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Abstract

The aggressive scaling of CMOS technology has inevitably led to vastly
increased power dissipation, process variability and reliability degrada-
tion, posing tremendous challenges to robust circuit design. To continue
the success of integrated circuits, advanced design research must start
in parallel with or even ahead of technology development. This new
paradigm requires the Predictive Technology Model (PTM) for future
technology generations, including nanoscale CMOS and post-silicon
devices. This paper presents a comprehensive set of predictive modeling
developments. Starting from the PTM of traditional CMOS devices, it
extends to CMOS alternatives at the end of the silicon roadmap, such as
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strained Si, high-k/metal gate, and FinFET devices. The impact of pro-
cess variation and the aging effect is further captured by modeling the
device parameters under the influence. Beyond the silicon roadmap, the
PTM outreaches to revolutionary devices, especially carbon-based tran-
sistor and interconnect, in order to support explorative design research.
Overall, these predictive device models enable early stage design explo-
ration with increasing technology diversity, helping shed light on the
opportunities and challenges in the nanoelectronics era.
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Glossary

Channel doping: the equivalent doping concentration in the
channel region to determine the threshold
voltage.

CMOS: complementary metal-oxide-semiconductor
field-effect transistor.

CNT: carbon nanotube based devices. Depending on the
chirality, CNT is either metallic or
semiconducting.

DIBL: drain induced barrier lowering.
Equivalent oxide

thickness:
the equivalent gate oxide thickness that considers

the quantum effect and poly-depletion.
FinFET: a double gate device that has better control of

short-channel effects than traditional MOSFET
devices.

Predictive
Technology
Model:

compact models that predict future device
performance before the corresponding
technology is mature.

1
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2 Glossary

Process
variation:

fluctuations in device parameters that are
induced by random uncertainties or the
manufacturing process.

Reliability
degradation:

temporal change of device performance, which is
a function of technology parameters and
operation conditions.

Short-channel
effects:

the modification of carrier transport and the
threshold voltage when the channel length is
reduced to the sub-micron regime.

Strained Si: the process techniques to stretch the silicon atoms
beyond their normal interatomic distance.

Surface potential: the electrostatic potential on the surface of the
channel.

Technology
scaling:

a systematic approach to miniaturize the device
for better performance.

Threshold
voltage:

the specific value of gate voltage when a
MOSFET switches into the strong-inversion
region.

Velocity
overshoot:

the velocity exceeds the saturation velocity when
the channel length is comparable to or shorter
than the mean-free-path of a carrier.

Velocity
saturation:

the carrier velocity reaches the maximum when
the electric field is strong enough.

Verilog-A: a standard modeling language to describe the
analog behavior.

NBTI: negative bias temperature instability, which is
more pronounced in PMOS devices.
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Introduction

The minimum feature size of CMOS technology is expected to reach
10 nm in 10 years [51]. Beyond that benchmark, the present scaling
approach may have to take a different route to overcome dramatic
barriers in power consumption, process and environmental variations,
and temporal reliability degradation. The grand challenge to the inte-
grated circuit (IC) community is to identify unconventional materials
and structures, such as carbon-based electronics, integrate them into
the circuit architecture, and enable continuous growth of chip scale
and performance [17, 51]. The Predictive Technology Model (PTM),
which bridges the process/material development and circuit simula-
tion through compact device modeling, is essential to assessing the
potential and limits of new technologies and to supporting early design
prototyping.

Predictive models of electron devices are the critical interface
between technology innovation and IC design exploration, as shown in
Figure 1.1. Compatible with circuit simulation tools, they significantly
improve design productivity, providing the insight into the relationship
between technology/design choices and circuit performance. Different
from traditional compact models (e.g., BSIM), PTM uses a simple set
of physical equations that capture the essential behavior of charge and

3
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4 Introduction

Fig. 1.1 PTM: a bridge between technological prediction and early stage design exploration.

carrier transport. The electrostatic models emphasize the dependence
of the threshold voltage on physical aspects of the device like channel
length, channel doping, HALO implant, etc. The transport part of the
model adopts the velocity saturation model with overshot behavior.
In order to guarantee the quality of the prediction, PTM should
be scalable with latest technology advances, accurate across a wide
range of process uncertainties and operation conditions, and efficient
for large-scale computation. As semiconductor technology scales into
the nanoscale regime, these modeling demands are tremendously
challenged, especially by the introduction of alternative device mate-
rials and structures, as well as the ever-increasing amount of process
variations.

This paper presents a comprehensive review of the development and
latest results of the Predictive Technology Model for nanoscale devices,
covering end-of-the-roadmap and post-silicon technologies. Driven by
the increasingly complex and diverse nature of the underlying technol-
ogy, the overarching goal of PTM is to provide early comprehension
of process choices and design opportunities, as well as to address key
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5

design needs, such as variability and reliability, for robust system inte-
gration. This paper presents four specific topics on predictive modeling
challenges, ranging from conventional CMOS scaling, alternative tech-
nologies that enhance nominal CMOS performance, variability and reli-
ability issues at the end of the roadmap, to emerging devices beyond
the Si roadmap:

• Predictive modeling of conventional CMOS technology
(Section 2): CMOS will arguably be the technology of choice
for the next 15 years. To predict future technology char-
acteristics, an intuitive approach would simply scale down
the feature size and voltage parameters, such as supply volt-
age and threshold voltage (Vth), from an existing technology.
However, this approach is overly simplified and underesti-
mates the overall device performance toward the end of the
roadmap [128]. During technology scaling, process develop-
ers will optimize many other aspects of the device beyond
sole geometry scaling. For instance, the scaling of Vth not
only requires the change of channel doping concentration,
but also impacts other physical parameters, such as mobil-
ity, saturation velocity, and the body effect. These intrinsic
correlations among physical parameters need to be carefully
considered for an accurate prediction.
• PTM for alternative materials and structures (Section 3):

the scaling of traditional bulk CMOS structure is slow-
ing down in recent years as fundamental limits are rapidly
approached. For instance, short-channel effects, such as
drain-induced-barrier-lowering (DIBL) and threshold volt-
age rolloff, severely increase leakage current and degrade
the Ion/Ioff ratio. To overcome these difficulties and con-
tinue the path projected by Moore’s law, new materials (e.g.,
strained silicon, metal gate, high-k dielectrics, low-resistance
source/drain) and structures (e.g., double-gate device) need
to be adopted into conventional CMOS technology. There-
fore, predictive models for bulk CMOS technology should
be updated to capture the distinct electrical behavior of
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6 Introduction

these advances, guaranteeing state-of-the-art predictions and
design benchmarking toward the 10nm regime.
• Modeling of variability and reliability effects (Section 4):

while technology scaling can be extended with alternative
materials and structures, CMOS technology will eventu-
ally reach the ultimate limits that are defined by both
physics and the fabrication process. One of the most pro-
found physical effects will result from the vastly increased
parameter variations and reliability degradation due to man-
ufacturing and environmental factors. These parameter fluc-
tuations lead to excessive design margins, degrade the yield,
and invalidate the deterministic design methodologies cur-
rently used in industry. To maintain design predictability
with such extremely scaled devices, predictive models should
incorporate both static process variations and temporal shift
of device parameters. They should be extended from the
traditional corner-based approach to a suite of modeling
efforts, including extraction methods, the decoupling of vari-
ation sources, and highly efficient strategies for the statistical
design paradigm.
• Predictive modeling of post-silicon devices (Section 5):

beyond the far end of the CMOS technology roadmap, sev-
eral emerging technologies have been actively researched as
alternatives, such as nano-tubes, nano-wires, and molecular
devices. As demonstrated in the success of PTM for CMOS,
the outreach of PTM to these revolutionary technologies will
help shed light on design opportunities and challenges with
post-silicon technologies beyond the 10 nm regime.

Predictive models for CMOS devices and their variability are built
upon standard compact models. They are ready to be integrated into
circuit simulation tools. For nanoelectronic devices, PTM employs
Verilog-A for the implementation; it plays an essential role in joint
technology-design exploration. Solutions to those predictive modeling
challenges will ensure a timely and smooth transition from CMOS-
based design to robust integration with post-silicon technologies.
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