Leamer’s (1978,
1983) “extreme bounds analysis.” Nonetheless, it seems to us that
these problems are either forgotten or neglected in much of todays
empirical work. Earlier, both of us have expressed concerns about the
dominance of the frequentist testing paradigm, Schneider (2013, 2015,
2016, 2018) in the fields of information science and scientometrics, and
Engsted (2002, 2009) in economics and econometrics; concerns not least
spawned by long-term experience with applying frequentist tests in
our own empirical research. Since the 1980s alternatives to “statistical
significance” as the main model evaluation tool have appeared in the
economics literature, and in Engsted (2002, 2009) one of us expressed the
belief that such alternatives – that focus more on “economic significance”
– would gradually replace statistical significance. Unfortunately, this
has not happened in general, albeit in a few sub-fields.4 The classical

2The Likelihood Principle is not to be confused with the “principle of likelihood
in testing hypotheses” described in Neyman and Pearson (1933, p. 295), which
consists in comparing a likelihood ratio to a “critical region,” cf. Section 2.1.

3We do not discuss the differences between frequentist and Bayesian estimation
procedures because these differences are not nearly as profound as the differences
between frequentist and Bayesian testing procedures.

4Engsted (2009) commented on Ziliak and McCloskey (2008) who criticized the
practice of econometrics. In retrospect, the last fifteen years have proven Ziliak and
McCloskey mostly right in their scepticism about the future of econometric practice.
The “null ritual” described by Gigerenzer (2004) is still widely practiced.
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frequentist testing paradigm continues to dominate empirical scientific
work, including research in economics and other social sciences, and
statistical significance at the 5% level remains a target that researchers
– and journal editors and reviewers – strongly emphasize, albeit often
implicitly (Harvey, 2017; Andrews and Kasy, 2019), leading to what
Gigerenzer and Marewski (2015) call “surrogate science.”5 New and
innovative tools also embrace this paradigm. For example, the classical
p-value “has become firmly embedded in the minds and habits of machine
learning researchers” (Berrar, 2022, pp. 1102–1103). Given the massive
conceptual and interpretational problems with frequentist tests, this is
an unfortunate state of affairs. We believe that there is still a need to
address these matters; hence, this monograph.6

Hill (1985) and Poirier (1988) encouraged economists to apply sub-
jectivist statistical methods that obey the LP. We think it is time to
repeat this advice. We end the monograph by presenting (in Section 4)
some Bayesian inspired ideas of an alternative formal paradigm that is
guided by the LP and does not involve model choice based on hypoth-
esis testing in the traditional sense. Instead it focuses on comparing
models probabilistically based on combining personal prior views of
model uncertainty with the information in the data. We believe that
such a paradigm is more transparent, more flexible, and better reflects
the way social scientists think and talk about social, behavioral, and
economic models. In addition, we believe this paradigm addresses model
uncertainty and the highly approximative nature of social science mod-
els in a more satisfactory way than the traditional paradigm does. The
alternative paradigm does not rely on any repeated sampling aspects (or
similar, like the tail area probability of hypothetical data in the p-value)

5Some journals have begun to downplay conventional significance levels. For
example, the AER Guidelines for Accepted Articles states: “Do not use asterisks to
denote significance of estimation results. Report standard errors in parentheses.”

6The so-called “credibility revolution” in empirical microeconomics, with its
strong focus on research design using experimental and quasi-experimental methods,
has been seen as a big step forward in securing a more trustworthy empirical practice
(Angrist and Pischke, 2010). It is noteworthy, however, that p-hacking and publication
bias with strong reliance on conventional significance thresholds continue to dominate
also this field (Brodeur et al., 2020).
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8 Introduction

and thereby fit more naturally with the non-experimental observational
data that social scientists typically work with.

We emphasize, however, that when it comes to the evaluation of
structural models in the social sciences, a formal statistical framework
(whether Bayesian, frequentist, or otherwise) should in our view play
only a secondary role. Informal measures of fit with focus on substantive
and practical significance are to be preferred over measures based on
statistical significance. We elaborate these thoughts in Section 4.
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